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Abstract: Several syntactic measures have been defined in the past to assess the effectiveness of a test suite: statement

coverage, condition coverage, branch coverage, path coverage, etc. There is ample analytical and empirical

evidence to the effect that these are imperfect measures: exercising all of a program’s syntactic features is

neither necessary nor sufficient to ensure test suite adequacy; not to mention that it may be impossible to

exercise all the syntactic features of a program (re: unreachable code). Mutation scores are often used as

reliable measures of test suite effectiveness, but they have issues of their own: some mutants may survive

because they are equivalent to the base program not because the test suite is inadequate; the same mutation

score may mean vastly different things depending on whether the killed mutants are distinct from each other

or equivalent; the same test suite and the same program may yield different mutation scores depending on the

mutation operators that we use. Fundamentally, whether a test suite T is adequate for a program P depends

on the semantics of the program, the specification that the program is tested against, and the property of

correctness that the program is tested for (total correctness, partial correctness). In this paper we present a

formula for the effectiveness of a test suite T which depends exactly on the semantics of P, the correctness

property that we are testing P for, and the specification against which this correctness property is tested; it

does not depend on the syntax of P, nor on any mutation experiment we may run. We refer to this formula as

the semantic coverage of the test suite, and we investigate its properties.

1 On the Effectiveness of a Test Suite

1.1 Motivation

In this paper we envision to define a measure to quan-

tify the effectiveness of a test suite. The effectiveness

of an artifact can only be defined with respect to the

purpose of the artifact, and must reflect its fitness for

the declared purpose. If the purpose of test suites is

to reveal the presence of faults in incorrect programs,

then it is sensible to quantify the effectiveness of a test

suite by its ability to reveal faults. A necessary condi-

tion to reveal a fault is to exercise the code that con-

tains the fault; hence many metrics of test suite effec-

tiveness focus on the ability of a test suite to exercise

syntactic attributes of the program (Mathur, 2014);

but while achieving syntactic coverage is necessary, it

is far from sufficient, and not always possible. Indeed
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not all faults cause errors and not all errors lead to ob-

servable failures (Avizienis et al., 2004); also, it is not

always possible to exercise all syntactic features of a

program (re: infeasible paths, dead code), so that it

is possible to thoroughly test a program without cov-

ering all its statements (if the code that has not been

exercised contains no faults).

A better measure of test suite effectiveness is mu-

tation coverage, which is defined as the ratio of mu-

tants that it kills out of a set of generated mutants. But

while mutation coverage is often used as a baseline

for assessing the value of other coverage metrics (In-

ozemtseva and Holmes, 2014; Andrews et al., 2006),

it has issues of its own:

• The same mutation score may mean vastly differ-

ent things depending on whether the killed mu-

tants are all distinct from each other, all equiva-

lent, or partitioned into some equivalence classes;

if a test suite T kills N mutants, what we can infer

about T depends on whether T killed N different



mutants or N times the same mutant (under dis-

tinct syntactic forms).

– As an illustration, a test suite that kills ten

equivalent mutants has a higher mutation score

than a test suite that kills nine distinct mutants,

even though the latter is nine times more effec-

tive than the former.

• The same test suite T may yield different mutation

scores for different sets of mutants, hence the mu-

tation score cannot be considered as an intrinsic

attribute of the test suite.

• Even assuming that mutants are a faithful proxy

for actual faults (Andrews et al., 2005; Namin and

Kakarla, 2011; Just et al., 2014), we argue that

assessing the effectiveness of test suites by their

mutation score may be imperfect, because of the

disconnect between fault density and failure rate.

The impact of faults on failure rates is known to

vary widely from one fault to another; an often

cited empirical study reports an instance where re-

pairing 60 percent of the faults in a software prod-

uct leads to a 3 percent improvement in failure rate

(Farooq et al., 2012; Sommerville, 2004).

In this paper we present a measure of test suite

effectiveness which depends only on the program un-

der test, the correctness property we are testing it for,

and the specification against which correctness is de-

fined; also, this measure is intended to reflect a test

suite’s effectiveness to expose failures, rather than to

detect faults. In the next section we present and dis-

cuss some criteria that a measure of test suite effec-

tiveness ought to satisfy, and in section 1.3 we present

and justify some design principles that we resolve to

adopt as we define our measure.

In section 2 we introduce detector sets, and dis-

cuss their significance for the purposes of program

testing and program correctness, and in section 3 we

use detector sets to introduce our definition of test

suite effectiveness under the name semantic cover-

age; we validate our proposed definition in section 4

by showing, analytically, that it meets all the require-

ments set forth in section 1.2. In section 5 we illus-

trate the derivation of semantic coverage on a sample

benchmark example, and show its empirical relation-

ship to mutation scores. We conclude in section 6 by

summarizing our findings, critiquing them, compar-

ing them to related work, and sketching directions of

further research.

1.2 Requirements of Semantic Coverage

We consider a program P that we want to test for cor-

rectness against a specification R and we wish to as-

sess the fitness of a test suite T for this purpose. We

argue that the effectiveness of test suite T to achieve

the purpose of the test ought to be defined as a func-

tion of three parameters:

• Program P.

• Specification R.

• The standard of correctness that we are testing

P for: partial correctness or total correctness

(Hoare, 1969; Manna, 1974; Gries, 1981).

The requirements we present below dictate how se-

mantic coverage ought to vary as a function of these

parameters. To follow our foregoing discussions, it is

helpful to consider that the effectiveness of an artifact

to fulfill a mission depends on the intrinsic attributes

of the artifact as well as the difficulty of the mission.

For example, the effectiveness of a locomotive to tow

a train from A to B on a train track depends on the

horsepower of the locomotive as well as the difficulty

of the task (mass of the train, slope of the tracks, fric-

tion of the wheels, required speed, etc).

Rq1 Monotonicity with respect to test suite size.

Notwithstanding that we favor smaller test suites

for the sake of efficiency, we argue that from the

standpoint of effectiveness, larger test suites are

better: if T ′ is a superset of T then T ′ ought to

have higher semantic coverage than T 2.

Rq2 Monotonicity with respect to relative correctness.

Relative correctness is the property of a program

to be more-correct than another with respect to a

specification (Diallo et al., 2015b). A test suite

T ought to have increasingly greater semantic co-

varage as the program grows more-correct, since

more-correct programs have fewer failures to re-

veal. Since relative correctness culminates in ab-

solute correctness (Diallo et al., 2015b), we ex-

pect the semantic coverage of a test suite to reach

its maximal value when applied to a (absolutely)

correct program3.

Rq3 Monotonicity with respect to refinement. Spec-

ifications are naturally ordered by refinement,

whereby more-refined specifications represent

stronger/ harder to satisfy requirements (Morgan,

1998; Hehner, 1992; Wright, 1990; Aichernig

et al., 2013; Banach and Poppleton, 2000); a given

program P fails more often against a more-refined

2re: the train analogy; locomotives with higher horse-
power ought to have higher scores.

3re: the train analogy; the effectiveness of a locomotive
increases as it becomes easier to tow the train; if the track
slopes downhill at a sufficient angle to reach the required
speed, even a locomotive with zero horsepower will do the
job.



(harder to satisfy) specification than a less-refined

specification. Hence the same test suite ought

to have greater semantic coverage for less-refined

specifications4.

Rq4 Monotonicity with respect to the standard of cor-

rectness. The distinction between partial correct-

ness and total correctness has been central to the

study of correctness verification (Hoare, 1969;

Manna, 1974; Dijkstra, 1976; Gries, 1981), but

has not been considered in software testing. Yet

there is a difference between testing a program for

total correctness and testing it for partial correct-

ness: If we execute a program P on test t and P

fails to terminate normally, then

– Under total correctness, we conclude that P is

incorrect, and we repair P.

– Under partial correctness, we conclude that t is

the wrong test, and we find another test.

Total correctness is a stronger property than par-

tial correctness, hence the same program will fail

the test of total correctness more often than it fails

the test of partial correctness. The same test suite

T ought to have greater semantic coverage if it

is applied to partial correctness than if applied to

total correctness, since it has fewer failures to re-

veal.

In section 4 we prove that the formula of semantic

coverage presented in section 3 satisfies all the re-

quirements (Rq1-Rq4) discussed in this section.

1.3 Design Principles

We resolve to adopt the following design principles as

we define semantic coverage:

• Focus on Failure. We adopt the definitions of

fault, error and failure proposed by Avizienis et

al (Avizienis et al., 2004), which we summarize

as follows: a fault is a feature of the program that

precludes it from being correct; an error is the im-

pact of a fault on the state of the program for a

particular execution; a failure is the event where

an error propagates to the output of the program

and causes it to violate its specification.

A failure is an observable, verifiable, certifiable

effect. By contrast, a fault (referred to in (Avizie-

nis et al., 2004) as the adjudged or hypothesized

cause of an error) is a hypothetical cause of the

observed failure; the same failure may be caused

by more than one fault or combination of faults.

4re: the train analogy; if the requirement for speed in-
creases, all locomotives will have lower scores.

Hence whereas a failure is an objectively verifi-

able effect, a fault is a speculative hypothesized

cause; by focusing on failures rather than faults,

we anchor our definition of semantic coverage in

objectively observable effects rather than subjec-

tive speculations about causes.

• Partial Ordering. It is easy to imagine two test

suites whose effectiveness cannot be ranked (i.e.

we cannot say that one of them is better than the

other): for example, they reveal disjoint or distinct

sets of failures. Hence test suite effectiveness is

essentially a partial ordering. Yet if we quantify

test suite effectiveness by numbers, we introduce

an artificial total ordering, on what is actually a

partially ordered set; this creates a potential for

poor precision, whereby any two test suites will be

ranked by their numeric scores, even when their

effectiveness cannot be ranked. Hence we resolve

to define semantic coverage, not as a number, but

as an element of a partially ordered set; our goal is

to ensure whenever the semantic coverage of two

test suites T 1 and T 2 are ranked, e.g. T1 ≥ T2, it

is because T 1 is better (in a sense to be defined)

than T 2.

• Analytical Validation. There are several reasons

why we resort to analytical (vs. empirical) meth-

ods to validate our definition of semantic cover-

age:

– First and foremost, we do not know of a widely

accepted ground truth of test suite effectiveness

against which we can validate our definition.

– We acknowledge that many authors use muta-

tion coverage as a baseline measure of test suite

effectiveness, but we have no expectation that

semantic coverage and mutation coverage be

strongly correclated, not only because the for-

mer is a partial ordering whereas the latter is a

total ordering, but also because semantic cov-

erage and mutation coverage depend on differ-

ent artifacts. Semantic coverage depends on the

program, its specification and the standard of

correctness; mutation coverage depends on the

program and the mutation generator.

– We cannot validate semantic coverage by

means of its correlation with traditional metrics

of syntactic coverage for several reasons: se-

mantic coverage is a partial ordering whereas

syntactic coverage metrics define total order-

ings; semantic coverage depends on the seman-

tics of the program whereas syntactic metrics

depends on its representation; semantic cover-

age depends on the specification and the stan-

dard of correctness in addition to the program,



but syntactic coverage depends exclusively on

the program.

Hence we resolve to validate our definition of se-

mantic coverage by arguing that it captures the

right attributes and that it meets all the require-

ments that we mandate in section 1.2.

In section 5 we compute the semantic coverage of a

set of (20) test suites of a benchmark program for two

specifications and two standards of correctness, and

we compare the four graphs so derived against two

graphs that rank these test suites by mutation cover-

age, for two mutant generators; we do so without the

expectation that the graphs be identical, for the rea-

sons invoked above.

1.4 Relational Mathematics

We assume the reader is familiar with elementary

discrete mathematics (Brink et al., 1997; Schmidt,

2010); in this section, we present some definitions

and notation that we use throughout the paper. We

define sets by means of C-like variable declarations;

if we declare a set S by means of the following decla-

rations:

xType x; yType y;

then we mean S to be the cartesian product of the sets

of values represented by types xType and yType. El-

ements of S are denoted by lower case s, and have the

form s = 〈x,y〉. The cartesian components of an ele-

ment of S are usually decorated the same way as the

element, so we write for example s′ = 〈x′,y′〉.
A relation on set S is a subset of the Cartesian

product S × S. Special relations on S include the

identity relation (I = {(s,s)|s ∈ S}), the universal re-

lation (L = S × S) and the empty relation (φ = {}).

Operations on relations include the usual set theo-

retic operations of union, intersection and comple-

ment; they also include the domain of a relation,

denoted by dom(R) for relation R and defined by:

dom(R) = {s|∃s′ : (s,s′) ∈ R}. The product of two

relations R and R′ is denoted by R ◦ R′ (or RR′ for

short) and defined by RR′ = {(s,s′)|∃s′′ : (s,s′′) ∈
R ∧ (s′′,s′) ∈ R′}. Note that given a relation R, the

product of R by the universal relation L yields the rela-

tion RL = dom(R)× S; we use RL as a representation

of the domain of R in relational form. The inverse of

relation R is the relation denoted by R̂ and defined by

R̂ = {(s,s′)|(s′,s) ∈ R}. The restriction of relation R

to subset T is the relation denoted by T\R and defined

by T\R = {(s,s′)|s ∈ T ∧ (s,s′) ∈ R}.

A relation R is said to be reflexive if and only if

I ⊆ R; R is said to be symmetric if and only if R ⊆ R̂;

R is said to be antisymmetric if and only if R∩ R̂ ⊆ I;

R is said to be transitive if and only if RR ⊆ R; R is

said to be deterministic (or: to be a function) if and

only if R̂R ⊆ I. A relation R is said to be a partial

ordering if and only if it is reflexive, transitive and

antisymmetric; R is said to be a total ordering if and

only if it is a partial ordering and R∪ R̂ = L.

2 Correctness and Detector Sets

Absolute correctness is the property of a program to

be (partially or totally) correct with respect to a speci-

fication. Relative correctness is the property of a pro-

gram to be more (partially or totally) correct than an-

other with respect to a specification. The detector set

of a program with respect to a specification is the set

of inputs (tests) that expose the (partial or total) incor-

rectness of a program with respect to a specification.

In this section, we will show how (partial, total) detec-

tor sets enable us to define absolute and relative cor-

rectness in simple, uniform terms. In section 3 we see

how detector sets can also be used to define semantic

coverage in a way that meets all the requirements of

section 1.2.

2.1 Specification Refinement

In this paper, we represent specifications by relations

and programs by deterministic relations (functions).

An important concept in any programming calculus is

the property of refinement, which ranks specifications

according to the stringency of the requirements that

they capture.

Definition 1. Given two relations R and R′ on space

S, we say that R′ refines R (abbreviation: R′ ⊒ R, or

R ⊑ R′) if and only if: RL∩R′L∩ (R∪R′) = R.

Intuitive interpretation: this definition means that

R′ has a larger domain than R, and assigns fewer im-

ages than R to the elements of the domain of R. This

is formulated in the following Proposition.

Proposition 1. Given two relations R and R′ on space

S. If R′ refines R then RL ⊆ R′L and R′∩RL ⊆ R.

Proof. Proof of RL ⊆ R′L. We compute RL:

RL

= {by hypothesis}
(RL∩R′L∩ (R∪R′))L

= {the domain of a pre-restriction}
RL∩R′L∩ (R∪R′)L

= {the domain of a union, associativity}
(RL∩R′L)∩ (RL∪R′L)

= {set theory}
RL∩R′L.

From RL=RL∩R′L we infer, by set theory, RL⊆R′L.
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Figure 1: R′ refines R: R′ ⊒ R, R ⊑ R′.

Proof of R′∩RL ⊆ R. We compute R′∩RL.

RL∩R′

⊆ {set theory}
RL∩ (R∪R′)

= {since RL ⊆ R′L}
RL∩R′L∩ (R∪R′)

= {by hypothesis}
R. qed

This proposition shows that our definition of re-

finement is similar (modulo its relational formula-

tion) to traditional definitions of refinement which

equate refinement with having a weaker precondition

(RL⊆R′L) and a stronger postcondition (RL∩R′ ⊆ R)

(Hehner, 1992; Morgan, 1998; Gries, 1981; Dijkstra,

1976). See Figure 1.

2.2 Program Semantics

The semantics of a program can be modeled by a het-

erogeneous function from some input space to some

output space, or by a homogeneous function from ini-

tial states to final states on the same space. For the

sake of simplicity, and with little loss of generality, we

choose the latter model. We consider a program P on

space S and we let s be an element of S; execution of

P on initial state s may terminate after a finite number

of steps in some final state s′ when the exit statement

of the program is reached; we then say that execution

of P on s converges. Alternatively, execution of P on

s may fail to converge, for any number of reasons: it

enters an infinite loop; it adresses an array out of its

bounds; it references a nil pointer; it causes an arith-

metic overflow or underflow; it attempts an illegal op-

eration such division by zero, log() of a non-positive

number, square root of a negative number, etc.; we

then say that execution of P on s diverges.

Given a program P on space S, the function of pro-

gram P (which, by abuse of notation, we also denote

by P) is the set of pairs of states (s,s′) such that if ex-

ecution of program P starts in state s, it converges and

returns the final state s′. As a consequence of this def-

inition, the domain of P is the set of states such that

execution of P on s converges.
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Figure 2: Total Correctness
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Figure 3: Partial Correctness

2.3 Absolute Correctness

A specification on space S is a binary relation on S; it

contains all the pairs of states (s,s′) that the specifier

considers correct. The correctness of a program P on

space S can be determined with respect to a specifica-

tion R on S according to the following definition.

Definition 2. Given a program P on state S and a

specification R on S, we say thet P is (totally) correct

with respect to R if and only if P refines R. We say that

P is partially correct with respect to R if and only if P

refines R∩PL.

Figures 2 and 3 illustrate the properties of total

and partial correctness; to be totally correct with re-

spect to specification R, a program must obey the

specification for all elements of dom(R), whereas a

partially correct program is required to obey the spec-

ification only where it converges.

The following proposition gives set theoretic char-

acterizations of total correctness and partial correct-

ness.

Proposition 2. Given a program P on space S and a

specification R on S, program P is totally correct with

respect to R if and only if dom(R) = dom(R∩P); and

program P is partially correct with respect to R if and

only if dom(R)∩dom(P) = dom(R∩P).

Proof. The first proposition is due to Mills et al

(Mills et al., 1986). To prove the second proposi-

tion, consider that the definition of partial correct-

ness with respect to R is equivalent to total correct-

ness with respect to R′ = R∩PL. Then, we find that

dom(R∩PL) = dom(R)∩dom(P), and dom(R∩PL∩
P) = dom(R∩P). qed

We use this Proposition to briefly show that our

formula of total and partial correctness is equiv-

alent to traditional definitions of these properties

(Hoare, 1969; Manna, 1974; Gries, 1981; Dijkstra,



1976). The formula of total correctness is: dom(R) =
dom(R∩P); since dom(R∩P) ⊆ dom(R) is a tautol-

ogy, the equation of total correctness is equivalent to:

dom(R)⊆ dom(R∩P)
⇔ {set theory}

∀s : s ∈ dom(R)⇒ s ∈ dom(R∩P)
⇔ {interpreting the right hand clause}

∀s : s ∈ dom(R)⇒∃s′ : (s,s′) ∈ (R∩P)
⇔ {definition of the domain}

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ ∃s′ : (s,s′) ∈
(R∩P)
⇔ {since P is deterministic}

∀s : s ∈ dom(R)⇒ s ∈ dom(P)∧ (s,P(s)) ∈ R.

We interpret this as: for any initial state s that satis-

fies the precondition (s ∈ dom(R)), program P con-

verges (s ∈ dom(P)) and returns a final state P(s) that

satisfies the postcondition ((s,P(s)) ∈ R); this is ex-

actly the definition of total correctness as it is known

in (Manna, 1974; Gries, 1981; Dijkstra, 1976).

A similar agument will likewise show that our

formula for partial correctness (dom(R)∩ dom(P) =
dom(R∩P)) is equivalent to traditional definitions of

partial correctness (Hoare, 1969; Manna, 1974; Gries,

1981; Dijkstra, 1976).

The definitions in this section give us an oppor-

tunity to distinguish, once again, between testing a

program for partial correctness and testing it for to-

tal correctness. The most critical step of software

testing is the derivation of test data; this consists of

defining a finite (and small) subset T of an infinite

(or prohibitively large) set of possible tests τ. For

total correctness of program P with respect to spec-

ification R, the set we are trying to approximate is

τ = dom(R); for partial correctness that set of τ =
dom(R)∩dom(P).

2.4 Detector Sets

Now that we know how to characterize correctness,

we resolve to define sets of initial states that expose

the incorrectness of a program with respect to a spec-

ification. The conditions of total and partial correct-

ness are, respectively:

dom(R) = dom(R∩P),

dom(R)∩dom(P) = dom(R∩P).

Since by set theory the left hand side of these equa-

tions is a superset of the right hand side, what pre-

cludes equality are elements of the left hand side that

are outside the right hand side. Whence the following

definition, due to (Mili, 2021).

Definition 3. Given a program P on space S and a

specification R on S:

Figure 4: Detector Set of Pprogram P with Respect to Spec-
ification R for Total Correctness

• The detector set for total correctness of program

P with respect to R is denoted by ΘT (R,P) and

defined by:

ΘT (R,P) = dom(R)\ dom(R∩P).

• The detector set for partial correctness of program

P with respect to R is denoted by ΘP(R,P) and

defined by:

ΘP(R,P) = (dom(R)∩dom(P))\ dom(R∩P).

This definition generalizes the concept of detec-

tor set introduced in (Shin et al., 2018) by taking

into consideration the definition of correctness and the

specification against which correctness is tested. See

Figures 4 and 5. Since total correctness is a stronger

property than partial correctness, it is a harder prop-

erty to prove, hence an easier property to disprove;

this is illustrated by Figures 4 and 5, where we can

see that the detector set of total correctness is a su-

perset of the detector set of partial correctness (of-

fering more opportunity to disprove total correctness

than partial correctness). When we want to refer to

a detector set without specifying a particular standard

of correctness (partial, total), we simply say detector

set, and we use the notation Θ(R,P).
Given that detector sets are intended to expose in-

correctness, they are empty whenever there is no in-

correctness to expose; this is formualetd in the fol-

lowing proposition.

Proposition 3. Given a specification R on space S

and a program P on S.

• Program P is totally correct with respect to spec-

ification R if and only if ΘT (R,P) = /0.

• Program P is partially correct with respect to

specification R if and only if ΘP(R,P) = /0.

Proof. For total correctness. Necessity is trivial, per

Proposition 2.



Figure 5: Detector Set of Pprogram P with Respect to Spec-
ification R for Partial Correctness

Proof of Sufficiency: From dom(R) \ dom(R ∩
P) = /0 we infer dom(R) ⊆ dom(R∩ P); the inverse

inclusion is a relational tautology, hence dom(R) =
dom(R ∩ P), whence, by Proposition 2, P is totally

correct with respect to R.

For partial correctness. Necessity is trivial, per

Proposition 2.

Proof of Sufficiency: From (dom(R)∩ dom(P)) \
dom(R ∩ P) = /0 we infer (dom(R) ∩ dom(P)) ⊆
dom(R ∩ P); the inverse inclusion is a relational

tautology, hence dom(R) ∩ dom(P) = dom(R ∩ P),
whence, by Proposition 2, P is partially correct with

respect to R. qed

2.5 Relative Correctness

Whereas absolute correctness is the property of a pro-

gram to be (totally or partially) correct with respect to

a specification, relative correctness is the property of a

program to be more-correct than another with respect

to a specification. It is natural to define relative cor-

rectness by means of detector sets: a program grows

more and more (totally or partially) correct as its (total

or partial) detector set grows smaller (in the sense of

inclusion), culminating in absolute correctness when

its detector set is empty. But relative total correctness

has already been defined, in (Mili et al., 2014; Di-

allo et al., 2015a); before we redefine it using a new

formula, we ensure that the original formula is equiv-

alent to the detector set-based formula we envision in

this paper.

Proposition 4. Given a program P and a specifica-

tion R, the following two conditions are equivalent:

f 1 : dom(R∩P)⊆ dom(R∩P′).
f 2 : ΘT (R,P

′)⊆ ΘT (R,P).

Proof. To prove that f 1 logically implies f 2, it suf-

fices to apply the complement on both sides of f 1,

inverting the inequality, then taking the intersection

with dom(R) on both sides.

To prove that f 2 logically implies f 1, we replace

ΘT () by its formula:

dom(R)\ dom(R∩P′)⊆ dom(R)\ dom(R∩P).
We rewrite both sides of the inequality using intersec-

tion and complement:

dom(R)∩dom(R∩P′)⊆ dom(R)∩dom(R∩P).
We take the complement on both sides and invert the

inequality:

dom(R)∪dom(R∩P)⊆ dom(R)∪dom(R∩P′).
Taking the intersection with dom(R) on both sides, we

find, after distribution and cancellation:

dom(R∩P)∩dom(R)⊆ dom(R∩P′)∩dom(R).
Since dom(R) is a superset of dom(R ∩ P) and

dom(R∩P′), this can be simplified as:

dom(R∩P)⊆ dom(R∩P′). qed

With the assurance that the new definition of rela-

tive total correctness is equivalent to the original def-

inition (Mili et al., 2014; Diallo et al., 2015b), we

write.

Definition 4. We consider a specification R on space

S and two programs P and P′ on S.

• We say that P′ is more-totally-correct than P with

respect to R if and only if:

ΘT (R,P
′)⊆ ΘT (R,P).

• We say that P′ is more-partially-correct than P

with respect to R if and only if:

ΘP(R,P
′)⊆ ΘP(R,P).

Figure 6 illustrates relative total correctness by

showing a specification (R) and two sets of programs:

Q′ is more-correct than Q with respect to R by virtue

of imitating the correct behavior of Q; P′ is more-

correct than P with respect to R by virtue of a differ-

ent correct behavior. Relative total correctness cul-

minates in absolute total correctness in the follow-

ing sense: a totally correct program is more-totally-

correct than any candidate program. Figure 7 illus-

trates relative partial correctness by showing a spec-

ification (R) and two sets of programs: Q′ is more-

partially-correct than Q because it is more totally cor-

rect than Q; by contrast, P′ is more-partially-correct

than P by virtue of diverging more often (from the

standpoint of partial correctness, a program that di-

verges evades accountability, and is considered par-

tially correct).

Table 1 summarizes and organizes the definitions

of correctness to help contrast them. Note the follow-

ing relation between the detector sets of a program P

with respect to a specification R:

ΘP(R,P) = dom(P)∩ΘT (R,P).



Partial
Correctness

Total
Correctness

Absolute Correctness
P absolutely correct iff: ΘP(R,P) = /0 ΘT (R,P) = /0

Relative Correctness

P′ more-correct than P iff:

ΘP(R,P
′)

⊆ ΘP(R,P)

ΘT (R,P
′)

⊆ ΘT (R,P)

Table 1: Definitions of Correctness by Means of Detector
Sets

From this simple equation, we can readily infer two

properties about absolute correctness and relative cor-

rectness:

• Absolute Correctness. If a program P is totally

correct with respect to specification R, then it is

necessarily partially correct with respect to R.

• Relative Correctness. A program P′ can be more-

partially-correct than a program P either by be-

ing more-totally-correct (hence reducing the term

ΘT (R,P)) or by diverging more widely (hence re-

ducing the term dom(P)), or both.

To illustrate the partial ordering properties of rela-

tive total correctness, we consider the following spec-

ification on space S of integers, defined by

R = {(s,s′)|1 ≤ s ≤ 3∧ s′ = s3 + 3}.

We consider twelve candidate programs, listed in Ta-

ble 2. Figure 8 shows how these candidate programs

are ordered by relative total correctness; this ordering

stems readily from the inclusion relations between the

detector sets of the candidate programs with respect

to R; the detector sets are given in Table 3. The green

oval shows those candidates that are absolutely cor-

rect, and the orange oval shows candidate programs

that are incorrect; the red oval shows the candidate

programs that are least correct (they violate specifica-

tion R for every initial state in the domain of R). This

example is clearly artificial, but we use it for illustra-

tion. Note that all twelve programs in this example

converge for all initial states in S, hence dom(Pi) = S

for all Pi. Consequently, the detector sets of these pro-

grams for total correctness are identical to their detec-

tor sets for partial correctness; hence their ordering by

relative partial correctness is identical to their order-

ing by relative total correctness.

3 Semantic Coverage

The effectiveness of an artifact is defined in reference

to a specific purpose of the artifact, and ought to re-

flect to what extent the artifact fulfills its purpose.

Hence the first question we must consider as we study

the effectiveness of a test suite is: what is the purpose

of a test suite?

We consider a program P on space S and a specifi-

cation R on S, and we let T be a subset of S. We argue

that the purpose of test suite T is to prove or disprove

the correctness of P with respect to R: T ought to be

sufficiently thorough that, if P runs successfyly on T ,

we should be able to infer that P is correct with re-

spect to R; equivalently, if P is incorrect with respect

to R, then testing it on T ought to expose the incor-

rectness of P (i.e. testing P on T ought to fail for at

least one element t of T ). Since the detector set of a

program includes all the initial states on which execu-

tion of P fails, the effectiveness of a test suite T can

be measured by the extent to which T encompasses all

the elements of Θ(R,P). What precludes a test suite

T from being a superset of Θ(R,P) are the elements

of Θ(R,P) that are outside T , i.e. the set

Θ(R,P)∩T .

The smaller this set, the higher the effectiveness of T ;

if we want a measure of effectiveness that increases,

rather than decreases, with the effectiveness of T , we

take the complement of this set; whence the following

definition.

Definition 5. We consider a program P on space S

and a specification R on S, and we let T be a subset

of S.

• The semantic coverage of test suite T for the total

correctness of program P with respect to specifi-

cation R is denoted by ΓTOT
[R,P](T ) and defined by:

ΓTOT
[R,P](T ) = T ∪ΘT (R,P).

• The semantic coverage of test suite T for the par-

tial correctness of program P with respect to spec-

ification R is denoted by ΓPAR
[R,P](T ) and defined by:

ΓPAR
[R,P](T ) = T ∪ΘP(R,P).

See Figure 9. If we want to talk about semantic

coverage without specifying the standard of correct-

ness, we use the notation Γ[R,P](T ) defined by:

Γ[R,P](T ) = T ∪Θ(R,P).

4 Analytical Validation

In this section we revisit the requirements put forth

in section 1.2 and prove that the formula of seman-

tic coverage proposed above does satisfy all these re-

quirements.
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Figure 8: Ordering Candidate Programs by Relative Total
(and Partial) Correctness with Respect to R

4.1 Rq1: Monotonicity with Respect to

the Test Suite

Definition 5 clearly provides that the semantic cover-

age of a test suite T is monotonic with respect to T .

Note that in practice we are also interested in mini-

mizing the size of T , but that is an efficiency concern,

not an effectiveness concern.

4.2 Rq2: Monotonicity with Respect to

Relative Correctness

The effectiveness of a tes suite increases as the pro-

gram under test grows more (totally or partially) cor-

rect.

Proposition 5. Given a specification R on space S

and two programs P and P′ on S, and a subset T of S.

If P′ is more-totally-correct than P with respect to R

then:

ΓTOT
[R,P′](T )⊇ ΓTOT

[R,P](T ).

Proof. By hypothesis, and according to Definition 4,

we have:

ΘT (R,P
′)⊆ ΘT (R,P).

By taking the complement on both sides, inverting the

inequality, and taking the union with T on both sides,

we obtain the result sought. qed

Proposition 6. Given a specification R on space S

and two programs P and P′ on S, and a subset T of S.

If P′ is more-partially-correct than P with respect to

R then:

ΓPAR
[R,P′](T )⊇ ΓPAR

[R,P](T ).

Proof. By hypothesis, and according to Definition 4,

we have:

ΘP(R,P
′)⊆ ΘP(R,P).

By taking the complement on both sides, inverting the

inequality, and taking the union with T on both sides,

we obtain the result sought. qed

4.3 Rq3: Monotonicity with Respect to

Refinement

A test suite T grows more effective as the specifica-

tion against which we are testing the program grows

less-refined; this is true whether we are testing for to-

tal correctness and for partial correctness, as shown in

the next two Propositions.

Proposition 7. Given a program P on space S and



p0: s=pow(s,3)+4; p4: s=pow(s,3)+s+1; p8: s=pow(s,3)+s*s-4*s+8;

p1: s=pow(s,3)+5; p5: s=pow(s,3)+s; p9: s=2*pow(s,3)-6*s*s+11*s-3;

p2: s=pow(s,3)+6; p6: s=pow(s,3)+s*s-5*s+9; p10:s=3*pow(s,3)-12*s*s+22*s-9;

p3: s=pow(s,3)+s+2; p7: s=pow(s,3)+s*s-3*s+5; p11:s=4*pow(s,3)-18*s*s+33*s-15;

Table 2: Candidate Programs for Specification R

p0 {1,2,3} p1 {1,2,3} p2 {1,2,3}
p3 {2,3} p4 {1,3} p5 {1,2}
p6 {1} p7 {3} p8 {2}
p9 {} p10 {} p11 {}

Table 3: Detector Sets of Candidate Programs for Total (and
Partial) Correctness

two specifications R and R′ on S, and a subset T of S.

If R′ refines R then:

ΓTOT
[R′

,P](T )⊆ ΓTOT
[R,P](T ).

Proof. It suffices to prove ΘT (R
′
,P)⊇ ΘT (R,P), i.e.:

dom(R)\ dom(R∩P)⊆ dom(R′)\ dom(R′∩P).
Since dom(R) ⊆ dom(R′) (by hypothesis R′ ⊒ R), it

suffices to prove:

dom(R)\ dom(R∩P)⊆ dom(R)\ dom(R′∩P).
We rewrite \ using intersection and complement:

dom(R)∩dom(R∩P)⊆ dom(R)∩dom(R′∩P).
We complement both sides, invert the inequality:

dom(R)∪dom(R′∩P)⊆ dom(R)∪dom(R∩P).
Taking the intersection with dom(R) on both size and

simplifying, we get:

dom(R)∩dom(R′∩P)⊆ dom(R)∩dom(R∩P).
Let s be an element of dom(R)∩ dom(R′ ∩P); then

(s,P(s)) is by definition an element of RL∩R′; by the

second clause of Proposition 1, (s,P(s)) is an element

of R; since it is also by construction an element of P,

it is an element of (R∩P). Whence,

ΘT (R,P)⊆ ΘT (R
′
,P).

By complementing both sides of the inequation, in-

verting it, then taking the union with T on both sides,

we find:

ΓTOT
[R′

,P](T )⊆ ΓTOT
[R,P](T ). qed

Proposition 8. Given a program P on space S and

two specifications R and R′ on S, and a subset T of S.

If R′ refines R then:

ΓPAR
[R′

,P](T )⊆ ΓPAR
[R,P](T ).

Proof. In the proof of the previous proposition, we

have found that if R′ refines R, then

ΘT (R,P)⊆ ΘT (R
′
,P).

By taking the intersection with dom(P) on both sires,

we find

ΘP(R,P)⊆ ΘP(R
′
,P).

By complementing both sides of the inequation, in-

verting it, then taking the union with T on both sides,

we find:

Figure 9: Semantic Coverage of Test T for Program P with
respect to R (shades of green)

ΓPAR
[R′

,P](T )⊆ ΓPAR
[R,P](T ). qed

4.4 Rq4: Monotonicity with Respect to

the Standard of Correctness

A test suite T is more effective for testing partial cor-

rectness than for testing total correctness.

Proposition 9. Given a program P on space S, a

specification R on S, and test suite T (subset of S),

the semantic coverage of T for partial correctness of

P with respect to R is greater than or equal to the

semantic coverage for total correctness of P with re-

spect to R.

Proof. By definition of detector sets, we have:

ΘP(R,P)⊆ ΘT (R,P).
By complementing both sides and inverting the in-

equality, we find:

ΘP(R,P)⊇ ΘT (R,P).
By taking the union with T on both sides, we find the

result sought. qed

5 Illustration

In this section we report on an experiment in which

we evaluate the semantic coverage of a set of test

suites; the sole purpose of this section is to illustrate

the derivation of semantic coverage on a concrete ex-



ample. We do compare semantic coverage against

mutation coverage, but the intent of this comparison

is not to validate semantic coverage any more than it

is to validate mutation coverage. The sole purpose of

this comparison is to satisfy our curiosity about how

these two criteria rank sample test suites; because mu-

tation coverage and semantic coverage depend on dif-

ferent artifacts (the program and mutant generator for

the former, the program, specification, and standard

of correctness for the latter) we have no expectation

that they be the same.

We consider the Java benchmark program of jTer-

minal, an open-source software product routinely

used in mutation testing experiments (Parsai and De-

meyer, 2017). We apply the mutant generation tool

LittleDarwin in conjunction with a test generation and

deployment class that includes 35 test cases (Parsai

and Demeyer, 2017); we augment the benchmark test

suite with two additional tests, intended to trip the

base program jTerminal, by causing it to diverge, so

as to distinguish between partial correctness and total

correctness; we designate this test suite by T . Appli-

cation of LittleDarwin to jTerminal yields 94 mutants,

numbered m1 to m94; the test of these mutants against

the original using the selected test suite kills 48 mu-

tants. Some of these mutants are equivalent to each

other, i.e. they produce the same output for all 37 el-

ements of T ; when we partition these 48 mutants by

equivalence, we find 31 equivalence classes, and we

select a mutant from each class; we let µ be this set.

Orthogonally, we consider set T and we select twenty

subsets thereof, derived as follows:

• T1, T2, T3, T4, T5: Five distinct test suites ob-

tained from T by removing 5 elements at random.

• T6, T7, T8, T9, T10: Five distinct test suites ob-

tained from T by removing 10 elements at ran-

dom.

• T11, T12, T13, T14, T15: Five distinct test suites

obtained from T by removing 15 elements at ran-

dom.

• T16, T17, T18, T19, T20: Five distinct test suites

obtained from T by removing one element at ran-

dom.

Whereas mutation coverage is usually quantified by

the mutation score (the fraction of killed mutants) (Li

et al., 2017), in this paper we represent it by mutation

tally, i.e. the set of killed mutants; we compare test

suites by means of inclusion relations between their

mutation tallies; like semantic coverage, this defines a

partial ordering. We use two mutant generators, hence

we get two ordering relations between test suites. To

compute the semantic coverage of these test suites, we

consider two standards of correctness (partial, total)

and two specifications: We choose (the functions of)

two mutants, M25 and M50, as specifications.

Hence we get six graphs on nodes T 1...T20, rep-

resenting six ordering relations of test suite effective-

ness. Due to space limitations, we show only two of

these graphs, given in Figure 10 for the mutation tally

and in Figure 11 for the semantic coverage of total

correctness with respect to M50; the six graphs are

given in the artifact associated with this paper, along

with the data used to derive them. Table 4 shows the

similarity between the six graphs, where the similar-

ity between any two graphs is computed as the ratio of

the number of their common arcs over the total num-

ber of arcs. All the data used to build these graphs and

analyze them is available online, but cannot be shared

explicitly due to the requirement of anonymity.

6 Conclusion

6.1 Summary

In this paper, we define detector sets for partial cor-

rectness and total correctness of a program with re-

spetc to a specification, and we use them to define ab-

solute (partial and total) correctness as well as relative

(partial and total) correctness. Also, we use detector

sets to define the semantic coverage of a test suite, a

measure of effectiveness which reflects the extent to

which a test suite is able to expose the failure of an

incorrect program or, equivalently, the level of confi-

dence it gives us in the correctness of a correct pro-

gram. We illustrate the derivation of semantic cover-

age of sample test suites on a benchmark example.

6.2 Assessment

We do not validate our measure of effectiveness em-

pirically, as we do not know what ground truth to

validate it against; but we prove that it has a num-

ber of important properties, such as: monotonicity

with respect to the standard of correctness; mono-

tonicity with respect to the refinement of the specifi-

cation against which the program is tested; and mono-

tonicity with respect to the relative correctness of the

program.

Other attributes of semantic coverage include that

it is based on failures rather than faults, hence is

defined formally using objectively observable effects

rather than hypothesized causes. Also, semantic cov-

erage defines a partial ordering between test suites, to

reflect the fact that test suite effectiveness is itself a

partially ordered attribute.
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Mut. Tally,2 0.43 1.00 0.67 0.70 0.67 0.53

ΓPAR
[M25,P](T ) 0.34 0.67 1.00 0.66 1.0 0.46

ΓPAR
[M50,P](T ) 0.35 0.70 0.66 1.00 0.66 0.62

ΓTOT
[M25,P](T ) 0.34 0.67 1.00 0.66 1.00 0.46

ΓTOT
[M50,P]

(T ) 0.50 0.53 0.46 0.62 0.46 1.00

Table 4: Graph Similarity of Semantic Coverage and Mutation Coverage



6.3 Threats to Validity

The main difficulty of the proposed coverage metric is

that it assumes the availability of a specification, and

that its derivation requires a detailed semantic analy-

sis of the program. Yet as a formal measure of test

suite effectiveness, semantic coverage can be used for

reasoning analytically about test suites, or for com-

paring test suites even when their semantic coverage

cannot be computed; for example, we may be able to

compare Γ[R,P](T ) and Γ[R,P](T
′) for inclusion with-

out necessarily computing them, but by analyzing T ,

T ′, dom(P), dom(R), and dom(R∩P).

6.4 Related Work

Coverage metrics of test suites have been the focus

of much reserch over the years, and it is impossi-

ble to do justice to all the relevant work in this area

(Lyu et al., 1994; Lingampally et al., 2007; Hem-

mati, 2015; Gligoric et al., 2015; Andrews et al.,

2006; Someoliayi et al., 2019; Ball, 2004); as a first

approximation, it is possible to distinguish between

code coverage, which focuses on measuring the ex-

tent to which a test suite exercises various features of

the code, and specification coverage, which focuses

on measuring the extent to which a test suite exercises

various clauses or use cases of the requirements speci-

fication. This can be tied to the orthogonal approaches

to test data generation, using, respectively, structural

criteria and functional criteria. Mutation coverage

falls somehow outside of this dichotomy, in that it

depends exclusively on the program, not its specifi-

cation, and that it operates by applying mutation op-

erators, wherever they are applicable, without regard

to syntactic coverage; as such, it has often been used

as a baseline for assessing the effectiveness of other

coverage metrics (Andrews et al., 2006; Inozemtseva

and Holmes, 2014). But mutation coverage also de-

pends on the mutant generator, and can give different

values for different generators.

Our work differs from these research efforts in a

number of ways: perhaps first and foremost, our cov-

erage semantic measure is not a number but a set; as

such, it is not totally ordered by numeric inequality,

but partially ordered by set inclusion. Second, seman-

tic coverage is not intrinsic to the program, but de-

pends also on the correctness standard used in testing,

and the specification with respect to which correct-

ness is judged. Third, semantic coverage is focused

on revealing failures rather than diagnosing faults, on

the grounds that failures are an objectively observ-

able attribute, but faults are hypothesized causes of

observed failures.

6.5 Research Prospects

We are exploring means to use the definition of se-

mantic coverage to derive a function that is indepen-

dent of the specification, and reflects the diversity of

the test suite. We are also considering to expand the

empirical study of semantic coverage by analyzing its

relationship to existing coverage metrics.
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