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A B S T R A C T   

This work articulates the development of a sophisticated machine-learning model for the prediction of 
compressive strength in Carbon Fiber-Reinforced Polymer Confined-Concrete (CFRP-CC) specimens. Despite 
extensive empirical studies conducted over the last three decades, prevailing predictive models predominantly 
rooted in linear or nonlinear regression analyses are constrained by their dependency on limited data scopes. 
Addressing this deficiency, our research delineates the formulation of an innovative Particle Swarm Optimiza
tion- Categorical Boosting (PSO-CatBoost) algorithm, underpinned by an expansive database encompassing 916 
experimental outcomes from 105 scholarly articles, spanning the period from 1991 to mid-2023. This innovative 
approach effectively combines the strengths of Particle Swarm Optimization and the CatBoost algorithm. It 
carefully evaluates various vital factors that affect the compressive strength of CFRP-CC. The uniqueness of our 
approach is further accentuated through the application of SHapley Additive exPlanations (SHAP) and Permu
tation Feature Importance (PFI) methodologies, thereby elucidating the relative importance of each contributory 
feature. In an unprecedented comparative analysis, the PSO-CatBoost model is rigorously benchmarked against 
six contemporary machine learning paradigms: CatBoost, XgBoost, AdaBoost, GBoost, Extra Trees, and Random 
Forest. Furthermore, this model is assessed against six empirical models for further comparison. The model 
exhibits superior predictive efficacy, evidenced by an exemplary coefficient of determination R-squared of 
0.9847, surpassing the methodologies. This research introduces a new predictive model for CFRP-CC and rep
resents a significant shift in concrete research, moving towards a more sophisticated, data-driven, and machine 
learning-focused methodology. This work thus establishes a new benchmark in the predictive modeling realm for 
CFRP-CC compressive strength, offering a robust and comprehensive analytical tool for both researchers and 
practitioners in the field. Lastly, a graphical user interface was designed for modeling the compressive strength of 
CFRP-CC to facilitate practical use.   

1. Introduction 

With the rising interest in using FRP in the construction sector, it has 
become an attractive material to confine concrete columns. In the past 
three decades, a significant amount of experimental and analytical 
research has been carried out to comprehend the performance of FRP-CC 
under compression. There is a general agreement that lateral confine
ment of concrete columns, which can be FRP wraps for repair and 
retrofit applications or FRP tubes in new construction, increases 
ductility and strength by putting the element in the condition of triaxial 

compression. This hybrid use of FRP and concrete also enhances the 
durability and service life of these elements [1–7]. The conventional 
concrete-filled steel tube (CFST) columns are susceptible to steel tube 
corrosion [8] and delamination failure (steel tube possesses a higher 
Poisson’s ratio than concrete subjected to compression) [9]. The hybrid 
construction method, utilizing both FRP and concrete, effectively in
tegrates the desirable characteristics of both materials. Concrete con
tributes mass, stiffness, damping, and cost-effectiveness, while FRP 
offers advantages such as rapid construction, lightweight, high strength, 
and long-lasting durability (non-corrosive nature of FRP). FRP is 
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particularly well-suited for encasing concrete columns due to their 
orthotropic nature [10,11]. 

In the case of cylindrical concrete elements subjected to triaxial 
compressive stresses, primary compressive stresses are applied equally 
throughout the longitudinal axis of the specimen and lateral confining 
pressure. When subjected to compression, confined concrete tends to 
expand in the radial direction. The expansion of the uniaxially loaded 
FRP jacket generates a reactively confining radial pressure at the 
interface between the FRP and the concrete. Fig. 1 illustrates the stress 
patterns resulting from the confining action of FRP on a circular concrete 
element. 

Eq. (1) defines a circular concrete specimen with a diameter of D and 
confined in FRP wrap or tube with a nominal thickness of tf, σl is 
confining pressure, σf is hoop tensile stress of FRP, and σc is the 
compressive stress [12]. 

σl =
2tf σf

D
(1) 

Numerous researchers have investigated using FRP as a confining 
material for concrete compression members since the 1990s. These 
studies are divided into two major categories: 1) experimental in
vestigations to provide evidence on the successful use of this confine
ment technique; and 2) analytical investigations to propose models for 
predicting the compressive strength and strain of FRP-CC columns for 
design purposes. 

Fig. 2 shows that the initial portion of the stress-strain curve suggests 
that the FRP confinement has not yet been activated. The term 
"confining" refers to the activation of FRP confinement through the 
gradual expansion of the confined concrete. A noticeable turning point 
could distinguish the two distinct segments. The stress-strain curve of 
FRP-confined concrete at the confining section may exhibit two primary 
trends: hardening and softening. The differentiation between the two 
trends lies in the level of confinement of FRP. The level of confinement 
of CFRP has a substantial impact on the uniaxial compressive strength of 

concrete cylinders. The confinement level of CFRP has the potential to 
significantly enhance the strength of the element [13]. 

The behavior of FRP-CC under compression has been well studied 
through experiments. Mirmiran and Shahawy [10] investigated the 
behavior of concrete columns with FRP tubes to provide a model for 
predicting column behavior. The experimental results in this study were 
compared to the available models, and it was concluded that the models 
generally overestimate the capacity of columns and lead to dangerous 
designs. Pessiski et al. [14] studied the performance of FRP-CC columns 
subjected to a monotonic concentric compressive load. Deformation and 
load-bearing capacity were observed to be enhanced using an FRP jacket 
as a confining material. 

Several studies were conducted to develop analytical models for 
predicting the compressive strength of FRP-CC columns. In very early 
attempts, Samaan et al. [6] provided a model to determine the 
stress-strain relationship for FRP-encased concrete columns, which is 
based on the correlation between the hoop stiffness of FRP and the 
dilatation of concrete. The predicted stress-strain curve by the model 
agrees with the experiments. In another study, Lam and Teng [5] pro
posed a model to predict the stress-strain response of FRP-CC, and some 
critical concerns like the hoop strain of FRP material at rupture, suffi
ciency of confinement, and effect of FRP stiffness on ultimate strain were 
resolved in this study. Jian and Teng [15] provided a new model to 
determine the stress-strain behavior of FRP-CC using a total of 48 data 
points. In this study, the authors described how the critical factors in a 
model can impact its precision. It was concluded that their model pro
vides precise predictions, especially for concrete specimens that are 
weakly confined. Toutanji [16] investigated the behavior of concrete 
columns with externally bonded FRP wraps. It was observed that FRP 
confinement could considerably improve ductility, load-bearing capac
ity, and energy dissipation. The authors proposed a model that provides 
a reasonable prediction of the stress-strain behavior of the columns. 
Shahawy et al. [17] evaluated CFRP-wrapped concrete cylinders to 
validate a proposed confinement model for concrete columns encased 
with Glass FRP (GFRP) tubes. It was concluded that the model could be 
used for both types of FRP, glass and carbon, and both applications: FRP 
wrap for strengthening and FRP tube for new construction. 

In recent times, machine learning (ML) methods have gained sig
nificant recognition owing to advancements in computer software and 
the strength of algorithms. A primary benefit of a data-driven ML model 
is that it doesn’t require the user to understand a problem comprehen
sively. With sufficient data and domain knowledge, an ML model can 
assist users in predicting outcomes in a complex system [18]. Fig. 3 

Fig. 1. Schematic view of FRP-confined circular concrete specimen.  

Fig. 2. Stress-strain model of CFRP-confined concrete cylinders.  

N. Khodadadi et al.                                                                                                                                                                                                                            



Thin-Walled Structures 198 (2024) 111763

3

illustrates the complete process of creating a machine learning model, 
from the initial measurement stage (conducting experiments) to the final 
stage of making predictions. 

Zhang et al. [19] investigated the use of Ensemble Learning (EL) 
algorithms to predict the capacity of FRP-strengthened reinforced con
crete beams. This study included four distinct ensemble learning (EL) 
techniques, specifically random forest, adaptive boosting, gradient 
boosting decision tree, and extreme gradient boosting. In order to 
highlight their superiority, these models were compared against repre
sentative empirical models as well as those based on single ML methods. 
The EL-based models exhibited superior performance compared to both 
the empirical models and the single ML-based models. Hence, the 
EL-based models suggested in this study exhibit promise for utilization 
in engineering applications. 

Chen et al. [20] conducted a study to examine the application of 
probabilistic ML approaches in predicting the performance of structures 
and infrastructure. This study investigated the capabilities of a novel 
method called natural gradient boosting (NGBoost) for generating 
probabilistic predictions directly. This output is well-suited for reli
ability and performance analysis frameworks. It also allows for the use 
of self-learning algorithms and the optimum design of experiments and 
field measurement programs in engineering applications. Two specific 
problems in the field of structural engineering were examined to assess 
the practicality of NGBoost: (1) predicting the strengths of squat shear 
walls, and (2) classifying the seismic damage severity for conventional 
bridges. The findings demonstrate that NGBoost achieves similar levels 
of mean prediction accuracy as traditional ML algorithms while also 
offering reliable estimations of prediction uncertainties. 

Recently, an interest in using ML-based algorithms to predict the 
compressive behavior of FRP-CC has been observed. For instance, Ber
radia et al. [21] developed two prediction models, one using a common 
form of regression and the other using an Artificial Neural Network 
(ANN). The database employed in this study included a total of 364 
experiments conducted on concrete compressive members. Some sta
tistical indices were employed to carry out statistical analyses and 
compare the two approaches. The statistical investigation revealed that 
the ANN model is more efficient and accurate in predicting the strength 
and strain of FRP-CC specimens strengthened with CFRP wrap. Eight 
different models were proposed by Kaveh and Khavaninzadeh [22] 
using a combination of four metaheuristic algorithms and two different 
ANN approaches to predict the strength of FRP-CC columns. In this 
study, 233 experimental results were obtained from the literature, with 

one portion used for the training set and the other for the test data set. 
Several statistical indices, such as mean squared error, root mean 
squared error, and the coefficient of determination, were utilized for 
comparison purposes. The highest accuracy was obtained using a met
aheuristic algorithm called enhanced colliding bodies optimization 
(ECBO) and a neural network called Feed-Forward Backpropagation 
(FFB). Li et al. [23] proposed a data-driven model based on an ML 
approach to predict the load-carrying capacity of concrete columns 
confined with GFRP. A dataset including 114 experimental results was 
used to develop the model. The back propagation neural network al
gorithm used in this study provides reasonable fits for training and test 
data sets and a coefficient of variation of 14.22 %. A sensitivity analysis 
revealed that the concrete strength and thickness of the FRP composite 
are the most important parameters affecting the strength of the confined 
section. Ilyas et al. [24] developed an ML-based model using the 
multi-expression programming (MEP) algorithm to predict the 
compressive strength of CFRP-CC. A total of 828 experimental data 
points were employed to develop the model in this study. The proposed 
model was compared with existing models in the literature and showed 
that the ML-based model provided more accurate results. 

Keshtegar et al. [25] proposed a hybrid regression and ML model to 
predict the ultimate strength and strain of FRP-CC systems. The com
bination of the response surface model (RSM) with support vector 
regression (SVR) results in the creation of a new hybrid model called 
RSM-SVR. The predictions generated by the proposed model were 
compared to those made by six empirical models and two data-driven 
models of RSM and SVR. The database used for comparison consisted 
of 780 test results related to circular columns. The statistical analysis 
demonstrates that the new RSM-SVR model provides more precise pre
dictions for the compressive strength and related axial strain of FRP-CC 
compared to existing models. The results indicate that both the 
RSM-SVR and SVR models consistently anticipate the strength and strain 
enhancement ratios for lateral confining ratios greater than 1, whereas 
the other models demonstrate chaotic model errors. The proposed model 
achieves excellent accuracy and reliable predictions by leveraging its 
exceptional flexibility and soundness in capturing the impact of lateral 
confining pressure due to the interaction between the concrete core and 
FRP jacket, compared to the previous models. 

The study conducted by Chen et al. [26] examined the utilization of 
data-driven Bayesian probabilistic and ML prediction models, including 
back-propagation ANN, multi-gene genetic programming, and support 
vector machine. Initially, a thorough compilation of 471 test results on 
the ultimate conditions of FRP-CC cylinders was conducted. Subse
quently, a Bayesian parameter estimation technique was employed to 
construct an updating procedure. This procedure aimed to assess the 
essential parameters in the current models and subsequently enhance 
the selected existing models. The database was utilized for generating 
ML models as well. The proposed models have been verified to 
demonstrate computational efficiency, transferability, and precision. 
The results indicate that the suggested Bayesian posterior models, 
back-propagation artificial neural network, multi-gene genetic pro
gramming, and support vector machine models shown exceptional 
predictive capability, with the support vector machine achieving the 
best level of accuracy in predictions. 

Developing a resilient ML model is widely considered a complex and 
time-consuming endeavor. The process entails the careful selection of an 
appropriate algorithm and the development of an efficient model 
structure through the optimization of hyperparameters [27]. Several 
algorithms, such as tree-based ML algorithms and deep neural networks, 
possess multiple hyperparameters that substantially impact the accuracy 
of predicted values by model [28]. Therefore, the precise adjustment of 
hyperparameters using an optimization technique holds significant 
importance. Metaheuristic algorithms, frequently derived from natural 
phenomena, can comprehensively traverse the search domain while 
efficiently converging upon a highly satisfactory outcome. These 
methods can, within a computationally feasible time frame, ascertain 

Fig. 3. Prediction process with ML.  
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solutions that are either optimal or proximate to optimality for complex 
problems [29]. The Particle Swarm Optimization (PSO) [30] algorithm 
is widely employed as a metaheuristic approach that has demonstrated 
considerable efficacy in addressing various optimization problems. 

In this study, an attempt has been made to propose a new ML model 
based on Particle Swarm Optimization and the Categorical Boosting 
algorithm (PSO-CatBoost) to predict the compressive strength of CFRP- 
CC under axial compression using 916 experimental tests from the 
literature. 

Many researchers have conducted comprehensive analyses of 
experimental data associated with circular concrete specimens, which is 
the core focus of the current study. CFRP is commonly employed as a 
composite material in civil engineering applications to repair or 
strengthen reinforced concrete structural elements. Existing equations 
for calculating the compressive strength of CFRP-confined circular 
concrete columns have been developed using regression analysis on a 
small database. Different optimum design equations have been proposed 
by various researchers as possible substitutes. Nevertheless, these 
models are based on limited datasets and rely on simplistic linear or 
nonlinear regressions or algorithms, making them suitable only for 
datasets with a narrow range. Numerous researchers in the field of 
concrete confinement have made efforts to compile databases that serve 
as essential validation tools for assessing the effectiveness of a model. 
Therefore, developing a more accurate and robust prediction model that 
can comprehensively capture the intricate behavior of CFRP-confined 
circular concrete specimens is imperative. Numerous investigative 
research projects have been conducted on concrete reinforced with FRP 
jackets, focusing on creating dependable and precise numerical models 
for predicting its behavior. However, the majority of these investigations 
primarily sought to establish analytical models, which were often based 
on a somewhat narrow scope of experimental findings. A significant 
concern with these models is their inherent bias and their limited 
application scope, as they are largely dependent on experimental data 
derived from studies with varying types of specimens. Since these 
analytical models are formulated from experimental data, their accuracy 
is directly tied to the data quality used. To avoid bias in these models, it 
is essential to utilize comprehensive databases that include specimens 
with diverse characteristics. The current study has compiled a compre
hensive dataset encompassing an extensive range of features. This 
approach contrasts with other numerical and machine learning models, 
which typically utilize a limited set of features for model development. 
The gathered dataset enables a more equitable comparison with existing 
numerical methods that incorporate a similar breadth of features. 
Consequently, a fairer and more accurate comparison is facilitated, 
enhancing the validity of the study’s findings. This methodology ad
dresses the constraints observed in previous models, which were based 
on a more restricted feature set, and offers a more expansive perspective 
for the assessment of various modeling techniques. 

Hence, the primary advancements and contributions of this paper 
can be summarized as follows:  

• This study employed a comparatively extensive dataset on CFRP-CC 
specimens, leading to more reliable predictions due to the overfitting 
problem.  

• Although the CatBoost algorithm has demonstrated exceptional 
performance in various ML tasks, more research is needed that 
explicitly assesses its effectiveness in estimating the compressive 
strength of CFRP-CC under axial compression.  

• CatBoost methods are rarely used in ML issues, although PSO is 
increasingly used. Concerning prediction accuracy and computing 
costs, this study evaluates the PSO-CatBoost model’s performance for 
the CFRP-CC problem’s compressive strength.  

• Six other ML techniques, including CatBoost, XgBoost, AdaBoost, 
GBoost, Extra Trees, and Random Forest, are compared with the 
proposed method.  

• Six empirical models are compared with PSO-CatBoost.  

• PSO-CatBoost showed better results and higher accuracy than 
different methods. 

The rest of this paper is organized as follows: Section 2 introduces 
existing models of compressive strength relevant to the subject. Section 
3 showcases the detailed importance of this study and current compi
lation of experimental data derived from published research focused on 
the topic. The development of the PSO-CatBoost model is delineated in 
Section 4. The model outcomes are discussed in Section 5, broken down 
into five subsections: setting the performance measures, evaluating the 
model’s performance, comparing with ML methods, performing an 
analysis of feature significance, and providing a Graphical User Inter
face. Finally, Section 6 provides the conclusion of the current study. 

2. Existing compressive strength of FRP-CC models 

This section presents a range of design models previously proposed 
to determine the compressive strength of CFRP-CC. These models have 
also been employed for comparison purposes in this study. The rationale 
for selecting these six particular models is that they lack any parameters 
that were not taken into account in the model proposed in this study. 
The following section will present a statistical analysis regarding the 
precision of these design models. It is important to mention that all 
models presented in this study are expressed in the International System 
of Units (S.I. units). 

2.1. Mandal et al.’s model 

The efficacy of FRP as a confining material for concrete compressive 
members was investigated by Mandal et al. [31]. The unconfined 
compressive strength of the concrete varies between 26 and 81 MPa. The 
experimental component of the investigation involved two large-scale 
concrete-filled FRP tubes and 59 plain and FRP-wrapped concrete cyl
inders. The cylinders were encased with either a single layer of GFRP 
sheet, two layers of GFRP sheet, or a single layer of CFRP sheet. The 
specimens underwent axial compression testing until they reached the 
point of failure. The results demonstrated that a considerable improve
ment in strength could be achieved in low- to medium-strength concrete; 
strain hardening was also observed in the bilinear strain-stress response, 
but the strength and ductility improvements for high-strength concrete 
were insignificant. A model was also proposed considering five param
eters: compressive strength of unconfined concrete (f’co), nominal 
thickness of FRP reinforcement (tf), effective modulus of elasticity of 
FRP in hoop direction (E), diameter of compression member (D), and 
hoop tensile strength of FRP composite (fu). Eq. (2) shows the proposed 
model for predicting the peak strength of FRP-confined concrete using 
analysis of test data (normalized). 

f ′
cc = 0.0017f ′

co

(
Etf

D/2
fu

f ′
co

)2

+ 0.0232f ′
co

(
Etf

D/2
fu

f ′
co

)

+ f ′
co (2) 

The model effectively reflected the reduction in the effectiveness of 
the confinement provided by FRP as the concrete strength increased. 

2.2. Karbhari and Gao’s model 

Karbhari et al. [32] proposed a model to predict the strength and 
strain in FRP-CC to facilitate the design of these elements. The key pa
rameters used in the model were unconfined concrete compressive 
strength (f’co), nominal thickness of FRP composite (tf), diameter of 
circular concrete (D), and tensile strength of FRP composite (ff). The 
predicted strength and strain by the model are in good agreement with 
the experimental data. Eq. (3) presents the proposed model for fore
casting the ultimate strength of FRP-confined concrete. 
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f ′
cc = f ′

co + 2.1f ′
co

(
2ff tf

Df ′
co

)0.87

(3) 

The proposed equation for ultimate strength has a strong correlation 
with the experimental results in their study. 

2.3. Lillistone and Jolly’s model 

To investigate the impact of FRP confinement on the strength and 
ductility of the concrete column, Lillistone and Jolly [33] tested a total 
of 121 columns. The confinement that the FRP provided to the core of 
the concrete enhanced the strength and ductility of the section. Un
confined concrete compressive strength (f’co), nominal thickness of FRP 
composite (tf), tensile modulus of elasticity of FRP (Ef), and diameter of 
circular concrete column (D) were the five parameters used in this study 
to develop the analytical model. 

f ′
cc = 0.83f ′

co + 0.05f ′
co

(
2Ef tf

Df ′
co

)

(4)  

2.4. Reza et al.’s model 

This model [34] introduces a proposed strength model aimed at 
determining the maximum axial strength of FRP-confined concrete 
compression members. Initially, an assessment of existing strength 
models for evaluating the confining effect on FRP-wrapped concrete 
specimens was conducted, followed by the creation of an extensive 
database comprising 520 confined concrete specimens, detailing various 
geometric and material characteristics. Subsequently, the following 
model was proposed based on regression analysis: 

f ′
cc = f ′

co + 3f ′
co

(
fl

f ′
co

)0.75

(5)  

2.5. Realfonzo and Napoli’s model 

In this study [35], a comprehensive database is introduced, con
taining data from compression tests conducted on more than 450 con
crete cylinders that were externally reinforced with F materials. 
Initially, the gathered data was used to carry out a statistical assessment 
of the FRP strain efficiency factor, with a special focus on examining the 
impact of the fiber type and the strength of the unconfined concrete. 
Subsequently, new formulas for predicting the compressive strength of 
FRP-confined concrete were formulated based on best-fit analyses as 
follows: 

fcc = f ′
co + 3.49f ′

co

(
fl

f ′
co

)0.86

(6)  

2.6. Vintzileou and Panagiotidou’s model 

This research [36] investigates the confinement of concrete using 
FRP materials, conducting a thorough examination of experimental 
studies and predictive models for the mechanical behavior of 
FRP-confined concrete. An empirical model that is suitable for both 
circular and prismatic elements is introduced, utilizing the principles 
outlined for confining concrete with hoops or spirals. The model is 
defined as: 

f ′
cc = f ′

co + 2.8f ′
co

(
fl

f ′
co

)

(7) 

In Eqs. (5–7), the parameters include the unconfined concrete 
compressive strength (f’co), ultimate compressive strength of the un
confined concrete (f’cc), ultimate compressive strength of the confined 
concrete and ultimate confining pressure (fl).

The analytical model introduced by Mandal et al. [31] omits 

consideration of the element’s height. Similarly, the framework posited 
by Karbhari and Gao [32], Reza et al. [34], Realfonzo and Napoli [35] 
and Vintzileou and Panagiotidou [36] lack an assessment of both the 
element’s height and the elastic modulus of the FRP. Furthermore, the 
model developed by Lillistone and Jolly [33] did not incorporate the 
element’s height and the FRP’s tensile strength. In contrast, the model 
proposed in the present study integrates the effects of these parameters. 

3. Construction of database 

The experimental database [37] comprises 916 test data points from 
105 studies on FRP-CC specimens. Several parameters related to con
crete and FRP geometrical and mechanical characteristics were identi
fied in the literature. Among all the features, seven critical parameters of 
the data points were used to develop the model: diameter of compres
sion member (D), height of compression member (H), compressive 
strength of unconfined concrete (f’co), FRP reinforcement ratio (ρf), 
tensile modulus of elasticity (Ef), ultimate tensile strength of FRP (ff), 
nominal thickness of FRP reinforcement (tf), number of FRP layers 
(Layers). In this database, the target value is the compressive strength of 
confined concrete (f’cc). These parameters are summarized in Table 1. It 
should be noted that the fiber orientation is not considered as a 
parameter in the database, later in the model and comparisons. 

Normalization is an essential preprocessing step in the field of ma
chine learning because it effectively addresses the issue of scale sensi
tivity that many algorithms encounter. This is particularly relevant for 
algorithms that rely on distance measures or gradient descent methods. 
The utilization of symmetry in the loss surface facilitates expedited 
model training, leading to accelerated convergence of the optimizer. 
Furthermore, it enhances comprehension of the significance of features 
and guarantees numerical stability in mathematical calculations. All 
input and output variables (xi) in the database are normalized. The 
formula to normalize data to a range between -1 and 1 is as follows: 

xi,normal = 2 ×

[
xi − min (x)

Max(x) − Min(x)

]

− 1 (8)  

where xi is the original value, Min and Max is the minimum and 
maximum value in each feature in the dataset. In this formula, (xi −

min (x)) / (Max(x) − Min(x)) normalizes xi into a range of [0,1], and 2 
× (xi −0.5) maps the range from [0,1] to [-1,1]. By subtracting 0.5 from 
each normalized value, you center the range around 0, making it [-0.5, 
0.5]. Then, multiplying by 2 scales the range to [-1, 1]. This results in the 
new normalized dataset having values between -1 and 1. 

The database only includes studies on circular concrete specimens 
without any internal or external reinforcement other than the FRP wraps 
or FRP tubes. The height-to-diameter ratio of specimen is less than or 
equal 5, the specimens were subjected to a monotonic concentric 
compressive load, and the failure mode in all specimens was FRP 
rupture. The following terms are used in the database tables:  

■ CFRP: Carbon fiber reinforced polymer 

Table 1 
Geometric and material properties of FRP-confined specimens.  

Group Notation Description Unit 

Specimen 
geometry 

D Diameter of compression member mm 
H Height of compression member mm 

Concrete f’co Compressive strength of unconfined 
concrete 

MPa 

FRP properties ρf FRP reinforcement ratio – 
Ef Tensile modulus of elasticity of FRP GPa 
ff Ultimate tensile strength of FRP MPa 
tf Nominal thickness of FRP reinforcement mm 
Layers Number of FRP layers – 

Result f’cc Compressive strength of confined 
concrete 

MPa  
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■ HM CFRP: High modulus CFRP  
■ UHM CFRP: Ultra-high modulus CFRP  
■ C-Type: Concrete Type (L: low, N: Normal, H: High) 

Limiting the database with these criteria helps to reduce the in
consistencies in the predicted values by the model; for instance, 
restricting the height-to-diameter ratio reduces the discrepancies in the 
type of failure due to the slenderness of the specimen. The concrete used 
in these experiments covers a wide range of concrete strengths, from 6.2 
MPa, low-strength concrete, to 169.7 MPa, high-strength concrete. In 
these studies, different CFRP composites were used with a modulus of 
elasticity ranging from 16 GPa to 640 GPa, ultimate tensile strength 
from 174 MPa to 4900 MPa, a reinforcement ratio from 0.001 to 0.082, 
and a total nominal thickness of 0.09 mm to 5.84 mm. The compressive 
strength of confined concrete in all these tests ranged from 12.8 MPa to 
303.6 MPa. The minimum/maximum, mean value, and standard devi
ation for all seven features are represented in Table 2. 

There are a total of 800 data points on CFRP-wrapped concrete 
specimens and 116 on CFRP-filled concrete tubes. There are a total of 23 
data points with a compressive strength of unconfined concrete lower 
than 15 MPa (L), 687 data points with a strength between 15 MPa and 55 
MPa (N), and 206 data points with a strength above 55 MPa (H) (clas
sification according to ACI 318–19 [38]). There is a total of 825 data 
points with the CFRP modulus of elasticity ranging lower than 340 GPa 
(CFRP), 73 data points with strength between 340 GPa and 520 GPa 
(HM_CFRP), and 18 data points with strength above 520 GPa 
(UHM_CFRP) (classification according to ACI 440.2R-17 [39]). This in
formation is summarized in Table 3. Fig. 4 illustrates the distribution of 
input and output parameters, their frequency of occurrence within the 
dataset, and the correlation existing between these parameters. 

The database is presented in a supplementary file and is accessible 
through the link provided in Appendix A. at the end of this paper. The 
database is summarized in Tables 4 and 5 for FRP-wrapped and FRP 
tube-encased, respectively. 

4. Construction of the model 

Gradient Boosted Decision Trees (GBDTs), an ensemble method 
based on decision trees, were first introduced by Friedman [135]. They 
have garnered considerable attention in rival data science due to their 
outstanding efficacy in a wide range of ML tasks [136]. GBDTs employ 
the boosting methodology to construct a robust learner by integrating 
multiple weak learners, each exhibiting relatively low accuracy on its 
own. This study is focused on one of the GBDT variations, namely Cat
egorical Boosting (CatBoost), which is improved to generate a prediction 
model. 

4.1. Categorical boosting (CatBoost) 

The CatBoost algorithm [137], the ML technique built upon GBDTs, 
can be utilized for various machine learning tasks, including binary or 
multi-class classification and regression. CatBoost stands out from other 
prominent GBDT algorithms due to several noteworthy algorithmic 
advancements. The developments encompass the implementation of a 

structured boosting framework and a novel algorithm for handling 
categorical features [138]. In conventional gradient-boosting decision 
trees, estimating the gradient and constructing the model depends on 
utilizing identical samples [139]. As a result, GBDT algorithms exhibit a 
prediction shift in the resultant model, which gives rise to a specific form 
of target leakage issue [140]. To tackle this matter, the CatBoost 
methodology utilizes the innovative ordered boosting framework, which 
effectively mitigates gradient estimation bias and minimizes algorithmic 
complexity. The CatBoost algorithm also places significant importance 
on the support of categorical features. In contrast to traditional boosting 
algorithms, which necessitate preprocessing procedures such as one-hot 
encoding or transforming categorical features into gradient statistics, 
CatBoost employs an intelligent preprocessing technique that involves 
modified target statistics. This technique uses random permutations to 
determine the feature value of specific instances, utilizing information 
from other cases. The process is iterated multiple times, and the results 
are averaged [141]. The implementation of these steps is successful in 
mitigating overfitting and substantially improving the efficiency of the 
CatBoost model. CatBoost is unique among GBDT-based algorithms 
since it employs "oblivious trees," a variant of decision trees that are both 
symmetric and balanced and apply the same splitting rule at every level 
of the tree. During testing, Oblivious Trees dramatically increase 
execution speed while being less prone to overfitting [142]. 

4.2. Particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) was created by Eberhart and 
Kennedy [30]. Random assignment is used during the initialization 
phase of this technique. The population members are commonly deno
ted as particles, with each particle initially allocated a velocity. PSO is a 
computational technique replicating the cooperative foraging behavior 
observed in various species such as insects, fish, and birds. In these 
species, swarms work together to search for food resources [143]. The 
conceptual basis of PSO is characterized by its simplicity, facilitating its 
coding and implementation processes. 

Moreover, PSO exhibits advantageous computational properties, 
such as low memory usage and minimal CPU time requirements. In PSO, 
a particle is utilized as a potential solution representing a specific point 
within the search space. This particle continuously modifies its flight 
trajectory by considering its fitness and velocity values. The objective is 
to gradually approach the most favorable experiences of the entire 
swarm, with final aim of locating the global optimum within the solution 
space of D dimensions. The PSO algorithm has garnered considerable 
interest and has demonstrated successful applications across diverse 
domains, particularly addressing unconstrained continuous 

Table 2 
Statistical range of database parameters.  

Parameter Minimum Maximum Mean Standard deviation 

H/D 1.6 5 2 0.36 
f’co (MPa) 6.2 169.7 45.47 24.8 
ρf 0.001 0.082 0.015 0.015 
Ef (GPa) 16 640 222.87 101.99 
ff (MPa) 174 4900 3145.8 1212.1 
tf (mm) 0.09 5.84 0.58 0.65 
Number of Layers 1 12 2.45 1.65 
f’cc (MPa) 12.8 303.6 86.3 40.8  

Table 3 
Classification of database.  

Confinement type CFRP type Concrete classification No. of data points 

Wrap CFRP L 22 
N 581 
H 120 

HM CFRP L 0 
N 40 
H 29 

UHM CFRP L 0 
N 8 
H 0 

Tube CFRP L 1 
N 50 
H 51 

HM CFRP L 0 
N 4 
H 0 

UHM CFRP L 0 
N 4 
H 6 

Total experiments 916  
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optimization problems. 
In a search space with multiple dimensions, denoted as d, the posi

tion and velocity of each particle at a given time t are represented as Xt
i 

= (xt
i,1, xt

i,2, xt
i,3, ..., xt

i,d) and Vt
i = (vt

i,1, vt
i,2, vt

i,3, ..., vt
i,d) respectively. Dur

ing each stage of evolution, Xt
i and Vt

i are adjusted by taking into account 
the impact of personal best experience (Pbest ) and global best experi
ences (Gbest ), as illustrated in the following equation. 

Xt+1
i = Xt

i + Vt+1
i (8.1)  

Vt+1
i = wt.Vt

i + c1.r1.
(
Pbest

t
i − Xt

i

)
+ c2.r2..(Gbest

t) (8.2) 

In this context, the consideration involves the inclusion of acceler
ation constants c1 and c2, random variables r1 and r2 that have values 
within the range of 0 and 1, and the inertia weight wt, which governs the 
alterations in velocity. 

4.3. Particle swarm optimization- categorical boosting (PSO-CatBoost) 

The optimization of hyperparameters plays a crucial role in the field 
of ML as it directly impacts the functioning of training algorithms [144]. 
Basic strategies such as Random Search (RS) and Grid Search (GS) can be 
utilized to carry out hyperparameter tuning; however, each of these 
approaches has a number of drawbacks that must be taken into 
consideration [145]. Some of these drawbacks include the presence of 
complex search spaces, the requirement for more time for each iteration, 
and the presence of high variance. Furthermore, the PSO technique, a 
metaheuristic optimization approach based on swarm intelligence, of
fers the advantage of being straightforward to implement while effi
ciently identifying optimal solutions within a multidimensional search 
space that closely corresponds to the actual solutions. This study 
employed the PSO algorithm to determine the optimal hyperparameters 

for the CatBoost algorithms. The Pseudo code of PSO-CatBoost is 
depicted in Fig. 5. The basic PSO algorithm is influenced by several 
control parameters, including fitness criteria such as Mean Square Error 
(MSE) as well as the local coefficient (c1), global coefficient (c2), inertia 
coefficient (w), maximum iteration count (maxiter), and pop
ulation/swarm size (s). This study determined the initial parameter 
setting in the PSO algorithm through a series of trial-and-error tests. 

The initial step in constructing the PSO-CatBoost model involved 
identifying optimal hyperparameters by utilizing the PSO algorithm. 
Hence, the optimization algorithm was employed to ascertain the crucial 
and efficacious hyperparameters, precise depth, learning rate, and L2- 
regularization. Following the PSO process, the optimal values for the 
parameters depth, learning rate, and L2-regularization were 
determined. 

The architectural detail of the PSO-CatBoost model is shown in 
Fig. 6. As shown in this figure, pre-processing the data, defining the 
features and target, training data by splitting it into two sets of data, 
optimizing the hyperparameters for CatBoost by PSO, and evaluating the 
data model are the main modules for this model. 

5. Results and discussion 

This section utilizes training and testing datasets to assess the effi
cacy of PSO-CatBoost in accurately forecasting the compressive strength 
the CFRP-CC. Every algorithm gets started with a predetermined set of 
values, known as hyperparameters, which determine the specific fea
tures of the algorithm before the training process begins. Getting to the 
point of optimal performance in machine learning algorithms necessi
tates the successful optimization of hyperparameters. Therefore, the 
PSO algorithm was employed to optimize the hyperparameters. 
Furthermore, the effectiveness of the PSO-CatBoost model in predicting 
the strength of CFRP-CC specimens was demonstrated by comparing the 

Fig. 4. Multi-correlation among input and output variables.  
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Table 4 
Summary of test results of CFRP-wrapped concrete.  

No. Author No. 
of 
test 

Fiber type D (mm) H (mm) f’co (MPa) C-Type 
(L,N,H) 

Ef (GPa) ff (MPa) tf (mm) No. of 
layers 

ρf 

1 Erdil et al. [40] 1 CFRP 150 300 11.1 L 230 3430 0.17 1 0.004 
2 Ilki et al. [41] 12 CFRP 150 300 6.2 L 230 3430 0.17–0.99 1–6 0.004–0.027 
3 Karantzikis et al.  

[42] 
1 CFRP 200 35 12.1 L 230 3500 0.12 1 0.002 

4 Pon et al. [43] 8 CFRP 150–600 300–1200 7.1–9.6 L 235 4410 0.22–0.33 2–3 0.002–0.009 
5 Abdelrahman and 

El–Hacha [44] 
1 CFRP 300 600 38.3 N 65 895 0.38 2 0.005 

6 Aire et al. [45] 3 CFRP 150 300 42 N 240 3900 0.12–0.7 1–6 0.003–0.019 
7 Akogbe et al. [46] 12 CFRP 100–300 200–600 21.7–26.5 N 242 3248 0.17–0.5 1–3 0.007 
8 Al-Salloum [47] 2 CFRP 150 300 32.4–36.2 N 75 935 1.2 1 0.032 
9 Benzaid et al. [48] 4 CFRP 160 320 25.93–49.46 N 238 4300 0.13–0.39 1–3 0.003–0.010 
10 Berthet et al. [49] 27 CFRP 160 320 25–52 N 230 3200 0.11–1.32 1–4 0.003–0.011 
11 Bisby et al. [50] 3 CFRP 150 300 34.4 N 231 4100 0.12 1 0.003 
12 Bisby et al. [51] 3 CFRP 100 200 28 N 231 4100 0.12 1 0.005 
13 Bouchelaghem et al. 

[52] 
1 CFRP 160 320 26 N 55 750 0.52 1 0.013 

14 Campione et al.  
[53] 

1 CFRP 100 200 20.1 N 230 3430 0.17 2 0.007 

15 Carey and Harries  
[54] 

8 CFRP 152–254 305–762 32.1–38.9 N 25–250 875–3500 0.1–1.7 1–3 0.003–0.045 

16 Chastre and Silva  
[55] 

5 CFRP 150–250 750 35.2–38 N 226–241 3254–3711 0.33–0.5 2–3 0.006–0.013 

17 Cui and Sheikh [56] 12 CFRP 152 305 45.6–48.1 N 85–241 816–3639 0.11–3 1–3 0.003–0.081 
18 De Lorenzis et al.  

[57] 
4 CFRP 120–150 240–300 38–43 N 91 1028 0.3–0.45 2–3 0.010–0.012 

19 Demers and Neale  
[58] 

4 CFRP 152 305 32.2–43.7 N 25 380 1–3 1–3 0.026–0.081 

20 Dias da Silva and 
Santos [59] 

3 CFRP 150 600 28.2 N 240 3700 0.11–0.33 1–3 0.003–0.009 

21 Elsanadedy et al.  
[60] 

6 CFRP 50–150 100–300 41.1–53.8 N 77 846 1–3 1–3 0.027–0.082 

22 Erdil et al. [40] 1 CFRP 150 300 20.8 N 230 3430 0.17 1 0.004 
23 Evans et al. [61] 1 CFRP 152 305 37.3 N 240 3800 0.23 1 0.006 
24 Green et al. [62] 2 CFRP 152 305 46 N 22 237 1–2 1–2 0.026–0.053 
25 Harmon and 

Slattery [63,64] 
5 CFRP 51 102 41 N 235 3500 0.09–0.69 1–7 0.007–0.055 

26 Harries and Kharel  
[64] 

3 CFRP 152 305 32.1 N 16 174 1–3 1–3 0.026–0.081 

27 Hosotani et al. [65] 1 CFRP 200 600 41.7 N 243 4227 0.44 1 0.009 
28 Howie and 

Karbahari [66] 
16 CFRP 152 305 38.6–42.5 N 71–227 755–3500 0.31–1.32 1–8 0.008–0.035 

29 Ilki et al. [67,68] 5 CFRP 150 300 32 N 230 3430 0.17–0.83 1–5 0.004–0.022 
30 Choudhury et al.  

[68] 
5 CFRP 100–200 200–400 28.86–35.21 N 230 4900 0.12 1 0.002–0.005 

31 Issa [69] 3 CFRP 150 300 23.6–23.9 N 231 4100 0.12 1 0.003 
32 Issa et al. [70] 9 CFRP 150 300 30.5 N 230 4100 0.12–0.37 1–3 0.003–0.010 
33 Jiang and Teng  

[15] 
15 CFRP 152 305 37.7–47.6 N 241–260 2500 0.11–1.36 1–4 0.003–0.036 

34 Jiang et al. [71] 24 CFRP 150 300 28.36–38.58 N 245 3922 0.17–0.5 1–3 0.004–0.013 
35 Karabinis and 

Rousakis [72] 
16 CFRP 200 320 35.7–38.5 N 240 3720 0.12–0.35 1–3 0.002–0.007 

36 Karam and Tabbara 
[72] 

2 CFRP 150 300 12.8 N 231 3650 0.12–0.24 1–2 0.003–0.006 

37 Karbhari and Gao  
[32] 

3 CFRP 152 305 38.4 N 77–138 1047–1352 0.66–1.32 2–4 0.017–0.035 

38 Kono et al. [73] 21 CFRP 100 200 32.3–34.8 N 235 3820 0.17–0.5 1–3 0.007–0.020 
39 Lam and Teng [74] 12 CFRP 152 305 34.3–35.9 N 251 2500 0.17–0.5 1–3 0.004–0.013 
40 Lam et al. [75] 6 CFRP 153 305 38.9–41.1 N 251 2500 0.17–0.33 1–2 0.004–0.009 
41 Lee et al. [76] 5 CFRP 150 300 36.2 N 250 4510 0.11–0.55 1–5 0.003–0.015 
42 Li et al. [77] 2 CFRP 300 600 16.68 N 231 4120 0.11–0.22 1–2 0.001–0.003 
43 Li et al. [78] 6 CFRP 150 300 25.5–49.6 N 242 4338 0.17 1 0.004 
44 Liang et al. [64] 12 CFRP 100–300 200–600 22.7–25.9 N 245 3248 0.17–0.5 1–3 0.007 
45 Lin and Li [79] 27 CFRP 100–150 200–300 17.7–25.9 N 232 4170 0.14–0.41 1–3 0.004–0.017 
46 Mandal et al. [31] 3 CFRP 102 200 30.7–54.5 N 47 784 0.8 1 0.032 
47 Matthys et al. [80] 3 CFRP 150 300 34.9 N 240 2600 0.12 1 0.003 
48 Micelli et al. [81] 1 CFRP 102 204 37 N 227 3790 0.16 1 0.006 
49 Miyauchi et al. [82] 10 CFRP 100–150 200–300 31.2–51.9 N 231 3481 0.11–0.33 1–3 0.003–0.013 
50 Miyauchi et al. [83] 6 CFRP 100–150 200–300 23.6–26.3 N 231 3481 0.11–0.33 1–3 0.003–0.013 
51 Modarelli et al.  

[84] 
2 CFRP 150 300 28.35–38.24 N 221 3070 0.17 1 0.004 

(continued on next page) 
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Table 4 (continued ) 

No. Author No. 
of 
test 

Fiber type D (mm) H (mm) f’co (MPa) C-Type 
(L,N,H) 

Ef (GPa) ff (MPa) tf (mm) No. of 
layers 

ρf 

52 Moretti and 
Arvanitopoulos  
[85] 

15 CFRP 100–152 200–305 17.6–20 N 230 3910 0.13–0.26 1–2 0.003–0.007 

53 Ongpeng [86] 2 CFRP 180 500 27 N 231 3650 0.13–0.26 1–2 0.003–0.006 
54 Owen [87] 8 CFRP 102–152 203–305 47.9–53 N 262 4200 0.17–1.32 1–8 0.006–0.052 
55 Pessiki et al. [14] 2 CFRP 152 610 26.2 N 38 580 1–2 1–2 0.026–0.053 
56 Picher et al. [88] 1 CFRP 152 304 39.7 N 83 1266 0.9 2 0.024 
57 Piekarczyk et al.  

[89] 
2 CFRP 47 112 55 N 110–113 1150–1420 0.51–0.82 2 0.044–0.071 

58 Purba and Mufti  
[90] 

1 CFRP 191 788 27.1 N 231 3483 0.22 2 0.005 

59 Rochette and 
Labossiére [91] 

3 CFRP 100 200 42 N 83 1265 0.6 2 0.024 

60 Rousakis et al. [92] 6 CFRP 150 300 20.4–49.2 N 234 4493 0.17–0.51 1–3 0.005–0.014 
61 Saenz and 

Pantelides [93] 
4 CFRP 152 304 40.3–47.5 N 87 1220 1–2 1–2 0.026–0.053 

62 Santarosa et al.  
[94] 

3 CFRP 150 300 15.3–28.1 N 230 3400 0.11–0.22 1–2 0.003–0.006 

63 Shahawy et al. [17] 9 CFRP 153 305 19.4–49 N 83 2275 0.36–1.25 1–5 0.009–0.033 
64 Shehata et al. [95] 8 CFRP 150–225 300–450 25.6–34 N 235 3550 0.17–0.33 1–2 0.003–0.009 
65 Smith et al. [96] 4 CFRP 250 500 35 N 211 3182 0.26 2 0.004 
66 Song et al. [97] 12 CFRP 100–150 300–450 22.4–40.9 N 237 4073 0.13–0.39 1–3 0.003–0.016 
67 Stanton and Owen  

[98] 
5 CFRP 153 305 49 N 238–262 4200 0.17–1.32 1–8 0.004–0.035 

68 Suter and Pinzelli  
[99] 

1 CFRP 150 300 44.7 N 240 3800 0.23 2 0.006 

69 Tamuzs et al. [100] 4 CFRP 150 300 20.8–48.8 N 231 2390 0.34 2 0.009 
70 Thériault et al.  

[101] 
3 CFRP 51–304 102–608 18–37 N 230 3481 0.17–0.66 1–4 0.009–0.013 

71 Touhari and 
Mitiche-Kettab  
[102] 

18 CFRP 160 320 24–41.6 N 34 403 1–3 1–3 0.025–0.076 

72 Toutanji and Deng  
[103] 

3 CFRP 76 152 30.9–31.8 N 73–231 1519–3485 0.22–0.57 2–5 0.012–0.030 

73 Valdmanis et al.  
[104] 

6 CFRP 150 300 40–44.3 N 201–236 1906–2661 0.17–0.51 1–3 0.005–0.014 

74 Vincent and 
Ozbakkaloglu  
[105] 

6 CFRP 152 305 35.5–38 N 240 3800 0.12–0.23 1–2 0.003–0.006 

75 Wang and Cheong  
[106] 

2 CFRP 200 600 27.9 N 235 4400 0.36 2 0.007 

76 Wang and Wu  
[107] 

12 CFRP 150 300 30.9–52.1 N 219–226 3788–4364 0.17–0.33 1–2 0.004–0.009 

77 Wang et al. [108]. 4 CFRP 204–305 612–915 24.5 N 240–244 4340–4344 0.17–0.33 1–2 0.002–0.007 
78 Watanabe et al.  

[109] 
3 CFRP 100 200 30.2 N 225 2658–2873 0.17–0.67 1–4 0.007–0.027 

79 Wu and Jiang [110] 38 CFRP 150 300 20.6–36.7 N 242–254 4192–4441 0.17–0.67 1–4 0.004–0.018 
80 Wu et al. [111] 4 CFRP 150 300 23–23.1 N 243 4234 0.17–0.33 1–2 0.004–0.009 
81 Xiao and Wu [112] 27 CFRP 152 305 33.7–55.2 N 105 1577 0.38–1.14 1–3 0.010–0.030 
82 Yan et al. [113] 1 CFRP 305 610 15 N 87 1220 1 3 0.013 
83 Youseff [114] 2 CFRP 406 812 38.3–45.6 N 105 1246 2.34 2 0.023 
84 Youssef et al. [115] 19 CFRP 152–406 305–813 29.4–44.6 N 104 1246 1.17–5.84 2–9 0.012–0.062 
85 Zhang et al. [116] 1 CFRP 150 300 34.3 N 91 753 1 1 0.027 
86 Wang et al. [117] 2 CFRP 100 200 32 N 105 1674 1.18 1 0.048 
87 Toutanji [16] 1 CFRP 76 305 30.93 N 231 3485 0.22 2 0.012 
88 Al-Salloum [118, 

119] 
2 CFRP 150 300 32.4–36.23 N 75 935 1.2 1 0.032 

89 De Lorenzis et al.  
[57] 

1 CFRP 55 110 43 N 91 1028 0.15 1 0.011 

90 Ilki and Kumbasar  
[120] 

5 CFRP 150 300 32 N 230 3430 0.17–0.83 1–5 0.004–0.022 

91 Toutanji and 
Balaguru [121] 

1 CFRP 76 305 31.8 N 228 3485 0.22 2 0.012 

92 Lin and Chen [122] 4 CFRP 120 240 32.7 N 158 770 0.5–1 1–2 0.017–0.034 
93 Bullo [123] 6 HM_CFRP 150 300 32.54 N 390 3000 0.17–0.5 1–3 0.004–0.013 
94 Cui and Sheikh [56] 6 HM CFRP 152 305 45.7 N 436 3314 0.16–0.49 1–3 0.004–0.013 
95 Dias da Silva and 

Santos [59] 
3 HM_CFRP 150 600 28.2 N 390 3000 0.17–0.5 1–3 0.005–0.13 

96 Hosotani et al. [65] 1 HM_CFRP 200 600 41.7 N 439 3972 0.68 1 0.014 
97 Rousakis and 

Tepfers [124] 
20 HM_CFRP 150 300 25.2–51.8 N 377 4410 0.17–0.85 1–5 0.005–0.023 

98 Matthys et al. [80] 2 UHM_CFRP 150 300 34.9 N 420–640 1100–2650 0.24 1–2 0.006 
99 Suter and Pinzelli  

[99] 
1 UHM_CFRP 150 300 44.7 N 640 2650 0.38 3 0.010 

(continued on next page) 

N. Khodadadi et al.                                                                                                                                                                                                                            



Thin-Walled Structures 198 (2024) 111763

10

other six models mentioned in Section 2. Table 6 displays a compre
hensive set of optimized hyperparameters utilized in the process of 
training the model. The model’s performance was assessed using several 
metrics in the following subsection. All predictive model applications 
were run on a personal computer equipped with an Apple M2 Max 
processor, 96GB of RAM, and utilizing the macOS Ventura operating 
system. 

5.1. Performance measures 

To evaluate the accuracy of the developed model and compare it 
with available analytical models in the literature, several statistical 
indices were employed, such as coefficient of determination (R2), mean 
square error (MSE), root mean square error (RMSE), mean absolute error 
(MAE), and residual standard error (RSE). 

5.1.1. Residual error 
Regardless of how well a model predicts the target value, there are 

always random errors. The difference between the predicted and 
observed values is often called the "residual" or "error," and one of the 
goals of training a model is to minimize this difference. 

e = xExperimental − xPredicted (9)  

where e is the residual error defined as the difference between the 

experimental data and the predicted value by the model, xexp is the 
measured value in the experiment, xmod is the value predicted by the 
model, 

5.1.2. Coefficient of determination 
The coefficient of determination can take a value between 0 and 1, 

quantifying how accurately a model predicts the result. The coefficient 
of determination is calculated using Eq. (10). 

R2 = 1 −

∑N
i=1

(
xexp,i − xmod,i

)2

∑N
i=1

(
xexp,i − x

)2 (10)  

where xexp is the measured value in the experiment, xmod is the value 
predicted by the model, x is the average of xexp, and N is the total number 
of test data. 

5.1.3. Mean squared error 
The mean squared error is the squared average value of the differ

ence between the experimental data and the predicted values by the 
model and can be calculated according to Eq. (11). 

MSE =
1
N

∑N

i=1

(
xexp,i − xmod,i

)2 (11)  

where xexp is the measured value in the experiment, xmod is the value 

Table 4 (continued ) 

No. Author No. 
of 
test 

Fiber type D (mm) H (mm) f’co (MPa) C-Type 
(L,N,H) 

Ef (GPa) ff (MPa) tf (mm) No. of 
layers 

ρf 

100 Toutanji and Deng  
[103] 

1 HM_CFRP 76 152 30.9 N 373 2940 0.33 3 0.017 

101 Watanabe et al.  
[109] 

3 UHM_CFRP 100 200 30.2 N 576–629 1285–1824 0.14–0.42 1–3 0.006–0.017 

102 Wu et al. [111] 3 UHM_CFRP 150 300 23–23.1 N 563 2544 0.29 2 0.008 
103 Toutanji [16] 1 HM_CFRP 76 305 30.93 N 373 2940 0.33 2 0.017 
104 Toutanji and 

Balaguru [121] 
1 HM_CFRP 76 305 31.8 N 373 2940 0.33 2 0.017 

105 Aire et al. [45] 5 CFRP 150 300 69 H 240 3900 0.12–1.4 1–12 0.003–0.038 
106 Benzaid et al. [48] 2 CFRP 160 320 61.81 H 238 4300 0.13–0.39 1–3 0.003–0.010 
107 Berthet et al. [49] 6 CFRP 70 140 112.6–169.7 H 230 3200 0.33–0.99 3–9 0.019–0.057 
108 Chikh et al. [119] 2 CFRP 160 320 61.8 H 238 4300 0.13–0.39 1–3 0.003–0.010 
109 Cui and Sheikh [56] 20 CFRP 152 305 79.9–111.8 H 85–241 816–3639 0.11–3 1–5 0.003–0.081 
110 Green [125] 1 CFRP 152 305 59 H 70 881 1 1 0.026 
111 Harmon and 

Slattery [63] 
3 CFRP 51 102 103 H 235 3500 0.18–0.69 1–4 0.014–0.055 

112 Li et al. [78] 2 CFRP 150 300 60.5 H 242 4338 0.17 1 0.004 
113 Mandal and Fam  

[126] 
6 CFRP 100 200 67.03–80.6 H 47 784 0.8 4 0.032 

114 Miyauchi et al. [83] 2 CFRP 100 200 109.5 H 231 3481 0.11–0.22 1–2 0.004–0.009 
115 Owen [87] 3 CFRP 298 610 58.1 H 238 4200 1.32 2–7 0.018 
116 Shehata et al. [95] 2 CFRP 150 300 61.7 H 235 3550 0.17–0.33 1–3 0.004–0.009 
117 Touhari and 

Mitiche-Kettab  
[102] 

9 CFRP 160 320 61.5 H 34 403 1–3 1–3 0.025–0.076 

118 Valdmanis et al.  
[104] 

3 CFRP 150 300 61.6 H 201–236 1906–2661 0.17–0.51 1–3 0.005–0.014 

119 Xiao et al. [127]. 12 CFRP 152 305 70.8–111.6 H 238 2738 0.34–1.7 2–10 0.009–0.045 
120 Vincent and 

Ozbakkaloglu  
[105] 

11 CFRP 152 305 62.4–65.8 H 240 3800 0.12–0.47 1–4 0.003–0.012 

121 Ozbakkaloglu and 
Vincent [128] 

1 CFRP 152 305 108 H 240 3800 0.47 4 0.012 

122 Ozbakkaloglu and 
Vincent [128] 

1 CFRP 152 305 112 H 240 3800 0.59 5 0.015 

123 Ozbakkaloglu and 
Vincent [56] 

1 CFRP 152 305 110 H 240 3800 0.7 6 0.019 

124 Cui and Sheikh [56] 10 HM _CFRP 152 305 85.6–111.8 H 436 3314 0.16–0.82 1–5 0.004–0.022 
125 Rousakis and 

Tepfers [124] 
14 HM _CFRP 150 300 56.9–82.1 H 377 4410 0.17–0.51 1–3 0.005–0.014 

126 Vincent and 
Ozbakkaloglu  
[105] 

33 HM _CFRP 100–152.5 300–305 73–121.2 H 118–436 2060–3314 0.16–1.2 1–6 0.009–0.035  
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predicted by the model, and N is the total number of test data points. 

5.1.4. Root mean squared error 
Another way to evaluate the accuracy of a fit is to calculate the root 

mean squared error according to Eq. (12). The RMSE is a measure that 
demonstrates the mean distance between the values predicted by the 
model and the experimental values from the dataset. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
xexp,i − xmod,i

)2

N

√

(12)  

5.1.5. Mean absolute error 
The mean absolute error is the average value of the absolute differ

ence between the experimental data and the predicted values by the 
model and can be calculated according to Eq. (13). 

Table 5 
Summary of test results of CFRP tube-encased concrete.  

No. Author No. of 
test 

Fiber Type D 
(mm) 

H 
(mm) 

f’co 
(MPa) 

C- 
Type 
(L,N, 
H) 

Ef 

(GPa) 
ff 
(MPa) 

tf 
(mm) 

No. of 
Layers 

ρf 

127 Hong and Kim [129] 2 CFRP 300 600 17.5 N 137 2058 2–3 2–3 0.027–0.040 
128 Karantzikis et al. [42] 1 CFRP 200 350 12.1 L 230 3500 0.12 1 0.002 
129 Lim and Ozbakkaloglu 

[130] 
6 CFRP 152.5 305 29.6–49.6 N 236 4152 0.17–0.33 1–2 0.004–0.009 

130 Matthys et al. [80] 2 HM_CFRP 150 300 34.9 N 200–420 1100–2600 0.12–0.24 1–2 0.003–0.006 
131 Ozbakkaloglu and 

Vincent [131] 
14 CFRP 74–302 152–600 34.6–55 N 240 3800 0.12–0.47 1–4 0.006–0.013 

132 Ozbakkaloglu and 
Vincent [131] 

4 UHM CFRP 100–152 200–305 35.4–36.3 N 640 2650 0.19 2 0.005–0.008 

133 Saafi et al. [132]. 3 HM_CFRP 152 435 35 N 367–415 3300–3700 0.11–0.55 1–5 0.003–0.015 
134 Vincent and 

Ozbakkaloglu [133] 
21 CFRP 152 305 52 N 230 4370 0.33 3 0.009 

135 Lim and Ozbakkaloglu 
[134] 

6 CFRP 152 305 29.6–49.6 N 236 4152 0.17–0.33 1–2 0.004–0.009 

136 Lim and Ozbakkalaglu 
[130] 

6 UHM_CFRP 152.5 305 74.1–98 H 236 4152 0.5–0.66 2–3 0.013–0.0170 

137 Ozbakkaloglu and 
Vincent [131] 

6 CFRP 152 305 55.6–59 H 640 2650 0.19–0.38 1–2 0.005–0.010 

138 Vincent and 
Ozbakkaloglu [133] 

12 CFRP 152 305 84.7 H 230 4370 0.67 6 0.018 

139 Lim and Ozbakkaloglu 
[134] 

6 CFRP 152 305 74.1–98 H 236 4152 0.5–0.66 3–4 0.013–0.017 

140 Vincent and 
Ozbakkaloglu [105] 

22 CFRP 152 305 59–102.5 H 240 3800 0.12–0.59 1–5 0.009–0.015 

141 Ozbakkaloglu and Akin  
[128] 

1 CFRP 152 305 100 H 240 3800 0.47 4 0.012 

142 Vincent and 
Ozbakkaloglu [105] 

2 CFRP 152 305 97.5–102.5 H 240 3800 0.47–0.7 4–7 0.012–0.019 

143 Ozbakkaloglu and Akin 
[128] 

1 CFRP 152 305 94 H 240 3800 0.7 6 0.019 

144 Vincent and 
Ozbakkaloglu [105] 

1 CFRP 152 305 93 H 240 3800 0.7 4 0.019  

Fig. 5. Pseudo code of PSO-CatBoost.  
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MAE =
1
N

∑N

i=1

⃒
⃒xexp,i − xmod,i

⃒
⃒ (13)  

where xexp is the measured value in the experiment, xmod is the value 
predicted by the model, x is the average of xexp, and N is the total number 
of test data. 

5.2. Interpretation of model results 

Over the past few years, most ML techniques for regression and 
classification problems have considerably improved their effectiveness 
in real-world scenarios. These advancements have been made possible 
by recent advances in computer processing power. While machine 
learning is increasingly integrated into daily life, its use is still primarily 
limited to individuals with specialized knowledge. The technical 
complexity of machine learning, which relies on advanced mathematics, 
statistics, and coding skills, presents a significant barrier to entry for 
non-experts A traditional ML setup in its most basic version entails 
several crucial steps, including modifying data, model selection, model 
building, model examination, and deploying the model. In the ML setup, 
the critical stage of hyperparameter tuning is an essential part of the 
model generation process. When machine learning algorithms have had 
their hyperparameters effectively optimized, hardly ever will they be 
able to achieve the maximum level of performance possible. In this 
study, the CatBoost algorithm with PSO was developed for the dataset. 

Additionally, other models are put side by side with this new model 
to demonstrate the model’s effectiveness for the current dataset. The 
data used for the models were derived from the experiment results 
presented in Tables 6 and 7. This model was trained using a distribution 

Fig. 6. The architectural detail PSO-CatBoost model.  

Table 6 
Optimum hyperparameters value for PSO–CatBoost model.  

Algorithm Hyperparameters Optimum value 

PSO Local coefficient (c1) 0.5 
Global coefficient (c2) 0.3 
Inertia coefficient (w) 0.9 
Maximum iteration count (maxiter) 500 
Population/swarm size (s) 10 

CatBoost Depth 4.046 
Learning rate 0.1 
L2-regularization 1.959  
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of 80 % of the data, while 20 % of the data was set aside for testing. Input 
parameters that were provided to the model included the diameter of the 
compression member (D), the height of the compression member (H), 
the compressive strength of unconfined concrete (f’co), FRP reinforce
ment ratio (ρf), the tensile modulus of elasticity (Ef), the ultimate tensile 
strength of FRP (ff), nominal thickness of FRP reinforcement (tf) and 
number of FRP layers (Layers). On the other hand, the output parameters 
concentrated on the compressive strength of the specimen after 
confinement. The quality evaluation criteria presented earlier are used 
for evaluating the model’s performance. 

The correlations between the characteristics were analyzed using the 
Spearman correlation technique. The Spearman correlation captures not 
only linear but also non-linear correlations between variables, in 
contrast to the Pearson correlation, which only considers linear ones. 

Spearman correlation coefficients (s) are shown in Fig. 7 for a variety 
of input features. There is a strong positive correlation between the 
thickness of FRP reinforcement (tf) and FRP reinforcement ratio (ρf) of (s 
= 0.94) as well as the diameter (D) and height of specimen (H) (s =

0.93). It makes it natural that this would be the case because the strength 
of a specimen depends on its specific geometry. The number of layers 
(Layers) has moderate correlations with the thickness of FRP reinforce
ment (tf) (s = 0.68) as well as the FRP reinforcement ratio (ρf) (s = 0.65). 
Different charts show a comparison and analysis of the data. These 
findings include the coefficient of determination, mean squared error, 
and root mean squared error. 

A coefficient of determination (R2) greater than 0.95 indicates 
excellent predictive abilities, whereas values falling between 0.75 and 
0.95 indicate reliable and accurate model predictions. On the contrary, 
values that are lower than 0.60 indicate below-average performance. 
Table 7 contains the performance metrics of the PSO-CatBoost. The PSO- 
CatBoost model achieved R2 scores of 0.9898 and 0.9572 in the training 
and testing phases, respectively, which is worth mentioning. The find
ings presented in this study clearly demonstrate that the model under 
investigation can accurately forecast the compressive strength of CFRP- 
CC. In addition, the PSO-CatBoost model showed comparatively lower 

error values throughout both the training and testing phases based on 
MSE, MAE, and RMSE. 

Fig. 8-a displays the PSO-CatBoost model prediction for train data. 
Based on this figure, the training data and the prediction model exhibit 
exceptional congruence, demonstrating the model’s effectiveness. This 
high degree of overlap indicates the model’s ability to accurately reflect 
and predict the underlying patterns in the training data. The error 
margins for the training data indicate a high level of accuracy, affirming 
that the model performs exceptionally well. Notably, most errors are less 
than 0.025, further attesting to the model’s precision (See Fig. 8-b). A 
high correlation between the training data’s input features and output 
variables signifies a robust association. This measures the model’s 
ability to effectively learn and internalize the patterns and correlations 
in the data during the training phase. This typically results in better 
predictive performance when the model encounters new data. By 
improving the precision and robustness of its predictions, the model 
becomes more functional and valuable for practical applications. The 
correlation patterns in the training data for this model are depicted in 
Fig. 8-c. The model exhibits a high R-squared value of 0.9898, signifying 
a strong relationship between the independent and dependent variables 
in the training dataset, indicating the model’s effectiveness. 

The test data in ML is referred to as the subset of the dataset that is 
used to assess the performance of the produced model after it has been 
trained. This dataset has been preserved apart from the training data to 
evaluate the model’s ability to handle novel data reasonably. When it 
comes to machine learning, the findings from test data typically provide 
metrics that show the performance and resilience of the model. 

Fig. 9-a shows the predicted and observed values for the test data. 
When the test data closely matches the target or desired output, it 
demonstrates that the model has been effectively trained and is able to 
generalize well to unseen data. This is a desirable characteristic, as it 
indicates that the model is not overfitting to the training data and is able 
to make accurate predictions on new data. The error between the 
observed and predicted value for test data is shown in Fig. 9-b. In ML, 
the error in predicted data is typically evaluated by comparing the 
predicted outcomes from the model to the actual (or target) outcomes. 
Based on Fig. 9-c, an R-squared value of 0.9572 for the test data suggests 
a strong correlation between the model’s predictions and the actual 
outcomes. In simpler terms, the model is able to explain about 95.72 % 
of the variation in the data one is trying to predict, which is typically 
considered a high level of accuracy. 

All available data was utilized in the recent testing of the predictive 
model. In the further assessment of the model’s performance, a scatter 

Table 7 
Performance metric results for the employed method.  

Data R2 MSE MAE RMSE 

Train 0.9898 0.0008 0.0219 0.0290 
Test 0.9572 0.0026 0.0373 0.0514 
All 0.9847 0.0012 0.0250 0.0347  

Fig. 7. Heatmap for the correlation coefficient between variables.  
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plot was created to visualize the differences between the predicted and 
target values, as depicted in Fig. 10-a. The scatter plot, as shown in 
Fig. 10-b, allows us to observe patterns in the model’s residuals (the 
differences between predicted and actual values). Patterns in these re
siduals can reveal systematic under- or over-estimations by the model. 
According to Fig. 10-c, the model exhibited exceptional performance, 
producing an R-squared value of 0.9847. This value suggests that 
approximately 98.47 % of the variance in the dependent variable can be 
explained by the proposed model, an impressive achievement that sig
nifies the ability of the model to predict the target variable based on the 
input features accurately. Further to this numerical evaluation, the 
performance of the model was visualized by plotting the predicted 
values against the actual ones (see Fig. 10-c). Ideally, this plot would 
depict a straight line following the equation y = x, where every pre
dicted value exactly matches its corresponding actual value. In our test, 
the line of correlation very closely resembled this ideal scenario, indi
cating a high degree of accuracy in the predictions. The quantitative (R- 
squared value) and qualitative (correlation plot) results prove the 
model’s robust predictive performance. The near-perfect alignment with 
the y = x line in the plot further reinforces the reliability and precision 
of the predictions generated by the model. 

The findings demonstrated that by utilizing CatBoost in conjunction 
with the PSO algorithm, the accuracy of estimating the compressive 
strength of CFRP-CC can be significantly improved. The suggested 
model can be readily applied to assess the compressive strength of CFRP- 
CC in a straightforward manner. The inclusion of the mean (μ) and 
standard deviation (σ) in Fig. 11 provides additional information about 
the distribution of the prediction errors. The figure and the Kernel 
Density Estimation (KDE) curve and histogram provide a visual 

representation of the distribution of prediction errors. Combining the 
graphical representation with the mean and standard deviation (SD) 
values allows one to evaluate the overall quality of the model’s pre
dictions and obtain insights into its performance and reliability. If the 
mean is close to zero and the sigma is relatively small, it suggests that the 
model’s predictions are centered around the true values with low vari
ability. The mean, denoted by μ, is approximately 0.00023, suggesting 
that the prediction errors are, on average, very close to zero. The stan
dard deviation, denoted by σ, is approximately 0.05141, indicating the 
extent of dispersion or variability in the prediction errors around the 
mean. 

Accroding to Fig. 12, a comparison of the proposed model with 
Mandal et al. [31], Karbhari et al. [32], Reza et al. [34], Realfonzo and 
Napoli [35] and Vintzileou and Panagiotidou [36] which illustrates a 
comparative visual analysis of six predictive models’ performance using 
scatter plots for the target versus predicted f’cc. Lillistone and Jolly [33] 
and Mandal et al. [31] show moderate dispersion of data points, indi
cating reasonable predictive accuracy with some variance, especially at 
the extremes of the f’cc range. Karbhari et al. [32], Reza et al. [34], 
Realfonzo and Napoli [35] and Vintzileou and Panagiotidou [36] exhibit 
a tighter clustering of points along the unity line, especially in the 
mid-range, though accuracy diminishes at the lower and higher ends of 
the target values. Notably, the present work scatter plot presents a 
remarkable alignment of data points with the line of perfect prediction 
across the full spectrum of f’cc values, suggesting that the current model 
significantly outperforms its predecessors in terms of predictive preci
sion, as indicated by the minimal deviation from the unity line. 

Fig. 13 provides more information on the relevant RMSE, MSE, and 
MAE values. According to the results, the PSO-CatBoost predicts quite 

Fig. 8. Estimator result analysis of compressive strength for train data.  
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accurately and PSO-CatBoost clearly outperforms other strategies. The 
proposed model obtains an RMSE of 0.0347, an MSE of 0.0012, and an 
MAE of 0.0250 based on the performance metric values. These values 
are noticeably lower than those for the other empirical equations. 

For a clearer understanding of how the R-squared values compare to 
other approaches, see Fig. 14. The bar chart illustrates the comparative 
performance of different predictive models using numerical error met
rics: RMSE, MAE, and MSE. The present work shows exceptionally low 
RMSE (0.0347), MAE (0.025), and MSE (0.0012), indicating it has the 
highest predictive accuracy among the evaluated models. Lillistone and 
Jolly have the highest RMSE (0.0532) and MAE (0.1742), and Mandal 
et al. have the highest MSE (0.2358), reflecting less precision in their 
predictions. The remaining models, Vintzileou and Panagiotidou, Real
fozo and Napoli, Reza et al., and Karbhari and Gao, show intermediate 
values with RMSEs ranging from 0.0246 to 0.0265, MAEs from 0.123 to 
0.134, and MSEs from 0.1287 to 0.1628. These numbers are critical for 
understanding the exact quantitative differences in model performance, 

with the present work model being quantitatively superior. 
The correlation coefficients, root mean squared deviation, and 

standard deviation of the patterns utilized in this study are all repre
sented graphically in the Taylor diagram. The Taylor diagram for the 
patterns is shown in Fig. 15. According to the results, the proposed 
model performs better than traditional models in most cases when 
evaluating the compressive strength of CFRP-CC because it has a more 
significant correlation coefficient, minor standard deviation, and lower 
RMSE. 

In the initial methodology adopted, the performance of the PSO- 
Catboost model was assessed against established prediction formulas 
utilizing the entire dataset, including the training data. This approach 
raised potential concerns regarding overestimating the model’s predic
tive accuracy, as the evaluation was conducted on data previously 
encountered during the training phase. Such a method of evaluation 
risked masking the actual generalization capacity of the model on novel, 
unseen datasets. 

Fig. 9. Estimator result analysis of compressive strength for test data.  
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Fig. 10. Estimator result analysis of compressive strength for all data.  

Fig. 11. Distribution of prediction error for model.  
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In response to these concerns and to align with standard machine 
learning practices, the evaluation strategy was revised, acknowledging 
the segregation of the dataset into two discrete subsets: the training set 
and the testing set. In the training phase, the development and training 
of the Catboost model were confined exclusively to the training set, 
facilitating the learning of dataset-specific patterns without any overlap 
with the testing set. A critical element of the revised methodology is the 
testing phase, wherein the model’s performance is solely evaluated on 
the testing set, consisting of data points that the model had not previ
ously encountered. This ensures that the derived performance metrics 
indicate the model’s ability to generalize new data. Moreover, 
comparing the Catboost model with existing prediction formulas has 
been restricted solely to the testing set, thereby ensuring a fair and 
unbiased comparison by evaluating each model’s performance on data 
not included in their training set. 

Fig. 16 assesses the performance of various predictive models (pre
sent work, Mandal et al., Lillistone and Jolly, Karbhari and Gao, Reza 

et al., Realfonzo and Napoli, and Vintzileou and Panagiotidou) against 
expected results (Ex) on a test dataset, focusing on three critical statis
tical error metrics: MSE, RMSE, and MAE. The present work model 
demonstrates exceptional precision, with the lowest MSE (0.0012), 
RMSE (0.0347), and MAE (0.0250), indicative of its predictions being 
highly consistent with the actual values. On the other hand, Mandal 
et al. and Lilliston and Jolly exhibit higher errors, especially in MSE and 
RMSE, denoting less precise predictions. Meanwhile, models Karbhari 
and Gao, Reza et al., Realfonzo and Napoli, and Vintzileou and Pan
agiotidou show intermediate error values, with Karbhari and Gao 
slightly outperforming the models’ relative performance, highlighting 
the present work’s efficacy performance of the models, highlighting the 
efficacy of the present work in the context of the test dataset. This chart 
effectively expresses the predictive accuracy of each model on the test 
dataset, with the present work model’s results suggesting a solid align
ment with the expected data and highlighting a need for improvement in 
the other models. 

Fig. 12. Comparison of present work with other empirical methods.  
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Fig. 17 provides a comparative visualization of R-squared values for 
seven distinct models tested on a dataset. R-squared is a metric that 
quantifies the extent to which the variance in the dependent variable can 
be explained by the independent variable(s) in a regression model. The 
present work model exhibits a superior R-squared value of 0.9847, 
indicating an exceptional level of explained variance and predictive 
accuracy. Conversely, the Mandal et al. and Lillistone and Jolly models 
have notably lower R-squared values of 0.2931 and 0.3229, respec
tively, suggesting limited explanatory power and predictive capability. 
The Karbhari and Gao, Reza et al., Realfonzo and Napoli, and Vintzileou 
and Panagiotido model’s register an intermediate R-squared of 0.6871, 
0.6278, 0.6081, and 0.6198, respectively, and pointing to a moderately 
effective model. This graphical representation starkly highlights the 
comparative effectiveness of this work in accounting for the variability 
of the test dataset. 

For the purpose of illustrating the comparison of mechanical dia
grams across all models with experimental results, Owen’s [87] exper
imental findings were selected, characterized by the following 
properties: a diameter of compression member (D) of 102 mm, height of 
compression member (H) of 203 mm, compressive strength of uncon
fined concrete (f’co) of 53 MPa, tensile modulus of elasticity (Ef) of 262 
GPa and ultimate tensile strength of FRP (ff) of 4200 MPa. The diagrams 
were then drawn based on embedded properties, with nominal thickness 
of FRP reinforcement (tf) being the only variable, altered within a range 
of 0 to 1.4. Moreover, a dependency between the tf and FRP reinforce
ment ratio (ρf) was observed, resulting in changes to ρf as well. Ac
cording to Fig. 18, it was noted that the line representing the peresent 
work closely approximates the experimental results. With an increase in 
the tf value, an augmentation in the compressive strength of confined 
concrete (f’cc) was observed. 

Fig. 13. Comparing RMSE, MAE, and MSE metrics for all data with all empirical models.  

Fig. 14. Comparing R-squared metric for all data with all model.  
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5.3. Comparison of proposed model with other ML algorithms 

Table 8 presents a comparative analysis of the performance metrics 
for various machine learning algorithms. The table is structured to 
display the R-squared, MSE, MAE, and RMSE for both training and 
testing datasets. The methods evaluated include the proposed method, 
CatBoost, XgBoost, AdaBosst, GBoost, Extra Trees, and Random Forest. 

The proposed method shows superior performance with the highest 
R2 values of 0.9898 for the training set and 0.9572 for the test set, 
indicating a robust explanatory power and predictiveness. It also has the 
lowest MSE and RMSE on the training and testing datasets, suggesting a 

model with high accuracy and precision. Conversely, AdaBoost exhibits 
lower R2 values, particularly on the test set with 0.7569, which might 
indicate overfitting or a model less capable of generalizing to new data. 
The Random Forest algorithm shows consistent performance across both 
datasets, with only a slight decrease in R2 from training to testing. 
Overall, this table indicates that the proposed method may offer a robust 
alternative to traditional ensemble methods in the machine learning 
domain. 

Upon evaluating the performance metrics of various machine 
learning algorithms, CatBoost emerged as the second-best performing 
method, as illustrated in Table 8. It demonstrated commendable pre
dictive capabilities with high R-squared values of 0.9825 for the training 
dataset and 0.9001 for the testing dataset, alongside relatively low error 
metrics (MSE, MAE, and RMSE) compared to other traditional algo
rithms. Given its strong baseline performance, CatBoost was selected as 
the foundation for further refinement and development. 

Building upon the robust framework of CatBoost, we introduced 
methodological enhancements to devise our proposed method. These 
enhancements aimed to address specific limitations observed in Cat
Boost and to further optimize the model’s performance. As a result of 
these improvements, the proposed method not only retained the 
inherent strengths of CatBoost but also exhibited superior performance 
metrics across both training and testing datasets. The advancements led 
to a notable increase in R-squared values and a reduction in error rates, 
thereby affirming the efficacy of our modifications. The proposed 
method’s performance with an R-squared of 0.9898 for training and 
0.9572 for testing, as well as the lowest MSE, MAE, and RMSE scores, 
underscores its potential as a highly accurate and reliable machine 
learning solution. 

The comparative analysis and subsequent development of the pro
posed method highlight the value of iterative enhancements in machine 
learning. By leveraging the strengths of CatBoost and incorporating 
targeted improvements, we have successfully developed a model that 
sets a new benchmark for predictive accuracy in the field. 

Fig. 19 provides a detailed heatmap of the R-squared values across 
various parameters for the machine-learning models under consider
ation. The color gradient reflects the degree of variance explained by 

Fig. 15. Taylor diagram.  

Fig. 16. RMSE, MAE and MSE results comparison for different methods for 
Test Dataset. 
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Fig. 17. R-squared results comparison for the test dataset.  

Fig. 18. Mechanical diagram comparison for all models.  
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each model, with darker hues indicating higher R-squared values and, 
thus, greater predictive accuracy. The proposed method outperforms the 
others on the training set with a near-perfect score, while on the test set, 
it shows a slightly lower but still high score, suggesting good general
ization. Other methods show varying degrees of performance, with 
GBoost and Random Forest also demonstrating high training scores. The 
test scores are consistently lower across all methods, which is typical due 
to the generalization gap. The color coding and the precise numeric 
labels on each bar provide an at-a-glance understanding of the model 
performances, with darker colors indicating higher scores. 

In contrast, Fig. 20 illustrates a comparison chart that compares the 
performance of the proposed method against established machine 
learning algorithms across multiple metrics, including MSE, MAE, and 
RMSE. The error metrics for each model are split into train and test, 
represented by blue and orange bars, respectively. The proposed method 
has the lowest error rates across all three metrics on both the training 
and testing data, suggesting it has the best performance and general
ization capability among the evaluated models. The consistency of the 
model’s superior performance across different metrics emphasizes its 
robustness. In contrast, the other models exhibit higher error rates, 

indicating a range of effectiveness with the Random Forest model 
showing the highest errors in this evaluation. 

5.4. Feature importance analysis of model 

Machine learning models can be difficult to interpret because they 
are frequently seen as black boxes. In order to comprehend these 
models, explainable ML approaches are essential. These techniques can 
be used to identify the key features that determine a model’s output. 
This study employed two approaches, namely the SHAP-based feature 
contribution (SHapley Additive exPlanations) [146] and Permutation 
Feature Importance (PFI) [147], to demonstrate the significance of each 
feature and its corresponding contribution to the model’s predictions. 

SHAP clarifies the prediction of a particular data instance by calcu
lating each predictor’s contribution to the prediction using game theory 
principles. Due to its theoretical strength and its fair distribution of ef
fects, the Shapley value may be the only method capable of providing a 
full explanation. It addresses the lack of interpretability in certain ML 
algorithms by offering consistent interpretability. SHAP employs Shap
ley values to quantify and demonstrate the contribution of input features 
to the output of a model. This value is calculated by comparing the 
variance between the model’s prediction with and without feature 
values. Specifically, a SHAP value is the average marginal contribution 
of a feature value over any potential combinations of that feature value. 
A positive SHAP number denotes a potential contribution (or influence) 
that might benefit the forecast, whereas a negative value denotes a po
tential contribution that could be negative [148]. The SHAP summary 
graphs for the proposed model are displayed in Fig. 21. These charts 
demonstrate the effects of characteristics with greater and lower values 
on the SHAP values. Additionally, the attributes are arranged on the Y 
axis in descending order of importance. As can be seen in Fig. 21, higher 
values of compressive strength of unconfined concrete and ultimate 
tensile strength of FRP have a positive impact on the prediction, while 
lower values of FRP reinforcement ratio and thickness of FRP have a 
negative impact. Other features make a very tiny contribution. 

The mean SHAP value offers a comprehensive assessment of the 
significance of a feature across all instances within a given dataset, as 

Table 8 
Performance metric results with other ML methods.  

Methods Data R2 MSE MAE RMSE 

Proposed method Train 0.9898 0.0008 0.0219 0.0290 
Test 0.9572 0.0026 0.0373 0.0514 

CatBoost Train 0.9825 0.0014 0.0236 0.0369 
Test 0.9001 0.0102 0.0540 0.1009 

XGBoost Train 0.9713 0.0022 0.0343 0.0474 
Test 0.8837 0.0091 0.0562 0.0955 

AdaBoost Train 0.8330 0.0131 0.0928 0.1145 
Test 0.7569 0.0191 0.1009 0.1381 

GBoost Train 0.9832 0.0009 0.0245 0.0301 
Test 0.8971 0.0065 0.0432 0.0806 

Extra trees Train 0.9822 0.0009 0.0256 0.0298 
Test 0.8775 0.0096 0.0506 0.0980 

Random forest Train 0.9848 0.0012 0.0229 0.0344 
Test 0.8778 0.0096 0.0537 0.0979  

Fig. 19. R-squared results comparison for different ML methods for test and train dataset.  
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shown in Fig. 22. The calculation involves determining the average of 
the absolute SHAP values for a specific feature across all instances. A 
feature with a high mean SHAP value indicates that it substantially in
fluences the model’s prediction, regardless of whether this influence is 
positive or negative. In contrast, a feature with a low mean SHAP value 
suggests that its contribution to the model’s prediction is generally very 
small. 

The aforementioned metric can be employed to assess and contrast 
the relative significance of various attributes within a machine-learning 
model. Nevertheless, it is crucial to remember that although mean SHAP 
values provide a broad understanding of the significance of features, 
they do not reveal the specific impact of each feature on individual 
predictions, which is the primary purpose of SHAP values. In addition, 
the scatter plot of each feature for SHAP value is shown in Fig. 23. 

In contrast to methods like SHAP, which highlight which charac
teristics were more significant in creating a particular prediction, the PFI 
method displays the features that influence the model’s overall 

performance. The concept underlying PFI is straightforward. The input 
variables that contribute to prediction possess substantial informational 
value. The quality of predictions will decrease when the information is 
disrupted by randomly shuffling feature values. If the drop in quality is 
small, then the original predictor’s information was not crucial to 
making predictions, and the model still does reasonably well even 
without it. Conversely, a considerable reduction in value suggests that 
the initial predictor had a notable impact on the accuracy of predictions 
[148]. This analysis provides a critical understanding of the 
decision-making process of the model. Fig. 24 reveals that the CFRP 
reinforcement ratio and compressive strength of unconfined concrete 
are the most influential factors in predicting the compressive strength of 
confined concrete in the proposed model. Lastly, it seems that the other 
features do not significantly impact the predictions. 

Fig. 20. RMSE, MAE and MSE results for all ML methods for test and train dataset.  
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5.5. Graphical user interface (GUI) of model 

The intricately engineered Graphical User Interface (GUI) is devel
oped specifically for modeling the compressive strength of CFRP-CC. 
This interface, characterized by its user-friendly design, facilitates 
direct engagement with the research findings, thereby easing the 

computation of compressive strength values for CFRP-CC. The design of 
this GUI, which transcends mere scientific accuracy, guarantees the 
pragmatic application of research outcomes in real-world contexts. 
Serving as an intermediary between the research’s inherent complexities 
and its practical execution, the GUI renders the research’s critical in
sights more comprehensible and applicable to an extensive audience. 
The open-source platform, as demonstrated in Fig. 25, exhibits a design 
that is easily navigable for users (The GUI file is publicly available at 
https://nimakhodadadi.com/software). 

6. Conclusion and future work 

The main goal of the study was to create advanced models by uti
lizing the latest machine learning techniques for improving predictions 
on the strength of Carbon Fiber Reinforced Polymer-Confined Concrete 
(CFRP-CC) samples. A large dataset containing 916 samples was utilized 
for model development, which combines Particle Swarm Optimization 
(PSO) with Categorical Boosting algorithms (PSO-CatBoost). Following 
the model’s development, the study compared it against six other 
models based on real experimental data. Additionally, a novel and 
thorough comparative analysis was conducted to evaluate the PSO- 
CatBoost model against six state-of-the-art machine-learning models, 
including CatBoost, XgBoost, AdaBoost, GBoost, Extra Trees, and 
Random Forest. The SHAP (Shapley Additive exPlanations) method was 
employed to understand the significance of various predictors and their 

Fig. 21. The SHAP diagram for impact of features.  

Fig. 22. Effects of all features for compressive strength of CFRP concrete.  

Fig. 23. Scatter plot of each feature for SHAP value.  
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interactions. Feature importance evaluations revealed that the 
compressive strength of unconfined concrete (f’co) along with the FRP 
reinforcement ratio (ρf) emerged as the paramount predictors for the 
compressive strength of CFRP-CC specimens. An analysis of the dataset 
disclosed that the strength of unconfined concrete is pivotal in 
appraising the efficacy of confinement, and a salient association was 
detected between the axial rigidity (ρf Ef) of the composite jacket and the 
compressive strength under confinement. 

The results demonstrated that the incorporation of PSO to enhance 
these algorithms significantly improved the precision of the predictive 
models compared to their basic versions. The comprehensive analysis 
strongly supports the superiority of machine learning methods over 
traditional approaches for complex structural predictions and design 
problem solutions. The performance of these algorithms, however, is 
dependent on their robustness and the depth and detail of the dataset. 
The implementation of boosting algorithms was highlighted for their 
ability to improve predictive accuracy due to their proficiency in 
handling diverse data and ensuring precise model representation. 

Among the evaluated models, the PSO-CatBoost model was distin
guished by achieving a high coefficient of determination, marked at 
0.9847, and was notably effective in reducing both mean squared error 
and root mean squared error when compared with experimental 
benchmarks. 

It is recommended for future research to focus on applying these 
methodologies to enhance predictive accuracy across additional exper
imental models. Moreover, the exploration of alternative optimization 
algorithms in place of PSO is suggested to achieve more accurate results. 
The application of this model is expected to extend to other areas within 
the concrete and civil engineering disciplines. 
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