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ABSTRACT. We obtain new characterizations of the Sobolev spaces W'?(RY) and the
bounded variation space BV (RY). The characterizations are in terms of the functionals
Vy(Ex /plu]) where
Exyplu]l = {(x,y) eRY xRY: z #£y, % > /\}

and the measure v, is given by dv,(z,y) = |z — y|" =" dady. We provide characterizations
which involve the LP*°-quasi-norms supy- o A v+ (Ex - /p[u])*/? and also exact formulas via
corresponding limit functionals, with the limit for A — oo when ~ > 0 and the limit for
A — 07 when v < 0. The results unify and substantially extend previous work by Nguyen
and by Brezis, Van Schaftingen and Yung. For p > 1 the characterizations hold for all
v # 0. For p = 1 the upper bounds for the L' quasi-norms fail in the range v € [—1,0);
moreover in this case the limit functionals represent the L! norm of the gradient for
C°-functions but not for generic W' !-functions. For this situation we provide new
counterexamples which are built on self-similar sets of dimension v + 1. For v = 0 the
characterizations of Sobolev spaces fail; however we obtain a new formula for the Lipschitz
norm via the expressions vo(Ex,o[u]).

1. INTRODUCTION

In this article, we are concerned with various ways in which we can recover the Sobolev
semi-norm || Vul|,»gny via positive non-convex functionals involving differences u(z) —u(y).

We begin by mentioning two relevant results already in the literature. A theorem of
H.-M. Nguyen [15] (see also [5,6]) states that for 1 < p < oo and u in the inhomogeneous
Sobolev space W1P(RN),

1.1 lim/\p// z—yl P Ndaedy = ( N) Vu
(1.1) Ay . M\ Y| y= I HLp RN)
with
o (ZE)n e
1.2 k(p,N) = e-wpdw:2—,
(1.2) (p,N) /SN_II \ T(%i)
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and e is any unit vector in RY. As shown in [5], (1.1) still holds for all u € C}(RY) when
p = 1 but fails for general u € WLH(RY). The limit formula (1.1) may be compared to a
theorem of three of the authors [7], which states that for all u € C°(RY) and 1 < p < oo,
one has

(13) Jim MLV ({(2,y) € RY xRN fu(w)—u(y)| > Ale—yl 5 )) = “C ywupp,

A—00

where £2N denotes the Lebesgue measure on RY x RV, Our first result, namely Theorem 1.1
below, provides an extension of (1.1) and (1.3) that unifies the two statements. Before we
state the theorem, we introduce some notations that will be used throughout the paper.

First, for Lebesgue measurable subsets E of RV = RY x RN and v € R, we define

(1.4) 17' — [N dz dy.

(z,y)eE
T#£Y

In particular, when v = N, vy is just the Lebesgue measure on R?Y. If v is a measurable
function on RY and b € R, we define, for (z,y) € RY x RV with z # v, a difference quotient

(15) Quu(z, y) = D) ),

|z — gyt

moreover, we define, for A > 0, the superlevel set of Qpu at height A by
(1.6) Eyplu] = {(z,9) € RY x RY: 2 £ y, |Quu(z,y)| > A}.

We will denote by Wit (]RN ), p > 1 the homogeneous Sobolev space, i.e. the space of
LL (RY) functions for which the distributional gradient Vu belongs to LP(RY), with the

loc
semi-norm |[ul|yj;1, = [V 1oy The inhomogeneous Sobolev space W'? is the subspace

of WhP-functions u for which v € LP, and we set ||u|w1p = ||ulrs + ||Vulze. For p =1
we will also consider the space BV (RY) of functions of bounded variations, i.e. locally
integrable functions u for which the gradient Vu € M belongs to the space M of R¥-valued
bounded Borel measures and we put |[u|| z = ||Vul|p; furthermore, let BV := BV N L.
In the dual formulation, with C! denoting the space of C! functions with compact support,

lull gy = Sup{‘/ udiv(9)] : ¢ € CLRY,BY), ¢l < 1},
RN
For general background material on Sobolev spaces see [4], [21].
Theorem 1.1. Suppose N >1,1<p<oo,y€R\{0}.

(a) If v > 0, then for all u € WHP(RN)

(L.7) lim Xw, (B plul) = ”<| , M Sl

A——+o00
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(b) If either v <0, p>1orvy<—1,p=1 then for all u € Wl’p(RN)
#(p, V)
ol

(¢) If p=1and =1 < v < 0 then (1.8) remains true for all u € CHRN) but fails for
generic u € WHL(RN). However we still have for all v € WHH(RY)

k(1,N)
7l

(1.8) lim )\pry(E)\’,y/p[u]) =

lim | 7ul;

Lr(RN)"

(1.9) lig\n\%(l)lf )‘V'Y(E/\y’Y[uD > ||VUHL1(RN)'

Formula (1.1) is the special case of (1.8) with v = —p, and formula (1.3) is the special
case of (1.7) with v = N. Note that our result concerns functions in the homogeneous
Sobolev space WP; we do not require u to be in LP.

Remarks. (i) The reader will note the resemblance of (1.8) and (1.7) and may wonder why in
(1.8), for v < 0, one is concerned with the limit as A N\, 0 and in (1.7), for v > 0, one takes the
limit as A — co. In the proofs of these formulas one relates limits involving Av, (E}y ./, [u])'/P
to (the absolute value of) limits of directional difference quotients 6~ (u(z + 50) — u(z))
with increment § = A™?/7 and in order to recover the directional derivative (6, Vu(z)) we
need to let § — 0, which suggests that we need to take A — oo or A\, 0 depending on the
sign of «. For the calculations see the proofs of Lemma 3.2 and Lemma 3.3 below.

(ii) The failure of (1.8) for p = 1, v € [~1,0) and u € WL (RYN) is generic in the sense
of Baire category. It may happen that limy\ o Av(E) [u]) = co. This phenomenon was
originally revealed when v = —1 by A. Ponce and is presented in [15], see also [5, Pathology 1].
For stronger statements and more information see Theorem 1.8. For vy € (—1,0) we provide
new examples based on self-similarity considerations. For discussion of failure in the case
~v = 0 see Theorem 1.5 below. The special case of (1.9) for v = —1 was already established
in [5, Proposition 1].

When p = 1 we can also consider what happens if one allows functions in B‘V(RN ) in
(1.7) and (1.8). For v = N in particular Poliakovsky [19] asked whether the limit formulas
remain valid in this generality (with ||Vul|;1 replaced by [|[Vu||r¢). We provide a negative
answer:

Proposition 1.2. (i) The analogues of the limiting formulas (1.7) for v >0, p =1 and
(1.8) for v <0, p=1, with |Vul|sp on the right hand side, fail for suitable u € BV .

(ii) Specifically, let Q@ C RN be a bounded domain with smooth boundary and let u be
the characteristic function of Q. The limits imy_,o Avy(E)[u]) for v > 0 and
im0+ Avy (B4 [u]) for v < —1 exist, but they are not equal to |y| " k(1, N)||Vul|pm.

For a more detailed discussion we refer to Section 3.6. See also Section 7.2 for a discussion
about some related open problems.



Motivated by [7], we will also be interested in what happens to the larger quantity
obtained by replacing the limits on the left hand side of (1.7) and (1.8) by supy~(. This
will be formulated in terms of the Marcinkiewicz space LP>°(R?Y,1.,) (a.k.a. weak type LP)
defined by the condition

(1.10) [F] = il;%)\pvv({(x,y) c RN xRN : |F(z,y)| > A\}) < oo.

p
Lp:oe (R2N 1)

As an immediate consequence of Theorem 1.1 we have for N > 1,1 < p < o0, v # 0 and all
u e CP(RY),

(1.11) ([Qu/pt oo @2 ) Z CN DNVl ey

where C(NV,p,7) is a positive constant depending only on N, p and . Moreover, the same
conclusion holds for all u € W'?(RY) when p > 1 with any v # 0, and when p = 1 with any
v ¢ [—1,0]. We shall show that the conditions in the last statement can in fact be relaxed,
see the inequalities (1.14) and (1.16) below. In addition we have the important upper
bounds for Q. /,u, extending the case ¥ = N already dealt with in [7] for u € C°(RY).
The result in [7] states that for every N > 1, there exists a constant C(N) such that

(1.12) [QN/p ] e oy < CNIVUNT, gy

for all u € C°(RY) and all 1 < p < oco. In light of Theorem 1.1, it is natural to ask whether
one can replace the limits on the left hand sides of (1.7) and (1.8) by sup,-q and still obtain
a quantity that is comparable to ||Vu||ip (RV)" As suggested by Theorem 1.1 the answer to

our question is sensitive to the values of v and p.

Theorem 1.3. Suppose that N > 1, 1 <p < oo and v € R. Then the following hold.

(i) The inequality

(113) [ny/pu] Lp:oo(R2N 1) < C(Napafy)HVUHLP(RN)
holds for all u € CX(RN) if and only if v # 0. In this case (1.13) extends to all
u € WHP(RY),

(ii) Suppose that u € L (RY) and Q/pu € LP®(R?N v.). Then u € W'"P(RN) and we
have the inequality

(1.14) [VullLr@yy < CNpy[@rjpt oo en 1 )-
There is a new phenomenon for p = 1, namely the upper bounds for ), u only hold for

the more restrictive range v € (—oo, —1) U (0,00). Here it is also natural to replace W1
with BV.

Theorem 1.4. Suppose that N > 1 and v € R. Then the following hold.

(i) The inequality

(115) [Q’yu] LLoo(R2N 1)) < C(N7 7) HVUHLl(RN)
4



holds for all u € C°(RYN) if and only if v € [~1,0]. In this case (1.15) extends to all
ue WH(RN), and, if [Vl L1 @wny is replaced by ||Vul|a, to all u € BV (RM).

(ii) Suppose that u € LL (RN) and Q,u € L»®(R*N v.). Then u € BV(RY) and we
have the inequality

(1.16) HVUHM < CN,w[Q’Yu]Ll’OO(lR?N,w)'

We note that the quantitative bounds (1.13) and (1.15) in Theorems 1.3 and 1.4 are crucial
tools for establishing the limiting relations for all W functions in Theorem 1.1. Note that
there is no restriction on 7 in (1.14) and (1.16). The constants in the inequalities will be
quantified further later in the paper. In particular, C'(N,p,~) in (1.13) remains bounded as
p ¢ 1 only in the range v € (0,00) U (=00, —1) (cf. Theorem 2.2 and Proposition 6.1).

Historical comments. Some special cases of the above quantitative estimates have been
known. Estimate (1.13) for v = —p and 1 < p < oo was discovered independently by H.M.
Nguyen [15], and by A. Ponce and J. Van Schaftingen (unpublished communication to
H. Brezis and H.M. Nguyen), both relying on the Hardy-Littlewood maximal inequality.
A. Poliakovsky [19] recently proved generalizations of results in [7] to Sobolev spaces on
domains; moreover he obtained Theorems 1.3 and 1.4 in the special case v = N under the
additional assumption that v € LP. Other far-reaching generalizations to one-parameter
families of operators were obtained by O. Dominguez and M. Milman [10].

The case v = 0. We shall now return to the necessity of the assumption v ¢ [—1,0] in parts
of Theorems 1.1, 1.3 and 1.4. When v = 0, the bounds for [Q,/pu]rp.cc(ren . ) fail in a
striking way. We begin by formulating a result illustrating this failure, which also gives a
characterization of the semi-norm in the Lipschitz space W1,

Theorem 1.5. Suppose N > 1, u is locally integrable on RN and Vu € L (RN). Then
(1.17) V|| ooy = inf{A > 0 : v (Exo[u]) < oo}

Indeed in Proposition 5.1 we shall prove the stronger statement that vo(Eyo[u]) = 0
for A > ||Vul|, and vo(Exg[u]) = oo for A < ||Vul|s. As an immediate consequence of
Theorem 1.5 we get

Corollary 1.6. Let u be locally integrable on RN . If Vu € LL (RYN) and if vo(Eyo[u]) is
finite for all X > 0, then u is almost everywhere equal to a constant function.

In view of other known results [3], [8] on how to recognize constant functions, a natural
question arises whether the hypothesis on the local integrability of Vu in the corollary could
be relaxed; one can ask whether the constancy conclusion holds for all locally integrable
functions satisfying vo(Eo[u]) < oo for all A > 0. However the following example shows
that such an extension fails (for details see Lemma 5.2).
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Example 1.7. Let Q C RN be a bounded Lipschitz domain and let u be the characteristic
function of Q. Then u € BV (RN)\ WLHRYN) and supy-o A vo(Exolu]) < oo.

More on counterexamples. We now make more explicit the exclusion of the parameters
v € [=1,0) in part (c) of Theorem 1.1 and in (1.15). We shall show in Section 6.2 that
for v € (—1,0) these negative results can be related to self-similar Cantor subsets of R, of
dimension 1 + .

Theorem 1.8. Suppose N > 1. Then the following hold.

(i) Let —1 < v < 0. There exists a C™® function v € W1 (RN), rapidly decreasing as
|x| — oo and such that

(1.18) )1\{]% Avy (B 4 [u]) = oo.

(ii) Let —1 <~y < 0. There exists a compactly supported u € WHL(RN) for which (1.18)
holds. The set
{u € WH(RN) : lim sup Avy (B 5 [u]) < o0}
AN
is meager in WU (RN, i.e. of first category in the sense of Baire.
(iii) Let =1 <~y <0, N>2 or —1 <~ <0, N=1. There exists a compactly supported
u € WH(RY) such that vy (Ey,[u]) = oo for all X > 0; moreover, the set

{u e WHRN) : v (Ey,[u]) < oo for some X € (0,00)}

is meager in WHL(RN),

The case N =1 = —~ plays a special role and is excluded in the strongest statement (iii)
since for all compactly supported u € W1(R) one has v_1(Ej _;[u]) < oo for all A > 0 (cf.
Lemma 6.5 below). The proofs of existence of counterexamples are constructive and the
Baire category statements will be obtained as rather straightforward consequences of the
constructions.

Outline of the paper.

In Section 2 we provide the upper bounds for [Q, /pu] Lpoo(R2N 1), 1€ the proof of in-
equalities (1.13) and (1.15) in Theorems 1.3 and 1.4. We first derive these for a dense
subclass, relying on covering lemmas, and then extend in Sections 2.3 and 2.4 to general
WP and BV-functions. In Section 3 we derive the limit formulas of Theorem 1.1; specif-
ically in Section 3.2 we prove the sharp lower bounds involving a lim inf \? VW(E>\77 plu])
for general functions in W'? and in Section 3.3 we obtain the sharp upper bounds for
lim sup \Pv, (E)  /p[u]), under the assumption that u € C' is compactly supported. Then in
Section 3.4 we extend these limits to general WP functions. In Section 3.6 we show that the
limit formulas for W1 do not extend to general BV functions and prove Proposition 1.2.
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In Section 4 we prove the reverse inequalities (1.14) and (1.16) in Theorems 1.3 and 1.4.
In Section 5 we prove Theorem 1.5 on a characterization of the Lipschitz norm and also
discuss Example 1.7. In Section 6 we provide various constructions of counterexamples and
in particular prove Theorem 1.8. We discuss some further perspectives and open problems
in Section 7.

Acknowledgements. A.S. and P.-L.Y. would like to thank the Hausdorff Research Institute of
Mathematics and the organizers of the trimester program “Harmonic Analysis and Analytic
Number Theory” for a pleasant working environment in the summer of 2021. The research
was supported in part by NSF grants DMS-1764295, DMS-2054220 (A.S.) and by a Future
Fellowship FT200100399 from the Australian Research Council (P.-L.Y.).

2. BOUNDING [Q, /ptup.0(R2N ) BY THE SOBOLEV NORM.
In this section we prove inequalities (1.13) and (1.15) in Theorems 1.3 and 1.4.

2.1. The bound (1.13) via the Hardy-Littlewood mazimal operator

Following [7], one can prove the result of Theorem 1.3 for p > 1 by an elementary
argument involving the Hardy-Littlewood maximal function M|Vu| of [Vu|; however the
behavior of the constants as p \, 1 will only be sharp in the range —1 <~ < 0.

Proposition 2.1. Let N > 1 and 1 < p < oo. There exists a constant Cn such that for all
v #0 and all u € WHP(RY),

C;N(p

p
(2.1) sup Nuy (Ey 4 jplu]) < ﬁ) IVl -

A>0 ol

Proof. We assume first that v € C! and that Vu is compactly supported. As in [7, Remark
2.3], one uses the Lusin-Lipschitz inequality

(2.2) ’“(”f)j;@‘ < OIM(|Vul)(x) + M(Vu))(y)]

and observes that (2.2) implies
Explu) € {|o = g7 < 2007 M(|Vul)(2)} U {|z = y["/? < 2CA7 M(|Vau])(y)}-

As a consequence

e <2 | e
z J |h|Y<2C AT M (|Vul)(z)]P

Direct computation of the inner integral (distinguishing the cases v > 0 and v < 0) yields

vy (Exo ) S CPy7IAP / M (Vul) (@) de.
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Inequality (2.1) follows then from the standard maximal inequality || M f||h < [C(N)p']P|| f[15

for p > 1, see [21] (here p’ = p/(p — 1)). The extension to general WP functions will be
taken up in Section 2.3. O

2.2. The case v € R\ [-1,0]

We shall prove the following more precise versions of the estimates (1.13) and (1.15) when
v ¢ [—1,0], with constants that stay bounded as p \ 1, indeed we cover all p € [1,00). We
denote by on_1 the surface area of the sphere SV—1. In the proof of the following theorem
we will first establish the estimates for functions u € C*(R™) whose gradient is compactly
supported. The extension to W1? and BV will be taken up in Section 2.3 and Section 2.4.

Theorem 2.2. There exists an absolute constant C' > 0 such that for every N > 1, every
1 <p< oo, and every u € WHP(RN)

(a) if v > 0, then

57
(2.3) sup X'y (Ey o p[ul) < Con1— [ Vullp, gy
A>0 v
(b) if v < —1, then
Con_1 1
P
(2.4) Sup X, (Bplul) < == (1 ) IVl

When p = 1 the above assertions hold for all u € BV (RN) provided that [Vl L1 @ny ds
replaced by ||Vul|| -

The proof of Theorem 2.2 relies on the following proposition, in which [x,y] C RY denotes
the closed line segment connecting two points z,y € RV.

Proposition 2.3. Let
(2.5) B(f.) = {(o) RV x RYia 2y, [ |flds> fo -y}

[z,y]

for f € Co(RN). There exists an absolute constant C > 0 such that for every N > 1 and
every f € C.(RN),

(i) if v > 0, then

_ 57
(2.6 [ e =al Y dedy < Cona Z leny
E(f) Y
(ii) if v < —1, then
Con_1 1
(2.7) // lz —y[" N dady < + 1|l mvy -
B(f) &l (1 \7+1\) L@
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Indeed, to deduce Theorem 2.2 from Proposition 2.3 one argues as in the proof of (1.12)
n [7]; for u € CY(RY) and 1 < p < 0o, one has

m@—mwsu

|Vul ds}p < / \Vul|P ds |z — y|P~?
z,y]

[z.y]
for all z,y € RY, which implies that
Exqplul € E(AP[Vul?, ).

Hence for u € CI(RN ) whose gradient is compactly supported, one establishes Theorem 2.2
by applying Proposition 2.3 with f :== A™|Vu|P. The extension to u € WP will be taken
up in Section 2.3.

Proof of Proposition 2.3. As in the proof of [7, Proposition 2.2], using the method of
rotation, we only need to prove Proposition 2.3 for N = 1. Indeed,

// —y" Ndzdy = / / // — s/t drdsda’ dw
E(f,’Y) sN=1t Jwt JE(f, 2 v7)

where for every w € SV—1

by

and every z’ € wt, Juw,zr is a function of one real variable defined

fwx(): f(:v’+tw)

The innermost double integral can be estimated by the case N = 1 of Proposition 2.3, and

Lo [ [ 1for®latas’ dw = onall e,

Thus from now on, we assume N =1 and f € C.(R).

If v > 0, the desired estimate (2.6) is the content of [7, Proposition 2.1]. On the other
hand, suppose now v < —1. Without loss of generality, assume f > 0 on R. In addition, we
may assume that f is not identically zero, for otherwise there is nothing to prove.

Let
E+(f77) = {(J:ay) € E(fva) y < :E}
Then by symmetry,

// jz —y[" " dedy =2 // |z — y|""" da dy,
E(fv'Y) E+(f77)

and it suffices to estimate the latter integral.

In what follows we will need to always keep in mind that in view of our assumption
v < —1 we have —(y + 1) = |y| — 1 > 0. We will now use a simple stopping time argument
based on the fact that for all ¢ € R the continuous function

x (T — c)('YH)/ f(s)ds, x>c¢

increases from 0 to oo on [c, 00).



Assume that supp f C [a,b]. We construct a finite sequence of intervals Iy,. .., [k, that
are disjoint up to end-points, that cover supp f = [a, b], and that satisfy

1
(2.8) !If”“)/ f=5 forl<i<K.
I;
Indeed, we may take aj := a, and as > a1 to be the unique number for which
a2
(ag — al)‘”“)/ f=1/2,
al

and set I := [a, as]. If ag < b, we may now repeat, and take I := [ag, as] where ag > a9
is the unique number for which (a3 — ap)~ (1 faa; f =1/2. Note that the a;’s chosen as
such satisfy

(aiy1 —a;)~ 0D > 2 HfHLl

so that aj4+1 —a; > (2||f||L1(R))1/('7“). This shows that in finitely many steps, we would
reach a1 > b for some K > 1, with ax < b if 1 < K. Then we have our sequence of
disjoint (up to endpoints) intervals I, ..., Ix that cover [a,b] and satisfy (2.8). We also
write Iy := (—00,a1] and Ix41 = [ag+1, +00).

We now claim that I; x I; N E(f,v) = 0 for every 0 <i < K + 1. This being trivially
the case when i € {0, K + 1}, we consider the case i € {1,..., K}: any z,y € I; satisfy

o=y [ < ine [p= 0 <1
y I; 2
It follows thus that
K+1
(29) E+(f,’7) = U EJr(f?rY) N ((CL“+00) X (7005(11'))
i=1

Furthermore, for i € {2,..., K}, if y < a; < x and  — y < min{|;|, |[;_1]}, then

o=y [ f] < minf B By O ([ g [
Y I I;
(v+1) —(y+1) L1
<|Li—1|™ f+ 154 f<-+-=1,
i1 I; 2 2

(again we used v < —1 so that —(v + 1) > 0 here), from which it follows that (z,y) &
E,(f,v). Combining this with a similar argument for i € {1, K + 1}, we get that if
10



(z,y) € E1(f,7) N (ai, +00) X (=00, a;), then [z —y[ = min{|[], |[i-1]}, and thus

/ |z —y|" " dzdy
E+(f7’7)m(az7+00 ><( o0 al

min{a;,z—min{|L;|,|l;—1|}}
s oy

= H/ (max{z — a;, min{|L;|,|;—1|}})” dz
’7 a;

1 ( 1 ) 12 1
= (14— Vmin{|L], [ )+ < <1+>/ f
Bl Iy + 1] - 1l v+ 1) i

(The computation of these integrals uses our assumption v+ 1 < 0.) Summing the estimates,
we get in view of (2.9)

4 1
|z —y["tdady < <1+ )/f
/E+(f;y) vl vy +11/ Jr

We have thus completed the proof of (2.7) under the assumption v < —1 and N =1. O

2.3. Proof of Proposition 2.1 and Theorem 2.2 for general WP functions

We use a limiting argument, together with the following fact: if uw € Wh? (RM), N > 1,
and 1 < p < oo, then there exists a Lebesgue measurable set X ¢ R2V with £2V(X) =0,
so that for every (z,h) € R*V\ X, we have

(2.10) (@ + h) — u(z) = /O V(e + th) dt.

Indeed, both sides are measurable functions of (z,h) € R?Y, and if X is the set of
all (x,h) where the two sides are not equal, then X is a measurable subset of R?V,
and the assertion will follow from Fubini’s theorem if for every fixed h € RV, we have
LN{xz € RN: (z,h) € X}) =0, i.e. (2.10) holds for £V almost every x. This follows since
for every ¢ € C°(RY), one has

[ a4 )~ u@o@rde = [ at@)ole ) - o) do

RN RN

:—/ u(z )/ (h,Vo(x —th)) dtdx—/ (h, Vu(z))p(x — th)dtdz
RN

/RN/ (h, Vu(z + th)) dt ¢(z) dz

Now given u € W'P(RY), there exists a sequence u, € C*°(RY) such that Vu, are
compactly supported, and

(2.11) IV (un — )| Lp@ny — 0.
11



Indeed if N > 1 and p > 1, or if N = 1 and p > 1, then this follows from the density
of C*(RY) in WHP(RYN) as asserted in [12] (in this case one may choose u, € C(RN)).
The density of C®*(RY) in WP fails when N = p = 1 (again see [12]); the issue is that
if Vu is supported in a convex set in RN, N > 2, then u is constant in the complement
of the set, but this fails for V = 1 since the complement of a bounded interval has two
connected components. On the other hand, in the anomalous case N =1 and p =1, one
can choose an approximation of the identity to get a sequence vy, of Cg° functions on R such
that [[v, — u/[|L1(r) = 0. One can then take u,(x) == [ va(t)dt, and (2.11) follows with

ul, = v, being compactly supported (even though Uy, MAy not be compactly supported).

Let, for R > 1,
Kp={(z,y) eR*N: |z <R, |y < Rand R™" <[z —y|}.
By monotone convergence it suffices to prove

HVUHLPRN
(212) V,Y(E)\q/p[u] N KR) T
with C' independent of R.

Under the assumptions of Proposition 2.1 and Theorem 2.2 on p and ~, since u, €
CX(RY), we already know

1V2all}
vy (B plun]) < O

Moreover, the sequence @ /,u, converges to Q/,u in LP(KR) as n — oco. Indeed, using
(2.10) we may write

Qypu(z,y) = ! /01< i , Vu((1 —t)y—i—taz)>dt

|z — gyl |z =yl

for £2N a.e. (z,y) € R?N, and similarly for u,, in place of u, which allows us to estimate

(//K Qs () = Qqppula, y) P da dy) h

! 1/p
< [(f [ 5= 0= s aan)
lz|<R J|y|<R
2N/p(2R N/pRW/pHV(un — tUn+1)|lp = 0.

By passing to a subsequence if necessary, we may assume that Q. ,u, converges L3N ae.
to Q,/pu on K as n — oo. Thus

KgrnN E)\ﬂ,/p[u] C Kgn ( U m E)\n//p[uﬁ])

neNL>n
12



which implies

o (K N By yplul) < lim v, (KR A Ex, /p[u@]> < liminf v, (K N By o plus)

>n
| Vun|” HVUH
< Climinf —— 2@ LP®RY)
n—00 AP AP

2.4. Proof of Theorem 2.2 for BV -functions

We choose a sequence p, € C°(RY) with p, = 2"Vp(2™) and [py p dz = 1 and set
Up = u* py. Then u, € Wh RN and up — u almost everywhere. This means if
Gp={(z,h) e RN xRN : |z| <L, L7 < |h| < L} then

ng]go Uy (Exqylun) NGL) = vy (Exy[ul NGL),

by dominated convergence. Also

IVuallieny = sup | [ unlo) diviie) d| =

peCee
llpllo<1
= swp | [ ulw)divip, * 3)(w)da| < |Vulae
peCe
l#llo<1

here we used ||pn * @lloc < ||@]lso for the last inequality. Combining these two limiting
identities with Theorem 2.2 we get the desired inequalities with E) ,[u] replaced by E -[u]N
Gr. By monotone convergence we may finish the proof letting L — oo.

3. PROOF OoF THEOREM 1.1

We extend and refine arguments from [5], [7] which are partially inspired by techniques
developed in [1].

3.1. A Lebesgue differentiation lemma

Our argument uses the following standard variant of the Lebesgue differentiation theorem.
For lack of a proper reference, a proof is provided for the convenience of the reader.

Lemma 3.1. Let u € WYY(RYN) and let {6,} be a sequence of positive numbers with
limy,—yo0 0, = 0. Then
lim u(z + oph) — u(x)

n—00 On,

for almost every (z,h) € RN x RV,

= (h, Vu(z))

13



Proof. If u € C' with compact support the limit relation clearly holds for all (z,h). We
shall below consider for each # € SV~ consider the maximal function

1 t
My F(x) = sup / |F(x +r0)|dr
>0t Jo
which is well defined for all 6, a measurable function on RY x SV~! and satisfies a weak
type (1,1) inequality
LY({z e RN : My F(z) > a}) < 5a™ || F|;.

Let w € WHHRN) and Ay = {h € RN : 2=M < |p| < 2M}. Tt suffices to prove the limit
relation for almost every (x,h) € RY x Ay, From (2.10) we get that for every n > 1,

w(@ +0,h) —u(x) 1 [onlhl N
5 =5, v

for £2N almost every (x,h) € RN x Ays; as a result, there exist representatives of u, Vu
and a null set N € RY x Ay such that the identity holds for all (z,h) € N and all n > 1.

It suffices to show that for every @ > 0, € > 0
(3.1)

£2N<{(w,h) e RN x Ay limsup’ !

e TN

On|h|
/0 (h, Ve +rh)) dr - (h, Vu(@))| > a}) <

Let v € C! so that |V(v — u)||1 < ae/(12LY (Apr)). Let g = u — v. Since the asserted
limiting relation holds for v, we see that the expression on the left hand side of (3.1) is
dominated by

1 8nlh
['2N<{($’h) e RY x Ay : [Vg(2)| + Sli%5|h|/o Vg(z + T%N dr > a})

< 2% (Aar)a ™[ Vglls + /A LN ({2 = 9y, Vgl () > /2}) dh
M
< 12LY(Ap)o Vgl < €
since ||Vg|1 < ae/(12LN (Anr)). O
3.2. The lower bounds for liminf v, (Ey ,/p[u])

We use Lemma 3.1 to establish lower bounds, relying on an idea in [5] where the case
v = —1 was considered.

Lemma 3.2. Let 1 <p < oo and u € W'"P(RN). Then

(i) For~y >0

L #(p, N)
liminf A% (Bxyplul) 2 =17
14
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(ii) For v <0

. K(p, N)
h{\n\%f)\pl/w(E,\ﬁ/p[u])Z N |Vu HLp(RN

Proof. We write, for A > 0 and 6 >0

P —\P y—N
v (By . plu]) = A //Wh) o I b

|n| 1+ /P

— AP // BN dh dz,
wlat b (@) |75 2w gy by

here we have changed variables replacing h by §h. Hence

(3.2) Nvny (B 5 plu // (|h]7,00) u(x—i_(f;}‘bhl_u 2) ”) |h N dh dx with § = A~ P/,

We now take a sequence {\,} of positive numbers, set &, = \,” /7 and note that
li Ap = d
(3.3) lim 6, — 0 if 4 oo An = 00 and >0,
n—00 limy 00 A, = 0 and v < 0.
Also observe that

Hminf 1(jp7,00)(8n) 2 L(jp)-v,00)(t) If lim s, =2

n—oo n—o0

Now assume that \, — oo if ¥ > 0 and )\, — 0" if ¥ < 0 and stay with J, = )\;p/ﬂ’, a
sequence which converges to 0 in both cases. Use Fatou’s lemma in (3.2) and combine it
with Lemma 3.1 to get

n—oo n—oo

u(x+n
// (1,00 ( Jim [ ) [N dh da

= // , R[N dhdz = .
Inpy <[z V@)

We use polar coordinates h = 0 and write the last expression as

= // / 7L dr df da

RN xSN=1 77 <[{6,Vu(z))P

liminf Nv. (Ey, 4 /plu //hmlnf]l (IR, OO)(|W‘*‘<;27W‘P) B[N dh de

p k(p, N)
=i [l o 0T a0 = S T

with the calculation valid in both cases v > 0 and v < 0. d
15




3.3. Upper bounds for limsup NPv+(E) ., j,[u]), for C} functions

We assume that u € C! is compactly supported and obtain the sharp upper bounds for
lim supy_, oo APV (E) 4 /p[u]) when v > 0 and lim supy_,g Avy (E) 4/p[u]) when v < 0.

Lemma 3.3. Suppose u € CL(RN) and 1 < p < co. Then the following hold.

(i) If v > 0 then

N)

K
hf\HSUP)\pV'y(EAv/p[ u]) < ( I [Vu HLP RN)"
—

(ii) If v < 0 then

K(p, N)

lim sup Ny (B jplu]) < IVl f gy
AN0 ol
(iii) The statement in part (i) continues to hold for u € C*(R™) whose gradient is compactly

supported.

Remark 3.4. The subtlety in part (iii) above is only relevant in dimension N = 1, since
if N > 2, then any function in C*(R"™) with a compactly supported gradient is constant
outside a compact set.

Proof of Lemma 3.3. We distinguish the cases v > 0 and v < 0.

The case v > 0. We assume that Vu is compactly supported. To prove part (iii) (and thus
part (i)) assume

1/
(3.4) A> L= H( > |au\ ) HLOO(RN).

Then

(3.5) (€,9) € Bxypplul = Mz —y"? <L = | —y|<1.

Furthermore, if (z,y) € E) ,/p[u], then writing y = x + rw with r > 0 and w € SN=1 we
have

(3.6) MYP < |Vu(z) - w| + p(r)  with p(r) == sup sup |Vu(z + h) — Vu(z)|;
’ z€RN |h|<r

since Vu is uniformly continuous on RY we have p(r) \, 0 as 7 \, 0. This, together with
the first implication of (3.5), shows that

(3.7) M < V() - wl + p((5)P).

Let B be a ball centered at the origin containing supp(Vu), and let B the expanded ball

with radius 1+rad(B). Then for ¢ B, we have Q- pu(z,y) = 0 for every y with |z —y| <1,
16



and (3.5) shows (z,y) ¢ E\/plu] for every y with |z —y| > 1, so E) ,p[u] C B x RV,
Define, for z € B, w € SN, and A > 0

Rz,w,A) = (A (| V(@) - w| + p((g)pm))””

Then by (3.7),

R(z,w,)\)
Nvy (B 5 plu]) < AP / / / 7t dr dwde
SN

= [ (19t sl () derda

w0

Letting A — oo we get

lim sup NPv, (E)  /p[u]) < vk (p, N)/~|Vu(x)]pda:
B

A—00

and hence the assertion.

The case v < 0. We first note that if (z,y) € E) ,/p[u], then writing y = x + rw, we have
again (3.6).

Now let € > 0, and let d(¢) > 0 be such that p(r) <e for 0 <r < d(e). Let

_ A %
7A(7, w, €) = min {6<5)’ (W) }

Note that r)\(x,w,a) > 0 for A > 0. Also if (z,2 +rw) € E) ,/p[u] then r > ry(z,w,¢);
indeed, either 7y (z,w,e) > d(g) already, or else ry(x,w,e) < §(¢) in which case (3.6) shows
p

(@ w,e) 2 <W)7

Finally let B be any ball in R containing the support of u, and let B be the double
ball. Then

lim sup \Pv, (B /p[u] N N (B x RY)) <hmsup)\p// / 71 dr dwdx
AN0 AN SN-1 (z,w,e)

1
—limsup)\p/v/ —[ra(z,w, )] dwdx
ANO B Jsv-1 7l

= lim sup S /v/ max{\d(e)7, (|Vu(z) - w| + &)’} dwdx
o B Jsva

:h1’/E/SN_l(\Vu(x)-wH—e)pdwdx.

Since € > 0 was arbitrary we obtain

~ 1
(3.8) hr;l\sup)\ Uy (Exqplul 0 (B x RY)) < mn(p, NIVullf, gy
17



Since u = 0 in RN \ B, if (z,y) € By, jp[u] N (RN \ B) x RY) then y € B. Therefore

lim sup NPvy (Ey  /p[u] N N(RY\ B) x RY)) < hrnsup)\p/ / jz —y[" N dady = 0.
ANO ANO RN\B

This finishes the proof of part (ii). O

In dimension N = 1, when v < —1, one can also weaken the hypothesis v € C!(R) in
Lemma 3.3 to u € C*(R) and v’ is compactly supported:
Lemma 3.5. Suppose u € C1(R), u’ is compactly supported, and 1 < p < oo. If y < —1

then (b N)
RD,
lim sup \Pv. (E <
M0 p ’Y( )\"//p[ ]) |’Y’

Proof. Let supp(u') C B := (—f3, ). By (3.8) we have

1
limsup v, (E ul N (=26,28) x R) < —x(p, 1)||«|# .
A\Op ’Y( )\7’)//]7[ ] ( 6 6) )— |’Y’ (p )H HLP(R)

Moreover, since u is constant on (3, 00) and constant on (—oo, —3), if (2,y) € Ej/plu]
and x < —2f then y > —f, and if (z,y) € E, 'v/pM and z > 20 then y < . Since v < —1,

Uy (Exqplu] N (R (=28,28)) x
25
/25/ T—y 7ldydaz—l—/ / (y — ) tdydz < oo.

lim sup \Pv, (Ey plu] 0 (R (=253,28)) x R) = 0. O
ANO

We conclude

3.4. Upper bounds for limsup \Pv, (E) ,/p(u]), for general WP functions

Let N >1,1<p<ooand ue W"(RN). In light of Lemma 3.2, to prove the limiting
relations (1.7) and (1.8) in Theorem 1.1, we need only show that

K(p, N)

(3'9) hmsup)\ V’Y(E)\’y/p[ D < HV HLP RN)
A—00 h"
if v > 0 and
K(p, N)
3.10 lim sup Nv. (E < Vu
( ) M0 7( )\v/p[ D h" H ”LP RN)

if y<Oandp>1,orvy< —1and p=1. Lemma 3.3(i)(ii) asserts that these desired

inequalities hold for functions in C}(RY). When N > 2 or p > 1, a general WP(RN)

function can be approximated in Wl’p (RY) by functions in C}(RY): by [12], there exists a

sequence {uy,} in C°(RY) such that lim, oo ||V (u, — u)|| oy = 0. If further v > 0, or
18



v<O0and p>1,orvy<—1and p=1, then by parts (i) of Theorems 1.3 and 1.4 (proved
in Section 2), we have

(3.11) sup NPy (E) 5 plun — u]) < C}
A>0

N,p,y ( )HLPRN

It follows that for every n and every 6 € (0,1),
hin sup Mvy (Ey  /p[u]) < liin sup Ny (E(1—s)xy/plun]) + Sup NV (Esypypltin — u])
—00 —00
< MHV i + ’P“/Hv( u)Hi"(RN)
=Pl e o?

if v > 0, and a similar inequality holds with limsup,_, ., replaced by limsupy\ , if 7 <0,
p>1lor~vy < —1,p=1. Letting first n — oo and then § — 0, we get the desired conclusions
(3.9) and (3.10) under the corresponding conditions on v and p.

(3.12)

It remains to tackle the case N = p =1, in which case we only need to prove (3.9) when
~v > 0 and (3.10) when v < —1. Using (2.11), we approximate u by finding a sequence {u,}
in C*°(R) so that u;, are compactly supported for each n, and limy, o [lu;, — /|| L1 (&) = 0.
Since the desired inequalities hold for w,, in place of u by Lemma 3.3(iii) and Lemma 3.5,
and since part (i) of Theorem 1.4 applies to give (3.11) when v > 0 or v < —1, our earlier
argument in (3.12) can be repeated to yield (3.9) when v > 0 and (3.10) when v < —1.
This completes our proof of parts (a) and (b) of Theorem 1.1.

3.5. Conclusion of the proof of Theorem 1.1

In Section 3.4 we proved parts (a) and (b) of Theorem 1.1. The lower bound for the
liminf in part (c) has been established in Lemma 3.2(ii), and the limiting equality for
u € CHRY) when p =1 and —1 < v < 0 follows by combining that with the upper bound
for the limsup in part (ii) of Lemma 3.3. The proof of the negative result in part (c) of the
theorem (generic failure for p =1, —1 < < 0) will be given in Proposition 6.6 below. [

3.6. On limit formulas for B.V(]R)—functions - The proof of Proposition 1.2

When p = 1, Poliakovsky [19] asked whether (1.7) still holds for u € BV (RV) instead
of lel(RN ) if v = N. More generally, one may wonder whether it is possible that for all
u € BV(RY), one has

1,N
(3.13) lim Avy(Ey,[u]) = (L, )||Vu||M when v > 0,
A—00 "y’
and
1,N
(3.14) Jim A, (By,[u]) = ML) Gl when y < 0.
—0+ il

‘We show that this is not the case.
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First, when —1 < v < 0, Theorem 1.8(i) (proved in Proposition 6.3 below) shows that
even if u € WHH(RY), it may happen that limy o+ Avy (Ey[u]) = co. So (3.14) cannot
hold for all u € BV (RY) for such 7.

The following lemma provides examples of failure of (3.13) and (3.14) when v € R\ [-1, 0],
since |y + 1| # |7y| unless v = —1/2:

Lemma 3.6. Suppose N > 1 and u = 1q where Q is any bounded domain in RN with
smooth boundary. Then u € BV (RY) and

. k(1,N)
m Avy (Eyq[u]) = | IVullm  for all vy > —1,
while (1. N)
KL,
/\lgn Ay (B4 [u]) = Py \Vul|pmg  for all v < —1.

Proof. First consider the case N = 1. If u = 1jg ), then for every v € R\ {=1} and X > 0,
one has

(3.15)  vy(BEaqylul) = 20, ({(z,9) €R: 2> 0,y < 0,]x —y|" O > A}) =

2 1
v+ 1|\
which follows from a change of variables s = x —y, t =z + y: when v > —1, one has

S T 2 1
V’Y(EA,W[UD:/O dtsw_lds:2/0 S’YdS:ﬁX
—S

while when v < —1, one has

2 1
Y (E dt s7™ 1d8—2/ sTds= ——.
aale /,\ 7T /_s AT |y + 1| A
A similar calculation shows that if u = 1y, +---+ 1y, is a sum of characteristic functions of
finitely many open intervals whose closures are pairwise disjoint, then
. 2
(3.16) /\h_}n(r)lo vy (B4 [u]) = WHUIHM(R) for all v > —1,
while
. / .
(3.17) Jim, Avy (Exq[u]) = m”u [mw)  forall y < —1;
we also have
(3.18) sup Avy (Ey 5 [u]) < ———|Ju/||pmw)  for all vy € R\ {—1}.
A>0 [y + 1]

Now consider the case N > 2. Let © be a bounded domain in RY with smooth boundary
and u = 1g. Then u € BV (RY) with ||Vul|p = LY 71(09). The method of rotation shows

vy (Ey 4] / / Ay (B o[t o)) d2’ dw
SN-1 wL



where u, 4/ (t) = u(z’ + tw) for w € S¥~! and 2/ € wt. (3.16), (3.18) and the dominated
convergence theorem allows one to show that

1
|y + 1 /SNl /l Hu(/,.),x/HM(R) dz’dw for all v > —1,

and using (3.17) in place of (3.16) we obtain the same conclusion with limy_, replaced by
limy_,o+ if v < —1. It remains to observe that

(319) Lo | ey daf o = (0 N) [ P

this equality holds by Fubini’s theorem if u = 1¢ is replaced by u. := u * p. where p. is a
suitable family of mollifiers, because the left hand side is then just

/ / /‘wS T+ tw) ’dtdx'dw:/ / |w - Ve (z)| de dw
SN-1 J,L SN-1 JRN

which equals £(1, N)|[Vue|[p1gny. One then just need to let € — 0 to obtain (3.19). (See

also the integral-geometric formula for the surface measure in [11, Chapters 2.10.15, 3.2.13
& 3.2.26], which extends the classical Crofton formula.) O

Jimn Ao (B [u]) =

4. FROM WEAK TYPE BOUNDS ON QUOTIENTS TO Wir anp BV

In this section we complete the proofs of Theorems 1.3 and 1.4 proving part (ii) of these
theorems. The key tool is the BBM formula, proved in [1] (see also [9] for additional
information for the BV case). The formula is quite flexible, involving a bounded smooth
domain Q and a sequence of non-negative radial mollifiers p,(|x|) with fol pn(r)rN"tdr =1
and lim,,— o0 féoo pn(r)rN"ldr = 0 for every § > 0; we will apply it in the case when 2 = Bp,
the ball of radius R centered at 0, and p,(r) = snp(ZR)_S"pM_N+S"pll[072R] (r) where {s,}
is a sequence of positive numbers tending to 0. As a result, we conclude that if R > 0,
1 <p<oo,ue LP(BR) and

P
liminfs// N+( v)l dxdy < oo,
s—07F BRXBR ’x - y| p=sp
then for p = 1 we have u € BV (Bg) with Vul| pm(py) being bounded by #(1, N) times the

above liminf, and for 1 < p < oo we have u € W'?(Bpg) and IVul|Lr(By) being bounded by
k(p, N')/p times the above liminf.

Suppose now N > 1,1 <p<oo,y€ER, u e LIOC(RN) and Q. /pu € LP2(R2N 1), Let

|u(z) — u(y)?
4.1 A= li f dx dy.
(@1 sptimints [ Gy

Suppose A is finite. If p = 1, then the BBM formula above implies v € BV (Bg) for

every R > 0, with ||[Vul[rp,) < CnA where Cy is a dimensional constant independent

of R; as a result, u € BV(RY) (with [Vul| pprny < CnA). Similarly, if 1 < p < oo,
21



the BBM formula implies u € WH?(RY), with [Vull Loy < Cn pA'/P; this follows from

our above formulation of BBM if u is additionally IOC(RN ), but if not, for any given
R > 0, one can always extend u by zero outside Br and denoting u,, its convolution with
ng(nx) where ¢ € C°(B1) has integral 1. In that case we have u,, € LP(Bg), so the above
formulation of BBM applies, and ||[Vuy| r»(5,) is bounded uniformly independent of n
(because Minkowski’s inequality implies

p — p
BRXBR ‘x_y‘ psp BR+1><BR+1 ‘l'—y’ psp

for every n). Thus a subsequence of {Vu,} converges weakly in LP(Bg) to a distributional
gradient Vu of u on Bg, and a desired bound on ||Vul|z»(p, follows for every R > 0.

So it remains to prove that A < co. By considering truncations of © we may assume
additionally that u € L>(R"); the reduction is based on the pointwise bound

u(x if |u(z)| < n,

Quplen) < Qo) where s ={ 005

Using the definition of weak derivative we see by a limiting argument that the conclusion
sup,, | Vuy||p < C implies |Vul|, < C if p > 1 and sup,, || Vu,||pm < C implies ||[Vul|p < C.

In order to establish our estimate for bounded functions we will use Lorentz duality in
the following form: if F, G are measurable functions on R?Y, then for any 1 < ¢ < oo, we
have

(4.2) //RNXRN F(z,y)G(z,y) dvy < q/[F]Lq’Oo(RQN,Vy)[G]quwl(RQN,y,y)

where
[F]pace@en .y = sup Avy ({|F| > ANV = sup tYIF* (1),
o A>0 t>0

and
La 2 — 1 q d * dt

here F*(t) := inf{s > 0: v, ({|F| > A}) < s} is the non-increasing rearrangement of F, and
similarly for G*(t) (see [13,22]). Indeed, (4.2) follows by noticing that

& oo / dt

.. FenGepi, < [T Focad= [T epdem) )

RN xRN 0 t

0

which is clearly < q’[F]Lq,oo(Rgzv’l,v)[G]Lq/,l(RwM).

First we consider the case v > 0. For sufficiently small s > 0, define




so that 6 € (0,1) and p — sp = p(1 — 0)(1 + J) — 7. Then for every R > 0,

[ o,
BB T

[ (@)™ (@)~ ) g . v,
RN xRN

p(1-06) po
@)™ ™) g, @~

L
=9

by (4.2). But
p(1-0)

(1-9)
{(QV/Pu)p - ]Llie‘w(H@N,m) B [ny/pu] Lp:oo(R2N )

and

[lu(@) = u(y)”’]

L% (Br XBRLW)__(2HUHL“>RN)) [HBRXBR]

= (2||ull oo )P’ (Br % Br)’,

LT (RN xRN 1)

from which it follovvs that

Jufw) —u)” 4, gy < 2 o) 2 "y (Br x Bp)’
- |x_ Wy 47 dy < 5 (@] 1y e o, Cllull ez (Br x B)'.

Furthermore, since v > 0, we have
(BRXBR)<|BR|/ |h|N Pydh<OO.

Recall 0 = H% Thus as s — 07, we have

: u(y)l? ( ) e
1 drdy < Q :
lmsups//BRXBR ’x y’N+p sp T = |: /P ]LPOO(RZN vy) <

s—0t

Since this upper bound holds uniformly over all R > 0, this concludes the argument for the
case v > 0.

Next we turn to the case v < 0. We then observe that for 0 < s < 1 and every R > 0,

[ el
BRXBR ‘x_ ‘N-}—p P

l_é) _ pé
://RN Q)™ () — )l o' F L) oy
X

2l |
p(1-3)

(futa) — uly)lfo — v/ F)"
|:<Q7/pu)p(1_2):|[/11 e - [Q'y/pu} Lp’ooiRQN»V“/)

_1_ .
-3 on :l 2,
L 2 (R ,y,y) Ls (BRXBR,I/—Y)

Again




and

@) [ (o) — ullle - of~)"]

L3 Y(BrxBpyuw)

< (2full oo )2 ||z — 9|73
We will show that
(4.4) lim sup [|$ - y|(p_7)§} 2, <1- %

s—0t

when v < 0. We then see that

: u(y)l”

1 <2

l.ii?)lips//BRXBR |(E - |N+p P d dy {Q'y/p }LP 2 (R2N 1)
which concludes the argument in this case since this bound is uniform in R > 0.

It remains to prove (4.4) when v < 0. Note that in this case p—~ > 0, so |z — y|P~7)3
(2R)P=7)3 on Br x Bg. Thus

. (2R)(P 75 s s
o) by = [, ol € Brx B =07 > A 0
"y
If v <0, then
s 1 1
v {(z,y) € BRxBpr: |t—y|®™"2 > A} < |Bg| dh <
K hjsas R[N v
where on_1 is the surface area of S¥~!. Hence in this case,
. 1 % (QR)(P*’Y)% 4
_ |13 < ( _+|B ) / Ar=7 dA
{|1: yl }L%l(BRXBR,VW) < (onv-1lBr| 7] 0
1 p
= (1 - V) <0N—1|BR| ) (2R)P=.
p il
(Here we used 2 7 = —1 w € (—1,0) whenever v < 0.) This proves (4.4) when v < 0.

Next, suppose v = 0. Then

S

ey L
—/ vo{(z,y) € Bg X Br: |r —y|P2 > A}2 dA
0

(2R)P3 1 3
< BR/ ——dh dA
/o (‘ | A% <inj<ar [P )
(2R)?3 ) 2R)PS 3
:/ <|BR|WN110g<( ) 2)) A
0 ps A
s [t 2 1\ 2
= eyt [ (1Brloy-1210g (5))
0 ps A
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which shows (4.4) remains valid when 7 = 0 by the dominated convergence theorem. [

5. FINITENESS OF vy(E)p[u]) AND THE LIPSCHITZ NORM

In this section we prove Theorem 1.5 which we put in the following more precise form.

Proposition 5.1. Let u be locally integrable on RY and Vu € Li (RN). Then

loc

0 if A> ||V oo,

vo(Exoful) = {oo i3 < [V .

Proof. First assume Vu € L*® and A > ||Vullw. Then for every h € RV we have
|u(z+h)—u(z)
[h]

| < X for almost every € RY. This immediately implies v (Exolu]) =0.
For the more substantial part assume A < ||Vu|lo where ||Vu| o may be finite or infinite.
We need to show that vy(E) o[u]) = co. We pick A1, A2 such that

A <A < A2 < ||V oo

Let B = {z € RY : || < R} and assume that R > 1 is so large that ||Vul|pe(p,) > A2
is not the zero distribution on Bgr. Let x € C2° such that x(z) = 1 in a neighborhood of
Bsyr and set u, = yu, Then Vu, = Vu in the sense of L'(Byg). There is a measurable set
Fy C Bp of positive measure such that |Vu(z)| > Ay for all z € Fp.

Fix0<ex1- % We now consider the set &, of all spherical balls S ¢ SV~! with
positive radius and the property that (0;,62) > 1 — ¢ for all 61,602 € S. By pigeonholing
there exists a spherical ball S € &, and a Lebesgue measurable subset F' C Fj such that
LN(F) > 0 and % € S for all z € F. For the remainder of the argument we fix this
spherical ball S; we denote by o(S) its spherical measure.

We first note that for |h| < 1 and for almost every |z| < R

w@th) —u(@) _uolw+h) —ul@) _ b fPo
(5.1 = = (|, Vel has)

Secondly since the translation operator is continuous in the strong operator topology of L'

we see that there exists g < 1 such that

LN(F)(A\ —A)
10

(52) ||Vuo( + w) — VUOHLl(RN) < for |w| < 50.

In what follows we let § < Jp and set

h
S(6,00) = {h € R : 6 < |h| < G0, T € s}.
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Let

[u(x + h) —u(z)]
7 > )\}

so that (z,h) € & implies (z,x + h) € E) o[u]. We then have by (5.1)

E = {(:C,h) cx € F, h e S(6,0),

1
vo(Exolu)) > vo(&) = uo({(x,h) z € F, he S5, 0), \<|;;|,/0 Vuo(z + sh)ds)| > /\})

(5.3) > V()(El) — Vo(gg)
where

& ={(x,h):z € F, heS(,d), |<|h| Vuo(z))] > A1}

& = {(z,h) 1z € F,h € 5(3,60), / Vo (2 + sh) — Vo ()| ds > Ay — A}

0
Indeed, if (z,h) ¢ & U & then
1 1
](%,Vuo(x))] < |<|hh|,/0 Vuo(x + sh) ds)| —i—/o |Vuo(z + sh) — Vuo(x)| ds

which is then < Ay, so (z,h) ¢ &, establishing & C & U &; and thus (5.3).
The set £ does not change if we replace u, by w in its definition. Since
(%,VU(m)) > (1—¢)|Vu(x)| > (1 —e)Ag >\ forx € F, |h| €S
we get

N
(&) > / dx / o |h| LY (F)o(S) log(80/5).

Moreover, using (5.2) and Chebyshev’s inequality we see that

1
(&) </ Jo Vol + sh) = Vol 1@y ds _dh
0\c2) >
5(6,00) A=A |h|N

LY(F)(A —A)/10 dh LN(F)
e S T LU

and hence putting pieces together we obtain for § < dg

LN(F)
2

Here 0 <y was arbitrary and by letting 6 — 0 we conclude that vo(E) g[u]) = oc.

vo(Exolu]) > vo(€1) — 10(&E2) > () log(d0/9).

We now give a more precise version of Example 1.7.
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Lemma 5.2. Let 2 C RY be a bounded domain with Lipschitz boundary and let u = 1gq.
Then v € BV (RN)\ WHHRN) with
log(2/A) if A <1,

E < C
vo(Exolu]) < Ca x {)\1 if A > 1;

in particular we have supy<g A vo(Explu]) < oo.

Proof. Let

B(r,\) = {(2.y) € Exolul: r < |z — y| < 20},
We begin with the observation that rA < 2if vg(E(r, X)) > 0. Furthermore, if (z,y) € E(r, \)
for some y € RY, then  belongs to the 2r-neighborhood of 9§2. The Lebesgue measure
of such a neighborhood is O(r) if r < ry where ry is some positive constant depending on
Q (because the boundary of a bounded Lipschitz domain can be covered by finitely many
Lipschitz graphs, and the 2r-neighborhood of such graphs can be approximated by a union

of O(r) neighborhoods of suitable hyperplanes). Hence for r < ry we have vo(E(r,\)) < Cr
if r <2/Xand vy(E(r,\)) =0if r > 2/X. As a result, if 2/\ < ry we get

w(Evo) < > w(E@,N) A
JEZ: 21<2/A

and if 2/X > ro we get

A d
w(Exolu]) < > w(B(2,N) + 2/ / %das <14 log(A7h).
Q Jro<|z—y|<2/A |z — yl

JEZ: 2 <rg

6. WHEN THE UPPER BOUND (1.15) FAILS

In this section we make various constructions demonstrating the failure of (1.15) in the
range —1 <y < 0, and give the proof of Theorem 1.8. We first establish

Proposition 6.1. Suppose N > 1 and —1 < v < 0.

(i) For every m > 0, there exists u € C°(RY) such that

(6.1) vy (B (u]) > m|[Vaul| gy gy
(ii) There exists C = C'(N,v) > 0 and po = po(N,7) > 1 such that for all 1 < p < po,
p
(6.2) sup vy (B 4 pu]) > C——.
weC®RN) P p—1
[VullLp<1
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6.1. Proof of Proposition 6.1: The case v = —1.

Here we may choose, for m > 1,
(63) Um = ]131 *M/m S CSO(RN)

where 1y, () := 2N p(2™z) for some non-negative, radially decreasing n € C¢°(B1) with
Jgv p=2. Then when 1 < p < oo and m < p’ = p/(p — 1) (which is no restriction on m if
p = 1) we have || Vo, |, < 2™/7 <1, while By _1plvm] 2 {lz] < 1-27",1427™ < |y| < 2},
and hence

v (Er b)) 2 [ / v — 917N dudy
ja<1—2-m J142-m<]y|<2
ZCN/ (42— |2 = (2= |2 da > chym.
|z|<1—2—m

This proves both (i) and (ii) of Proposition 6.1 in the case v = —1. O

6.2. The case —1 < vy < 0: Examples of Cantor-Lebesque type on the real line.

We now discuss some examples related to self-similar Cantor sets of dimension =1+ ~.
Recall the definition of v, @, in (1.4), (1.5) and observe the behavior under dilations:

(6.4) vy (tE) = "7 ().
We have

Lemma 6.2. Let —1 <~ < 0. There exist constants ¢, > 0, C, > 0, and a sequence of
functions g, € C°(R) with gy (xz) =0 for x <0 and gm(x) =1 for x > 1, such that for all
I1<p<oo,

m|y|
(6.5) lghllp < cy275 05)
and if m—1< 7%'1]%, then
(6.6) vy ({(,9) € 10,12 £ |Q1/pgm (2. 9)] > 1}) > m/C.

Proof. For —1 < v <0 let

1
(6.7) p=2 1
so that 0 < p < 1/2. We construct g, such that its derivative is supported on the m—th
step of the construction of symmetric Cantor sets of dimension g =14~ = 10;0(%, with

an equal variation on each of its 2™ components [14, ch. 8.1].

Let go € C*°(R) be such that 0 < go < 1, go(x) =0 for z < p and go(x) =1 for z > 1 —p.
Set for m € N,

T 11—z

gm+1(2) = 39m (%) + 59m (1 — 52).
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Since p < 1/2, we have for p € [1,00), ||g, 1115 pR) = 2 % (2p) 7’pHgﬂﬁL||Lp(]R and thus

17 m|v] 1,,
gl o) = 20) ™ bl oy = 2771 07 | gb || Lo (ry -

Fix now 1 < p < oo, and for m € N, A > 0 define

A= vy ({(2,9) € [0,1] £ |Qy ppgm (@, ) > A}).

Our goal is to estimate A,, 14, which we do by deriving a recursive estimate for A, . We
have the decomposition

Amsx = vy ({(2,y) € 10,01 1Qy jpgm+1(z, y)| > A})
(6.8) + vy({(z,9) € 1= p, 112 2 1Q jpgm1 (2, y)| > A})
+ vy ({(z,9) €10, p] X [L=p, 1] 2 [Qqpgmy1(2, y)[ > A}).

Using the definition of gp,+1, (6.7) and (6.4), we compute the first term in the right-hand
side of (6.8) as

vy ({(2,y) € [0, |Qygmi1 (2, y)| > A})
(6.9) = v, ({(pw. pz) : (w, 2) € [0, 112, |Qygm(w, z>r>2p”%x}>
= T ({(w,2) € (0,11 £ |Qagm(w, 2)| > 270D A}) = 14, 15

42 -
where s := 2p p =27 <7+1) and similarly the second term as

(6.10) vy({(z,y) € [1 = p, 1% 1 [Qygmr1(2,9)| > 5}) = FAm.sr-
Thus
Am-i—l,)\ > Am,S/\ + V’y({(%y) € [Oap] X [1 - P 1] : |Qw/pgm+1(x7y)| > )‘})7
which iterates to give
Am,1/4 > AO,sm/4 + ZV’Y({(‘T7y> € [07/)] X [1 2 1] : ’Q’y/pg](xayﬂ > %Smi]})
j=1

We drop the first term, and note that as long as m — 1 < 7|J7r|1 ppl, we have %sm_j < %

for all j = 1,...,m. Moreover, for every z € [0, p?] x [1 — p? 1] and every j > 1, we have
gj(z) < 1/4 and g;(y) > 3/4, so |Q,/p9i (7, y)| > 3. Thus we obtain the desired conclusion

Amaja = mwy ([0, 7] x [1 = p?,1]) = m/C,.
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6.3. Conclusion of the proof of Proposition 6.1.

We continue with the case —1 < < 0. Let 1 € C2°(R) supported in (—1,2) such that
n(s) =1on (—1/2,3/2) and 0 < ni(s) <1 for all s € R.

We split = (x1,2') with 2/ € RVN~! where the variable 2’ should simply be dropped in
the case N = 1. Set n(z) = [I, m(z;) and define

(6.11) U (21, 2") = 16gm (21)1(x)

where g,, is as in Lemma 6.2. Then u,, € C°(RY), and if 1 <p < co and m —1 < W\Tﬂlz%

we have |[|[Vupy,||, S 1. Both parts of Proposition 6.1 will follow, if we can prove that under
the same hypotheses on p and m, we have

(6'12) V’Y(El,v/p[um]) > C(N> ’7)m - C(N7 /7)1)'

We aim to reduce to the one-dimensional situation in Lemma 6.2 and split

m(Z1) — Gm T)—
Qu ptim () = 169(e) V= ImO1) |y \IE TG _ 1y 4 o)
z—y|" 7 jz —y|' "
so that
Bl = [ ey Y deay
z1,y1€[0,1]

(6.13) > // lz — "N dzdy — // |z — gy~ dz dy.

z€[0,1]1V ,y1€[0,1] [1Im (z,y)|>1
lz1—y1|> |2’ ~y']
[Tm (2,y)[>2

Clearly if By is the ball in RY of radius 2 centered at the origin then
X
[ (2,y)] < enlz =yl 7 (I, (2) + 1b,(y))

and it follows immediately (since —y > 0) that

|z =y Ndzdy < |y|TTC(N)P.

Hm (2,y)[>1
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For the first term in (6.13), we prove a lower bound and estimate by integrating in ¢’

ooy Nedy= [ ey Yy
ze[0,1]V ,y1€[0,1] z€[0,1]V ,y1€[0,1]
lz1—y11>]2" —y'| |1 —y1|>]2" —y'|
[T (z,y)|>2 I16gm(x1)—16gr§(y1)l >4
lzy—y1l P
-1
> cN lz1 — 3177 day dys,
x1,y1€[0,1]

|Q’y/p97n(x17y1)|>%
but by Lemma 6.2 the last expression is bounded below for large m by c¢ym/C, under our
hypothesis on m. This concludes the proof of (6.12). O

For later purposes, note the inequality (6.13) (with p = 1) and the argument that follows
proved also that for all sufficiently large m > m(N,~), we have

(6.14) U (B1 o [um] 0 ([0,1] x RYTH2) > (N, v)m.

6.4. Exzamples related to Theorems 1.1 and 1.8

We now consider the limit (1.8) in the range —1 < v < 0 and provide counterexamples
for cases where u is no longer required to be a C2° function. The following proposition
covers part (i) of Theorem 1.8.

Proposition 6.3. Let —1 <~ < 0. Let s — w(s) be any decreasing function on [0, o) with
w(0) <1 and w(s) > 0 for all s > 0. Then there exists a C™ function u € WHH(RN) such
that

(6.15) lu(z)| < Cw(|z|) for all z € RY
and
(6.16) )1\1{‘% Ay (Ey 4 [u]) = oo.

Proof. We consider the case —1 < v < 0. Let u,, € C(RY) be as in (6.11) and define
(6.17) fm (@) = U (21 — 2,2")
so that fp,(z) =0 if z1 ¢ [1,4]. Let, for n € N,

618)  Ru=2" A= By u(Ru), min) > 47 w(Ru) 0,
n+1

We also assume m(n) > m(N,~) so that by (6.14) in Section 6.3,

(6'19) V’Y({(w7y) 1T, Y1 € [Qa?’]’ |Q7fm(n)(xay)| > 1}) > C(Nvly)m(n)
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for all n € N. Finally let

(6.20) u(z) = i R(N “1“2) Fon) ( )

n

Since || fmllyin < C, and w is bounded, it is easy to see that the sum converges in
WEHRY), and that wis in WHH(RY). Also, the supports of f,,,) (R, *+), namely [Ry, 4Rp,] x
[~4R,,, 4R,V 1, are disjoint as n varies, so clearly u € C(RY). Since || fi|[z < C, we
have

lu(z)] < w(Rns1) Ry "Yn"2  for |z| > Ry,
so |u(z)] < C'|lz|~N*Hw(|z|) for |z| > 2. In particular |u(z)| < Cw(|z|).

For A € ((n+1)"2\n41,n72\,] we estimate

_ An _
Ay (Bxqlul) 2 (n4 1) Angawy (Bp-an, o ul) 2 55 072 Ain ()

where &, = E,,—2), [u|N([2Ry, 3R,] xRNV ~1)2. Moreover, for (z,y) € ([2Rn, 3R, xRN 1)2,

we have
w(@) —u(y) = Ry N0 w(Rui1) (frnn) Ry ' @) = frn(m) (Ryy ')
=)
o (B0) = i (B9)| RN+
Rl — Raly[0) o(Rorr)
where the last equality follows from (6.18). Hence rescaling using (6.4) yields
(6:21) 02 Aawn(En) = n PR 0 ({(2,y) s @, € [2,3], 1Qy frngmy (2 9)] > 1))
> (N, y)m(n)(Ros1)n~
with ¢(N,v) > 0, by (6.19). Thus we have shown

|Qyu(z,y)| >n"2\, = A, =1

inf )\V'y (EA,’Y [U]) 2 C(N7 ,Y) >\n+1

R, 2> ¢(N,
AE((n+1) "2 X4 1,m 72 A] 4\, w(Rn41)m(n)n=" > c(N,y)n

where for the last inequality we have used our assumption (6.18) on m(n). The assertion
follows for —1 <~ < 0.

Finally consider the case v = —1. We now choose vy, as in (6.3) and
(6.22) R, =22 A, = R-OUu(Rosy), min) >4
" T A1 w(Raga)

In analogy to (6.20) we now use

(6.23) u(z) = Z CL)(J\I,%_n;qg’Um(n)(;)
n=2 ftn T n



Since w is bounded it is immediate that v € W1(RY) and also that |u(z) )
We need to check that Av_i(Ex_1[u]) — oo as A — 0. If |2| < R,(1 — 2™™) and
ly| > Rn(1 4 2™™), then

A
E
8

w(Rni1) €z wW(Rpt1) _ _
u(z) —u(y) > ﬁ m(n)(?) = ZT;FTLZ =2n"%), >n"2\,

so (x,y) € E,—2, _1[u]. Hence we get

n_QAnyfl(E’n_Q)\n,*l[u]) Z n_2)\n ‘$|§Rn(1—2m(ﬂ)) |x - y|_1_N dx dy

[y|> R (14+27(™)

>n ARy —y[T" NV dedy

|| <1—2m(n) |2
ly|>1+2m ()

> enm(n)w(Rpy1)n 2

(using (6.22) in the last inequality). This together with our assumption on m(n) imply that
Inf e ((ng1)~2anr1,m-220] AV—1(Ex —1[u]) > cxn — 00 when n — oo, as desired. O

The next proposition is relevant for part (ii) of Theorem 1.8.

Proposition 6.4. Suppose —1 < v < 0. Then there exists a compactly supported u €
WLLRN) such that u is C*® for x #0,

C
(6:24) NS BT+ TP
and

(6.25) )1\1{% Ay (B 4 [u]) = oo.

If in addition N > 2 or —1 < v < 0 there exists u with the above properties and
(6.26) vy (Ey4[u]) = oo for all X > 0.

Proof. Consider first the case —1 < v < 0. We choose for n € N

(6.27) R, =272" m(n) > 2%".
and with these choices of R,, and m(n) and f,, asin (6.17) and (6.11) we define again
= 1 x
u(x) = nz::Q TLQR{«LV_l fm(n)(Rin)

The sum converges in Wh! to a function supported in [—4,4]Y. We have |u(z)| <
C22"(N=1n=2 for 0 < z; < 272"; moreover |2/| < |z1| on the support of w. This im-
plies |u(z)| < C'[|z|*~N log(1/|z|)]~2 for small z. Also, because of the choices of R, we see
that w is smooth away from 0.
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Fix A > 0. Since lim,, o R,11\7+'7n2 = 0 we may choose ng such that
(6.28) ARNTIR2 <1, Vn > ng.

Now v (Ey[u]) > vy(Ex,[u] N (2R, 3R] x RN 71)2) ) and again Jm(n) (R; ') is supported
in R(n) = [Rn,4R,] x [-4R,,4R,) 1. Hence by the same rescaling argument as in (6.21),
we obtain

vy (Baylul) = R0, ({(2,9): 21,91 € 12,3],1Qy finmy (2, 9)| > ARYTT0?}).
If n > ng then this gives
vy (Bxg[u]) 2 Ry vy ({(2, ) 21,91 € [2,3], 1Qy frngy (2, 9)] > 1}) 2 e(N, 7)m(n) Ry

by (6.19). Since limy, oo m(n)RY+7 = 0o by (6.27) we conclude v (E) ~[u]) = oo.

For the case y = —1 and N > 2, define u as in (6.23) but with the choice of the parameters
R,, m(n) as in (6.27) to obtain a compactly supported u € W'l satisfying (6.24). We
now fix A > 0 and note that when N > 2 we have ARY ~'n? — 0 as n — co. The above
calculation gives v_1(Ey _1[u]) > ¢(N)m(n)RY~! provided that ARY~'n? < 1 and thus
the conclusion v_1(Ey _1[u]) = oc.

Finally, clearly (6.25) follows from (6.26), and the latter was proved if —1 < vy < 0

or N > 2. It remains to consider the case N = 1, v = —1. We define u as in the
previous paragraph. The above calculation shows that v_1(Ey _1[u]) > em(n) provided
that A < 1/n? which establishes (6.25) in this last case. O

The case N = 1, v = —1 plays a special role. The following lemma shows that the
conclusion (6.26) in Proposition 6.4 fails in this case.

Lemma 6.5. Let u € WHH(R) be compactly supported. Then v_1(Ex _1[u]) < oo for all
A>0.

Proof. Let u € W1(R) be compactly supported in [—R, R]. Then given any X\ € (0,1),
there exists d(A\) > 0 such that [ |u'| < A/2 for every interval I C R with length < 6(X). As
a result, u is uniformly continuous on R, with sup,cp |u(z + h) —u(x)| < A/2 for |h| < §(N).
Thus

B =2 [ S

—o00
h>0
lu(z+h)—u(z)|>A

2R oo |z|+R
g/ / dgdm+/ / d—gdx§4R(6(>\))‘1+4. O
—arJsn) P R\[-2R,2R] J|z|-R D
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6.5. Generic failure in W, for the case —1 < v < 0.

Proposition 6.6. Let -1 <y <0, N>2o0r-1<vy<0, N>1. Let
(6.29) V={feW"RN): v, (E\,[f]) < co for some A > 0.}
Then V is of first category in WH(RN), in the sense of Baire.

Let
Up = {(z,y) € RN : 2871 < |z —y| < 2F}
Q= Ui:leUk'

For the proof of Proposition 6.6 we use an elementary estimate for the intersections
E )\77[’&] N Q.

(6.30)

Lemma 6.7. For ally € R, u € WHY(RY), £ > 0 and Q as in (6.30),
sup Ao (B[] 1 $2) < C(N ) Vs
>

Proof. For u € C' we use the Lusin-Lipschitz inequality (2.2) to see that

)\// |z —y[ "N dzdy
By~ [u]NUy
< C’(v))\QkVEN{:E c RV : M(|Vul)(x) > 021”)\} < C(N,¥)||Vul1

by the Hardy-Littlewood maximal inequality. Now sum in 1 — £ < k < ¢. The extension to
general u € W1 is obtained as in the limiting argument of Section 2.3. O

Proof of Proposition 6.6. Let, for m € Nand j € Z
V(m,j) = {u € WHHRN) : v, (B4 [u]) < m for all X > 27},

Since A > vy (E) 4[u]) is decreasing we see that V is contained in U,,>1 Ujez V(m, j). To
show that V is of first category in WH1(RY), we need to show that for every m € N, j € Z
the set V(m, j) is nowhere dense.

We first show that V(m, ) is closed in WHH(RY). Let u, € V(m,j) and v € WHH(RY)
such that limy, oo |[u — un |l @yy = 0. It suffices to show that given ¢ > 0 we have

vy(Exq[u]) < m + ¢ for all A > 27. By the monotone convergence theorem, we have
limy o0 vy (Ex [u] N ) = vy (E 4[u]), and it suffices to verify that

(6.31) Uy (ExA[ul N Q) <m +e for A > 27,
for all £ € N. Now let § > 0 such that (1 — §)A > 27. Then

o (B u] 11 Q6) < vy (Ba sy i) 01 Q) + vy (Bip oyt — 1] 01 Q)
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and using that u, € V(m, j) together with (1 — )\ > 27, and Lemma 6.7, we see that for
A>2
1+9

527
Since ¢ > 0 was arbitrary and since ||V (un —u)| 1@~y — 0 by assumption we obtain (6.31).

vy (Exqy[ul N Q) <m+ C(N,v)¢ IV (up, — u)l1.

To show that the closed set V(m,j) is nowhere dense when —1 < 7 < 0 we need
to verify that for every u € V(m,j) and &1 > 0 there exists f € WHH(RY) such that
|f — ullwrr@yy < e1 and f ¢ V(m, j). To see this we use Proposition 6.4 according to
which there exists a compactly supported Wh! function f; for which v (E) ,[fo]) = oo for
all A > 0. It is then clear that f =u + 5—1% satisfies ||f — ully11 < e1/2 and also,

2 |[fol
Uy (Exs[f]) = vy (Bany [ ||fO|J|:(jV1’1 ]) = vy (Exylu]) = 00
for every A > 27, for all j € Z. The proposition is proved. 0
To include a result of generic failure of the limiting relation in the case N =1, v = —1

we give
Proposition 6.8. Let —1 <y < 0. Let

W={feW"(R): limsupsup Rv,(Ex,[f]) < oo}
R—0 A>R

Then W is of first category in Wb, in the sense of Baire.

Proof. Clearly W C V where V is defined in (6.29). We define

W(m,j) ={ue W' (R): sup sup Rvy(Ey,[u]) <m}
0<R<2-i A>R

and note that
(6.32) W C Uj>1 U1 W(m, j)

The arguments in the proof of Proposition 6.6 that was used to show that the sets V(m, j)
are closed in WH1(RY) also show that the sets W(m, j) are closed in WH1(R).

Let u € W(m,j), and let &1 > 0. By Proposition 6.4 there is fo € W11(R) such that
limy~ 0 Ay (Ex 4 [fo]) = 0o. We may normalize so that || follyw1.1@®) = 1. Pick R € (0, 277 s0
that v, (Ex,[fo]) > 16m/e; for A < 8R/e1. Let f = u+(e1/2) fo so that || f —ully11 @) <
€1/2. Moreover if A = 2R, then A > R and

Ruy(Ex4[f]) > Ruy(Eax[F fo]) — Rvy(Ey 5 [ul)

= %%VV(E8R/€17'Y[JCO]) — Rv (B, [u]) > %fiﬂ —m=m

and we see that f ¢ W(m,j). Thus we have shown that W(m,j) is nowhere dense in
WHL(R). By (6.32) the proof is concluded. O
36



7. PERSPECTIVES AND OPEN PROBLEMS

7.1. Subspaces of Wb and BV and related spaces

The failure of the upper bounds for [Q,u]p1.00gen ;. ) for v € [~1,0) raises a number of
interesting questions. Consider the space B.V(v) consisting of all BV functions satisfying

(7.1) HUHB‘V(W) = [[Vullpm + ?\1;% Avy (B y[u]) < o0

and the corresponding subspace W11 (y) of Wh1,

Embeddings. We proved in this paper that for v ¢ [—1,0] we have BV (y) = BV and
Wl’l('y) = WL, It is natural to ask how in the range —1 < v < 0 the proper subspaces
BV (v) and W'1(5) relate to other families of function spaces, in particular to the Hardy-
Sobolev space Ff’Q, another subspace of WH.

Triangle inequalities. The spaces W1 () and BV (v) are defined via LY* -quasi-norms,
and the space L1 is not normable (unlike LP**> for 1 < p < co which is normable [13]).
However Theorem 1.4 tells us that W' (y) and BV () are normable for v ¢ [—1,0]. Are
these spaces normable in the range v € [—1,0)7

Related quasi-norms. Consider for 0 < s <1

u(x) — u(y)
Ullp,syy) = | =7 724 '
H ||(p, ) [ |;1: _ y|%+s }LP,OO(RQNJ/—Y)

It is an obvious consequence of Theorem 1.3 that for s = 1 and fixed p > 1, these expressions
define equivalent (semi/quasi)-norms on C2° as 7y varies over R\ {0}. It would be interesting
to find a more direct proof of this observation which does not involve the relation with WP,
We note that the equivalence for varying ~ breaks down for 0 < s < 1. This result, and
more about the spaces for which [[ul[(, ) < oo with 0 < s <1, such as their connection to
Besov spaces and interpolation, can be found in [20].

7.2. Other limit functionals

Our results, combined with the various developments presented in [5,6,16, 18], suggest
several possible directions of research.

Can one prove a generalization of (1.14), (1.16) where the supremum is replaced by the
liminfy_ o, when v > 0 and by a liminf,_,j+ when v < 0. More precisely, for 1 < p < oo is
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there a positive constant C(N,~,p) such that for all u € L (RY)

(7.22) IVl < C(N, . p) i inf Xus (By o plu]) if 5 > 0,
(7.2b) [Vullhy < OOV, p) i int N, (B ) i 5 <0

in the sense that | Vul, = oo if u € L{\ WhP?

loc

For p = 1 we can also ask: Is there a positive constant C'(N,~) such that for all
1 (N
u € Lloc (R )’

(7.3a) [Vallac < C(N,3) i inf Avs (B 5 [u]) i 7 > 0,
(7.3b) [Vl aa < OV )l inf Ay (Exsfu]) i 7 < 0,

in the sense that ||Vu|y = oo if u € LL .\ BV?

loc

Theorem 1.1 gives (7.2a) and (7.2b) if we additionally assume u € Whe(RN). It also
gives (7.3a) and (7.3b) if we additionally assume that u € WLHLRYN). Tt would already be
interesting to establish (7.3a), (7.3b) for all BV functions.

When v = —1, p = 1, (7.3b) holds for all v € L{ _(RY) as established in Nguyen

loc

[17, Theorem 2] and Brezis—-Nguyen [5, Section 3.4]. For 7 = —p, 1 < p < oo inequality
(7.2b) was proved in Bourgain—Nguyen [2]. For v = N, Poliakovsky [19] proved weaker
versions of (7.2a) and (7.3a) where the liminf is replaced by a lim sup.

7.3. I'-convergence

This is a far-reaching generalization of the questions raised in Section 7.2. For fixed p > 1
and v € R\ {0} consider the functionals

Dalu] = Nvy(Ey jplu]), X € (0,00)
defined for all u € L{ (RY). It would be very interesting to study the I'-limit of ® in

L (RY), in the sense of De Giorgi, as A — oo when v > 0, resp. as A \, 0 when v < 0.
More specifically, if p > 1 define on Li (RY),
o|Vulp if w e WHP(RN
@ fu] = { Vel VR
o0 otherwise,

and for p = 1 define

Do fu] = ¢|[Vullae  if uw e BV(RN)
ST o otherwise.

A challenging question is whether there exists a constant ¢ = ¢(p,v, N) > 0 such that
&)\ — ®, . in the sense of I'-convergence, meaning

(1) whenever uy — u in L then liminf ®y[uy] > ®. .[u], and
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2) for each v € Li (RN) there exist (vy) with vy € L- (RN), vy — w in LL  and
( loc loc loc
limsup @y [va] < @y c[ul.

This question is especially meaningful in the case p = 1 where the pointwise limit behaves
somewhat pathologically. Indeed, recall that for p =1, —1 < v < 0 there is no universal
upper bound for ®y[u] in terms of ||Vul|p:1. Also When p=1and v € R\ [-1,0] the
examples in Section 3.6 show that the pointwise limit in W' and on BV \ Wil may differ
(by a multiplicative constant). A remarkable result of Nguyen [16, 18] states that &y — ®, .
as A — 0, in the sense of I'-convergence, when p > 1, and v = —p for some appropriate
constant ¢ = ¢(p, N); see also Brezis-Nguyen [6] (note however that W'? and BV are
replaced in these papers by WP and BV).

7.4. More general families of functionals

Consider a monotone nondecreasing function ¢ : [0,00) — [0,00) and set (inspired by

[5,6])
s [ (S s

The family ®, in Section 7.3 corresponds to ¢ = 1 ). It is an interesting generalization
of the above problems to study the limit of ¥y as A N\, 0 when v < 0 and the limit of
Uy as A — oo when v > 0, both in the sense of pointwise convergence or in the sense of
I’-convergence. A formal computation suggests that our Theorem 1.1 should go over modulo

a factor [° ;‘;ﬂ ds (see [6]). We refer to [5] for a further discussion of applications.
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