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ABSTRACT

Operating on the principles of quantum mechanics, quantum algo-

rithms hold the promise for solving problems that are beyond the

reach of the best-available classical algorithms. An integral part of

realizing such speedup is the implementation of quantum queries,

which read data into forms that quantum computers can process.

Quantum random access memory (QRAM) is a promising architec-

ture for realizing quantum queries. However, implementing QRAM

in practice poses significant challenges, including query latency,

memory capacity and fault-tolerance.

In this paper, we propose the first end-to-end system architec-

ture for QRAM. First, we introduce a novel QRAM that hybridizes

two existing implementations and achieves asymptotically superior

scaling in space (qubit number) and time (circuit depth). Like in clas-

sical virtual memory, our construction enables queries to a virtual

address space larger than what is actually available in hardware.

Second, we present a compilation framework to synthesize, map,

and schedule QRAM circuits on realistic hardware. For the first time,

we demonstrate how to embed large-scale QRAM on a 2D Euclidean

space, such as a 2D square grid layout, with minimal routing over-

head. Third, we show how to leverage the intrinsic biased-noise

resilience of the proposed QRAM for implementation on either

Noisy Intermediate-Scale Quantum (NISQ) or Fault-Tolerant Quan-

tum Computing (FTQC) hardware. Finally, we validate these results

numerically via both classical simulation and quantum hardware

experimentation. Our novel Feynman-path-based simulator allows

for efficient simulation of noisy QRAM circuits at a larger scale

than previously possible. Collectively, our results outline the set

of software and hardware controls needed to implement practical

QRAM.
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1 INTRODUCTION

Quantum computers hold the potential to solve problems that are

beyond the reach of conventional digital computers. Such quantum

speedup, as understood theoretically, arises from the utilization of

quantummechanical properties such as superposition and entangle-

ment to process information more efficiently and rapidly [45]. Some

of the most promising quantum computing applications include

quantum searching [26], optimization problems [55], molecular

simulation [21, 39], data processing for machine learning [4, 30],

and cryptography [52]. For example, the quantum algorithm by

Grover [26] for searching an unordered database of size 𝑁 makes

only order of
√
𝑁 queries to the database. This is a

√
𝑁 -speedup

over the best classical algorithms, which require order of 𝑁 queries

when given access to the same database.

Over the past three decades, technology for building quantum

computing hardware has advanced steadily ś prototypes of uni-

versal quantum processing units (QPU) housing 100+ individually

programmable qubits are becoming available for the first time, and

there is great interest in practically realizing these quantum appli-

cations. The development of scalable quantum computers is still in

its early stages. Current Noisy Intermediate-Scale Quantum (NISQ)

hardware [50] is limited by its system size (number of qubits) and fi-

delity (coherent lifetime of qubits and error rates of quantum gates).

Remarkable progress [8] has been made in improving the perfor-

mance of QPUs, through better quantum control, error correction

architectures, as well as compiling and noise mitigation software.

One critical, yet largely missing, ingredient for realizing quan-

tum speedup in practice is the implementation of quantum queries

[4, 45], which allow data to be loaded into quantum states that the

QPU can process. While QPU architectures are designed to pro-

cess data rapidly, they often cannot encode classical data efficiently
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Figure 1: Requirementmap by quantumprocessor unit (QPU)

and quantum random access memory (QRAM). There is a

need for rethinking the systems architecture for QRAM be-

cause QRAM presents a distinct set of architectural con-

straints. A larger radial coordinate indicates a relativelymore

stringent requirement ś our QRAM design alleviates require-

ments in multiple dimensions.

or robustly. This inhibits the practical deployment of many quan-

tum algorithms. This issue is known as the data input and output

(I/O) bottleneck [4, 27]. In terms of gate and qubit overhead, the

costs for encoding a large set of data into quantum states can be

prohibitively high and dominate the costs of quantum algorithms.

Traditional classical random access memory (RAM) [34] allows data

stored in memory cells to be loaded rapidly into a central processor

unit (CPU). Similarly, a QRAM [23] has been proposed to enable

quantum-mechanical loading of data into memory cells. This in-

volves querying the QRAM simultaneously in a large superposition

of different addresses.

More precisely, like in classical RAM, a memory cell can be

accessed by specifying its address. That is, the data value 𝑥𝑖 is

stored at address 𝑖 ∈ 𝑁 , where 𝑁 is the memory size.

Input: 𝑖
Classical RAM−−−−−−−−−−−−→ Output: 𝑥𝑖 (1)

𝑁−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩A |0⟩B
Quantum RAM
−−−−−−−−−−−−→

𝑁−1∑︁
𝑖=0

𝛼𝑖 |𝑖⟩A |𝑥𝑖 ⟩B (2)

where 𝛼𝑖 is the amplitude of each address in the superposition,

and |·⟩A (|·⟩B) is the address (bus) qubit register storing the input
(output).

While the design principles of a QRAM are similar to those of

a classical RAM, there are unique challenges in scaling up QRAM

in practice [22, 27]: (i) Query Latency. Like a RAM device, a QRAM

allows any data to be accessed in almost the same amount of time

regardless of the specified address. This includes a superposition of

all addresses at once. Naively, entangling data from one memory

cell at a time incurs latency, scaling with 𝑁 in the worst case. This

latency can translate to a slowdown in the application, impeding its

practical deployment. (ii) Memory Capacity.Quantum algorithms, in

principle, offer better quantum speedup when given access to large

memory. However, existing QRAM architectures require a rapidly

growing number of gates or ancillary qubits when scaling up the

memory capacity. (iii) Fault Tolerance. Errors in the QRAM (e.g.,

due to various types of noise in the circuit) could seriously impact

its utility, and in many cases eliminate the quantum advantage of

an algorithm altogether [51]. As such, it is critical to guarantee the

error robustness of QRAM, through either intrinsic noise resilience

[28] or error correction.

We propose a general-purpose QRAM architecture to address

these challenges, drawing insights from classical RAM, quantum

compiling, and quantum error correction. Specifically, we make the

following novel contributions:

(1) Goal: Small QRAM; large virtual memory.

Solution: We propose a new practical architecture that pro-

vides a virtual address space that can exceed the capacity

of the physical QRAM. By hybridizing two previous query

architectures [2, 4], we achieve asymptotic savings in space

and time. As a result, our architecture enables queries to large

memory that cannot be accomplished by either architecture

alone.

(2) Goal:Mapping qubits with minimal routing overhead.

Solution: QRAM requires strongly entangling 𝑚 address

qubits with data from 𝑂 (2𝑚) memory cells.

Whetherwe can efficiently embedQRAMon practical (sparsely

connected) two-dimensional hardware is highly non-trivial.

For the first time, we provide a positive answer to this ques-

tion. We present a constructive mapping of QRAM on 2D

lattice architectures with minimal routing/communication

overhead.

(3) Goal: Noise-robustness of QRAM.

Solution:We show that our small-scale QRAM can be im-

plemented on current hardware or near-term hardware with

moderately improved error rates We also demonstrate that

small error correction codes allow us to substantially scale

up QRAM with low overhead.

The rest of the article is organized as follows. In Sec. 2, we review

the background on quantum compiling and architecture designs

for QRAM. Sec. 3 introduces a new QRAM architecture designed

explicitly for hybrid QRAM. In Sec. 4, we present the algorithm for

mapping QRAM on realistic hardware. In Sec. 5, we analyze the

biased-noise resilience property of our circuit and leverage it to

reduce error correction overhead. Finally, we validate the results via

classical simulation and quantum hardware experiments in Sec. 6

and Sec. 7. In Sec. 7, we also compare the resource usage of different

QRAMs and show an asymptotic scaling advantage.

2 BACKGROUND

2.1 Principles of Quantum Computing

In quantum computing, a quantum bit (qubit for short) is the fun-

damental computing unit. Unlike its classical counterpart, a qubit

can be in a superposition state, that is a linear combination of 0

and 1. In the Dirac notation, |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼, 𝛽 are

complex coefficients satisfying |𝛼 |2 + |𝛽 |2 = 1, and |0⟩ = [1 0]𝑇
and |1⟩ = [0 1]𝑇 are the computational basis vectors. In quantum

algorithms, quantum logic gates are used to manipulate the state of

the qubits. Some common quantum logic gates are shown below:
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2.2 Quantum Compiling

A quantum compiler transforms a high-level quantum program

or mathematical algorithm into a sequence of native instructions

that the hardware backend recognizes [11, 13]. The transformed

quantum circuit must be logically equivalent, resource-efficient,

and robust to hardware noise. Due to strict architectural constraints,

compiler optimization will have to break traditional abstractions

across the software stack and be adapted to algorithmic and device

characteristics. We now highlight several important transformation

passes in a compiler software.

2.2.1 Gate Synthesis. One of the first steps in quantum compiling

is to decompose high-level unitary into a sequence of native gates

from an instruction set [29]. A common instruction set is the Clif-

ford+T gates, such as {H, S, CX, T}. When implementing quantum

queries using these gates in practice, they can introduce latency

into quantum algorithms if the circuit depth is too high.

As such, it is preferable to implement QRAMwith a tailored gate

set natively, such as the classical reversible gates, including X, CX

(controlled-X), Toffoli (double-

controlled-X), MCX (multi-controlled-X), and CSWAP (controlled-SWAP)

gates. Otherwise, the multi-qubit gates can be decomposed into

Clifford+T gates. For example, we can decompose a CSWAP gate to

a circuit of depth 12, T depth 3, with no ancillae required [1, 18].

2.2.2 Qubit Mapping and Routing. To execute a quantum circuit,

another critical step is to map all logical qubits onto the physical

hardware. Current NISQ hardware has a limited number of qubits

and restrictive qubit connectivity. Only adjacent qubits can inter-

act with each other, while interactions between distant qubits are

resolved via routing qubits closer to each other. Common rout-

ing strategies include physically moving qubits (e.g., for trapped

ions) [57] or logically swapping qubits (e.g., for superconducting

circuits) [44]. Different routing strategies would incur different

routing overhead, in terms of the number of additional operations.

Future Fault-Tolerant Quantum Computing (FTQC) hardware will

have similar constraints. For example, in surface codes, logical

qubits can be laid out in a 2D grid topology. Logical gates and qubit

routing can be accomplished via lattice surgery [33].

Although the general qubit mapping problem has been proven

to be NP-hard [41], it is often useful to leverage information about

the circuit and the hardware to improve the quality of a mapping

strategyÐa well-structured circuit can be easier to map and route

[32, 43, 59]. Moreover, hardware noise-aware mapping strategies

can enhance the circuit performance significantly [3, 14, 37, 44, 54].

2.3 Quantum Query Architectures

QRAM is an integral part of quantum computer architecture, as it

enables quantum computers to efficiently encode classical data into

a quantum state for the QPU to process. As shown in Equation 2, a

QRAM read operation therefore involves properly entangling data

𝑥𝑖 with the corresponding address 𝑖 in the superposition input.

General-Purpose versus Domain-Specific ś Query architec-

tures can be categorized into two classes: (1) General-purpose (GP)

architectures that load any possible data values 𝑥𝑖 for an arbitrary

address
∑
𝑖 𝛼𝑖 |𝑖⟩. (2) Domain-specific (DS) architectures that imple-

ment only particular data function(s) 𝑓 (𝑖) = 𝑥𝑖 . DS architectures
are useful when running applications in a target domain, as they

are highly tailored to maximize efficiency or fault tolerance.

We now describe the leading designs and implementations of

QRAM, namely gate-based and router-based architectures.

2.3.1 Gate-Based Architecture. Conventional wisdom is to use a

partition of a universal QPU to implement the functionality of

QRAM. As such, many proposals involve synthesizing the QRAM

operation using a sequence of quantum logic gates and optionally

using ancillary qubits. We provide two examples of these gate-based

architectures below: Sequential Query Circuits and Reversible Logic

Circuits.

Sequential Query Circuit (SQC) ś A quantum query can be

implemented by a quantum circuit consisting of sequential MCX

(multi-controlled-X) gates with no ancillary qubits. In the literature,

the SQC is also known as a basic query circuit (BQC) or quantum

read-onlymemory (QROM) [2]. Figure 2c provides a simple example

of such a circuit. In this circuit, a sequence of 𝐾 MCX gates is applied

to query a memory of size 𝑁 , where each gate has log𝑁 controls on

all the address qubits and one target on the so-called bus qubit that

holds the queried data. Each MCX gate is responsible for loading data

stored at one corresponding address, and the full query is realized

by iterating sequentially over all possible addresses. The SQC is

a general-purpose architecture, capable of querying any function

𝑓 (𝑖) = 𝑥𝑖 for the memory cell data. It uses𝑂 (log𝑁 ) qubits and has

𝑂 (𝑁 ) query latency.

Reversible Logic Circuit (RLC) ś An alternative implementa-

tion of quantum queries directly on a QPU using quantum gates is

through an RLC. When the function that computes the data value

is known, that is 𝑥𝑖 = 𝑓 (𝑖), one can synthesize this function di-

rectly with classical reversible gates (such as X, CX and Toffoli)

and ancillary qubits. Because different circuits are required to imple-

ment different functions, RLC implements a domain-specific query.

Classical reversible circuits are shown to be easier to optimize and

verify than generic quantum circuits [15, 49]. However, as with any

DS architecture, the circuits must be synthesized and optimized

for each domain application [19]. This is useful if we want to im-

plement a quantum computer to support a particular application.

For example, the modular exponentiation step in Shor’s algorithm

[52] can be implemented by either an RLC or a hand-optimized

quantum circuit [20].

2.3.2 Router-Based Architectures. To minimize query latency, sev-

eral router-based architectures are proposed. The defining feature of

these general-purpose architectures is some form of quantum rout-

ing, wherein quantum data is routed to multiple different locations
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Figure 2: Different quantum query architectures and corresponding elementary units. (a) Quantum query example with address

width 3. (b) Multiple-Controlled-X gate (MCX) as a unit for circuit-based query architecture. (c) Quantum router as a unit for

router-based query architecture. (d) Sequential query circuit consisting of sequential MCX gates. (e) Parallel Bucket-Brigade

QRAM consisting of recursive quantum routers.

in coherent superposition. The gadget in Figure 2d is a prototypical

example; the gadget routes quantum data from an input to one of

two different outputs conditioned on the state of a control quantum

bit (router qubit). By leveraging such gadgets, router-based QRAMs

can trade off space for time to implement𝑂 (log𝑁 )-latency queries

for a memory of capacity 𝑁 , albeit at the cost of 𝑂 (𝑁 ) qubits. This
exponential latency reduction relative to SQC is a significant step

towards the practical implementation of QRAM. We provide two

examples of these router-based architectures below: Fanout and

Bucket-Brigade.

Fanout QRAM[45] ś Fanout QRAM is the first architecture to

achieve an 𝑂 (log𝑁 )-latency query. It arranges quantum routers in

a binary tree, recursively using the outputs of the parent router as

the inputs of the children routers. A query is implemented in two

stages, address loading and data retrieval. During address loading,

all routers are first initialized in |0⟩, then a series of CX gates entan-

gle the address and routers. In particular, all 2𝑘 routers at level 𝑘 of

the tree are flipped from |0⟩ to |1⟩ conditioned on the 𝑘th address,

resulting in the preparation of GreenbergerśHorneśZeilinger-like

(GHZ) states [25] across each level of the tree. During data retrieval,

a bus qubit is routed down from the root of the tree, following the

path indicated by the routers’ states. Once it reaches the bottom

of the tree, classically-controlled gates copy the data 𝑥𝑖 = 𝑓 (𝑖) into
the state of the bus. Subsequently, the bus qubit is back routed

out of the tree, and the routers are returned to the all-|0⟩ state by
uncomputation. The fanout QRAM’s𝑂 (log𝑁 ) latency results from

the fact that both the address loading and data retrieval can be

implemented with only 𝑂 (log𝑁 )-depth circuits. However, Fanout

QRAM is shown to suffer from decoherence problems due to the

high entanglement of GHZ states [28].

Bucket-Brigade QRAM[22, 23] ś Bucket-Brigade QRAM im-

proves Fanout QRAM by modifying the address loading stage to

reduce the entanglement among the routers, as shown in Figure 2e.

Instead of using CX gates to entangle the address and routers, in

Bucket-Brigade QRAM the address qubits are themselves routed

into the tree, with the states of earlier address qubits controlling the

routing of later ones. The resultant state of the routers is more akin

to aW state [9] than a GHZ state. The former has less entanglement

entropy, which has been shown to greatly reduce the sensitivity

of Bucket-Bridage QRAM to noise and errors [28]. Importantly,

𝑂 (log𝑁 ) query latency is still achievable with this improvement,

making it a competitive query architecture for the NISQ era.

2.3.3 Other Architectures. Other constructions of quantum queries

have been proposed. For example, Select-Swap QRAM [40] can

be viewed as a combination of the gate-based and router-based

architectures. Select-Swap QRAM employs a two-stage approach.

During the first stage, one sequentially iterates over all possible

states of a subset of the address qubits, loading corresponding blocks

of data for each. During the second stage, the remaining address

qubits are used to route this data through a network of CSWAP

gates, routing the queried data to a definite location. The sequential

iteration in the first stage is analogous to the gate-based SQC, while

the coherent routing in the second stage is reminiscent of the router-

based architectures.

As another example, arbitrary state preparation algorithms can

sometimes be used as a subroutine in QRAM. Some existing work

includes the general unitary synthesis method [53, 60] and param-

eterized circuit method [24, 48]. The general unitary synthesis is

more complex than router-based QRAM, with specific gates for the

different classical data sets. This increases the difficulty of changing

the classical dataset. The parameterized circuit is a popular NISQ-

era application that has been proposed to have the ability to realize

approximate quantum query with 𝑂 (1) depth and 𝑂 (log𝑁 ) num-

ber of qubits with the price of long training time and approximate

queries.
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Figure 3: Overview of the proposed virtual QRAM architec-

ture (𝑘 = 1,𝑚 = 2) and its interaction with QPU. The QPU

qubits are swapped to the buffer for a quantum query and

returned to QPU once the query is done by QRAM.

3 PROPOSED QRAM ARCHITECTURE

This work demonstrates an end-to-end architecture design for

QRAM. The prior works, including Bucket-Brigade QRAM and

FANOUT, have unaffordable overhead in terms of resource con-

sumption when querying a large database. Our proposed system

architecture is built upon a novel router-based construct that allows

us to query a virtual address space larger than that is physically

available, as shown in Section 3.1. We also provide a series of opti-

mizations in Section 3.2 to significantly cut down both space and

time costs. Our new design decouples the address-loading stage

from the data-retrieving stage in a quantum query, and deeply

optimizes each stage. As a result, we can achieve an asymptotic

advantage over prior work (which is shown in Section 7).

3.1 Two-Stage Query Overview

We introduce a novel router-basedQRAMusing𝑂 (𝑀) qubits, where
𝑀 = 2𝑚 . We define the address width 𝑚 as the number of bits

to specify an address and the capacity 𝑀 the size of the address

space. For illustration purposes, we include an example architecture

shown in Figure 3, and a step-by-step query procedure outlined in

Figure 4, with the detailed circuits shown in Figure 5. Like in the

router-based QRAM architectures, our construction consists of two

stages: address loading and data retrieving. We explain these two

stages in turn below.

3.1.1 Stage 1: Address Loading. The task in the address loading

stage is to route the𝑚 address qubits into the small QRAM. For

this purpose, we follow the approach of other router-based QRAM

architectures and arrange a collection of quantum routers in a

binary tree structure.We affix a layer of𝑀 data qubits to the outputs

of routers at the lowest level of the tree, with each data qubit

corresponding to one of the𝑀 classical memory cells. These data

qubits will be used to facilitate operations during the data retrieval

stage.

The address-loading stage follows the conventional Bucket-Brigade

procedure: the address qubits are sequentially routed into the tree,

with the states of earlier address qubits controlling the routing

of later ones. The only difference is that, in our scheme, the data

qubits are subsequently prepared in a special state conditioned on

the states of the routers (Figure 4a). Specifically, when address 𝑖 is

queried, the 𝑖th data qubit is flipped from |0⟩ to |1⟩. This flipping
is implemented via a collection of CX gates, with the bottom layer

of routers as controls and the data qubits as targets, see Fig 5a as

query state preparation.

3.1.2 Stage 2: Data Retrieval. We propose a novel data-retrieval

stage, which, at a high level, performs data compression from the

bottom data qubits to the root data qubit in the QRAM. First, 𝑀

classically-controlled gates act on the bottom of the tree to write

|𝑥𝑖 ⟩ on the data qubits when address |𝑖⟩ is queried. Specifically, each
data qubit is paired with an ancillary qubit initialized in |0⟩. We

refer to the two-qubit system of a data qubit and its ancilla as a data

node. Then, conditioned on 𝑥𝑖 , a SWAP gate is applied between the

two physical qubits in a data node. This has the effect of encoding

the classical data in a dual-rail encoding, i.e. 𝑥𝑖 = 0 (resp. 𝑥𝑖 = 1) is

encoded as |10⟩ (|01⟩). Fig. 4(b) shows the resultant state.
Then, an array of CX gates (Figu 5b) is used to propagate this data

up to the root node of the tree, as shown schematically in Fig. 4c.

Next, the data at the root node is copied to the bus qubit, conditioned

on the 𝑘 remaining address qubits, using a MCX gate. After that, the

CX array is applied again to uncompute and disentangle QRAM

qubits, returning the QRAM to the state for the next data retrieval

stage (Fig. 4d). We can then repeat the data retrieval stage for the

next segment/page of the memory, after swapping the new segment

into the bottom of the tree. Crucially, in this new data-retrieval

step, the only non-Clifford gate involved is the MCX gate.

3.1.3 Putting It Together: Virtual QRAM. The goal is to implement

quantum query access to a memory of capacity 𝑁 = 2𝑛 , where

𝑁 > 𝑀 . That is, we consider a practical scenario where 𝑂 (2𝑛)
qubits are not physically available. Canwe still implement the query,

and if so, at what cost? This scenario resembles classical memory

architecture design where łvirtual memoryž allows a small physical

RAM can access a large address space by swapping segments (also

known as pages) of memory from disk storage [36]. Our łvirtual

QRAMž design follows precisely this intuition: we implement a

virtual QRAM that allows a small QRAMwith𝑂 (𝑀) qubits to access
a large address space 𝑂 (𝑁 ) by swapping segments of classical

memory, as shown in the right panel of Fig. 3. To accomplish this,

we need to design a QRAM architecture that allows us to query

segments of memory coherently.

We first partition the full size-𝑁 classical memory into 𝐾 = 2𝑘

continuous segments (pages), each of which has 𝑀 = 2𝑚 mem-

ory cells. It is equivalent to viewing the original 𝑛-bit address as

two parts: the most significant 𝑘-bits (which we call SQC width)

and least-significant𝑚-bits (which we call QRAM width), where

𝑘 +𝑚 = 𝑛. Our design hybridizes gate-based SQC and router-based

QRAM, where a quantum query consists of 6 basic steps: (a) loading

𝑚 address bits into QRAM, (b) preparing leaf data qubits for data

retrieval, (c) retrieving data to root qubit, (d) uncomputing data

retrieval, (e) repeat (b-d) for each segment of classical memory, (f)

uncomputing address loading. More details are illustrated in Fig-

ure 4. A distinct feature of our design is the łload-oncež property.

Our method only loads the𝑚 address qubits into QRAM once at the

beginning (and at the end for uncomputation) as shown in Figure 5c,

whereas in a previous design from [28] the𝑚 address qubits need to

be loaded 2𝑘 times. This is one of the major sources of gate savings

in our method. We present a pseudocode algorithm to describe
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(a)

(b)

(c)

(f)

(e)

(d)

Figure 4: The step-by-step procedure of a quantum query to

virtual QRAM (𝑘 = 1,𝑚 = 2). (a) Load the𝑚 address qubits

(orange) in QRAM and prepare the specific data qubit (blue)

for data retrieval. (b) Coherently write classical data 𝑥𝑖 in

data qubits to state |𝑥𝑖 ⟩. (c) Retrieve data by copying to root

qubit via CX gates. Data is copied to the bus qubit conditioned

on the state of 𝑘 address qubits (dark gray). (d) Uncompute

data retrieval and swap in next segment memory. (e) Repeat

data retrieval in (c). (f) Uncompute data retrieval.

the entire query procedure in Algorithm 1. Note that, for illustra-

tion purposes, this algorithm does not include the optimization

techniques introduced in Section 3.2.

3.2 Implementation and Optimizations

3.2.1 Key Optimization 1: Address Qubit Recycling. As shown in

Figure 4, the internal router qubits (orange nodes) are not being

used during steps (b)-(e). By recycling/reusing these qubits in re-

placement of the data qubits, we do not need any data qubits (blue

nodes) for the quantum routers internal to the tree. Figure 5 illus-

trates that the data retrieval stage reuses router qubits for copying

data via the CX array. As such, in diagrams such as Figure 6c and

Figure 7, we do not draw blue data qubits for internal quantum

routers.

3.2.2 Key Optimization 2: Lazy Data Swapping. As shown in the

data-retrieval stage in Figure 5b, classical data is loaded and un-

loaded sequentially for each segment of classical memory. We ob-

served that if the subsequent classical data corresponding to the

memory address on the next page is equal to the previous one, un-

loading and reloading data qubits are redundant and unnecessary.

Algorithm 1 Quantum Query with Virtual QRAM.

Require: |𝜓𝐴⟩ =
∑
𝛼𝑖 |𝑖⟩,𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛 − 1,𝑚 = 𝑛 − 𝑘

Ensure: |𝜓𝐴𝐵⟩ =
∑𝑁−1
𝑖=0 𝛼𝑖 |𝑖⟩𝐴 |𝑥𝑖 ⟩𝐵

𝑞
(𝑎)
𝑡 , 𝑞 (𝑏 ) ← 𝑡𝑡ℎ address qubit, Bus qubit

𝑞
(𝑐 )
𝑡 , 𝑞

(𝑑 )
𝑡 ← 𝑡𝑡ℎ layer router qubit, data qubit

𝑞
(𝑑 )
−1 ← input qubit to the root router

SWAP[𝑞
(𝑎)
0 , 𝑞

(𝑑 )
−1 ], SWAP[𝑞

(𝑑 )
−1 , 𝑞

(𝑐 )
0 ] {Address Loading}

for 𝑢 ← 1 . . .𝑚 − 1 do
SWAP[𝑞

(𝑎)
𝑢 , 𝑞

(𝑑 )
−1 ]

for 𝑣 ← 0 . . . 𝑢 − 1 do
CSWAP[𝑞

(𝑐 )
𝑣 , 𝑞

(𝑑 )
𝑣−1, 𝑞

(𝑑 )
𝑣 ]

end for

SWAP[𝑞
(𝑑 )
𝑢−1, 𝑞

(𝑐 )
𝑢 ]

end for

CX[𝑞
(𝑐 )
𝑚−1, 𝑞

(𝑑 )
𝑚−1]

for 𝑝 ← 0 . . . 2𝑘 − 1 do
Classical-CX[𝑥𝑖 , 𝑞

(𝑑 )
𝑚−1] {Data Retrieval}

for 𝑢 ← 0,𝑚 − 1 do
CX[𝑞

(𝑑 )
𝑚−1−𝑢 , 𝑞

(𝑑 )
𝑚−2−𝑢]

end for

MCX[𝑞𝑚,...,𝑛−1 , 𝑞
(𝑑 )
−1 , 𝑞

(𝑏 ) ]
for 𝑢 ← 0 . . .𝑚 − 1 do

CX[𝑞
(𝑑 )
𝑚−1−𝑢 , 𝑞

(𝑑 )
𝑚−2−𝑢] {Uncompute: Data Retrieval}

Classical-CX[𝑥𝑖 , 𝑞
(𝑑 )
𝑚−1]

end for

end for

CX[𝑞
(𝑐 )
𝑚−1, 𝑞

(𝑑 )
𝑚−1] {Uncompute: Address Loading}

for 𝑢 ← 1 . . .𝑚 − 1 do
SWAP[𝑞

(𝑎)
𝑢 , 𝑞

(𝑑 )
−1 ]

for 𝑣 ← 0 . . . 𝑢 − 1 do
CSWAP[𝑞

(𝑐 )
𝑣 , 𝑞

(𝑑 )
𝑣−1, 𝑞

(𝑑 )
𝑣 ]

end for

SWAP[𝑞
(𝑑 )
𝑢−1, 𝑞

(𝑐 )
𝑢 ]

end for

SWAP[𝑞
(𝑑 )
−1 , 𝑞

(𝑐 )
0 ], SWAP[𝑞

(𝑎)
0 , 𝑞

(𝑑 )
−1 ]

Instead, by computing 𝑥 ′𝑖 = 𝑥𝑖
⊕

𝑥𝑖+2𝑚 , it is necessary to load the

next classical data 𝑥𝑖 only when 𝑥 ′𝑖 = 1. At the final data-retrieving

stage, an alternative classical data unloading is accepted, with a

classical value as 𝑐𝑖 =

⊕
𝑖∈{0,1,...,𝑘 } 𝑥𝑖 . Adopting this technique,

named lazy data swapping, provides SWAP gate savings of 𝑂 (2𝑛−1)
in average cases, since the subsequent classical data can be the

same as the original data with a probability of 𝑝 = 0.5, assuming a

uniform distribution for the classical data 𝑥𝑖 .

3.2.3 Key Optimization 3: Address Pipelining. With pipelining, we

can reduce the depth of address-loading from𝑂 (𝑚2) to𝑂 (𝑚). In the
naive approach to address loading, address qubits are routed into the

tree sequentially, with the (ℓ+1)th address qubitwaiting to be routed
until the ℓ th address qubit has reached its destination at level ℓ of

the tree. The total routing time is thus ∼ ∑𝑚
ℓ=1 ℓ = 𝑂 (𝑚2). Instead,

the addresses can be routed in a pipelined manner: the (ℓ + 1)th
address qubit is routed into the tree immediately after the ℓ th qubit

has been routed one layer down, i.e. without waiting. Removing the
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Figure 5: Circuit for the architecture design of virtual QRAM, with SQC width 𝑘 = 1 and QRAM width𝑚 = 2. (a) Circuit for

Address Loading Stage. (b) Circuit for Data Retrieval Stage. (c) Outline of a full virtual QRAM circuit. (d) Classical-controlled

SWAP gates with dual-rail encoding (e) Qubit state in query state preparation and data retrieval.

waiting reduces the depth to 𝑂 (𝑚). While the resulting circuit is

equivalent to the parallel schedules introduced in [28] and [12], we

identify the origin of such parallelism as coming from pipelining.

4 MAPPING QRAM IN 2 DIMENSIONS

4.1 Mapping and Routing: Challenges

Qubit mapping and routing are important steps in a quantum com-

piler to implement a quantum algorithm on hardware. Routing

overhead refers to the number of operations needed to execute

a gate operation on two (possibly physically distant) qubits. This

overhead can cause a significant increase in the query latency of

the quantum algorithm.

Mapping QRAM (of capacity𝑀) is particularly challenging be-

cause it is required to map and entangle𝑂 (𝑀) qubits. The tree-like
structure in router-based QRAM means that the 𝑖th layer involves

𝑂 (2𝑖 ) qubits and multi-qubit gates. Naively, keeping a router qubit

in layer 𝑖 equal-distance with its parent router in layer 𝑖 − 1 and
its children routers in layer 𝑖 + 1 is only possible in hyperbolic

geometry. To embed a tree in 2D Euclidean space, the root (𝑖 = 0)

of the tree can be far apart from the next layer down (𝑖 = 1) due to

the large size of the two subtrees.

Our research shows that QRAM can be embedded in a 2D nearest-

neighbor grid without incurring asymptotic routing overhead. In

other words, we can map the QRAM circuit on a 2D grid and route

the qubits without increasing the 𝑂 (log𝑀) depth of the original

circuit. This is achieved by combining a mapping strategy via topo-

logical minor graph embedding (Sec 4.2) and a routing method

based on teleportation (Sec 4.3).

4.2 Mapping QRAM via H-Tree Recursion

To map QRAM onto a 2D architecture, we need to find an embed-

ding of a binary tree in the connectivity graph of the hardware. In

addition, we require the embedding to be a topological minor graph

embedding. This allows us to implement the teleportation-based

routing method by ensuring all routing qubits do not carry any

logical information. Given a simple, undirected graph 𝐺 , another

graph 𝐻 is a topological minor of 𝐺 if 𝐻 can be obtained from a

subgraph of 𝐺 by deleting edges, vertices, and contracting edges.

We reduce the problem of mapping QRAM to embedding a com-

plete binary tree in a 2D grid. The problem of embedding complete

binary trees into grids has been extensively studied in classical

VLSI design [16, 31, 38, 46]. The H-tree recursion is the first effi-

cient mapping strategy introduced by [7]. In Figure 6a, we present

the optimal embedding of 𝑇2 into Grid(3, 3) by H-tree recursion,

which is also the base case for the recursion. The embedding in-

volves three QRAM router qubits, one unused qubit, one routing

qubit, and four data qubits. Note the distinction between a router

qubit (in QRAM) and a routing qubit (for teleportation). This de-

sign ensures the root QRAM qubit can route to the border of the

grid. Recursively, we can construct an embedding of 𝑇𝑚+2 into

Grid(2𝑛 + 1, 2𝑛 + 1) as shown in Figure 6. As for even-addressed

width QRAMs, we can cut half the grid and make it a rectangular

one with𝑀 (2𝑛 + 1, 𝑛) to embed 𝑇𝑚+1 QRAM into the 2D grid.

4.3 Routing via Teleportation

Our teleportation routing method is based on a technique called

entanglement swapping [47], commonly used in the context of

quantum repeater networks [6, 56]. If the intermediate qubits be-

tween two logical qubits are unused, they can be used as ancillae

(routing qubits) to perform teleportation, as shown in Figure 6d

and 6e. Local Einstein-Podolsky-Rosen (EPR) pair preparation and

Bell State Measurement (BSM) are performed in parallel. As such,

we can teleport a qubit over a long routing distance with a constant

depth circuit. Each QRAM operation (e.g., remote CSWAP) can thus

be implemented in 𝑂 (1) step, regardless of the routing distance.

As a result, our embedding from Sec 4.2 is optimal in terms of

routing latency. Since teleportation only introduces an 𝑂 (1) depth
to each gate, the overall QRAM circuit depth remains in 𝑂 (log𝑀).
Though H-tree is efficient enough to provide the optimal query

latency, there are further optimizations are provided by [16, 38, 46],

where improved versions of the H-tree recursion are found. As

such, we can embed QRAM into a (constant-factor) denser grid.
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Figure 6: (a) H-Tree embedding of a capacity-4 QRAM on a 2D grid. (b) Recursive H-Tree embedding for a capacity-𝑛 QRAM

(Sec. 4.2). (c) Example embedding of a capacity-16 QRAM. (d) Routing via swapping. (e) Routing via teleportation (Sec. 4.3).

5 NOISE-ROBUST IMPLEMENTATIONS

QRAM is highly susceptible to noise and errors, which can cause

information loss and reduce the fidelity of the stored states. Thus,

QEM or QEC is essential for improving the reliability and accuracy

of QRAM operations. This is critical for the success of many quan-

tum algorithms and the development of fault-tolerant quantum

computation.

Prior work by [28] revealed intrinsic noise resilience in Bucket-

Brigade QRAM by carefully analyzing the error propagation in

QRAM circuits. We observed that virtual QRAM shares a similar

biased-intrinsic noise resilience property, meaning that Z error in

virtual QRAM is constrained to local qubits and will not propa-

gate to the entire circuit even without any active quantum error

correction or mitigation. To quantify the noise-resilience of vir-

tual QRAM, we define query fidelity for a single query |𝜓𝑖𝑛⟩ as
𝐹 = | ⟨𝜓𝑜𝑢𝑡 |𝜓 ′𝑜𝑢𝑡 ⟩ |2, where𝜓𝑜𝑢𝑡 is the true output, and𝜓 ′𝑜𝑢𝑡 is the
expected output.

With respect to this definition of query fidelity, we will show

that in virtual QRAM, the query fidelity is lower bounded for an

arbitrary |𝜓𝑖𝑛⟩. The infidelity is polynomially in terms of the address

width m, rather than the overall tree size 2𝑚 .

5.1 Biased-Noise Resilience Analysis

To quantify the noise-resilience of virtual QRAM, we define query

fidelity for a single query |𝜓𝑖𝑛⟩ as 𝐹 = | ⟨𝜓𝑜𝑢𝑡 |𝜓 ′𝑜𝑢𝑡 ⟩ |2, where𝜓𝑜𝑢𝑡
is the true output, and𝜓 ′𝑜𝑢𝑡 is the expected output.

With respect to this definition of query fidelity, we will show

that in virtual QRAM, the query fidelity is lower bounded for an

arbitrary |𝜓𝑖𝑛⟩. The infidelity is polynomially in terms of the address

width m, rather than the overall tree size 2𝑚 .

To construct our Z-biased noisemodel, we assume that each qubit

is subjected to the following phase-flip noise quantum channel,

𝜌 → 𝜌′ = (1 − 𝜖)𝜌 + 𝜖𝑍𝜌𝑍 . Equivalently, a 𝑍 error is applied to

each qubit with probability 𝜖 . We show that in the presence of this

qubit-based error channel, the QRAM part (beside SQC) in virtual

QRAM has a lower bound in the query fidelity as

𝐹 ≥ 1 − 4𝜖 log2𝑀 = 1 − 4𝜖𝑚2 (3)

where𝑚 = log(𝑀) is the address width of QRAM. We first present

an outline of our methodology. Similar to the approach used in

[28], the locality behavior of the noise prevents the error from

propagating throughout the entire QRAM, protecting the overall

query fidelity. An example of this effect is illustrated in Fig.7 Ð a Z

error in the control qubit of a subsequent CX gate never propagates

to the target qubit by commutator relationship of quantum gates.

This property also holds in quantum routers using CSWAP gates,

ensuring the error locality for the address loading stage.

However, our virtual QRAM cannot prevent other Pauli errors,

such as X and Y errors, from propagation. We will show that the

fidelity under Z and X error channels has an exponential difference

with respect to the QRAM width𝑚.

Consider the computational basis states |0⟩, . . . , |2𝑚+𝑘 − 1⟩ corre-
sponding to different memory addresses. For a query𝑄 , let𝑄𝑔𝑜𝑜𝑑 ⊆
{0, . . . , 2𝑚+𝑘 − 1} be the subset of 𝑖 such that 𝑄 behaves ideally on

|𝑖⟩: there are no 𝑍 errors on any routers on the path of the branch

corresponding to 𝑖 . On the initial state |𝜓𝑖𝑛⟩ =
∑2𝑚+𝑘−1
𝑖=0 𝛼𝑖 |𝑖⟩𝐴 |0⟩𝐵 ,

a query yields the state |𝜓𝑜𝑢𝑡 ⟩ =
(∑2𝑚+𝑘−1

𝑖∈𝑄𝑔𝑜𝑜𝑑
𝛼𝑖 |𝑖⟩𝐴 |𝑥𝑖 ⟩𝐵

)
+ |𝜓𝑏𝑎𝑑 ⟩

where |𝜓𝑏𝑎𝑑 ⟩ is a super-position of all non-ideal branches (those

with 𝑍 errors).

𝐹 =

����
〈
𝜓𝑜𝑢𝑡

����
2𝑚+𝑘−1∑︁
𝑖∈𝑄𝑔𝑜𝑜𝑑

𝛼𝑖 |𝑖⟩𝐴 |𝑥𝑖 ⟩𝐵

〉
+
〈
𝜓𝑜𝑢𝑡

����𝜓𝑏𝑎𝑑
〉����
2

≥ ©­
«

∑︁
𝑖∈𝑄𝑔𝑜𝑜𝑑

|𝛼𝑖 |2 − ©­«
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𝑖∈𝑄𝑔𝑜𝑜𝑑
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¬
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©­«
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Figure 7: (a) and (b): Commutator relationship for Z and

CNOT gates. (c) and (d): Z-error behavior in QRAM. A Z error

only propagates to the subtree highlighted in red, due to the

direction of the CX gates.

where the inequality holds since |𝜓𝑜𝑢𝑡 ⟩ is normalized. Thus, it

suffices to show that 𝑄𝑔𝑜𝑜𝑑 is sufficiently large in expectation, i.e.

most branches perform ideally. If 𝑆 and 𝑆 ′ are sets of indices of the
same size, they share equal possibility to coincide with 𝑄𝑔𝑜𝑜𝑑 , as

our error model on the router is independent of the router itself.

Letting |𝑄𝑔𝑜𝑜𝑑 | = 𝑐 ,

E

[ ∑︁
𝑖∈𝑄𝑔𝑜𝑜𝑑

|𝛼𝑖 |2
]
=

E[𝑐]
2𝑚

=⇒ E[𝐹 ] ≥
(
2 · E[𝑐]
2𝑚

− 1
)2

(4)

where the expectation is taken over all possible errors. By the fact

that the Z error will not propagate up across the tree to destroy

other branches, the fulfillment condition for an ideal branch is that

all the routers in the path are correct. Since each branch contains𝑚

routers, the probability a branch behaves ideally is (1 − 𝜖)𝑚2
, with

E[𝑐] = 2𝑚 (1 − 𝜖)𝑚2
. Combining (3) and (4), we conclude that

1 − 𝐹 ≤ 1 − E[𝐹 ] ≤ 4𝜖𝑚2
= 4𝜖 log2𝑀

where the final inequality is valid for𝑚 ≥ 1, 𝜖 ≥ 0. This proves the

fidelity bound in Equation (3).

Precisely, if dual-rail encoding introduced in Section 3 is adopted,

the router qubits and data qubits are duplicated, which doubles the

errors of each router in the circuit. The above derivation, however,

is still valid because the locality of the Z error behavior is not

relevant to the choice of encoding. Using the same methodology,

we arrive at a bound with only a constant factor difference for

dual-rail-encoding virtual QRAM: 𝐹dual−rail ≥ 1 − 8𝜖𝑚2 .

On the contrary, the circuit has no noise-resilience property for

X errors. Any single X error will propagate to the root qubit of the

QRAM, leading to a complete destruction of the query state. Thus to

achieve an ideal state, it suffices to show that all the qubits in QRAM

are correct. As such, for X error channel with error prob 𝜖 , the lower

bound of infidelity is 1−8𝜖𝑚 ·2𝑚 , exponential in the total number of

qubits. Similar to the X error behavior in the QRAM part, any single

Pauli error in SQC is fatal for the query fidelity. Consequently, for

an SQC width k, the query fidelity under arbitrary Pauli errors with

error rate 𝜖 is lower bounded by 1 − (𝜖𝑘 · 2𝑘 ). Combining these

bounds, We conclude the virtual QRAM with QRAM address width

m and SQC width k will lower bound the overall query fidelity as

𝐹virtual,𝑍 ≥ 1 − 8𝜖 (𝑚 + 1) · 2𝑘 (𝑘 +𝑚) (5)

𝐹virtual,𝑋 ≥ 1 − 8𝜖 (𝑚 + 1) · 2𝑘 (𝑘 + 2𝑚) (6)

for Z errors and X errors, respectively. Additionally, our biased-

noise analysis can be easily extended to a gate-based error channel

with errors randomly applied using Monte Carlo sampling to quan-

tum gates, up to a constant factor difference. By the observation

that each branch of the QRAM intersects with at most 𝑂 (𝑚) gates,
the lower bound of the fidelity has the same asymptotic scaling as

under the qubit-based noise model.

5.2 Asymmetric Error Correction

In this section, we explore the fault-tolerant implementation of the

virtual QRAM in future quantum hardware, using rectangular sur-

face code to combine error correction design with intrinsic QRAM

noise resilience. We assume that the error rate of physical qubits

is unbiased with respect to both X and Z, whereas a logical qubit

generated by the rectangular surface code exhibits a biased error

rate. Adopting this biased-error surface code as qubits in virtual

QRAM, balanced fidelity for X and Z errors can be achieved.

Based on the different lower bounds of query fidelity under X

and Z error channels, we need a careful choice of the surface code

for the different parts in virtual QRAM. First, the logical error rate

ratio of X and Z is related to the physical error rate, surface code

threshold, and the code distances 𝑑𝑥 and 𝑑𝑧 [5]:
𝑝𝑥 𝑙
𝑝𝑧𝑙
≈
(
𝑝
𝑝𝑡ℎ

)𝑑𝑥−𝑑𝑧
.

To balance the logical error rates of X and Z error channels, we adopt

the bound from equation 5 and 6 and let 𝐹𝑥 = 𝐹𝑧 , then
𝜖𝑥
𝜖𝑧

=

𝑝𝑥 𝑙
𝑝𝑧𝑙

=

(𝑚+𝑘 ) ·2𝑘
2𝑘 (𝑘+2𝑚 ) =

𝑘+𝑚
𝑘+2𝑚 . We obtain the strategy of designing rectangular

surface code for each physical qubit in QRAM is choosing lengths

of the surface code 𝑑𝑥 and 𝑑𝑧 as:

𝑑𝑥 − 𝑑𝑧 ≈
log( 𝑘+𝑚

𝑘+2𝑚 )
log( 𝑝𝑝𝑡ℎ )

(7)

Since the SQC does not have biased-noise resilience, we can encode

𝑘 address qubits using regular square surface code to achieve full

protection for the entire virtual QRAM.

6 EVALUATION METHODOLOGY

6.1 Baseline Architectures

We theoretically analyze the performance of the new circuit and

perform simulation in comparison to two baseline architectures,

BB (Bucket-Brigade QRAM) and SS (Select-Swap QRAM), described

in Sec 2. These two QRAM architectures present state-of-the-art

QRAM architecture designs in both consumption of quantum re-

sources and performance of quantum circuits including circuit

depth and noise-resilience properties.

6.2 Feynman Path Simulation

We utilized a classical simulation technique called Feynman-Path

Simulation (FPS) to efficiently compute the result of QRAM queries.

In FPS, each memory address corresponds to one path. Despite

path number and running time scaling exponentially in the address

space, FPS can still efficiently simulate and analyze larger QRAMs,

on account of the following desirable property. QRAM circuits

are constructed from a small, fixed set of classical-reversible gates,

meaning that all these gates do not map a single computational basis

state to a superposition over basis states. As a consequence, the
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storage overhead does not increase exponentially in the depth of the

circuit, and instead remains constant. Notably, Pauli gates have the

same property to ensure we execute noisy QRAM simulations with

negligible overhead. Compared to the special-purpose simulator in

[28], our Feynman Path implementation is the first general-purpose

QRAM simulation that is capable of handling arbitrary input (e.g.,

memory capacity, address state, and noise models).

6.3 Experimental Setup

Noise-free or Pauli-noise circuit simulations are implemented with

a single core on a single node, with the largest simulations using 1.5

MB of RAM. For each value of QRAM address width𝑚, we execute

1024 shots to achieve the average fidelity, using a gate-based error

model applied via Monte Carlo sampling. We assume devices with

2D square grid connectivity, commonly used in NISQ or FTQC

architectures.

7 RESULTS

7.1 QRAM Resource Estimation

The improvements breakdown by different optimization techniques

in Section 3 are listed in Table 1. Table 2 presents a comprehensive

comparison of multiple current quantum architectures, including

concrete parameters such as circuit depth, number of qubits, and T

gate depth, among others. Notably, the asymptotic scaling in the ta-

ble indicates that all three architectures have the same scaling with

respect to qubit count. SQC+BB (Baseline B) is a load-multiple-times

architecture that suffers from deficiencies in exponential 𝑂 (2𝐾 )
overhead in T depth and T counting complexity. SQC+SS (Baseline

S) is a load-once architecture; however, its swap-network is not

as efficient as the router-based QRAM, since it lacks a pipelining

strategy to load the address discussed in Section 3. Consequently,

the circuit depth and Clifford depth of SQC+SS will be quadratically

larger than our new QRAM architecture with factor 𝑂 (𝑚2). There-
fore, our virtual QRAM outperforms or at leastmatches any resource

counting compared with the state-of-the-art QRAM architectures.

7.2 Mapping and Routing Overhead

Figure 8 presents the results of our constructive mapping strat-

egy, counting the extra operation depth induced from connectivity

constraints in NISQ hardware. The conventional swap-based rout-

ing, when applied to QRAM, leads to exponential extra SWAP depth

overhead and loss of the logarithmic scaling of query depth in

terms of QRAM width m. In contrast, the teleportation-based rout-

ing consistently outperforms the other, exhibiting an exponential

advantage in extra operation depth. Figure 8 also indicates that

QRAM under embedding only introduces a linear overhead for cir-

cuit depth, which protects the query latency to be unchanged under

qubit mapping and routing. Meanwhile, our H-tree embedding and

the teleportation scheme reduce the circuit depth exponentially but

with only constant qubit resource overhead. With𝑚 = 2𝑛 address

qubits, unused qubits occupy 25% of the total qubits: (2𝑛 − 1)2
vs (2(𝑛+1) − 1)2. The proportion of unused qubits can be further

reduced by improved tree embedding discussed in Sec 4.3.
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Figure 8: Additional operations after mapping in 2D nearest-

neighbor architectures. Swap-based communication scales

exponentially worse than teleportation-based communica-

tion.

Figure 9: Fidelity comparison for different QRAM architec-

tures. We observe fidelity decays polynomially for Z errors

in virtual QRAM and BB QRAM, but for X errors only in BB

QRAM.
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Figure 10: (Left) Fidelity with phase flip error model by nu-

merical simulation. (Right) Fidelity with bit flip error model

by numerical simulation.

7.3 Biased-noise simulation

As illustrated in Section 5, the QRAM architecture is robust to Z-

biased error. We further validate this property by calculating the

virtual QRAM fidelity and comparing it to Baseline B, which is

robust to arbitrary error channels but has the same scaling as the

new virtual QRAM for Z error. As expected, Baseline S exhibits no

noise resilience. Figure 9 shows the scaling of the fidelity under

Pauli X and Z errors for different architectures with error rate

𝜖 = 10−3.
Moreover, our simulations in Figure 10 demonstrate the fidelity

gap between Z-biased noise and X-biased noise, with far better

performance in the former. We also provide Figure 11 to illustrate

the trade-off between the QRAM width m and SQC width k under

the single qubit Z and X error model. Our plot indicates that the

fidelity decays exponentially faster when increasing the SQC width

parameter 𝑘 than the QRAM width𝑚.
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RAW OPT: 1 OPT: 2 OPT: 3 OPT: ALL

Qubits (bit encoding) 6 · 2𝑚 + 𝑘 4 · 2m + k 6 · 2𝑚 + 𝑘 6 · 2𝑚 + 𝑘 4 · 2m + k
Circuit depth 𝑚2 + (𝑚 + 1) · 2𝑘 𝑚2 + (𝑚 + 1) · 2𝑘 𝑚2 + (𝑚 + 1) · 2𝑘 m + (m + 1) · 2k m + (m + 1) · 2k
Classical controlled gates 2𝑚+𝑘−1 2𝑚+𝑘−1 2

m+k−2 2𝑚+𝑘−1 2
m+k−2

Table 1: Resource overhead improvements from three key optimization methods in Section 3.

SQC+BB SQC+SS Our QRAM

Qubits 2𝑚 + 𝑘 2𝑚 + 𝑘 2𝑚 + 𝑘
Circuit depth 𝑚 · 2𝑘 𝑚2 · 2𝑘 𝑚 · 2𝑘
T count (2𝑚 + 𝑘) · 2𝑘 2𝑚 + 𝑘 · 2𝑘 2𝑚 + 𝑘 · 2𝑘
T depth (𝑚 + 𝑘) · 2𝑘 𝑚 + 𝑘 · 2𝑘 𝑚 + 𝑘 · 2𝑘
Clifford depth (𝑚 + 𝑘) · 2𝑘 (𝑚2 + 𝑘) · 2𝑘 (𝑚 + 𝑘) · 2𝑘

Table 2: Resource overhead comparison between different

implementations of virtual QRAM. All costs are in Big-O.
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Figure 11: Virtual QRAM fidelity scaling under X and Z error.

Top/Bottom: Z/X error with (Left) 𝜖𝑟 = 1, (Middle) 𝜖𝑟 = 10,

(Right) 𝜖𝑟 = 100.

8 RELATED WORKS

Recently a similar architecture design for QRAM by Chen et al.

designed a łload-oncež QRAM architecture capable of querying

memory with more than 1 bit in each memory cell, i.e., a data width

of 𝑘 ≥ 1 [10]. The difference between theirs and our work is that we

target creating larger address widths rather than simply repeating

the data retrieved multiple times to query the same address for

more bus qubits. Notably, some previous works, e.g., Connor et al.

[28], mentioned similar strategies to generalize to high data width.

Our virtual QRAM is compatible with a data width larger than 1

by repeatedly querying memory cells one bit at a time, by taking

advantage of the parallel retrieval from [10] in our virtual QRAM.

During the preparation of this work, Jaques and Rattewmade sim-

ilar claims on qubit mapping in QRAM in a recent paper [35]. One

major limitation of QRAM highlighted in both our work and [35] is

the signal latency for communicating qubits within the QRAM. [35]

assumes a quantum bus line for communication, which has latency

linear to its distance, while our work proposes a novel teleportation-

based routing scheme to overcome this bottleneck. Ultimately, via

teleportation, we can propagate information across QRAM qubits

faster (only limited by classical communication or the speed of

light), with negligible quantum delay. This is an important step

towards achieving quantum advantage for QRAM with relatively

small query delay.

There are significant advances in hardware development towards

QRAM using superconducting devices and cold atom arrays. For ex-

ample, the key element of deterministic CSWAP operations between

superconducting cavities have been demonstrated in previous work

[17, 58]. CSWAP operations using superconducting transmon de-

vices have also been demonstrated [42]. Toffoli gate and CSWAP

for QRAM have also been investigated using the Rydberg blockade.

9 CONCLUSION

The use of QRAM is ubiquitous in quantum algorithms. A successful

implementation of practical QRAMs could unlock the full potential

of quantum computing and bring us closer to realizing practical

applications such as optimization, machine learning, and cryptog-

raphy. Our proposed QRAM architecture addresses the challenges

of memory capacity, query latency, and fault-tolerance through

innovations in virtualizing QRAM, latency-free mapping to 2D grid

architecture, and leveraging intrinsic biased-noise resilience in the

circuits. We have shown an end-to-end systems architecture for

performing high-fidelity queries of large memories, and identified

key technology advances (such as gate error rate reduction or error

correction code distance) needed to scale up QRAM and quantum

computing platforms as a whole.
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A IS QRAM VIABLE ON CURRENT QPUS?

Current QPUs have limited qubit count, device connectivity, and

fidelity. In this section, we investigate the main technological im-

provements needed to implement QRAM. Our real hardware noise

simulation experiments are implemented in Python 3.9, interfacing

with IBM’s Qiskit software library. All the IBMQ noisy simulation

experiments are executed with 200 shots, using 48 cores and 30GB

of RAM with error models from IBM’s 𝑖𝑏𝑚_𝑝𝑒𝑟𝑡ℎ for𝑚 = 1 cases

and from IBM’s 𝑖𝑏𝑚𝑞_𝑔𝑢𝑎𝑑𝑎𝑙𝑢𝑝𝑒 for𝑚 = 2 cases. The topology of

the two machines is listed in Figure 12. Our analysis in Section 5

reveals a lower bound of the fidelity that suggests high fidelity can

be achieved for small-scale QRAM by enhancing the error rate of

the quantum hardware. To this end, we introduce an Error Reduc-

tion Factor (𝜖𝑟 ) that describes the error rate ratio between expected

future hardware and current hardware. 𝜖𝑟 =
current error rate
future error rate , with

the current hardware error rate assumed to be 10−3.
In Figure 12, we assess the fidelity of the small-scale virtual

QRAM under a realistic noise model obtained from IBM quantum

hardware and simulate the virtual QRAM with error rates 𝜖𝑟 times

lower than the current model to predict its performance in the

future machine. Since IBM hardware has sparser connectivity than

2D square grid analyzed in Sec 4, extra SWAP gates by Qiskit default

transpiler Sabre [37] are needed to implement QRAM operations,

with counting in Figure 10. Despite the extra SWAP operations, en-

couragingly, our results indicate that with a future noise model 10

times better than the current technology, we can achieve signifi-

cantly improved query fidelity. Furthermore, when error rates are

reduced to 10−5 possibly via near-term small-scale error correction,

then the query fidelity can reach higher than 0.98.
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