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This work articulates the development of a sophisticated machine-learning model for the prediction of
compressive strength in Carbon Fiber-Reinforced Polymer Confined-Concrete (CFRP-CC) specimens. Despite
extensive empirical studies conducted over the last three decades, prevailing predictive models predominantly
rooted in linear or nonlinear regression analyses are constrained by their dependency on limited data scopes.
Addressing this deficiency, our research delineates the formulation of an innovative Particle Swarm Optimiza-
tion- Categorical Boosting (PSO-CatBoost) algorithm, underpinned by an expansive database encompassing 916
experimental outcomes from 105 scholarly articles, spanning the period from 1991 to mid-2023. This innovative
approach effectively combines the strengths of Particle Swarm Optimization and the CatBoost algorithm. It
carefully evaluates various vital factors that affect the compressive strength of CFRP-CC. The uniqueness of our
approach is further accentuated through the application of SHapley Additive exPlanations (SHAP) and Permu-
tation Feature Importance (PFI) methodologies, thereby elucidating the relative importance of each contributory
feature. In an unprecedented comparative analysis, the PSO-CatBoost model is rigorously benchmarked against
six contemporary machine learning paradigms: CatBoost, XgBoost, AdaBoost, GBoost, Extra Trees, and Random
Forest. Furthermore, this model is assessed against six empirical models for further comparison. The model
exhibits superior predictive efficacy, evidenced by an exemplary coefficient of determination R-squared of
0.9847, surpassing the methodologies. This research introduces a new predictive model for CFRP-CC and rep-
resents a significant shift in concrete research, moving towards a more sophisticated, data-driven, and machine
learning-focused methodology. This work thus establishes a new benchmark in the predictive modeling realm for
CFRP-CC compressive strength, offering a robust and comprehensive analytical tool for both researchers and
practitioners in the field. Lastly, a graphical user interface was designed for modeling the compressive strength of
CFRP-CC to facilitate practical use.

1. Introduction compression. This hybrid use of FRP and concrete also enhances the

durability and service life of these elements [1-7]. The conventional

With the rising interest in using FRP in the construction sector, it has
become an attractive material to confine concrete columns. In the past
three decades, a significant amount of experimental and analytical
research has been carried out to comprehend the performance of FRP-CC
under compression. There is a general agreement that lateral confine-
ment of concrete columns, which can be FRP wraps for repair and
retrofit applications or FRP tubes in new construction, increases
ductility and strength by putting the element in the condition of triaxial
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concrete-filled steel tube (CFST) columns are susceptible to steel tube
corrosion [8] and delamination failure (steel tube possesses a higher
Poisson’s ratio than concrete subjected to compression) [9]. The hybrid
construction method, utilizing both FRP and concrete, effectively in-
tegrates the desirable characteristics of both materials. Concrete con-
tributes mass, stiffness, damping, and cost-effectiveness, while FRP
offers advantages such as rapid construction, lightweight, high strength,
and long-lasting durability (non-corrosive nature of FRP). FRP is
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particularly well-suited for encasing concrete columns due to their
orthotropic nature [10,11].

In the case of cylindrical concrete elements subjected to triaxial
compressive stresses, primary compressive stresses are applied equally
throughout the longitudinal axis of the specimen and lateral confining
pressure. When subjected to compression, confined concrete tends to
expand in the radial direction. The expansion of the uniaxially loaded
FRP jacket generates a reactively confining radial pressure at the
interface between the FRP and the concrete. Fig. 1 illustrates the stress
patterns resulting from the confining action of FRP on a circular concrete
element.

Eq. (1) defines a circular concrete specimen with a diameter of D and
confined in FRP wrap or tube with a nominal thickness of t; o; is
confining pressure, oy is hoop tensile stress of FRP, and o, is the
compressive stress [12].
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Numerous researchers have investigated using FRP as a confining
material for concrete compression members since the 1990s. These
studies are divided into two major categories: 1) experimental in-
vestigations to provide evidence on the successful use of this confine-
ment technique; and 2) analytical investigations to propose models for
predicting the compressive strength and strain of FRP-CC columns for
design purposes.

Fig. 2 shows that the initial portion of the stress-strain curve suggests
that the FRP confinement has not yet been activated. The term
"confining" refers to the activation of FRP confinement through the
gradual expansion of the confined concrete. A noticeable turning point
could distinguish the two distinct segments. The stress-strain curve of
FRP-confined concrete at the confining section may exhibit two primary
trends: hardening and softening. The differentiation between the two
trends lies in the level of confinement of FRP. The level of confinement
of CFRP has a substantial impact on the uniaxial compressive strength of
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Fig. 1. Schematic view of FRP-confined circular concrete specimen.
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Fig. 2. Stress-strain model of CFRP-confined concrete cylinders.

concrete cylinders. The confinement level of CFRP has the potential to
significantly enhance the strength of the element [13].

The behavior of FRP-CC under compression has been well studied
through experiments. Mirmiran and Shahawy [10] investigated the
behavior of concrete columns with FRP tubes to provide a model for
predicting column behavior. The experimental results in this study were
compared to the available models, and it was concluded that the models
generally overestimate the capacity of columns and lead to dangerous
designs. Pessiski et al. [14] studied the performance of FRP-CC columns
subjected to a monotonic concentric compressive load. Deformation and
load-bearing capacity were observed to be enhanced using an FRP jacket
as a confining material.

Several studies were conducted to develop analytical models for
predicting the compressive strength of FRP-CC columns. In very early
attempts, Samaan et al. [6] provided a model to determine the
stress-strain relationship for FRP-encased concrete columns, which is
based on the correlation between the hoop stiffness of FRP and the
dilatation of concrete. The predicted stress-strain curve by the model
agrees with the experiments. In another study, Lam and Teng [5] pro-
posed a model to predict the stress-strain response of FRP-CC, and some
critical concerns like the hoop strain of FRP material at rupture, suffi-
ciency of confinement, and effect of FRP stiffness on ultimate strain were
resolved in this study. Jian and Teng [15] provided a new model to
determine the stress-strain behavior of FRP-CC using a total of 48 data
points. In this study, the authors described how the critical factors in a
model can impact its precision. It was concluded that their model pro-
vides precise predictions, especially for concrete specimens that are
weakly confined. Toutanji [16] investigated the behavior of concrete
columns with externally bonded FRP wraps. It was observed that FRP
confinement could considerably improve ductility, load-bearing capac-
ity, and energy dissipation. The authors proposed a model that provides
a reasonable prediction of the stress-strain behavior of the columns.
Shahawy et al. [17] evaluated CFRP-wrapped concrete cylinders to
validate a proposed confinement model for concrete columns encased
with Glass FRP (GFRP) tubes. It was concluded that the model could be
used for both types of FRP, glass and carbon, and both applications: FRP
wrap for strengthening and FRP tube for new construction.

In recent times, machine learning (ML) methods have gained sig-
nificant recognition owing to advancements in computer software and
the strength of algorithms. A primary benefit of a data-driven ML model
is that it doesn’t require the user to understand a problem comprehen-
sively. With sufficient data and domain knowledge, an ML model can
assist users in predicting outcomes in a complex system [18]. Fig. 3
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Fig. 3. Prediction process with ML.

illustrates the complete process of creating a machine learning model,
from the initial measurement stage (conducting experiments) to the final
stage of making predictions.

Zhang et al. [19] investigated the use of Ensemble Learning (EL)
algorithms to predict the capacity of FRP-strengthened reinforced con-
crete beams. This study included four distinct ensemble learning (EL)
techniques, specifically random forest, adaptive boosting, gradient
boosting decision tree, and extreme gradient boosting. In order to
highlight their superiority, these models were compared against repre-
sentative empirical models as well as those based on single ML methods.
The EL-based models exhibited superior performance compared to both
the empirical models and the single ML-based models. Hence, the
EL-based models suggested in this study exhibit promise for utilization
in engineering applications.

Chen et al. [20] conducted a study to examine the application of
probabilistic ML approaches in predicting the performance of structures
and infrastructure. This study investigated the capabilities of a novel
method called natural gradient boosting (NGBoost) for generating
probabilistic predictions directly. This output is well-suited for reli-
ability and performance analysis frameworks. It also allows for the use
of self-learning algorithms and the optimum design of experiments and
field measurement programs in engineering applications. Two specific
problems in the field of structural engineering were examined to assess
the practicality of NGBoost: (1) predicting the strengths of squat shear
walls, and (2) classifying the seismic damage severity for conventional
bridges. The findings demonstrate that NGBoost achieves similar levels
of mean prediction accuracy as traditional ML algorithms while also
offering reliable estimations of prediction uncertainties.

Recently, an interest in using ML-based algorithms to predict the
compressive behavior of FRP-CC has been observed. For instance, Ber-
radia et al. [21] developed two prediction models, one using a common
form of regression and the other using an Artificial Neural Network
(ANN). The database employed in this study included a total of 364
experiments conducted on concrete compressive members. Some sta-
tistical indices were employed to carry out statistical analyses and
compare the two approaches. The statistical investigation revealed that
the ANN model is more efficient and accurate in predicting the strength
and strain of FRP-CC specimens strengthened with CFRP wrap. Eight
different models were proposed by Kaveh and Khavaninzadeh [22]
using a combination of four metaheuristic algorithms and two different
ANN approaches to predict the strength of FRP-CC columns. In this
study, 233 experimental results were obtained from the literature, with
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one portion used for the training set and the other for the test data set.
Several statistical indices, such as mean squared error, root mean
squared error, and the coefficient of determination, were utilized for
comparison purposes. The highest accuracy was obtained using a met-
aheuristic algorithm called enhanced colliding bodies optimization
(ECBO) and a neural network called Feed-Forward Backpropagation
(FFB). Li et al. [23] proposed a data-driven model based on an ML
approach to predict the load-carrying capacity of concrete columns
confined with GFRP. A dataset including 114 experimental results was
used to develop the model. The back propagation neural network al-
gorithm used in this study provides reasonable fits for training and test
data sets and a coefficient of variation of 14.22 %. A sensitivity analysis
revealed that the concrete strength and thickness of the FRP composite
are the most important parameters affecting the strength of the confined
section. Ilyas et al. [24] developed an ML-based model using the
multi-expression programming (MEP) algorithm to predict the
compressive strength of CFRP-CC. A total of 828 experimental data
points were employed to develop the model in this study. The proposed
model was compared with existing models in the literature and showed
that the ML-based model provided more accurate results.

Keshtegar et al. [25] proposed a hybrid regression and ML model to
predict the ultimate strength and strain of FRP-CC systems. The com-
bination of the response surface model (RSM) with support vector
regression (SVR) results in the creation of a new hybrid model called
RSM-SVR. The predictions generated by the proposed model were
compared to those made by six empirical models and two data-driven
models of RSM and SVR. The database used for comparison consisted
of 780 test results related to circular columns. The statistical analysis
demonstrates that the new RSM-SVR model provides more precise pre-
dictions for the compressive strength and related axial strain of FRP-CC
compared to existing models. The results indicate that both the
RSM-SVR and SVR models consistently anticipate the strength and strain
enhancement ratios for lateral confining ratios greater than 1, whereas
the other models demonstrate chaotic model errors. The proposed model
achieves excellent accuracy and reliable predictions by leveraging its
exceptional flexibility and soundness in capturing the impact of lateral
confining pressure due to the interaction between the concrete core and
FRP jacket, compared to the previous models.

The study conducted by Chen et al. [26] examined the utilization of
data-driven Bayesian probabilistic and ML prediction models, including
back-propagation ANN, multi-gene genetic programming, and support
vector machine. Initially, a thorough compilation of 471 test results on
the ultimate conditions of FRP-CC cylinders was conducted. Subse-
quently, a Bayesian parameter estimation technique was employed to
construct an updating procedure. This procedure aimed to assess the
essential parameters in the current models and subsequently enhance
the selected existing models. The database was utilized for generating
ML models as well. The proposed models have been verified to
demonstrate computational efficiency, transferability, and precision.
The results indicate that the suggested Bayesian posterior models,
back-propagation artificial neural network, multi-gene genetic pro-
gramming, and support vector machine models shown exceptional
predictive capability, with the support vector machine achieving the
best level of accuracy in predictions.

Developing a resilient ML model is widely considered a complex and
time-consuming endeavor. The process entails the careful selection of an
appropriate algorithm and the development of an efficient model
structure through the optimization of hyperparameters [27]. Several
algorithms, such as tree-based ML algorithms and deep neural networks,
possess multiple hyperparameters that substantially impact the accuracy
of predicted values by model [28]. Therefore, the precise adjustment of
hyperparameters using an optimization technique holds significant
importance. Metaheuristic algorithms, frequently derived from natural
phenomena, can comprehensively traverse the search domain while
efficiently converging upon a highly satisfactory outcome. These
methods can, within a computationally feasible time frame, ascertain
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solutions that are either optimal or proximate to optimality for complex
problems [29]. The Particle Swarm Optimization (PSO) [30] algorithm
is widely employed as a metaheuristic approach that has demonstrated
considerable efficacy in addressing various optimization problems.

In this study, an attempt has been made to propose a new ML model
based on Particle Swarm Optimization and the Categorical Boosting
algorithm (PSO-CatBoost) to predict the compressive strength of CFRP-
CC under axial compression using 916 experimental tests from the
literature.

Many researchers have conducted comprehensive analyses of
experimental data associated with circular concrete specimens, which is
the core focus of the current study. CFRP is commonly employed as a
composite material in civil engineering applications to repair or
strengthen reinforced concrete structural elements. Existing equations
for calculating the compressive strength of CFRP-confined circular
concrete columns have been developed using regression analysis on a
small database. Different optimum design equations have been proposed
by various researchers as possible substitutes. Nevertheless, these
models are based on limited datasets and rely on simplistic linear or
nonlinear regressions or algorithms, making them suitable only for
datasets with a narrow range. Numerous researchers in the field of
concrete confinement have made efforts to compile databases that serve
as essential validation tools for assessing the effectiveness of a model.
Therefore, developing a more accurate and robust prediction model that
can comprehensively capture the intricate behavior of CFRP-confined
circular concrete specimens is imperative. Numerous investigative
research projects have been conducted on concrete reinforced with FRP
jackets, focusing on creating dependable and precise numerical models
for predicting its behavior. However, the majority of these investigations
primarily sought to establish analytical models, which were often based
on a somewhat narrow scope of experimental findings. A significant
concern with these models is their inherent bias and their limited
application scope, as they are largely dependent on experimental data
derived from studies with varying types of specimens. Since these
analytical models are formulated from experimental data, their accuracy
is directly tied to the data quality used. To avoid bias in these models, it
is essential to utilize comprehensive databases that include specimens
with diverse characteristics. The current study has compiled a compre-
hensive dataset encompassing an extensive range of features. This
approach contrasts with other numerical and machine learning models,
which typically utilize a limited set of features for model development.
The gathered dataset enables a more equitable comparison with existing
numerical methods that incorporate a similar breadth of features.
Consequently, a fairer and more accurate comparison is facilitated,
enhancing the validity of the study’s findings. This methodology ad-
dresses the constraints observed in previous models, which were based
on a more restricted feature set, and offers a more expansive perspective
for the assessment of various modeling techniques.

Hence, the primary advancements and contributions of this paper
can be summarized as follows:

This study employed a comparatively extensive dataset on CFRP-CC
specimens, leading to more reliable predictions due to the overfitting
problem.

Although the CatBoost algorithm has demonstrated exceptional

performance in various ML tasks, more research is needed that

explicitly assesses its effectiveness in estimating the compressive
strength of CFRP-CC under axial compression.

CatBoost methods are rarely used in ML issues, although PSO is

increasingly used. Concerning prediction accuracy and computing

costs, this study evaluates the PSO-CatBoost model’s performance for
the CFRP-CC problem’s compressive strength.

e Six other ML techniques, including CatBoost, XgBoost, AdaBoost,
GBoost, Extra Trees, and Random Forest, are compared with the
proposed method.

e Six empirical models are compared with PSO-CatBoost.

L= 040017]‘;0(
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e PSO-CatBoost showed better results and higher accuracy than
different methods.

The rest of this paper is organized as follows: Section 2 introduces
existing models of compressive strength relevant to the subject. Section
3 showcases the detailed importance of this study and current compi-
lation of experimental data derived from published research focused on
the topic. The development of the PSO-CatBoost model is delineated in
Section 4. The model outcomes are discussed in Section 5, broken down
into five subsections: setting the performance measures, evaluating the
model’s performance, comparing with ML methods, performing an
analysis of feature significance, and providing a Graphical User Inter-
face. Finally, Section 6 provides the conclusion of the current study.

2. Existing compressive strength of FRP-CC models

This section presents a range of design models previously proposed
to determine the compressive strength of CFRP-CC. These models have
also been employed for comparison purposes in this study. The rationale
for selecting these six particular models is that they lack any parameters
that were not taken into account in the model proposed in this study.
The following section will present a statistical analysis regarding the
precision of these design models. It is important to mention that all
models presented in this study are expressed in the International System
of Units (S.I. units).

2.1. Mandal et al.’s model

The efficacy of FRP as a confining material for concrete compressive
members was investigated by Mandal et al. [31]. The unconfined
compressive strength of the concrete varies between 26 and 81 MPa. The
experimental component of the investigation involved two large-scale
concrete-filled FRP tubes and 59 plain and FRP-wrapped concrete cyl-
inders. The cylinders were encased with either a single layer of GFRP
sheet, two layers of GFRP sheet, or a single layer of CFRP sheet. The
specimens underwent axial compression testing until they reached the
point of failure. The results demonstrated that a considerable improve-
ment in strength could be achieved in low- to medium-strength concrete;
strain hardening was also observed in the bilinear strain-stress response,
but the strength and ductility improvements for high-strength concrete
were insignificant. A model was also proposed considering five param-
eters: compressive strength of unconfined concrete (f’c,), nominal
thickness of FRP reinforcement (t7), effective modulus of elasticity of
FRP in hoop direction (E), diameter of compression member (D), and
hoop tensile strength of FRP composite (f,). Eq. (2) shows the proposed
model for predicting the peak strength of FRP-confined concrete using
analysis of test data (normalized).

Ey f, Ey f,
D2f,, D2f,,

The model effectively reflected the reduction in the effectiveness of
the confinement provided by FRP as the concrete strength increased.

2
) + 040232]’;0( ) +1, (2

2.2. Karbhari and Gao’s model

Karbhari et al. [32] proposed a model to predict the strength and
strain in FRP-CC to facilitate the design of these elements. The key pa-
rameters used in the model were unconfined concrete compressive
strength (f’c,), nominal thickness of FRP composite (t7), diameter of
circular concrete (D), and tensile strength of FRP composite (fp). The
predicted strength and strain by the model are in good agreement with
the experimental data. Eq. (3) presents the proposed model for fore-
casting the ultimate strength of FRP-confined concrete.
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The proposed equation for ultimate strength has a strong correlation
with the experimental results in their study.

2.3. Lillistone and Jolly’s model

To investigate the impact of FRP confinement on the strength and
ductility of the concrete column, Lillistone and Jolly [33] tested a total
of 121 columns. The confinement that the FRP provided to the core of
the concrete enhanced the strength and ductility of the section. Un-
confined concrete compressive strength (f’;,), nominal thickness of FRP
composite (ty), tensile modulus of elasticity of FRP (Ej), and diameter of
circular concrete column (D) were the five parameters used in this study
to develop the analytical model.

, , . (2E
fio = 0.83f, +0.05f, (F’tf) @

2.4. Reza et al.’s model

This model [34] introduces a proposed strength model aimed at
determining the maximum axial strength of FRP-confined concrete
compression members. Initially, an assessment of existing strength
models for evaluating the confining effect on FRP-wrapped concrete
specimens was conducted, followed by the creation of an extensive
database comprising 520 confined concrete specimens, detailing various
geometric and material characteristics. Subsequently, the following
model was proposed based on regression analysis:

0.75
Fof 43 (fL) ®)

2.5. Realfonzo and Napoli’s model

In this study [35], a comprehensive database is introduced, con-
taining data from compression tests conducted on more than 450 con-
crete cylinders that were externally reinforced with F materials.
Initially, the gathered data was used to carry out a statistical assessment
of the FRP strain efficiency factor, with a special focus on examining the
impact of the fiber type and the strength of the unconfined concrete.
Subsequently, new formulas for predicting the compressive strength of
FRP-confined concrete were formulated based on best-fit analyses as
follows:

, : f 0.86
foe =f., +3.49f., O—l> 6)

2.6. Vintzileou and Panagiotidou’s model

This research [36] investigates the confinement of concrete using
FRP materials, conducting a thorough examination of experimental
studies and predictive models for the mechanical behavior of
FRP-confined concrete. An empirical model that is suitable for both
circular and prismatic elements is introduced, utilizing the principles
outlined for confining concrete with hoops or spirals. The model is
defined as:

-fi‘c :f;a + 2'8]:() <j‘/f7l) (7)

In Egs. (5-7), the parameters include the unconfined concrete
compressive strength (f’c,), ultimate compressive strength of the un-
confined concrete (f’c.), ultimate compressive strength of the confined
concrete and ultimate confining pressure (f}).

The analytical model introduced by Mandal et al. [31] omits
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consideration of the element’s height. Similarly, the framework posited
by Karbhari and Gao [32], Reza et al. [34], Realfonzo and Napoli [35]
and Vintzileou and Panagiotidou [36] lack an assessment of both the
element’s height and the elastic modulus of the FRP. Furthermore, the
model developed by Lillistone and Jolly [33] did not incorporate the
element’s height and the FRP’s tensile strength. In contrast, the model
proposed in the present study integrates the effects of these parameters.

3. Construction of database

The experimental database [37] comprises 916 test data points from
105 studies on FRP-CC specimens. Several parameters related to con-
crete and FRP geometrical and mechanical characteristics were identi-
fied in the literature. Among all the features, seven critical parameters of
the data points were used to develop the model: diameter of compres-
sion member (D), height of compression member (H), compressive
strength of unconfined concrete (f’c,), FRP reinforcement ratio (py),
tensile modulus of elasticity (Ep), ultimate tensile strength of FRP (fp,
nominal thickness of FRP reinforcement (t), number of FRP layers
(Layers). In this database, the target value is the compressive strength of
confined concrete (f’..). These parameters are summarized in Table 1. It
should be noted that the fiber orientation is not considered as a
parameter in the database, later in the model and comparisons.

Normalization is an essential preprocessing step in the field of ma-
chine learning because it effectively addresses the issue of scale sensi-
tivity that many algorithms encounter. This is particularly relevant for
algorithms that rely on distance measures or gradient descent methods.
The utilization of symmetry in the loss surface facilitates expedited
model training, leading to accelerated convergence of the optimizer.
Furthermore, it enhances comprehension of the significance of features
and guarantees numerical stability in mathematical calculations. All
input and output variables (x;) in the database are normalized. The
formula to normalize data to a range between -1 and 1 is as follows:

X; — min (x)

Max(x) — Min(x)| ! ®)

Xinormal = 2 X

where x; is the original value, Min and Max is the minimum and
maximum value in each feature in the dataset. In this formula, (x; —
min (x)) / (Max(x) — Min(x)) normalizes x; into a range of [0,1], and 2
x (x; —0.5) maps the range from [0,1] to [-1,1]. By subtracting 0.5 from
each normalized value, you center the range around 0, making it [-0.5,
0.5]. Then, multiplying by 2 scales the range to [-1, 1]. This results in the
new normalized dataset having values between -1 and 1.

The database only includes studies on circular concrete specimens
without any internal or external reinforcement other than the FRP wraps
or FRP tubes. The height-to-diameter ratio of specimen is less than or
equal 5, the specimens were subjected to a monotonic concentric
compressive load, and the failure mode in all specimens was FRP
rupture. The following terms are used in the database tables:

M CFRP: Carbon fiber reinforced polymer

Table 1
Geometric and material properties of FRP-confined specimens.
Group Notation  Description Unit
Specimen D Diameter of compression member mm
geometry H Height of compression member mm
Concrete feo Compressive strength of unconfined MPa
concrete
FRP properties Pr FRP reinforcement ratio -
Ef Tensile modulus of elasticity of FRP GPa
fr Ultimate tensile strength of FRP MPa
t Nominal thickness of FRP reinforcement mm
Layers Number of FRP layers -
Result fec Compressive strength of confined MPa
concrete
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W HM CFRP: High modulus CFRP
Il UHM CFRP: Ultra-high modulus CFRP
B C-Type: Concrete Type (L: low, N: Normal, H: High)

Limiting the database with these criteria helps to reduce the in-
consistencies in the predicted values by the model; for instance,
restricting the height-to-diameter ratio reduces the discrepancies in the
type of failure due to the slenderness of the specimen. The concrete used
in these experiments covers a wide range of concrete strengths, from 6.2
MPa, low-strength concrete, to 169.7 MPa, high-strength concrete. In
these studies, different CFRP composites were used with a modulus of
elasticity ranging from 16 GPa to 640 GPa, ultimate tensile strength
from 174 MPa to 4900 MPa, a reinforcement ratio from 0.001 to 0.082,
and a total nominal thickness of 0.09 mm to 5.84 mm. The compressive
strength of confined concrete in all these tests ranged from 12.8 MPa to
303.6 MPa. The minimum/maximum, mean value, and standard devi-
ation for all seven features are represented in Table 2.

There are a total of 800 data points on CFRP-wrapped concrete
specimens and 116 on CFRP-filled concrete tubes. There are a total of 23
data points with a compressive strength of unconfined concrete lower
than 15 MPa (L), 687 data points with a strength between 15 MPa and 55
MPa (N), and 206 data points with a strength above 55 MPa (H) (clas-
sification according to ACI 318-19 [38]). There is a total of 825 data
points with the CFRP modulus of elasticity ranging lower than 340 GPa
(CFRP), 73 data points with strength between 340 GPa and 520 GPa
(HM_CFRP), and 18 data points with strength above 520 GPa
(UHM_CFRP) (classification according to ACI 440.2R-17 [39]). This in-
formation is summarized in Table 3. Fig. 4 illustrates the distribution of
input and output parameters, their frequency of occurrence within the
dataset, and the correlation existing between these parameters.

The database is presented in a supplementary file and is accessible
through the link provided in Appendix A. at the end of this paper. The
database is summarized in Tables 4 and 5 for FRP-wrapped and FRP
tube-encased, respectively.

4. Construction of the model

Gradient Boosted Decision Trees (GBDTs), an ensemble method
based on decision trees, were first introduced by Friedman [135]. They
have garnered considerable attention in rival data science due to their
outstanding efficacy in a wide range of ML tasks [136]. GBDTs employ
the boosting methodology to construct a robust learner by integrating
multiple weak learners, each exhibiting relatively low accuracy on its
own. This study is focused on one of the GBDT variations, namely Cat-
egorical Boosting (CatBoost), which is improved to generate a prediction
model.

4.1. Categorical boosting (CatBoost)

The CatBoost algorithm [137], the ML technique built upon GBDTs,
can be utilized for various machine learning tasks, including binary or
multi-class classification and regression. CatBoost stands out from other
prominent GBDT algorithms due to several noteworthy algorithmic
advancements. The developments encompass the implementation of a

Table 2
Statistical range of database parameters.

Parameter Minimum Maximum Mean Standard deviation
H/D 1.6 5 2 0.36

fco (MPa) 6.2 169.7 45.47 24.8

% 0.001 0.082 0.015 0.015

Ef (GPa) 16 640 222.87 101.99

ff(MPa) 174 4900 3145.8 1212.1

ty (mm) 0.09 5.84 0.58 0.65

Number of Layers 1 12 2.45 1.65

f'cc (MPa) 12.8 303.6 86.3 40.8
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Table 3
Classification of database.

Confinement type CFRP type Concrete classification No. of data points
Wrap CFRP L 22
N 581
H 120
HM CFRP L 0
N 40
H 29
UHM CFRP L 0
N 8
H 0
Tube CFRP L 1
N 50
H 51
HM CFRP L 0
N 4
H 0
UHM CFRP L 0
N 4
H 6
Total experiments 916

structured boosting framework and a novel algorithm for handling
categorical features [138]. In conventional gradient-boosting decision
trees, estimating the gradient and constructing the model depends on
utilizing identical samples [139]. As a result, GBDT algorithms exhibit a
prediction shift in the resultant model, which gives rise to a specific form
of target leakage issue [140]. To tackle this matter, the CatBoost
methodology utilizes the innovative ordered boosting framework, which
effectively mitigates gradient estimation bias and minimizes algorithmic
complexity. The CatBoost algorithm also places significant importance
on the support of categorical features. In contrast to traditional boosting
algorithms, which necessitate preprocessing procedures such as one-hot
encoding or transforming categorical features into gradient statistics,
CatBoost employs an intelligent preprocessing technique that involves
modified target statistics. This technique uses random permutations to
determine the feature value of specific instances, utilizing information
from other cases. The process is iterated multiple times, and the results
are averaged [141]. The implementation of these steps is successful in
mitigating overfitting and substantially improving the efficiency of the
CatBoost model. CatBoost is unique among GBDT-based algorithms
since it employs "oblivious trees," a variant of decision trees that are both
symmetric and balanced and apply the same splitting rule at every level
of the tree. During testing, Oblivious Trees dramatically increase
execution speed while being less prone to overfitting [142].

4.2. Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) was created by Eberhart and
Kennedy [30]. Random assignment is used during the initialization
phase of this technique. The population members are commonly deno-
ted as particles, with each particle initially allocated a velocity. PSO is a
computational technique replicating the cooperative foraging behavior
observed in various species such as insects, fish, and birds. In these
species, swarms work together to search for food resources [143]. The
conceptual basis of PSO is characterized by its simplicity, facilitating its
coding and implementation processes.

Moreover, PSO exhibits advantageous computational properties,
such as low memory usage and minimal CPU time requirements. In PSO,
a particle is utilized as a potential solution representing a specific point
within the search space. This particle continuously modifies its flight
trajectory by considering its fitness and velocity values. The objective is
to gradually approach the most favorable experiences of the entire
swarm, with final aim of locating the global optimum within the solution
space of D dimensions. The PSO algorithm has garnered considerable
interest and has demonstrated successful applications across diverse
domains, particularly addressing unconstrained continuous
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Fig. 4. Multi-correlation among input and output variables.

optimization problems.

In a search space with multiple dimensions, denoted as d, the posi-
tion and velocity of each particle at a given time t are represented as X!
= (Xt1,X 5, X} 3, Xt 4) @and Vi = (Vi1,Vis, Vi3, -, Vi) respectively. Dur-
ing each stage of evolution, X} and V} are adjusted by taking into account
the impact of personal best experience (P ) and global best experi-
ences (Gpes ), as illustrated in the following equation.

X=X+ vt 8.1

V,»’+1 =w.Vi+ ¢ -(Phe.vt ! —Xf) + ¢2.72..(Gpey ) (8.2)

In this context, the consideration involves the inclusion of acceler-
ation constants ¢; and c,, random variables r; and r, that have values
within the range of 0 and 1, and the inertia weight w', which governs the
alterations in velocity.

4.3. Particle swarm optimization- categorical boosting (PSO-CatBoost)

The optimization of hyperparameters plays a crucial role in the field
of ML as it directly impacts the functioning of training algorithms [144].
Basic strategies such as Random Search (RS) and Grid Search (GS) can be
utilized to carry out hyperparameter tuning; however, each of these
approaches has a number of drawbacks that must be taken into
consideration [145]. Some of these drawbacks include the presence of
complex search spaces, the requirement for more time for each iteration,
and the presence of high variance. Furthermore, the PSO technique, a
metaheuristic optimization approach based on swarm intelligence, of-
fers the advantage of being straightforward to implement while effi-
ciently identifying optimal solutions within a multidimensional search
space that closely corresponds to the actual solutions. This study
employed the PSO algorithm to determine the optimal hyperparameters

for the CatBoost algorithms. The Pseudo code of PSO-CatBoost is
depicted in Fig. 5. The basic PSO algorithm is influenced by several
control parameters, including fitness criteria such as Mean Square Error
(MSE) as well as the local coefficient (c;), global coefficient (c;), inertia
coefficient (w), maximum iteration count (maxy.,), and pop-
ulation/swarm size (s). This study determined the initial parameter
setting in the PSO algorithm through a series of trial-and-error tests.

The initial step in constructing the PSO-CatBoost model involved
identifying optimal hyperparameters by utilizing the PSO algorithm.
Hence, the optimization algorithm was employed to ascertain the crucial
and efficacious hyperparameters, precise depth, learning rate, and L2-
regularization. Following the PSO process, the optimal values for the
parameters depth, learning rate, and L2-regularization were
determined.

The architectural detail of the PSO-CatBoost model is shown in
Fig. 6. As shown in this figure, pre-processing the data, defining the
features and target, training data by splitting it into two sets of data,
optimizing the hyperparameters for CatBoost by PSO, and evaluating the
data model are the main modules for this model.

5. Results and discussion

This section utilizes training and testing datasets to assess the effi-
cacy of PSO-CatBoost in accurately forecasting the compressive strength
the CFRP-CC. Every algorithm gets started with a predetermined set of
values, known as hyperparameters, which determine the specific fea-
tures of the algorithm before the training process begins. Getting to the
point of optimal performance in machine learning algorithms necessi-
tates the successful optimization of hyperparameters. Therefore, the
PSO algorithm was employed to optimize the hyperparameters.
Furthermore, the effectiveness of the PSO-CatBoost model in predicting
the strength of CFRP-CC specimens was demonstrated by comparing the
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Table 4
Summary of test results of CFRP-wrapped concrete.
No. Author No. Fiber type D (mm) H (mm) f’co (MPa) C-Type E¢ (GPa) fr (MPa) t¢ (mm) No. of pf
of (L,N,H) layers
test

1 Erdil et al. [40] 1 CFRP 150 300 11.1 L 230 3430 0.17 1 0.004

2 Ilki et al. [41] 12 CFRP 150 300 6.2 L 230 3430 0.17-0.99 1-6 0.004-0.027

3 Karantzikis et al. 1 CFRP 200 35 12.1 L 230 3500 0.12 1 0.002
[42]

4 Pon et al. [43] 8 CFRP 150-600 300-1200 7.1-9.6 L 235 4410 0.22-0.33  2-3 0.002-0.009

5 Abdelrahman and 1 CFRP 300 600 38.3 N 65 895 0.38 2 0.005
El—Hacha [44]

6 Aire et al. [45] 3 CFRP 150 300 42 N 240 3900 0.12-0.7 1-6 0.003-0.019

7 Akogbe et al. [46] 12 CFRP 100-300 200-600 21.7-26.5 N 242 3248 0.17-0.5 1-3 0.007

8 Al-Salloum [47] 2 CFRP 150 300 32.4-36.2 N 75 935 1.2 1 0.032

9 Benzaid et al. [48] 4 CFRP 160 320 25.93-49.46 N 238 4300 0.13-0.39 1-3 0.003-0.010

10 Berthet et al. [49] 27 CFRP 160 320 25-52 N 230 3200 0.11-1.32 1-4 0.003-0.011

11 Bisby et al. [50] 3 CFRP 150 300 34.4 N 231 4100 0.12 1 0.003

12 Bisby et al. [51] 3 CFRP 100 200 28 N 231 4100 0.12 1 0.005

13 Bouchelaghemetal. 1 CFRP 160 320 26 N 55 750 0.52 1 0.013
[52]

14 Campione et al. 1 CFRP 100 200 20.1 N 230 3430 0.17 2 0.007
[53]

15 Carey and Harries 8 CFRP 152-254 305-762 32.1-38.9 N 25-250 875-3500 0.1-1.7 1-3 0.003-0.045
[54]

16 Chastre and Silva 5 CFRP 150-250 750 35.2-38 N 226-241  3254-3711  0.33-0.5 2-3 0.006-0.013
[55]

17 Cui and Sheikh [56] 12 CFRP 152 305 45.6-48.1 N 85-241 816-3639 0.11-3 1-3 0.003-0.081

18 De Lorenzis et al. 4 CFRP 120-150 240-300 38-43 N 91 1028 0.3-0.45 0.010-0.012
[57]

19 Demers and Neale 4 CFRP 152 305 32.2-43.7 N 25 380 1-3 1-3 0.026-0.081
[58]

20 Dias da Silva and 3 CFRP 150 600 28.2 N 240 3700 0.11-0.33  1-3 0.003-0.009
Santos [59]

21 Elsanadedy et al. 6 CFRP 50-150 100-300 41.1-53.8 N 77 846 1-3 1-3 0.027-0.082
[60]

22 Erdil et al. [40] 1 CFRP 150 300 20.8 N 230 3430 0.17 1 0.004

23 Evans et al. [61] 1 CFRP 152 305 37.3 N 240 3800 0.23 1 0.006

24 Green et al. [62] 2 CFRP 152 305 46 N 22 237 1-2 1-2 0.026-0.053

25 Harmon and 5 CFRP 51 102 41 N 235 3500 0.09-0.69 1-7 0.007-0.055
Slattery [63,64]

26 Harries and Kharel 3 CFRP 152 305 32.1 N 16 174 1-3 1-3 0.026-0.081
[64]

27 Hosotani et al. [65] 1 CFRP 200 600 41.7 N 243 4227 0.44 1 0.009

28 Howie and 16 CFRP 152 305 38.6-42.5 N 71-227 755-3500 0.31-1.32 1-8 0.008-0.035
Karbahari [66]

29 1lki et al. [67,68] 5 CFRP 150 300 32 N 230 3430 0.17-0.83 1-5 0.004-0.022

30 Choudhury et al. 5 CFRP 100-200 200-400 28.86-35.21 N 230 4900 0.12 1 0.002-0.005
[68]

31 Issa [69] 3 CFRP 150 300 23.6-23.9 N 231 4100 0.12 1 0.003

32 Issa et al. [70] 9 CFRP 150 300 30.5 N 230 4100 0.12-0.37 1-3 0.003-0.010

33 Jiang and Teng 15 CFRP 152 305 37.7-47.6 N 241-260 2500 0.11-1.36 1-4 0.003-0.036
[15]

34 Jiang et al. [71] 24 CFRP 150 300 28.36-38.58 N 245 3922 0.17-0.5 1-3 0.004-0.013

35 Karabinis and 16 CFRP 200 320 35.7-38.5 N 240 3720 0.12-0.35 1-3 0.002-0.007
Rousakis [72]

36 Karam and Tabbara 2 CFRP 150 300 12.8 N 231 3650 0.12-0.24 1-2 0.003-0.006
[72]

37 Karbhari and Gao 3 CFRP 152 305 38.4 N 77-138 1047-1352  0.66-1.32 24 0.017-0.035
[32]

38 Kono et al. [73] 21 CFRP 100 200 32.3-34.8 N 235 3820 0.17-0.5 1-3 0.007-0.020

39 Lam and Teng [74] 12 CFRP 152 305 34.3-35.9 N 251 2500 0.17-0.5 1-3 0.004-0.013

40 Lam et al. [75] 6 CFRP 153 305 38.9-41.1 N 251 2500 0.17-0.33  1-2 0.004-0.009

41 Lee et al. [76] 5 CFRP 150 300 36.2 N 250 4510 0.11-0.55 1-5 0.003-0.015

42 Lietal [77] 2 CFRP 300 600 16.68 N 231 4120 0.11-0.22 1-2 0.001-0.003

43 Li et al. [78] 6 CFRP 150 300 25.5-49.6 N 242 4338 0.17 1 0.004

44 Liang et al. [64] 12 CFRP 100-300 200-600 22.7-25.9 N 245 3248 0.17-0.5 1-3 0.007

45 Lin and Li [79] 27 CFRP 100-150 200-300 17.7-25.9 N 232 4170 0.14-0.41 1-3 0.004-0.017

46 Mandal et al. [31] 3 CFRP 102 200 30.7-54.5 N 47 784 0.8 1 0.032

47 Matthys et al. [80] 3 CFRP 150 300 34.9 N 240 2600 0.12 1 0.003

48 Micelli et al. [81] 1 CFRP 102 204 37 N 227 3790 0.16 1 0.006

49 Miyauchi et al. [82] 10 CFRP 100-150 200-300 31.2-51.9 N 231 3481 0.11-0.33 1-3 0.003-0.013

50 Miyauchi et al. [83] 6 CFRP 100-150 200-300 23.6-26.3 N 231 3481 0.11-0.33  1-3 0.003-0.013

51 Modarelli et al. 2 CFRP 150 300 28.35-38.24 N 221 3070 0.17 1 0.004

[84]

(continued on next page)
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Table 4 (continued)

No. Author No. Fiber type D (mm) H (mm) f’co (MPa) C-Type E¢ (GPa) fr (MPa) t¢ (mm) No. of pf
of (L,N,H) layers
test
52 Moretti and 15 CFRP 100-152 200-305 17.6-20 N 230 3910 0.13-0.26  1-2 0.003-0.007
Arvanitopoulos
[85]
53 Ongpeng [86] 2 CFRP 180 500 27 N 231 3650 0.13-0.26 1-2 0.003-0.006
54 Owen [87] 8 CFRP 102-152 203-305 47.9-53 N 262 4200 0.17-1.32 1-8 0.006-0.052
55 Pessiki et al. [14] 2 CFRP 152 610 26.2 N 38 580 1-2 1-2 0.026-0.053
56 Picher et al. [88] 1 CFRP 152 304 39.7 N 83 1266 0.9 2 0.024
57 Piekarczyk et al. 2 CFRP 47 112 55 N 110-113  1150-1420 0.51-0.82 2 0.044-0.071
[89]
58 Purba and Mufti 1 CFRP 191 788 27.1 N 231 3483 0.22 2 0.005
[90]
59 Rochette and 3 CFRP 100 200 42 N 83 1265 0.6 2 0.024
Labossiére [91]
60 Rousakis et al. [92] 6 CFRP 150 300 20.4-49.2 N 234 4493 0.17-0.51 1-3 0.005-0.014
61 Saenz and 4 CFRP 152 304 40.3-47.5 N 87 1220 1-2 1-2 0.026-0.053
Pantelides [93]
62 Santarosa et al. 3 CFRP 150 300 15.3-28.1 N 230 3400 0.11-0.22 1-2 0.003-0.006
[94]
63 Shahawy et al. [17] 9 CFRP 153 305 19.4-49 N 83 2275 0.36-1.25 1-5 0.009-0.033
64 Shehata et al. [95] 8 CFRP 150-225 300-450 25.6-34 N 235 3550 0.17-0.33  1-2 0.003-0.009
65 Smith et al. [96] 4 CFRP 250 500 35 N 211 3182 0.26 2 0.004
66 Song et al. [97] 12 CFRP 100-150 300-450 22.4-40.9 N 237 4073 0.13-0.39 1-3 0.003-0.016
67 Stanton and Owen 5 CFRP 153 305 49 N 238-262 4200 0.17-1.32 1-8 0.004-0.035
[98]
68 Suter and Pinzelli 1 CFRP 150 300 44.7 N 240 3800 0.23 2 0.006
[991]
69 Tamuzs et al. [100] 4 CFRP 150 300 20.8-48.8 N 231 2390 0.34 2 0.009
70 Thériault et al. 3 CFRP 51-304 102-608 18-37 N 230 3481 0.17-0.66  1-4 0.009-0.013
[101]
71 Touhari and 18 CFRP 160 320 24-41.6 N 34 403 1-3 1-3 0.025-0.076
Mitiche-Kettab
[102]
72 Toutanji and Deng 3 CFRP 76 152 30.9-31.8 N 73-231 1519-3485  0.22-0.57 2-5 0.012-0.030
[103]
73 Valdmanis et al. 6 CFRP 150 300 40-44.3 N 201-236  1906-2661  0.17-0.51 1-3 0.005-0.014
[104]
74 Vincent and 6 CFRP 152 305 35.5-38 N 240 3800 0.12-0.23 1-2 0.003-0.006
Ozbakkaloglu
[105]
75 Wang and Cheong 2 CFRP 200 600 27.9 N 235 4400 0.36 2 0.007
[106]
76 Wang and Wu 12 CFRP 150 300 30.9-52.1 N 219-226  3788-4364 0.17-0.33  1-2 0.004-0.009
[1071
77 Wang et al. [108]. 4 CFRP 204-305 612-915 24.5 N 240-244 4340-4344 0.17-0.33 1-2 0.002-0.007
78 Watanabe et al. 3 CFRP 100 200 30.2 N 225 2658-2873  0.17-0.67 1-4 0.007-0.027
[109]
79 Wu and Jiang [110] 38 CFRP 150 300 20.6-36.7 N 242-254 4192-4441 0.17-0.67 1-4 0.004-0.018
80 Wuetal [111] 4 CFRP 150 300 23-23.1 N 243 4234 0.17-0.33  1-2 0.004-0.009
81 Xiao and Wu [112] 27 CFRP 152 305 33.7-55.2 N 105 1577 0.38-1.14 1-3 0.010-0.030
82 Yanetal. [113] 1 CFRP 305 610 15 N 87 1220 1 3 0.013
83 Youseff [114] 2 CFRP 406 812 38.3-45.6 N 105 1246 2.34 2 0.023
84 Youssef et al. [115] 19 CFRP 152-406 305-813 29.4-44.6 N 104 1246 1.17-5.84 29 0.012-0.062
85 Zhang et al. [116] 1 CFRP 150 300 34.3 N 91 753 1 1 0.027
86 Wang et al. [117] 2 CFRP 100 200 32 N 105 1674 1.18 1 0.048
87 Toutanji [16] 1 CFRP 76 305 30.93 N 231 3485 0.22 2 0.012
88 Al-Salloum [118, 2 CFRP 150 300 32.4-36.23 N 75 935 1.2 1 0.032
119]
89 De Lorenzis et al. 1 CFRP 55 110 43 N 91 1028 0.15 1 0.011
[57]
90 1lki and Kumbasar 5 CFRP 150 300 32 N 230 3430 0.17-0.83 1-5 0.004-0.022
[120]
91 Toutanji and 1 CFRP 76 305 31.8 N 228 3485 0.22 2 0.012
Balaguru [121]
92 Lin and Chen [122] 4 CFRP 120 240 32.7 N 158 770 0.5-1 1-2 0.017-0.034
93 Bullo [123] 6 HM_CFRP 150 300 32.54 N 390 3000 0.17-0.5 1-3 0.004-0.013
94 Cui and Sheikh [56] 6 HM CFRP 152 305 45.7 N 436 3314 0.16-0.49 1-3 0.004-0.013
95 Dias da Silva and 3 HM_CFRP 150 600 28.2 N 390 3000 0.17-0.5 1-3 0.005-0.13
Santos [59]
96 Hosotani et al. [65] 1 HM_CFRP 200 600 41.7 N 439 3972 0.68 1 0.014
97 Rousakis and 20 HM_CFRP 150 300 25.2-51.8 N 377 4410 0.17-0.85 1-5 0.005-0.023
Tepfers [124]
98 Matthys et al. [80] 2 UHM_CFRP 150 300 34.9 N 420-640  1100-2650  0.24 1-2 0.006
99 Suter and Pinzelli 1 UHM CFRP 150 300 44.7 N 640 2650 0.38 3 0.010
[991]

(continued on next page)
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Table 4 (continued)
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No. Author No. Fiber type D (mm) H (mm) f’co (MPa) C-Type E¢ (GPa) fr (MPa) t¢ (mm) No. of pf
of (L,N,H) layers
test
100  Toutanji and Deng 1 HM_CFRP 76 152 30.9 N 373 2940 0.33 3 0.017
[103]
101  Watanabe et al. 3 UHM_CFRP 100 200 30.2 N 576-629  1285-1824  0.14-0.42 1-3 0.006-0.017
[109]
102  Wuetal [111] 3 UHM_CFRP 150 300 23-23.1 N 563 2544 0.29 2 0.008
103  Toutanji [16] 1 HM_CFRP 76 305 30.93 N 373 2940 0.33 2 0.017
104 Toutanji and 1 HM_CFRP 76 305 31.8 N 373 2940 0.33 2 0.017
Balaguru [121]
105  Aire et al. [45] 5 CFRP 150 300 69 H 240 3900 0.12-1.4 1-12 0.003-0.038
106 Benzaid et al. [48] 2 CFRP 160 320 61.81 H 238 4300 0.13-0.39 1-3 0.003-0.010
107  Berthet et al. [49] 6 CFRP 70 140 112.6-169.7 H 230 3200 0.33-0.99 39 0.019-0.057
108  Chikhetal. [119] 2 CFRP 160 320 61.8 H 238 4300 0.13-0.39  1-3 0.003-0.010
109  Cuiand Sheikh [56] 20 CFRP 152 305 79.9-111.8 H 85-241 816-3639 0.11-3 1-5 0.003-0.081
110 Green [125] 1 CFRP 152 305 59 H 70 881 1 1 0.026
111  Harmon and 3 CFRP 51 102 103 H 235 3500 0.18-0.69 1-4 0.014-0.055
Slattery [63]
112 Lietal. [78] 2 CFRP 150 300 60.5 H 242 4338 0.17 1 0.004
113  Mandal and Fam 6 CFRP 100 200 67.03-80.6 H 47 784 0.8 4 0.032
[126]
114  Miyauchietal. [83] 2 CFRP 100 200 109.5 H 231 3481 0.11-0.22  1-2 0.004-0.009
115  Owen [87] 3 CFRP 298 610 58.1 H 238 4200 1.32 2-7 0.018
116  Shehata et al. [95] 2 CFRP 150 300 61.7 H 235 3550 0.17-0.33  1-3 0.004-0.009
117  Touhari and 9 CFRP 160 320 61.5 H 34 403 1-3 1-3 0.025-0.076
Mitiche-Kettab
[102]
118  Valdmanis et al. 3 CFRP 150 300 61.6 H 201-236  1906-2661  0.17-0.51 1-3 0.005-0.014
[104]
119 Xiaoetal. [127]. 12 CFRP 152 305 70.8-111.6 H 238 2738 0.34-1.7 2-10 0.009-0.045
120  Vincent and 11 CFRP 152 305 62.4-65.8 H 240 3800 0.12-0.47 1-4 0.003-0.012
Ozbakkaloglu
[105]
121  Ozbakkaloglu and 1 CFRP 152 305 108 H 240 3800 0.47 4 0.012
Vincent [128]
122 Ozbakkaloglu and 1 CFRP 152 305 112 H 240 3800 0.59 5 0.015
Vincent [128]
123 Ozbakkaloglu and 1 CFRP 152 305 110 H 240 3800 0.7 6 0.019
Vincent [56]
124  Cui and Sheikh [56] 10 HM _CFRP 152 305 85.6-111.8 H 436 3314 0.16-0.82 15 0.004-0.022
125  Rousakis and 14 HM _CFRP 150 300 56.9-82.1 H 377 4410 0.17-0.51 1-3 0.005-0.014
Tepfers [124]
126  Vincent and 33 HM _CFRP 100-152.5  300-305 73-121.2 H 118-436  2060-3314  0.16-1.2 1-6 0.009-0.035

Ozbakkaloglu
[105]

other six models mentioned in Section 2. Table 6 displays a compre-
hensive set of optimized hyperparameters utilized in the process of
training the model. The model’s performance was assessed using several
metrics in the following subsection. All predictive model applications
were run on a personal computer equipped with an Apple M2 Max
processor, 96GB of RAM, and utilizing the macOS Ventura operating
system.

5.1. Performance measures

To evaluate the accuracy of the developed model and compare it
with available analytical models in the literature, several statistical
indices were employed, such as coefficient of determination (R?), mean
square error (MSE), root mean square error (RMSE), mean absolute error
(MAE), and residual standard error (RSE).

5.1.1. Residual error

Regardless of how well a model predicts the target value, there are
always random errors. The difference between the predicted and
observed values is often called the "residual" or "error," and one of the
goals of training a model is to minimize this difference.

)

€ = XEgxperimental — XPredicted

where e is the residual error defined as the difference between the

10

experimental data and the predicted value by the model, Xy, is the
measured value in the experiment, X4 is the value predicted by the
model,

5.1.2. Coefficient of determination

The coefficient of determination can take a value between 0 and 1,
quantifying how accurately a model predicts the result. The coefficient
of determination is calculated using Eq. (10).

N 2
Z,‘:] (xexp.i - xmod.[)
N N2
Do (xfxp-i - x)
where Xy, is the measured value in the experiment, Xy,oq is the value

predicted by the model, X is the average of xp, and N is the total number
of test data.

R*=1- (10)

5.1.3. Mean squared error

The mean squared error is the squared average value of the differ-
ence between the experimental data and the predicted values by the
model and can be calculated according to Eq. (11).

N

1
N Z (xmp.i - xmad.i)z

i=1

MSE = an

where Xy, is the measured value in the experiment, Xpoq is the value
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Table 5
Summary of test results of CFRP tube-encased concrete.
No. Author No. of Fiber Type D H f’co C- E¢ fe te No. of pf
test (mm) (mm) (MPa) Type (GPa) (MPa) (mm) Layers
(LN,
H)

127  Hong and Kim [129] 2 CFRP 300 600 17.5 N 137 2058 2-3 2-3 0.027-0.040

128 Karantzikis et al. [42] 1 CFRP 200 350 12.1 L 230 3500 0.12 1 0.002

129  Lim and Ozbakkaloglu 6 CFRP 152.5 305 29.6-49.6 N 236 4152 0.17-0.33  1-2 0.004-0.009
[130]

130  Matthys et al. [80] 2 HM_CFRP 150 300 34.9 N 200-420  1100-2600  0.12-0.24  1-2 0.003-0.006

131  Ozbakkaloglu and 14 CFRP 74-302 152-600  34.6-55 N 240 3800 0.12-0.47 1-4 0.006-0.013
Vincent [131]

132 Ozbakkaloglu and 4 UHM CFRP  100-152  200-305  35.4-36.3 N 640 2650 0.19 2 0.005-0.008
Vincent [131]

133 Saafietal. [132]. 3 HM_CFRP 152 435 35 N 367-415  3300-3700 0.11-0.55 1-5 0.003-0.015

134  Vincent and 21 CFRP 152 305 52 N 230 4370 0.33 0.009
Ozbakkaloglu [133]

135  Lim and Ozbakkaloglu 6 CFRP 152 305 29.6-49.6 N 236 4152 0.17-0.33  1-2 0.004-0.009
[134]

136 Lim and Ozbakkalaglu 6 UHM_CFRP 152.5 305 74.1-98 H 236 4152 0.5-0.66 2-3 0.013-0.0170
[130]

137  Ozbakkaloglu and 6 CFRP 152 305 55.6-59 H 640 2650 0.19-0.38  1-2 0.005-0.010
Vincent [131]

138  Vincent and 12 CFRP 152 305 84.7 H 230 4370 0.67 6 0.018
Ozbakkaloglu [133]

139  Lim and Ozbakkaloglu 6 CFRP 152 305 74.1-98 H 236 4152 0.5-0.66 3-4 0.013-0.017
[134]

140  Vincent and 22 CFRP 152 305 59-102.5 H 240 3800 0.12-0.59 1-5 0.009-0.015
Ozbakkaloglu [105]

141 Ozbakkaloglu and Akin 1 CFRP 152 305 100 H 240 3800 0.47 4 0.012
[128]

142 Vincent and 2 CFRP 152 305 97.5-102.5 H 240 3800 0.47-0.7 4-7 0.012-0.019
Ozbakkaloglu [105]

143 Ozbakkaloglu and Akin 1 CFRP 152 305 94 H 240 3800 0.7 6 0.019
[128]

144  Vincent and 1 CFRP 152 305 93 H 240 3800 0.7 4 0.019

Ozbakkaloglu [105]

PSO-CatBoost Algorithm

Initialize the swarm particles with random positions within the search space (hyperparameters for CatBoost).

For each particle

Initialize particle position Xi randomly within the search space

Initialize particle velocity Vi randomly within a specified range

Evaluate the fitness of each particle by training CatBoost and measuring its performance
Initialize the global best position G with the best particle

While stopping criteria are not met:
For each particle
Update the particle position
Update the particle velocity

Evaluate the fitness of each particle by training CatBoost and measuring its performance
If the fitness of each particle is better than its personal best:

Update personal best position

If the fitness of each particle is better than the global best:

Update global best position
Use the global best position as the final solution
End while
Return best hyperparameters and fitness

Fig. 5. Pseudo code of PSO-CatBoost.

predicted by the model, and N is the total number of test data points.

5.1.4. Root mean squared error

Another way to evaluate the accuracy of a fit is to calculate the root
mean squared error according to Eq. (12). The RMSE is a measure that
demonstrates the mean distance between the values predicted by the
model and the experimental values from the dataset.

Z?/j] (xexp,i - xmnd.i)z

RMSE =

5.1.5. Mean absolute error

12

The mean absolute error is the average value of the absolute differ-
ence between the experimental data and the predicted values by the

model and can be calculated according to Eq. (13).

11
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Table 6
Optimum hyperparameters value for PSO—CatBoost model.

Algorithm Hyperparameters Optimum value
PSO Local coefficient (c1) 0.5
Global coefficient (c5) 0.3
Inertia coefficient (w) 0.9
Maximum iteration count (maxier) 500
Population/swarm size (s) 10
CatBoost Depth 4.046
Learning rate 0.1
L2-regularization 1.959

N

1 Z
7 |-xex N xmod.i|
N P »

i=1

MAE = (13)

where Xexp is the measured value in the experiment, Xpq is the value
predicted by the model, X is the average of Xy, and N is the total number
of test data.

12

The architectural detail PSO-CatBoost model.

5.2. Interpretation of model results

Over the past few years, most ML techniques for regression and
classification problems have considerably improved their effectiveness
in real-world scenarios. These advancements have been made possible
by recent advances in computer processing power. While machine
learning is increasingly integrated into daily life, its use is still primarily
limited to individuals with specialized knowledge. The technical
complexity of machine learning, which relies on advanced mathematics,
statistics, and coding skills, presents a significant barrier to entry for
non-experts A traditional ML setup in its most basic version entails
several crucial steps, including modifying data, model selection, model
building, model examination, and deploying the model. In the ML setup,
the critical stage of hyperparameter tuning is an essential part of the
model generation process. When machine learning algorithms have had
their hyperparameters effectively optimized, hardly ever will they be
able to achieve the maximum level of performance possible. In this
study, the CatBoost algorithm with PSO was developed for the dataset.

Additionally, other models are put side by side with this new model
to demonstrate the model’s effectiveness for the current dataset. The
data used for the models were derived from the experiment results
presented in Tables 6 and 7. This model was trained using a distribution
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Table 7

Performance metric results for the employed method.
Data R? MSE MAE RMSE
Train 0.9898 0.0008 0.0219 0.0290
Test 0.9572 0.0026 0.0373 0.0514
All 0.9847 0.0012 0.0250 0.0347

of 80 % of the data, while 20 % of the data was set aside for testing. Input
parameters that were provided to the model included the diameter of the
compression member (D), the height of the compression member (H),
the compressive strength of unconfined concrete (f’¢,), FRP reinforce-
ment ratio (pg), the tensile modulus of elasticity (Ey), the ultimate tensile
strength of FRP (fy), nominal thickness of FRP reinforcement (t7) and
number of FRP layers (Layers). On the other hand, the output parameters
concentrated on the compressive strength of the specimen after
confinement. The quality evaluation criteria presented earlier are used
for evaluating the model’s performance.

The correlations between the characteristics were analyzed using the
Spearman correlation technique. The Spearman correlation captures not
only linear but also non-linear correlations between variables, in
contrast to the Pearson correlation, which only considers linear ones.

Spearman correlation coefficients (s) are shown in Fig. 7 for a variety
of input features. There is a strong positive correlation between the
thickness of FRP reinforcement (t7) and FRP reinforcement ratio (pg) of (s
= 0.94) as well as the diameter (D) and height of specimen (H) (s =
0.93). It makes it natural that this would be the case because the strength
of a specimen depends on its specific geometry. The number of layers
(Layers) has moderate correlations with the thickness of FRP reinforce-
ment () (s = 0.68) as well as the FRP reinforcement ratio (py) (s = 0.65).
Different charts show a comparison and analysis of the data. These
findings include the coefficient of determination, mean squared error,
and root mean squared error.

A coefficient of determination (R?) greater than 0.95 indicates
excellent predictive abilities, whereas values falling between 0.75 and
0.95 indicate reliable and accurate model predictions. On the contrary,
values that are lower than 0.60 indicate below-average performance.
Table 7 contains the performance metrics of the PSO-CatBoost. The PSO-
CatBoost model achieved R? scores of 0.9898 and 0.9572 in the training
and testing phases, respectively, which is worth mentioning. The find-
ings presented in this study clearly demonstrate that the model under
investigation can accurately forecast the compressive strength of CFRP-
CC. In addition, the PSO-CatBoost model showed comparatively lower

S-0.13 0.097
‘5 - 0.015-0.0051 0.31
5 --0.14 -0.12 -0.025 [EEHE
¢ --0.23 -0.23 -0.14  -0.45
+ -NORSER0220R057 m
o
¢-015 014 0.28
3

1 1 1 I

D H fco pf
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error values throughout both the training and testing phases based on
MSE, MAE, and RMSE.

Fig. 8-a displays the PSO-CatBoost model prediction for train data.
Based on this figure, the training data and the prediction model exhibit
exceptional congruence, demonstrating the model’s effectiveness. This
high degree of overlap indicates the model’s ability to accurately reflect
and predict the underlying patterns in the training data. The error
margins for the training data indicate a high level of accuracy, affirming
that the model performs exceptionally well. Notably, most errors are less
than 0.025, further attesting to the model’s precision (See Fig. 8-b). A
high correlation between the training data’s input features and output
variables signifies a robust association. This measures the model’s
ability to effectively learn and internalize the patterns and correlations
in the data during the training phase. This typically results in better
predictive performance when the model encounters new data. By
improving the precision and robustness of its predictions, the model
becomes more functional and valuable for practical applications. The
correlation patterns in the training data for this model are depicted in
Fig. 8-c. The model exhibits a high R-squared value of 0.9898, signifying
a strong relationship between the independent and dependent variables
in the training dataset, indicating the model’s effectiveness.

The test data in ML is referred to as the subset of the dataset that is
used to assess the performance of the produced model after it has been
trained. This dataset has been preserved apart from the training data to
evaluate the model’s ability to handle novel data reasonably. When it
comes to machine learning, the findings from test data typically provide
metrics that show the performance and resilience of the model.

Fig. 9-a shows the predicted and observed values for the test data.
When the test data closely matches the target or desired output, it
demonstrates that the model has been effectively trained and is able to
generalize well to unseen data. This is a desirable characteristic, as it
indicates that the model is not overfitting to the training data and is able
to make accurate predictions on new data. The error between the
observed and predicted value for test data is shown in Fig. 9-b. In ML,
the error in predicted data is typically evaluated by comparing the
predicted outcomes from the model to the actual (or target) outcomes.
Based on Fig. 9-c, an R-squared value of 0.9572 for the test data suggests
a strong correlation between the model’s predictions and the actual
outcomes. In simpler terms, the model is able to explain about 95.72 %
of the variation in the data one is trying to predict, which is typically
considered a high level of accuracy.

All available data was utilized in the recent testing of the predictive
model. In the further assessment of the model’s performance, a scatter

1.00
s0F288 0.25) 0.15
0.75
=0:238 0.22 0.14
-0.50
-0.14 0.27 0.28
- 0.25
-0.45 m
-0.00
0.52 -0.43 -0.077
-—-0.25
-0.43 -0.017
-—0.50
-0.75
—1.00

Layers

Fig. 7. Heatmap for the correlation coefficient between variables.
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Fig. 8. Estimator result analysis of compressive strength for train data.

plot was created to visualize the differences between the predicted and
target values, as depicted in Fig. 10-a. The scatter plot, as shown in
Fig. 10-b, allows us to observe patterns in the model’s residuals (the
differences between predicted and actual values). Patterns in these re-
siduals can reveal systematic under- or over-estimations by the model.
According to Fig. 10-c, the model exhibited exceptional performance,
producing an R-squared value of 0.9847. This value suggests that
approximately 98.47 % of the variance in the dependent variable can be
explained by the proposed model, an impressive achievement that sig-
nifies the ability of the model to predict the target variable based on the
input features accurately. Further to this numerical evaluation, the
performance of the model was visualized by plotting the predicted
values against the actual ones (see Fig. 10-c). Ideally, this plot would
depict a straight line following the equation y x, where every pre-
dicted value exactly matches its corresponding actual value. In our test,
the line of correlation very closely resembled this ideal scenario, indi-
cating a high degree of accuracy in the predictions. The quantitative (R-
squared value) and qualitative (correlation plot) results prove the
model’s robust predictive performance. The near-perfect alignment with
they = xline in the plot further reinforces the reliability and precision
of the predictions generated by the model.

The findings demonstrated that by utilizing CatBoost in conjunction
with the PSO algorithm, the accuracy of estimating the compressive
strength of CFRP-CC can be significantly improved. The suggested
model can be readily applied to assess the compressive strength of CFRP-
CC in a straightforward manner. The inclusion of the mean (1) and
standard deviation (o) in Fig. 11 provides additional information about
the distribution of the prediction errors. The figure and the Kernel
Density Estimation (KDE) curve and histogram provide a visual

14

representation of the distribution of prediction errors. Combining the
graphical representation with the mean and standard deviation (SD)
values allows one to evaluate the overall quality of the model’s pre-
dictions and obtain insights into its performance and reliability. If the
mean is close to zero and the sigma is relatively small, it suggests that the
model’s predictions are centered around the true values with low vari-
ability. The mean, denoted by y, is approximately 0.00023, suggesting
that the prediction errors are, on average, very close to zero. The stan-
dard deviation, denoted by o, is approximately 0.05141, indicating the
extent of dispersion or variability in the prediction errors around the
mean.

Accroding to Fig. 12, a comparison of the proposed model with
Mandal et al. [31], Karbhari et al. [32], Reza et al. [34], Realfonzo and
Napoli [35] and Vintzileou and Panagiotidou [36] which illustrates a
comparative visual analysis of six predictive models’ performance using
scatter plots for the target versus predicted f’... Lillistone and Jolly [33]
and Mandal et al. [31] show moderate dispersion of data points, indi-
cating reasonable predictive accuracy with some variance, especially at
the extremes of the f’.. range. Karbhari et al. [32], Reza et al. [34],
Realfonzo and Napoli [35] and Vintzileou and Panagiotidou [36] exhibit
a tighter clustering of points along the unity line, especially in the
mid-range, though accuracy diminishes at the lower and higher ends of
the target values. Notably, the present work scatter plot presents a
remarkable alignment of data points with the line of perfect prediction
across the full spectrum of f’. values, suggesting that the current model
significantly outperforms its predecessors in terms of predictive preci-
sion, as indicated by the minimal deviation from the unity line.

Fig. 13 provides more information on the relevant RMSE, MSE, and
MAE values. According to the results, the PSO-CatBoost predicts quite
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Fig. 9. Estimator result analysis of compressive strength for test data.

accurately and PSO-CatBoost clearly outperforms other strategies. The
proposed model obtains an RMSE of 0.0347, an MSE of 0.0012, and an
MAE of 0.0250 based on the performance metric values. These values
are noticeably lower than those for the other empirical equations.

For a clearer understanding of how the R-squared values compare to
other approaches, see Fig. 14. The bar chart illustrates the comparative
performance of different predictive models using numerical error met-
rics: RMSE, MAE, and MSE. The present work shows exceptionally low
RMSE (0.0347), MAE (0.025), and MSE (0.0012), indicating it has the
highest predictive accuracy among the evaluated models. Lillistone and
Jolly have the highest RMSE (0.0532) and MAE (0.1742), and Mandal
et al. have the highest MSE (0.2358), reflecting less precision in their
predictions. The remaining models, Vintzileou and Panagiotidou, Real-
fozo and Napoli, Reza et al., and Karbhari and Gao, show intermediate
values with RMSEs ranging from 0.0246 to 0.0265, MAEs from 0.123 to
0.134, and MSEs from 0.1287 to 0.1628. These numbers are critical for
understanding the exact quantitative differences in model performance,
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with the present work model being quantitatively superior.

The correlation coefficients, root mean squared deviation, and
standard deviation of the patterns utilized in this study are all repre-
sented graphically in the Taylor diagram. The Taylor diagram for the
patterns is shown in Fig. 15. According to the results, the proposed
model performs better than traditional models in most cases when
evaluating the compressive strength of CFRP-CC because it has a more
significant correlation coefficient, minor standard deviation, and lower
RMSE.

In the initial methodology adopted, the performance of the PSO-
Catboost model was assessed against established prediction formulas
utilizing the entire dataset, including the training data. This approach
raised potential concerns regarding overestimating the model’s predic-
tive accuracy, as the evaluation was conducted on data previously
encountered during the training phase. Such a method of evaluation
risked masking the actual generalization capacity of the model on novel,
unseen datasets.
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Fig. 10. Estimator result analysis of compressive strength for all data.
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Fig. 12. Comparison of present work with other empirical methods.

In response to these concerns and to align with standard machine
learning practices, the evaluation strategy was revised, acknowledging
the segregation of the dataset into two discrete subsets: the training set
and the testing set. In the training phase, the development and training
of the Catboost model were confined exclusively to the training set,
facilitating the learning of dataset-specific patterns without any overlap
with the testing set. A critical element of the revised methodology is the
testing phase, wherein the model’s performance is solely evaluated on
the testing set, consisting of data points that the model had not previ-
ously encountered. This ensures that the derived performance metrics
indicate the model’s ability to generalize new data. Moreover,
comparing the Catboost model with existing prediction formulas has
been restricted solely to the testing set, thereby ensuring a fair and
unbiased comparison by evaluating each model’s performance on data
not included in their training set.

Fig. 16 assesses the performance of various predictive models (pre-
sent work, Mandal et al., Lillistone and Jolly, Karbhari and Gao, Reza
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et al., Realfonzo and Napoli, and Vintzileou and Panagiotidou) against
expected results (Ex) on a test dataset, focusing on three critical statis-
tical error metrics: MSE, RMSE, and MAE. The present work model
demonstrates exceptional precision, with the lowest MSE (0.0012),
RMSE (0.0347), and MAE (0.0250), indicative of its predictions being
highly consistent with the actual values. On the other hand, Mandal
et al. and Lilliston and Jolly exhibit higher errors, especially in MSE and
RMSE, denoting less precise predictions. Meanwhile, models Karbhari
and Gao, Reza et al., Realfonzo and Napoli, and Vintzileou and Pan-
agiotidou show intermediate error values, with Karbhari and Gao
slightly outperforming the models’ relative performance, highlighting
the present work’s efficacy performance of the models, highlighting the
efficacy of the present work in the context of the test dataset. This chart
effectively expresses the predictive accuracy of each model on the test
dataset, with the present work model’s results suggesting a solid align-
ment with the expected data and highlighting a need for improvement in
the other models.
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Fig. 17 provides a comparative visualization of R-squared values for
seven distinct models tested on a dataset. R-squared is a metric that
quantifies the extent to which the variance in the dependent variable can
be explained by the independent variable(s) in a regression model. The
present work model exhibits a superior R-squared value of 0.9847,
indicating an exceptional level of explained variance and predictive
accuracy. Conversely, the Mandal et al. and Lillistone and Jolly models
have notably lower R-squared values of 0.2931 and 0.3229, respec-
tively, suggesting limited explanatory power and predictive capability.
The Karbhari and Gao, Reza et al., Realfonzo and Napoli, and Vintzileou
and Panagiotido model’s register an intermediate R-squared of 0.6871,
0.6278, 0.6081, and 0.6198, respectively, and pointing to a moderately
effective model. This graphical representation starkly highlights the
comparative effectiveness of this work in accounting for the variability
of the test dataset.

For the purpose of illustrating the comparison of mechanical dia-
grams across all models with experimental results, Owen’s [87] exper-
imental findings were selected, characterized by the following
properties: a diameter of compression member (D) of 102 mm, height of
compression member (H) of 203 mm, compressive strength of uncon-
fined concrete (f’co) of 53 MPa, tensile modulus of elasticity (Ef) of 262
GPa and ultimate tensile strength of FRP (ff) of 4200 MPa. The diagrams
were then drawn based on embedded properties, with nominal thickness
of FRP reinforcement (ty) being the only variable, altered within a range
of 0 to 1.4. Moreover, a dependency between the tf and FRP reinforce-
ment ratio (py) was observed, resulting in changes to py as well. Ac-
cording to Fig. 18, it was noted that the line representing the peresent
work closely approximates the experimental results. With an increase in
the t; value, an augmentation in the compressive strength of confined
concrete (f'c.) was observed.



N. Khodadadi et al.

// ¢ /'

Standard Deviation

Taylor Diagram

., o
stl et.a' s

llist, llyg ™

/Ll is pne and'Jo )b/

Isafoharl and G:

Raza ep-at
4/

Thin-Walled Structures 198 (2024) 111763

@ Present work

) Mandal et al
@ Vintzileou and Panagiotidou
@ Realfonzo and Napoli

Raza et al

@ Lillistone and Jolly
@ Karbhari and Gao
@ Observed

0.99

0.3

Fig. 15. Taylor diagram.

Present work

Mandal et al

Lilliston and Jolly

Karbhari and Gao

Reza et al

Realfonzo and Napoli
Vintzileou and Panagiotidou

Root Mean Squ

Mean Squared Error

Mean Absolu

Fig. 16. RMSE, MAE and MSE results comparison for different methods for
Test Dataset.

5.3. Comparison of proposed model with other ML algorithms

Table 8 presents a comparative analysis of the performance metrics
for various machine learning algorithms. The table is structured to
display the R-squared, MSE, MAE, and RMSE for both training and
testing datasets. The methods evaluated include the proposed method,
CatBoost, XgBoost, AdaBosst, GBoost, Extra Trees, and Random Forest.

The proposed method shows superior performance with the highest

2 values of 0.9898 for the training set and 0.9572 for the test set,
indicating a robust explanatory power and predictiveness. It also has the
lowest MSE and RMSE on the training and testing datasets, suggesting a
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model with high accuracy and precision. Conversely, AdaBoost exhibits
lower R? values, particularly on the test set with 0.7569, which might
indicate overfitting or a model less capable of generalizing to new data.
The Random Forest algorithm shows consistent performance across both
datasets, with only a slight decrease in R* from training to testing.
Overall, this table indicates that the proposed method may offer a robust
alternative to traditional ensemble methods in the machine learning
domain.

Upon evaluating the performance metrics of various machine
learning algorithms, CatBoost emerged as the second-best performing
method, as illustrated in Table 8. It demonstrated commendable pre-
dictive capabilities with high R-squared values of 0.9825 for the training
dataset and 0.9001 for the testing dataset, alongside relatively low error
metrics (MSE, MAE, and RMSE) compared to other traditional algo-
rithms. Given its strong baseline performance, CatBoost was selected as
the foundation for further refinement and development.

Building upon the robust framework of CatBoost, we introduced
methodological enhancements to devise our proposed method. These
enhancements aimed to address specific limitations observed in Cat-
Boost and to further optimize the model’s performance. As a result of
these improvements, the proposed method not only retained the
inherent strengths of CatBoost but also exhibited superior performance
metrics across both training and testing datasets. The advancements led
to a notable increase in R-squared values and a reduction in error rates,
thereby affirming the efficacy of our modifications. The proposed
method’s performance with an R-squared of 0.9898 for training and
0.9572 for testing, as well as the lowest MSE, MAE, and RMSE scores,
underscores its potential as a highly accurate and reliable machine
learning solution.

The comparative analysis and subsequent development of the pro-
posed method highlight the value of iterative enhancements in machine
learning. By leveraging the strengths of CatBoost and incorporating
targeted improvements, we have successfully developed a model that
sets a new benchmark for predictive accuracy in the field.

Fig. 19 provides a detailed heatmap of the R-squared values across
various parameters for the machine-learning models under consider-
ation. The color gradient reflects the degree of variance explained by
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Table 8
Performance metric results with other ML methods.
Methods Data R2 MSE MAE RMSE
Proposed method Train 0.9898 0.0008 0.0219 0.0290
Test 0.9572 0.0026 0.0373 0.0514
CatBoost Train 0.9825 0.0014 0.0236 0.0369
Test 0.9001 0.0102 0.0540 0.1009
XGBoost Train 0.9713 0.0022 0.0343 0.0474
Test 0.8837 0.0091 0.0562 0.0955
AdaBoost Train 0.8330 0.0131 0.0928 0.1145
Test 0.7569 0.0191 0.1009 0.1381
GBoost Train 0.9832 0.0009 0.0245 0.0301
Test 0.8971 0.0065 0.0432 0.0806
Extra trees Train 0.9822 0.0009 0.0256 0.0298
Test 0.8775 0.0096 0.0506 0.0980
Random forest Train 0.9848 0.0012 0.0229 0.0344
Test 0.8778 0.0096 0.0537 0.0979

each model, with darker hues indicating higher R-squared values and,
thus, greater predictive accuracy. The proposed method outperforms the
others on the training set with a near-perfect score, while on the test set,
it shows a slightly lower but still high score, suggesting good general-
ization. Other methods show varying degrees of performance, with
GBoost and Random Forest also demonstrating high training scores. The
test scores are consistently lower across all methods, which is typical due
to the generalization gap. The color coding and the precise numeric
labels on each bar provide an at-a-glance understanding of the model
performances, with darker colors indicating higher scores.

In contrast, Fig. 20 illustrates a comparison chart that compares the
performance of the proposed method against established machine
learning algorithms across multiple metrics, including MSE, MAE, and
RMSE. The error metrics for each model are split into train and test,
represented by blue and orange bars, respectively. The proposed method
has the lowest error rates across all three metrics on both the training
and testing data, suggesting it has the best performance and general-
ization capability among the evaluated models. The consistency of the
model’s superior performance across different metrics emphasizes its
robustness. In contrast, the other models exhibit higher error rates,
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indicating a range of effectiveness with the Random Forest model
showing the highest errors in this evaluation.

5.4. Feature importance analysis of model

Machine learning models can be difficult to interpret because they
are frequently seen as black boxes. In order to comprehend these
models, explainable ML approaches are essential. These techniques can
be used to identify the key features that determine a model’s output.
This study employed two approaches, namely the SHAP-based feature
contribution (SHapley Additive exPlanations) [146] and Permutation
Feature Importance (PFI) [147], to demonstrate the significance of each
feature and its corresponding contribution to the model’s predictions.

SHAP clarifies the prediction of a particular data instance by calcu-
lating each predictor’s contribution to the prediction using game theory
principles. Due to its theoretical strength and its fair distribution of ef-
fects, the Shapley value may be the only method capable of providing a
full explanation. It addresses the lack of interpretability in certain ML
algorithms by offering consistent interpretability. SHAP employs Shap-
ley values to quantify and demonstrate the contribution of input features
to the output of a model. This value is calculated by comparing the
variance between the model’s prediction with and without feature
values. Specifically, a SHAP value is the average marginal contribution
of a feature value over any potential combinations of that feature value.
A positive SHAP number denotes a potential contribution (or influence)
that might benefit the forecast, whereas a negative value denotes a po-
tential contribution that could be negative [148]. The SHAP summary
graphs for the proposed model are displayed in Fig. 21. These charts
demonstrate the effects of characteristics with greater and lower values
on the SHAP values. Additionally, the attributes are arranged on the Y
axis in descending order of importance. As can be seen in Fig. 21, higher
values of compressive strength of unconfined concrete and ultimate
tensile strength of FRP have a positive impact on the prediction, while
lower values of FRP reinforcement ratio and thickness of FRP have a
negative impact. Other features make a very tiny contribution.

The mean SHAP value offers a comprehensive assessment of the
significance of a feature across all instances within a given dataset, as

0.9822 0.9848

[
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g 0.7569 0.8971 0.8778
-0.80
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Fig. 19. R-squared results comparison for different ML methods for test and train dataset.
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Fig. 20. RMSE, MAE and MSE results for all ML methods for test and train dataset.

shown in Fig. 22. The calculation involves determining the average of
the absolute SHAP values for a specific feature across all instances. A
feature with a high mean SHAP value indicates that it substantially in-
fluences the model’s prediction, regardless of whether this influence is
positive or negative. In contrast, a feature with a low mean SHAP value
suggests that its contribution to the model’s prediction is generally very
small.

The aforementioned metric can be employed to assess and contrast
the relative significance of various attributes within a machine-learning
model. Nevertheless, it is crucial to remember that although mean SHAP
values provide a broad understanding of the significance of features,
they do not reveal the specific impact of each feature on individual
predictions, which is the primary purpose of SHAP values. In addition,
the scatter plot of each feature for SHAP value is shown in Fig. 23.

In contrast to methods like SHAP, which highlight which charac-
teristics were more significant in creating a particular prediction, the PFI
method displays the features that influence the model’s overall
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performance. The concept underlying PFI is straightforward. The input
variables that contribute to prediction possess substantial informational
value. The quality of predictions will decrease when the information is
disrupted by randomly shuffling feature values. If the drop in quality is
small, then the original predictor’s information was not crucial to
making predictions, and the model still does reasonably well even
without it. Conversely, a considerable reduction in value suggests that
the initial predictor had a notable impact on the accuracy of predictions
[148]. This analysis provides a critical understanding of the
decision-making process of the model. Fig. 24 reveals that the CFRP
reinforcement ratio and compressive strength of unconfined concrete
are the most influential factors in predicting the compressive strength of
confined concrete in the proposed model. Lastly, it seems that the other
features do not significantly impact the predictions.
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5.5. Graphical user interface (GUI) of model

The intricately engineered Graphical User Interface (GUI) is devel-
oped specifically for modeling the compressive strength of CFRP-CC.
This interface, characterized by its user-friendly design, facilitates
direct engagement with the research findings, thereby easing the
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computation of compressive strength values for CFRP-CC. The design of
this GUI, which transcends mere scientific accuracy, guarantees the
pragmatic application of research outcomes in real-world contexts.
Serving as an intermediary between the research’s inherent complexities
and its practical execution, the GUI renders the research’s critical in-
sights more comprehensible and applicable to an extensive audience.
The open-source platform, as demonstrated in Fig. 25, exhibits a design
that is easily navigable for users (The GUI file is publicly available at
https://nimakhodadadi.com/software).

6. Conclusion and future work

The main goal of the study was to create advanced models by uti-
lizing the latest machine learning techniques for improving predictions
on the strength of Carbon Fiber Reinforced Polymer-Confined Concrete
(CFRP-CC) samples. A large dataset containing 916 samples was utilized
for model development, which combines Particle Swarm Optimization
(PSO) with Categorical Boosting algorithms (PSO-CatBoost). Following
the model’s development, the study compared it against six other
models based on real experimental data. Additionally, a novel and
thorough comparative analysis was conducted to evaluate the PSO-
CatBoost model against six state-of-the-art machine-learning models,
including CatBoost, XgBoost, AdaBoost, GBoost, Extra Trees, and
Random Forest. The SHAP (Shapley Additive exPlanations) method was
employed to understand the significance of various predictors and their

se e

Layers

Fig. 23. Scatter plot of each feature for SHAP value.
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Fig. 25. GUI-based application developed to predict compressive strength values for CFRP-CC.

interactions. Feature importance evaluations revealed that the
compressive strength of unconfined concrete (f’;,) along with the FRP
reinforcement ratio (py) emerged as the paramount predictors for the
compressive strength of CFRP-CC specimens. An analysis of the dataset
disclosed that the strength of unconfined concrete is pivotal in
appraising the efficacy of confinement, and a salient association was
detected between the axial rigidity (psEy) of the composite jacket and the
compressive strength under confinement.

The results demonstrated that the incorporation of PSO to enhance
these algorithms significantly improved the precision of the predictive
models compared to their basic versions. The comprehensive analysis
strongly supports the superiority of machine learning methods over
traditional approaches for complex structural predictions and design
problem solutions. The performance of these algorithms, however, is
dependent on their robustness and the depth and detail of the dataset.
The implementation of boosting algorithms was highlighted for their
ability to improve predictive accuracy due to their proficiency in
handling diverse data and ensuring precise model representation.
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Among the evaluated models, the PSO-CatBoost model was distin-
guished by achieving a high coefficient of determination, marked at
0.9847, and was notably effective in reducing both mean squared error
and root mean squared error when compared with experimental
benchmarks.

It is recommended for future research to focus on applying these
methodologies to enhance predictive accuracy across additional exper-
imental models. Moreover, the exploration of alternative optimization
algorithms in place of PSO is suggested to achieve more accurate results.
The application of this model is expected to extend to other areas within
the concrete and civil engineering disciplines.
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