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A B S T R A C T   

In the quest to reduce the environmental impact of the construction sector, the adoption of sustainable and eco- 
friendly materials is imperative. Geopolymer recycled aggregate concrete (GRAC) emerges as a promising so
lution by substituting supplementary cementitious materials, including fly ash and slag cement, for ordinary 
Portland cement and utilizing recycled aggregates from construction and demolition waste, thus significantly 
lowering carbon emissions and resource consumption. Despite its potential, the widespread implementation of 
GRAC has been hindered by the lack of an effective mix design methodology. This study seeks to bridge this gap 
through a novel machine learning (ML)-based approach to accurately model the compressive strength (CS) of 
GRAC, a critical parameter for ensuring structural integrity and safety. By compiling a comprehensive database 
from existing literature and enhancing it with synthetic data generated through a tabular generative adversarial 
network, this research employs eight ensemble ML techniques, comprising three bagging and five boosting 
methods, to predict the CS of GRAC with high precision. The boosting models, notably extreme gradient 
boosting, light gradient boosting, gradient boosting, and categorical gradient boosting regressors, demonstrated 
superior performance, achieving a mean absolute percentage error of less than 6 %. This precision in prediction 
underscores the viability of ML in optimizing GRAC formulations for enhanced structural applications. The 
identification of testing age, natural fine aggregate content, and recycled aggregate ratio as pivotal factors offers 
valuable insights into the mix design process, facilitating more informed decisions in material selection and 
proportioning. Moreover, the development of a user-friendly graphical interface for CS prediction exemplifies the 
practical application of this research, potentially accelerating the adoption of GRAC in mainstream construction 
practices. By enabling the practical use of GRAC, this research contributes to the global effort to promote sus
tainable development within the construction industry.   

1. Introduction 

The construction industry plays a vital role in the global economy 
and population welfare, providing infrastructure, buildings, and facil
ities essential for modern society. However, this industry is also known 
for its significant environmental impact, resource consumption, and 
waste generation [1]. As environmental concerns become increasingly 
important worldwide, there is a growing imperative to adopt sustainable 
and eco-friendly practices in construction. Geopolymer concrete stands 
as an interesting innovation in the realm of construction materials, 
driven by a strong commitment to sustainability [2]. The key compo
nents of geopolymer concrete are aggregates, an aluminosilicate source 

material (e.g., silica fume, fly ash, or slag cement), and an alkaline 
activator solution (e.g., sodium hydroxide and sodium silicate) [3]. 
Additionally, activators are chemicals or solutions that initiate and 
accelerate the geopolymerization process. They are mixed with the 
binder precursor materials to promote the formation of geopolymer gels. 

One of the key advantages of geopolymer concrete is its reduced 
environmental impact. It requires less energy to produce because it does 
not rely on the high-temperature production of Portland cement. 
Additionally, it utilizes industrial by-products like fly ash and slag 
cement, which can reduce waste and landfill disposal [4]. Geopolymer 
concrete can have a significantly lower carbon footprint compared to 
conventional concrete due to the reduced CO2 emissions associated with 
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its production [5]. This makes it an attractive choice for sustainable 
construction and environmentally conscious projects. Geopolymer 
concrete often exhibits better resistance to chemical attack, corrosion, 
and abrasion compared to traditional concrete. It can withstand harsh 
environments and is particularly suitable for infrastructure in aggressive 
chemical or marine settings [6]. Moreover, geopolymer concrete has 
good fire-resistant properties. It can withstand high temperatures 
without significant loss of structural integrity [7]. This makes it suitable 
for fire-resistant construction elements like tunnels and fireproofing 
applications. 

The use of recycled aggregates, often sourced from construction and 
demolition wastes, in this type of concrete, generates geopolymer 
recycled aggregate concrete (GRAC); an environmentally friendly con
struction material that not only reduces the burden on overflowing 
landfills but also optimizes the efficient use of construction resources [8, 
9]. However, the use of recycled aggregates in GRAC can decrease its 
compressive strength [10], fracture energy [10], acid resistance [11], 
durability performance [12], and fire resistance [13] depending on the 
proportion of recycled aggregate used. This reduction is mainly due to 
the increased porosity of the concrete and weaker interfacial transition 
zone [10]. Eliminating traditional Portland cement and using fly ash and 
slag cement, obtained from by-products of industrial processes, as 
binders of GRAC, provides a sustainable and eco-friendly way to 
significantly diminish the carbon footprint [14]. Furthermore, the 
incorporation of fly ash, slag cement, and silica fume enhances the 

mechanical and durability properties of GRAC. This improvement is due 
to their interaction with calcium silicate hydrate, calcium aluminate 
silicate hydrate, and sodium aluminate silicate hydrate gels, which off
sets the negative effects associated with using 100 % recycled aggregate 
[15]. 

The complexity observed in the behaviour of GRAC arises from 
multiple sources [16]. One significant factor is the intricate chemical 
reactions involving aluminosilicate source materials, which interact 
with activators. The behaviour of GRAC exhibits notable variations 
based on the specific characteristics and composition of these source 
materials, as well as the activator formulation employed [16]. 
Furthermore, the properties of recycled aggregates used in the mix can 
exert a substantial influence on the concrete’s performance [17]. 
Additionally, the conditions during the curing process, encompassing 
factors like temperature and duration, play a pivotal role in the geo
polymerization reactions, rendering GRAC highly responsive to varia
tions in curing methods [18]. Consequently, the absence of a generalized 
standardized design method tailored to the intricacies of GRAC becomes 
apparent. Given these multifaceted challenges and the imperative to 
optimize GRAC for practical applications, the integration of machine 
learning (ML) techniques emerges as a valuable approach. ML has the 
capacity to model the intricate relationships between input parameters 
and the mechanical properties of concrete, thus facilitating more precise 
predictions and streamlined mix designs [19]. 

In the past five years, as summarized in Table 1, several research 

Table 1 
Studies in the past five years regarding the prediction of CS of geopolymers using ML.  

Used SCMs Input features Input 
number 

Used ML methods Database 
size 

Refs 

FA, Sl FA, Sl, NCA, NFA, W, SP, SH, SS 8 GPR, ANN, RFR, GBR 177 [20] 
Sl, SF, Zeolite Sl, SF, Zeolite, SH, Age 5 DT, BR, LSBR 351 [21] 
FA FA, AA/FA, NCA, NFA, SS/SH, SHC, CT, Age 8 LR, ANN, ABR 154 [22] 
FA, Sl, MK FA, Sl, MK, NCA, NFA, W, SP, SH, SHC, CT, CD 11 ANN, RFR, MARS, HEML 1123 [23] 
FA FA, NCA, NFA, W, (SiO2, Na2O, CaO, Al2O3, Fe2O3, LOI, SSA) in FA, AA/FA, 

SH, SHC, SS, CT, HCD 
17 GEP, ANFIS, ANN 245 [24] 

Sl, Volcanic ash Volcanic ash/B, Sl/B, Na/Al, Si/Al, two features related to room curing 
duration, two features related to oven drying duration 

8 LR, Poly2, Elastic Net, Bayesian Ridge, 
SVR, RFR, BR, GBR, XGBR, Stacking 

80 [25] 

FA (SiO2, Al2O3, Fe2O3, CaO, K2O, SO3, Na2O, P2O5, MgO, TiO2, LOI) in FA, NCA/ 
FA, NFA/FA, SP/FA, W/FA, SH/FA, SHC, AA/FA, CT, HCD, CD 

21 ANN 896 [26] 

FA, Sl FA, Sl, NCA, NFA, W, Reactivity modulus, Hydraulic modulus, SiO2 modulus, 
Al2O3 modulus, Lime modulus, SH, SS, SS- Na2O, SS- SiO2, SS-W, CT, RH, Age 

18 RFR, ERT, GBR, XGBR 676 [27] 

Sl, Corncob ash Sl, Corncob ash, NCA, NCA, W, SH pellets, SHC, SS, CD, Concrete grade 10 DNN 288 [28] 
FA SiO2 modulus, Na2O/AA, SiO2/Al2O3, Na2O/SiO2, L/S, Pretreatment CT, 

HCD, Age 
8 RFR, GBR, XGBR 492 [29] 

FA, Sl, MK FA/B, Sl/B, MK/B, W/B, L/S, SH, SS, SS/AA, SH/AA, CT 10 ANN, RFR, KNN 191 [30] 
Sl, Perlite Perlite, SHC, CT, HCD 4 LR, ANN, MARS, GBR 180 [31] 
FA, Sl FA, Sl, NCA, NFA, W, SP, SH, SS, CT, CD, RH, Age 12 ANN 1178 [32] 
FA, Sl, Red mud n(H2O)/n(Na2O), Na2O, n(SiO2)/n(Na2O), n(SiO2)/n(Al2O3), n(SiO2)/n 

(CaO), L/S, CT, CD 
8 KNN, SVR, BR, RFR, ETR, GBR, XGBR, 

DNN 
557 [33] 

FA, Sl, SF, RHA, 
Calcined clay 

FA, Sl, SF, RHA, Calcined clay, NCA, NFA, W, SP, SH, SHC, SS, SiO2/Na2O 13 ANN 381 [34] 

FA FA, NCA, NFA, W, SP, SiO2, Al2O3, SH, SHC, SS, Na2SiO3/NaOH, AA/FA, CT, 
HCD 

14 ANN, SVR, ELM 110 [35] 

FA FA, NCA, NFA, SH, SHC, SS, SiO2, Na2O, Age 9 DTR, BR, ABR 154 [36] 
FA FA, NFA, NCA, SH, SHC, SS, SS/SH, SiO2/Al2O3, AA/FA, CT, HCD, Age 12 ANN, DNN, ResNet 860 [37] 
FA SS/SH, AA/FA, SHC, CT 4 ANFIS 90 [38] 
FA FA, NCA, NFA, W, SP, SH, SHC, SS, SiO2/SS, Na2O/SS, CT, HCD 12 BLR 162 [39] 
FA W/FA, SP/FA, Initial CT, CD, Age, TAV, SHC, SiO2/Na2SiO3 8 GEP, MEP 311 [40] 
FA FA, NCA, NFA, W, SH, SHC, SS, CT, HCD 9 DNN, ResNet 335 [41] 
FA, Sl FA/B, Sl/B, Sodium ion/AA, Silicon ion/AA, Boron ion/AA 5 ANN, GP 114 [42] 

AA: Alkaline activators, ABR: Adaptive boosting regressor, Age: Testing age, Al2O3: Aluminium oxide, ANFIS: Adaptive neuro-fuzzy inference system, ANN: Artificial 
neural network, B: Binder, BLR: Bayesian linear regression, BR: Bagging regressor, CaO: Calcium oxide, CD: Curing duration, CT: Curing temperature, DTR: Decision 
tree regressor, ELM: Extreme learning machine, ETR: Extremely randomized trees regressor, FA: Fly ash, Fe2O3: Iron trioxide, GBR: Gradient boosting regressor, GEP: 
Gene expression programming, GPR: Gaussian process regression, HCD: High-temperature curing duration, HEML: Hybrid ensemble machine learning model, KNN: K- 
nearest neighbour,K2O: Potassium oxide, LR: Linear regression, LOI: Loss on ignition, L/S: Liquid to solid ratio, LSBR: Least-squares boosting regressor, MARS: 
Multivariate regression spline, MEP: Multi-expression programming, MgO: Magnesium oxide, MK: Metakaolin, Na2O: Sodium oxide, NCA: Natural coarse aggregate, 
NFA: natural fine aggregate, P2O5: Phosphorus pentoxide, Poly2: 2nd-degree polynomial regressor, RFR: Random forest regressor, ResNet: Deep residual network, RH: 
Relative humidity, RHA: Rice husk ash, SH: Sodium Hydroxide, SHC: Sodium Hydroxide concentration, SiO2: Silicon dioxide, Sl: Slag cement, SO3: Sulphur trioxide, 
SP: Superplasticizer, SS: Sodium Silicate, SSA: Specific surface area, SVR: Support vector regression, TAV: Total aggregate volume, TiO2: Titanium oxide, W: Water, 
XGBR: Extreme gradient boosting regressor. 

E. Golafshani et al.                                                                                                                                                                                                                             



Advances in Engineering Software 191 (2024) 103611

3

efforts have aimed to model the CS of geopolymer mortars and concrete 
using ML techniques. The best-developed ML models are bolded in this 
table. Researchers have primarily focused on investigating the utiliza
tion of fly ash and slag cement in geopolymers due to their widespread 
availability and distinctive chemical properties. These studies have 
employed a diverse range of input features, with the number of features 
in models ranging from 4 to 21. The size of the datasets used for 
developing ML models has exhibited significant variability, ranging 
from smaller datasets with 80 samples to more extensive datasets 
comprising 1178 samples. The ratio of dataset size to the number of 
input features across these 23 studies has fluctuated between 7.6 and 
102.1, with an average ratio of 39.2. This diversity underscores the 
importance of tailoring dataset size to specific modelling contexts, 
considering factors such as problem complexity, choice of regression 
models, data quality, and inherent noise. The average ratio of 39.2 from 
these studies can serve as a valuable benchmark, suggesting that, on 
average, these investigations have found datasets approximately 39 
times larger than the number of input features to be suitable for their 
regression modelling tasks within the scope of this study. In addition, 
researchers have employed various ML techniques in these studies, with 
ensemble models being a prevalent choice, featured in nearly half of the 
conducted investigations. Remarkably, ensemble models have demon
strated superior performance compared to other ML model types in 
approximately one-third of the studies conducted. These insights not 
only provide valuable guidance regarding dataset sizing in this study’s 
context but also underscore the effectiveness of ensemble techniques in 
accurately modelling the CS of geopolymers. 

The existing body of research has revealed a notable deficiency in the 
realm of developing ML models specifically tailored to predict the CS of 
GRAC. In light of this gap, a comprehensive CS database for GRAC was 
meticulously curated by drawing upon available literature sources. 
Recognizing the paramount significance of database size during the 
model development phase, proactive measures were taken to expand the 
size of the database, achieved through the utilization of the tabular 

generative adversarial network (TGAN) technique [43] as a means to 
generate synthetic data. A series of rigorous analyses were subsequently 
executed with the primary objective of determining the optimal size for 
this synthetic database. Furthermore, a diverse array of ensemble 
techniques, encompassing both bagging and boosting methodologies, 
were harnessed for the purpose of modelling the CS of GRAC. Ensemble 
techniques were chosen for their ability to deliver superior predictive 
performance, particularly in complex scenarios with non-linear data 
relationships. These methods effectively prevent overfitting, ensuring 
models perform well on unseen data. They also increase model diversity, 
which improves prediction accuracy by aggregating insights from mul
tiple models. Additionally, ensemble methods enhance interpretability, 
offering insights into the importance of different predictors. After 
finding the best ML model, sensitivity analysis and a parametric study 
were executed to elucidate the significance of input features and 
comprehend the CS trends resulting from variations in these inputs. The 
rest of the paper is organized as follows: Section 2 presents the study 
framework. Detailed explanations about data preparation are given in 
Section 3. Section 4 discusses the ML techniques used in this study. 
Section 5 presents the results and corresponding discussions, followed 
by Section 6, which outlines the key findings and conclusions of the 
study. 

2. Study framework 

The various stages of this study are illustrated in Fig. 1, offering an 
overview of the research framework. The study initiates with a crucial 
data preparation phase, encompassing essential steps such as data 
gathering, data preprocessing, and data partitioning. Subsequently, a 
synthetic database is generated, with an examination of numerous pa
rameters conducted to ensure the reliability of this synthetic database. 
Following this, the study delves into the development of eight ensemble 
models, comprising three bagging ensemble models and five boosting 
ensemble models. These models aim to predict the CS of GRAC. Several 

Fig. 1. The study framework.  
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statistical analyses are performed, and various error measures are 
computed for the ensemble models using the testing dataset during the 
verification phase. These analyses serve to assess the effectiveness of the 
developed models, ultimately leading to the selection of the best- 
performing machine learning model among the ensembles. Advancing 
further, a critical phase dedicated to sensitivity analysis and parametric 
study is undertaken. This phase investigates the roles and effects of input 
features on the CS of GRAC. Finally, to enhance user interaction and 
practical utility, a user-friendly graphical user interface (GUI) is created. 
More details regarding the different steps are given in the following 
section. 

3. Data preparation 

3.1. Data gathering and preprocessing 

A comprehensive database of the CS of GRAC, including 314 data 
samples, was gathered from 14 peer-reviewed papers in the literature. 
The collected database included the contents of fly ash (FA), slag cement 
(Sl), natural coarse aggregate (NCA), recycled coarse aggregate (RCA), 
natural fine aggregate (NFA), sodium hydroxide (SH), sodium silicate 
(SS), superplasticizer (SP), as well as recycled aggregate water absorp
tion (RWA), sodium hydroxide concentration (SHC), curing temperature 
(CT), high-temperature curing duration (HCD), and testing age (Age) as 
candidate predictors, and the CS of GRAC as the dependent feature. The 
information on the studies used in this research is given in Table 2. 

The Variance Inflation Factor (VIF) serves as a metric for measuring 
the extent of multicollinearity. Within this research, a VIF score 
exceeding 10 is regarded as an indication of significant multi
collinearity, which has the potential to influence the outcomes of the 
model [58]. Elevated VIF values signal that a predictor variable exhibits 
strong correlations with other predictor variables within the model, 
which can result in potentially unreliable interpretations. As shown in 
Fig. 2(a), three input features, including NFA, RCA, and NCA, exhibit 
VIF scores exceeding 10, with the latter two features registering VIF 
scores surpassing 100. To address this issue, a new input feature, recy
cled aggregate ratio (RAR), was introduced as a replacement for both 
RCA and NCA. The VIF scores for the input features considering the 
newly introduced input feature were then computed, as illustrated in 
Fig. 2(b). In this revised scenario, all input features demonstrate VIF 

scores of approximately six or less, effectively mitigating the risk of 
multicollinearity within this study. 

3.2. Synthetic database generation 

Tabular generative adversarial network (TGAN) is a method used to 
create synthetic data samples that mimic the statistical properties and 
patterns found in the main database [43]. This serves the purpose of 
expanding the database, which can potentially enhance the performance 
of ML models. Generating synthetic samples through TGAN proves 
particularly beneficial when dealing with limited data, a scenario 
commonly encountered in complex regression tasks. By introducing 
synthetic data, additional variability is injected into the main dataset, 
effectively acting as a regularization technique to prevent overfitting 
and improve the generalization capabilities of regression models. 

TGAN operates by training two networks, a generator, and a 
discriminator, in a competitive manner. The generator network learns to 
map random noise vectors to the main data samples, generating syn
thetic data that closely resembles real data. In the context of TGAN, the 
use of a Long Short-Term Memory (LSTM) network as the generator 
allows the model to capture sequential dependencies within the data. 
Each time step in the LSTM corresponds to a feature in the tabular data, 
and the LSTM layer processes these features sequentially. Simulta
neously, the discriminator network’s role is to distinguish between real 
and synthetic data. It undergoes training using a combination of real 
data from the main dataset and synthetic data produced by the gener
ator. The discriminator’s objective is to classify data samples as either 
real or synthetic, and it often employs a Multi-Layer Perceptron (MLP), a 
feedforward neural network capable of capturing intricate relationships 
in tabular data. The MLP architecture in the discriminator enables it to 
scrutinize features for discerning real data from synthetically generated 
data [43]. 

When comparing a synthetic database generated by TGAN with the 
main database, it is essential to assess how accurately the synthetic data 
replicates the underlying patterns, distributions, and relationships 
inherent in the main dataset. In this study, the non-parametric Kolmo
gorov-Smirnov test was employed to compare the overall distributions 
between the input features of the main and synthetic databases [59]. 
Various synthetic database sizes were considered, represented by ratios 
to the main database size, including 0.7, 0.8, 0.9, and 1. Fig. 3 visually 
represents the p-values of input features obtained from the 
Kolmogorov-Smirnov test for different synthetic database sizes. Notably, 
for synthetic database size ratios of 0.7 and 0.8, all input features yielded 
p-values greater than 0.05, signifying that the distribution of all input 
features in the main and synthetic databases closely aligns. Conse
quently, this study selects a synthetic database size ratio of 0.8 for 
further analysis. 

Histograms and probability distributions serve as valuable plots for 
evaluating the resemblance between synthetic and main databases. 
These plots enable the depiction of data attributes and have the potential 
to unveil whether the generated data closely mirrors the tendencies, 
arrangements, and distributions found in the main database. As 
demonstrated in Fig. 4, the histograms and probability distributions of 
the input features in both the main and synthetic databases display a 
remarkable likeness in their shapes and configurations. This resem
blance strongly indicates that the generated data effectively captures the 
main data’s distributional and probabilistic traits, successfully repli
cating the statistical characteristics inherent in the main database. 

Pairwise feature correlation analysis involves calculating Pearson 
correlation coefficients between pairs of features. This analysis helps 
understand the relationships and dependencies between different fea
tures in the dataset. The correlation matrix of input and output features 
for the combined database is shown in Fig. 5. In general, the absolute 
correlation coefficient between two features above 0.8 indicates a high 
degree of linear relationship between them. This could imply that 
changes in one variable are often associated with predictable changes in 

Table 2 
Information from studies used in the database of this research.  

Sample ID Data 
number 

Data 
percentage (%) 

Ref 

S-0.8, S-0.7, S-0.6, S-0.5, S-0.4, S-0.3 24 7.64 [44] 
GPC-FG30, GPC-FG40, GPC-FG50, GPC- 

FG60 
8 2.55 [45] 

M20, M30, M40, M50, M60 10 3.18 [46] 
M1, M2, M3, M4, M5, M6, M7, M8, M9, 

M10, M11, M12 
44 14.01 [47] 

F60G40R0, F40G60R0, F20G80R0, 
F40G60R25, F40G60R50, F40G60R75, 
F40G60R100 

21 6.69 [48] 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 24 7.64 [49] 
R0, R25, R50, R100, r-R0S15, r-R25S15, r- 

R50S15, r-R100S15, r-R0S30, r-R25S30, 
r-R50S30, r-R100S30, a-R0S15, a- 
R25S15, a-R50S15, a-R100S15, a-R0S30, 
a-R25S30, a-R50S30, a-R100S30 

80 25.48 [50] 

GNAC/B0, GRAC/B0 6 1.91 [51] 
S-0.40, S-0.45, S-0.50 24 7.64 [52] 
S00, S10, S20, S30, S00R50, S10R50, 

S20R50, S30R50, S00R100, S10R100, 
S20R100, S30R100, 

36 11.46 [53] 

1, 2, 3, 4, 5, 6, 7, 8 8 2.55 [54] 
GL8, GL12, GL16, GR8, GR12, GR16 6 1.91 [55] 
GPC0, GPC15, GPC30, GPC50 8 2.55 [56] 
GRC0, GRC50, GRC100 15 4.78 [57]  
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the other. Since the VIF scores of FA, Sl, CT, and HCD features are below 
six, their impact on multicollinearity is not substantial, even though the 
absolute correlation coefficients between Sl-FA and CT-HCD are high. 
This is because the increase in standard errors due to multicollinearity is 
relatively small, and thereby the impact on the ML model’s predictions 
and interpretations is not significant. 

Table 3 presents the statistical characteristics of both input and 
output features for the main, synthetic, and combined databases. A 
detailed examination of these statistical parameters for the main and 
synthetic databases reveals a notable degree of alignment, suggesting an 
acceptable agreement between the two. This observation implies that 
the features within the synthetic database have been effectively 
distributed, adhering closely to the underlying feature distributions of 
the main database. It is worth mentioning that every data sample in
corporates fly ash, underscoring its prevalence in the database. More
over, approximately 63 % of the data samples include slag cement, while 
an even higher proportion, approximately 78 %, comprises natural 
coarse aggregate. Additionally, about 37 % of the data samples under
went curing at elevated temperatures, ranging from 40 to 80 ◦Celsius. 
Delving into the CS of GRAC, it was found that the average CS across all 
ages stands at 43.4 MPa. However, when explicitly considering a testing 
age of 28 days, the average CS significantly elevates to 49.2 MPa. This 
substantial increase highlights the potential of GRAC to be categorized 
as high-strength concrete. 

4. ML techniques used in this study 

In this research, a set of eight ensemble methodologies was 
employed, comprising three bagging and five boosting ensemble tech
niques, to create predictive models for the CS of GRAC. The rationale 
behind selecting the decision tree regressor (DTR) as the fundamental 
building block for our ensemble models stemmed from its favorable 
attributes, including interpretability, robustness, and capacity to effec
tively handle non-linear relationships. In this section, the pivotal role of 
the DTR as the foundational component of ensemble techniques is 
elucidated. Subsequently, three specific bagging ensemble techniques 
are explained, namely the random forest regressor (RFR), bagging re
gressor (BR), and extremely randomized trees regressor (ETR). 
Following that, five distinct boosting ensemble techniques are expoun
ded: the adaptive boosting regressor (ABR), gradient boosting regressor 
(GBR), extreme gradient boosting regressor (XGBR), categorical boost
ing regressor (CBR), and light gradient boosting regressor (LBR), 
providing valuable insights into the role each played in enhancing the 
predictive capabilities of ML models. 

4.1. DTR 

A DTR is constructed in a hierarchical structure, including nodes and 
leaves, that aims to predict a continuous target feature. Nodes represent 

Fig. 2. The VIF scores for the a) initial input features and b) final input features.  

Fig. 3. The p-values of the Kolmogorov-Smirnov test of all input features for different synthetic database sizes.  
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decision points based on features, while leaves represent the predicted 
numerical values [60]. At each node, the DTR algorithm selects a feature 
and a threshold to split the data into two subsets. The splitting criterion, 
such as Mean Squared Error (MSE), aims to minimize the variance of the 
target feature within each subset. The tree-building process is recursive. 
It starts at the root node with the entire dataset and recursively splits it 
into subsets at each node, moving down the tree. The splitting process 
continues until a stopping condition is met, which may include a 

maximum tree depth, a minimum number of data points per leaf, or a 
minimum reduction in variance. When the tree-building process is 
complete, each leaf node contains a constant value (typically the mean 
of the target values in the leaf), which is the predicted numerical value 
for the target feature within that leaf’s region. 

Fig. 4. The distribution histograms of the main database (MD) and synthetic database (SD).  
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4.2. RFR 

An RFR is an ensemble ML technique that enhances prediction ac
curacy and robustness by combining the forecasts of multiple base DTRs. 
In this approach, each RFR is constructed using a random subset of the 
training data (known as bootstrapping) and a random subset of the 
features. This randomness introduces diversity among the constituent 
trees. The RFR aggregates the predictions made by all the individual 
DTRs to arrive at the final prediction which helps mitigate overfitting 
when compared to using single DTRs. The DTR offers several hyper
parameters that can be fine-tuned to optimize model performance [61]. 
These include the number of trees (NT), the maximum tree depth (MTD), 
as well as parameters like the minimum samples required for a split 
(MSS), the minimum samples required for a leaf (MSL), and the 

maximum number of features considered at each split (MNF). 

4.3. BR 

BR seeks to enhance the precision and reliability of regression 
models by combining forecasts generated by multiple base DTRs. BR and 
RFR share similarities in their approaches. However, the principal 
distinction lies in the fact that BR does not encompass feature selection, 
typically utilizing all available features when constructing each base 
DTR [62]. 

4.4. ETR 

An ETR is a bagging ensemble method similar in behavior to an RDR. 

Fig. 5. Correlation matrixes of input and output features for the combined database.  

Table 3 
Statistical parameters of input and output features for the main, synthetic, and combined databases.  

Features Mean* Standard deviation min 25 % 50 % 75 % Max 

FA (kg/m3) 327.42/332.73/ 
329.76 

85.71/75.34/81.27 92/175/92 256/280/276 350/350/350 400/400/400 466/428/466 

Sl (kg/m3) 92.49/85.38/89.35 92.96/79.62/87.32 0/0/0 0/0/0 60/65.68/60 165/132.97/ 
145.55 

368/263.74/368 

RAR 0.56/0.56/0.56 0.41/0.39/0.40 0/0/0 0.20/0.25/0.25 0.5/0.5/0.5 1/1/1 1/1/1 
RWA (%) 3.56/3.68/3.61 2.19/2.14/2.17 0/0/0 2.12/2.12/2.12 4.22/4.22/4.22 4.99/4.99/4.99 6.78/6.78/6.78 
NFA (kg/m3) 605.19/610.09/ 

607.35 
100.31/96.19/ 
98.45 

465/465/465 540/550/550 560/560/560 720/720/720 806/806/806 

SH (kg/m3) 65.85/64.95/65.46 20.72/20.14/20.46 18/18/18 51.5/51.5/51.5 61/61/61 80/75.64/80 108/103/108 
SHC 

(Molarity) 
11.04/10.67/10.88 2.63/2.41/2.54 6/6/6 8/8/8 12/12/12 12/12/12 16/16/16 

SS (kg/m3) 128.87/127.10/ 
128.09 

28.83/29.27/29.01 69/69/69 120/121.8/120 128.5/128.5/ 
128.5 

150/150/150 171.4/171.4/171.4 

CT (oC) 41.91/43.93/42.80 21.23/21.57/21.39 26.37/26.37/ 
26.37 

27/27/27 27/27/27 60/60.21/60 90/89/90 

HCD (Hours) 9.48/9.18/9.35 13.45/11.34/12.55 0/0/0 0/0/0 0/0/0 24/24/24 48/24/48 
SP (kg/m3) 3.60/3.69/3.64 3.94/3.80/3.88 0/0/0 0/0/0 1.42/1.52/1.42 8/8/8 13.986/8.99/13.99 
Age (Days) 24.67/26.10/25.30 24.69/25.13/24.87 3/3/3 7/7/7 14/23.5/20 28/28/28 90/90/90 
CS (MPa) 44.37/42.23/43.43 20.36/21.09/20.70 5.97/5.97/5.97 28.96/25.63/ 

26.90 
42.28/40.36/ 
41.94 

56.89/54.03/ 
55.02 

107.15/107.15/ 
107.15 

* The first, second, and third values in (-/-/-) show the statistical parameters of the main, synthetic, and combined databases, respectively. 
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What sets the ETR apart is the degree of randomness injected during the 
tree construction process [63]. Like the RFR, it employs bootstrap 
sampling to generate multiple subsets of the training data. However, the 
ETR takes randomness to a greater extent by introducing extra 
randomness when determining split points for each node within the 
decision trees. Unlike the traditional DTR, which selects the optimal 
split from a subset of features at each node, the ETR opts for random split 
points without evaluating all potential splits. This adds an extra layer of 
diversity and randomness among the trees. 

4.5. ABR 

ABR is a boosting ensemble technique crafted to enhance the accu
racy and robustness of regression models. It operates sequentially, 
constructing a series of base DTRs to rectify the errors made by pre
ceding models. In this algorithm, each data point is assigned a weight 
[64]. Initially, all data points carry equal weights. However, as the al
gorithm advances, these weights are adjusted to assign greater impor
tance to data points that were associated with higher prediction errors in 
earlier base models. This approach employs weighted voting when 
making the ultimate prediction, effectively weighting predictions based 
on the performance of each base model. Models that perform better are 
granted higher weights in the final prediction. ABR offers hyper
parameters that can be fine-tuned to optimize model performance, 
including parameters like the number of trees (NT) and the learning rate 
(LR), which govern the contribution of each base DTR to the final 
prediction. 

4.6. GBR 

GBR is a boosting ensemble method engineered to craft precise and 
resilient regression models. Similar to ABR, GBR builds an ensemble 
model by progressively introducing base DTRs to the ensemble [65]. 
During each iteration, this algorithm identifies the errors in the existing 
ensemble and trains a new base DTR to rectify these errors. It achieves 
this by fitting the new DTR to the residual errors of the prior ensemble. 
To do this, the technique employs a gradient descent optimization 
approach to minimize the loss function. This entails computing the 
gradient of the loss function concerning the ensemble’s predictions and 
adjusting the predictions in the direction that minimizes the loss. Much 
like ABR, GBR employs weighted voting for computing the final pre
diction. The hyperparameters governing this algorithm are akin to those 
used in the RFR. Additionally, there exists a learning rate (LR) parameter 
that regulates the step size within the gradient descent process. 

4.7. XGBR 

XGBR represents an improved and fine-tuned version of the con
ventional GBR, delivering outstanding predictive precision and resil
ience. In its approach, it integrates L1 (Lasso) and L2 (Ridge) 
regularization techniques into the objective function to curb overfitting 
and increase the model’s capacity for generalization [66,67]. This al
gorithm retains the hyperparameters present in GBR, and additionally, it 
introduces L1 and L2 regularization parameters. As a result, XGBR is 
more robust to noisy data and outliers due to its regularization terms and 
the ability to penalize extreme values. 

4.8. CBR 

CBR is especially adept at handling tabular data that includes a mix 
of numerical and categorical features. This algorithm incorporates built- 
in techniques to mitigate overfitting, reducing the sensitivity to hyper
parameter tuning. This property can result in more robust models, 
particularly in scenarios involving noisy data [68]. In this study, several 
key hyperparameters were regarded as influential for CBR, including the 
number of trees (NT), maximum tree depth (MTD), learning rate (LR), L2 

Regularization term, random strength (RS), and bagging temperature 
(BT). 

4.9. LBR 

LBR is recognized for its efficiency, speed, and adeptness at man
aging extensive datasets. It sequentially introduces trees to rectify the 
errors committed by prior trees, progressively refining the model’s 
performance using a gradient-based optimization approach [69]. LBR 
employs a histogram-based algorithm to identify optimal node splits, 
thereby reducing memory consumption and accelerating training. This 
algorithm embraces a leaf-wise tree growth strategy, where it extends 
the tree by dividing nodes that yield the most substantial reduction in 
the loss function. While this approach may result in deeper trees and 
potentially enhanced model performance, it does raise the prospect of 
overfitting. Furthermore, it leverages regularization methods like L1 and 
L2 regularization to prevent overfitting and elevate model 
generalization. 

4.10. Hyperparameters’ tuning 

The hyperparameters of ensemble models are predefined parameters 
that are not learned from data but significantly influence how the 
ensemble model performs. In this research, both k-fold cross-validation 
and the Bayesian optimization algorithm are employed to fine-tune 
these hyperparameters. The k-fold cross-validation offers each data 
point an opportunity to contribute to both the training and validation 
phases, effectively mitigating the risk of overfitting [70]. It operates by 
dividing the development dataset into k roughly equal-sized folds. The 
model undergoes k rounds of training and validating, with each round 
employing a different fold as the validation set while the remaining (k-1) 
folds serve for training. The ensemble model’s overall performance is 
determined by calculating the average validation error across these k 
evaluations. 

Bayesian optimization is a powerful global optimization technique 
[71] used to discover the optimal hyperparameters for ensemble models 
efficiently. It initiates with an initial set of hyperparameters and assesses 
the average validation error associated with these settings. Based on 
these observations, Bayesian optimization constructs a probabilistic 
surrogate model of the error function. It then selects the next set of 
hyperparameters to evaluate, aiming to minimize this error function. 
Importantly, it strikes a balance between exploration (sampling in re
gions with high uncertainty) and exploitation (sampling in regions with 
anticipated high performance). This iterative process continues until 
convergence towards the optimal hyperparameter set or the satisfaction 
of predefined stopping criteria. 

4.11. Model assessment 

Assessing the performance of ML models using different error metrics 
is necessary for evaluating their predictive capabilities. In this research, 
a range of error metrics was employed to comprehensively evaluate the 
ensemble models created. These metrics encompass the root mean 
squared error (RMSE), normalized root mean squared error (NRMSE), 
mean absolute error (MAE), mean absolute percentage error (MAPE), 
and coefficient of determination (R2), defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

SN
∑

i

(
CSE

i − CSP
i

)2
√

(1)  

NRMSE =
RMSE

CS
(2)  

MAE =
1

SN

∑

i

⃒
⃒CSE

i − CSP
i

⃒
⃒ (3) 
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MAPE =
100
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⃒
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⃒
⃒
⃒
⃒ (4)  

R2 = 1 −

∑
i

(
CSE
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i

)2

∑
i

(
CSE

i − CS
)2 (5) 

In the above equations, CSE
i represents the experimental CS value of 

the ith data sample, and CSP
i signifies the predicted CS value of the same 

data sample; SN denotes the total number of data samples; and CS 
represents the average CS across the entire database. RMSE serves as an 
indicator of the average magnitude of discrepancies between predicted 
and experimental CS values. It quantifies how closely the model’s pre
dictions align with the observed data, with smaller values indicating 
better performance. MAE, on the other hand, represents the average 
absolute differences between predicted and experimental CS values. It 
provides a straightforward measure of prediction accuracy, with lower 
values signifying improved model performance. MAPE calculates the 
average percentage disparity between predicted and experimental CS 
values, offering insight into the relative error in predictions, particularly 
useful for assessing prediction accuracy. R2 evaluates the goodness of fit 
between the model predictions and the experimental results, indicating 
the proportion of variance in the dependent feature explained by the 
independent features. A R2 value closer to 1 suggests a strong fit, while a 
lower value indicates a weaker fit. Lastly, NRMSE assesses the dispersion 
of predicted CS values around the actual CS values, helping gauge the 
spread of predictions. It can be categorized into specific intervals, such 
as (NRMSE≤0.1), (0.1<NRMSE≤0.2), (0.2<NRMSE≤0.3), and 
(0.3<NRMSE), each corresponding to “Excellent”, “Good”, “Fair”, and 
“Poor” predictions, respectively. 

5. Results and discussion 

In this research, eight different ensemble techniques were employed 
to model the CS of GRAC. During the development phase, 80 % of the 
combined database, which includes both the main and synthetic data
bases, was utilized, leaving the remaining 20 % for the testing phase. 
The development dataset was used to set the hyperparameters of the 
developed models, while the testing dataset was employed to examine 
the performance of the developed model against unknown data. For 
hyperparameters’ tuning, k-fold cross-validation with five folds was 
conducted and the Bayesian optimization algorithm was employed over 
the development dataset for 50 iterations. During the development 
phase, four folds were randomly selected for training an ensemble 
model, with the remaining fold used for model validation. By varying 
the order of folds and utilizing all folds in the training and validation 

phases, a total of five ensemble models were developed and the average 
performance of these ensemble models in the validation phase indicates 
the error associated with the preset hyperparameter values. Choosing 
five folds for k-fold cross-validation was based on computational effi
ciency, an optimal bias-variance trade-off, and alignment with other 
studies in the literature [72,73]. Additionally, ten different initial con
ditions (seeds) during the model development phase of the ensemble 
models were considered. Fig. 6 presents both the average RMSE values 
and the best RMSE values from ten independent repetitions of ensemble 
algorithms in both the development and testing phases. Generally, the 
GBR, XGBR, CBR, and LBR models exhibited superior average and best 
performance compared to the other four ensemble models. On the 
contrary, the ABR model consistently performed the poorest among all 
the developed ensemble models in both the development and testing 
phases. It’ is worth noting that the ETR model displayed a larger per
formance gap between the development and testing phases, suggesting a 
comparatively lower generalization capability for this algorithm. 

Table 4 provides a comprehensive overview of the optimal hyper
parameters that have been derived for the top-performing ensemble 
models. Notably, the XGBR stands out as having a relatively straight
forward configuration, employing 244 trees with a maximum depth of 4. 
This simplicity in the ensemble model design contributes significantly to 
mitigating the risk of overfitting when compared to the other models. On 
the contrary, the bagging ensemble models with greater tree depth tend 
to produce intricate decision trees, a factor that could potentially esca
late the likelihood of overfitting. Therefore, it is essential to strike a 
balance between model complexity and performance to ensure robust 
and accurate predictions. 

Table 5 provides a comprehensive overview of the error metrics for 
the top-performing ensemble models during both the development and 
testing phases, with the best error metrics bolded in the table. In the 

Fig. 6. The average and best performance of the developed ensemble models in the development and testing phases.  

Table 4 
The optimal hyperparameters of the best-developed ensemble models.  

Models Optimal values 

RFR NT=955, MTD=15, MSS=2, MSL=1, MNF=3 
BR NT=374, MTD=19 
ETR NT=664, MTD=18, MSS=2, MSL=1, MNF=7 
ABR NT=423, LR=1.9912 
GBR NT=695, MTD=12, MSS=3, MSL=4, MNF=2, LR=0.0206 
XGBR NT=244, MTD=4, MNF=7, MSR*=0.8337, LR=0.0800, L1=0.3034, 

L2=0.3671 
CBR NT=500, MTD=9, BT=2.0343, L2=0.0126, LR=0.1987 
LBR NT=528, MTD=12, MSL=2, MNF=8, MSR=0.5436, LR=0.0994, 

L1=0.4100, L2=0.6612 

MSR: Maximum sample ratio used in each node. 
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development phase, the CBR model stands out as the leader, with the 
lowest RMSE, MAE, and MAPE values, closely trailed by the ETR and 
GBR models. These three models consistently exhibit significantly su
perior performance compared to the other models. Furthermore, with 
the exception of the ABR model, all models achieve an “Excellent” rating 
in NRMSE, indicating an excellent fit to the development data. The R2 

values, which signify the goodness of fit, approach one for all models in 
the development phase, except for the ABR model, highlighting their 
strong fitting capabilities. Transitioning to the testing phase, it is 
reasonable to observe that all models experience higher error values 
when confronted with unseen data. Notably, the NRMSE values for all 
models, except the ABR model, maintain a “Good” performance level 
when applied to new data samples. Among these models, the XGBR, 
LBR, and GBR models excel in the testing phase, delivering outstanding 
results in terms of RMSE, NRMSE, MAE, and R2. Furthermore, the MAPE 
values for the GBR, XGBR, CBR, and LBR models consistently remain 
below 6 % in their predictions during the testing phase. The R2 values for 
all models, except the ABR model, continue to register as high (above 

0.9), underscoring their ability to elucidate a substantial portion of the 
variance in the CS, even in this unseen data scenario. The superiority of 
the XGBR and LBR models in modelling the CS of GRAC during the 
development phase can be attributed to 1) their efficacy in handling 
various types of data, especially their effectiveness in managing sparse 
data; 2) the use of regularization techniques to penalize complex 
models, thus preventing overfitting; and 3) their high speed compared to 
the GBR model, which can lead to better performance on datasets with 
complex relationships and interactions among features. 

The Taylor diagram offers a visual and comprehensive means to 
assess and compare multiple ML models against a reference dataset, 
aiding in the identification of the top-performing models in replicating 
observed data patterns and statistics. Within this diagram, the “Actual” 
point signifies the reference dataset. At the same time, each model is 
represented as a data point, with its position indicating how effectively it 
reproduces the statistical attributes of the reference data. The distance 
from the central point corresponds to the model’s RMSE concerning the 
reference data, and the azimuthal angle reflects the correlation between 

Table 5 
Error metrics of the developed ensemble models for the CS of GRAC.  

Models Development phase Testing phase  

RMSE (MPa) MAE (MPa) MAPE (%) R2 NRMSE RMSE (MPa) MAE (MPa) MAPE (%) R2 NRMSE 

RFR 3.1067 1.5882 5.8993 0.9763 0.0725 5.6617 3.1906 9.5231 0.9361 0.1240 
BR 3.3630 1.8885 6.9003 0.9722 0.0785 6.3605 3.5136 10.4146 0.9193 0.1393 
ETR 0.5632 0.0656 0.1272 0.9992 0.0131 5.6599 2.3650 6.6237 0.9361 0.1240 
ABR 9.2359 7.8239 27.4928 0.7906 0.2155 10.4708 8.5151 27.1727 0.7814 0.2293 
GBR 0.5633 0.0730 0.1494 0.9992 0.0131 5.3894 1.9313 5.6639 0.9421 0.1180 
XGBR 0.6225 0.2476 0.7038 0.9990 0.0145 4.7515 1.8565 5.3076 0.9550 0.1041 
CBR 0.5630 0.0609 0.1132 0.9992 0.0131 6.0431 2.0053 5.2951 0.9272 0.1323 
LBR 0.6146 0.2299 0.6423 0.9991 0.0143 4.8976 1.9246 5.3042 0.9522 0.1073  

Fig. 7. Taylor diagram of the developed ensemble models.  
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the model’s predictions and the reference dataset. In the context of this 
study, the testing phase Taylor diagram (depicted in Fig. 7) demon
strates that the XGBR model outperforms the others, displaying the 
shortest distance to the "Actual" point and showcasing the best perfor
mance. The LBR and GBR models trail closely behind, whereas the ABR 
model shows a significantly lower performance. This indicates that the 
XGBR model adeptly strikes a balance between accuracy and general
ization despite its relative simplicity compared to the other ensemble 
models. 

Fig. 8 presents a comprehensive view of the experimental CS 
alongside the CS predicted by the ensemble models for each testing data 
sample, including the ratio of predicted CS to experimental CS across 
these samples. The figure demonstrates a strong alignment between the 
experimental CS values and the predictions made by the ensemble 
models, with the exception of the ABR model. In most cases across the 
ensemble models, there is only one testing data sample displaying a 
notably high ratio of predicted to experimental CS, hinting at the pos
sibility of it being an outlier or noisy data point. On average, the pre
dicted CS tends to slightly overestimate the actual CS of GRAC, as 

indicated by the predicted to experimental CS ratios exceeding one for 
all ensemble models. Notably, among the ensemble models developed, 
the CBR, LBR, and XGBR models stand out with predicted to experi
mental CS ratios of 1.0177, 1.0183, and 1.0188, signifying their superior 
performance in terms of predictive accuracy. 

SHAP values, originating from cooperative game theory and applied 
in ML, serve as a technique to gauge the significance of individual input 
features within predictive models. They hold great value in compre
hending intricate model behaviors and find extensive application in 
enhancing the interpretability of ML models [74]. The method operates 
by introducing random permutations to feature values while maintain
ing the stability of others, consequently calculating the mean disparity 
in model predictions. A higher positive SHAP value indicates a feature’s 
propensity to elevate predictions, whereas a lower negative value sig
nifies its inclination to lower predictions. These values offer compre
hensive insights on both a global and local scale concerning feature 
importance. Fig. 9 demonstrates the mean SHAP values attributed to 
input features, as acquired from the three top-performing ensemble 
models, i.e., the XGBR, LBR, and GBR models. Notably, there exists a 

Fig. 8. Comparison between the experimental and the predicted CSs.  
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robust alignment in the feature ranking across various ML models, 
underscoring the stability of these rankings. The average absolute SHAP 
values are enclosed in parentheses within the figure. Concrete age, 
boasting a SHAP value of 7.48, emerges as the most influential feature 
by a substantial margin in its impact on the CS of GRAC. Following 
concrete age is the content of natural fine aggregate, with a SHAP value 
of 4.43, securing the second position. Moreover, the recycled aggregate 
ratio, slag cemetn content, and curing temperature, exhibiting SHAP 
values ranging from 3.79 to 3.17, occupy subsequent positions in terms 
of influence. 

Due to the interplay of input features on the CS of GRAC, bivariate 
effects of these inputs were examined through a counterplot displayed in 
Fig. 10. In general, increasing the binder content, including fly ash and 
slag cement contents, in the mixture enhances the CS of GRAC which is 
in line with findings of [44]. These SCMs are rich in silica and alumina, 
crucial components for geopolymerization. When mixed together, they 
experience a synergistic geopolymerization reaction, producing a more 
robust geopolymer binder that enhances particle adhesion and increases 
CS. However, the highest CS was achieved when the fly ash content 
ranged from 260 kg/m3 to 330 kg/m3, and the slag cement content 
exceeded 190 kg/m3 within the database’s limitations. Notably, the 
binder amount within the database falls between 250 kg/m3 and 666 
kg/m3, rendering the results in the extreme upper right and lower left 
regions of Fig. 10(a) inconclusive. According to Fig. 10(b), an increase in 
recycled aggregate water absorption diminishes the CS of GRAC due to 
the recycled aggregate’s tendency to absorb a significant amount of 
mixing water, which aligns with the findings of [14]. This leaves 
insufficient water for the essential chemical reactions required for geo
polymerization. Optimal CS is achieved with a recycled aggregate ratio 
of less than 0.3, and ratios between 0.65 and 0.8 also yield promising CS, 
aligning with prior research [47]. Based on Fig. 10(c), sodium hydroxide 
concentrations exceeding approximately 12 expedite geopolymerization 
reactions, resulting in faster and more complete geopolymer bond for
mation, which aligns with the findings of [55]. This yields a denser and 
stronger concrete matrix, contributing to higher CS. According to Fig. 10 
(d), optimal results are observed when sodium hydroxide ranges be
tween 70 kg/m3 to 100 kg/m3 and sodium silicate falls between 125 
kg/m3 and 135 kg/m3. These ranges strike a balance between providing 
sufficient hydroxide ions for initiating reactions while maintaining the 
necessary silicate and alumina content for geopolymer formation. Based 
on Fig. 10(e), elevated curing temperatures above 40 Celsius, combined 
with curing durations between 8 and 20 h, enhance the CS of GRAC. 
Higher temperatures can expedite geopolymerization reactions, result
ing in faster and more extensive binder formation. The results align with 
the findings of [49]. Longer curing durations allow for better 

development of the geopolymer matrix, enhancing the bond between 
aggregates and the binder. 

On the contrary, prolonged curing durations exceeding 20 h can 
negatively impact CS due to various factors, including excessive mois
ture loss, microstructural changes, delayed strength gain, increased 
porosity, internal stresses, and microcracking, all contributing to 
reduced CS. As observed in Fig. 10(f), increasing the proportion of 
natural fine aggregate decreases the CS of GRAC due to dilution effects. 
A higher concentration of natural fine aggregate dilutes the geopolymer 
binder, reducing the availability of reactive materials needed to form the 
geopolymer matrix, which is crucial for binding aggregate particles. 
From Fig. 10(g), it can be observed that as the testing age increases, the 
CS of GRAC also rises since geopolymerization is a process that depends 
on time. As seen in Fig. 10(h), CS benefits when SP is below about 8 kg/ 
m3, enhancing mix stiffness and minimizing bleeding. Conversely, 
excessive SP dosage beyond 8 kg/m3 can lead to over-fluidity and 
segregation in the mix, potentially weakening the concrete and dimin
ishing CS. 

Fig. 11 showcases the graphical user interface (GUI) meticulously 
crafted for the purpose of modelling the CS of GRAC. This user-friendly 
interface empowers individuals to interact directly with the research 
outcomes, simplifying the process of calculating the CS values for GRAC. 
This strategic and user-centric design goes beyond scientific rigor and 
ensures that the research findings can be readily utilized in practical, 
real-world situations. The designed GUI serves as a bridge between the 
complexities of the research and its practical implementation, making 
valuable insights more accessible and actionable for a broader audience. 
For the given example in Fig. 11, the CS predicted by the XGBR and 
LGBR models are close, which is consistent with the error metrics pro
vided in Table 5. The relatively small variance between these model 
predictions indeed suggests lower uncertainty in the predicted CS for 
GRAC for the given input values. 

To bridge the gap between the theoretical aspects of our research and 
its practical application in the field, the developed ML tool for predicting 
the CS of GRAC can be applied by engineers in several impactful ways: 1) 
Engineers can use the ML tool to rapidly assess and optimize GRAC mix 
designs for various construction projects; 2) The tool can assist in 
selecting the most suitable materials based on their availability and the 
environmental impact of their production; 3) The tool can serve as an 
educational resource for engineers and researchers to understand the 
behavior of GRAC under different conditions. 

6. Conclusions 

Geopolymer binders, comprised of fly ash and slag cement, along 

Fig. 9. Input features’ importance obtained by the three best ensemble models.  
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with recycled aggregate, are environmentally friendly materials, align
ing with sustainable development principles. This research focused on 
the development of several ensemble machine learning (ML) models to 
predict the compressive strength (CS) of geopolymer recycled aggregate 
concrete (GRAC). Various factors, including the quantities of fly ash, 
slag cement, natural fine aggregate, sodium hydroxide, sodium silicate, 
and superplasticizer, as well as the ratio of recycled coarse aggregate, 
water absorption of recycled aggregate, concentration of sodium 

hydroxide, curing temperature, high-temperature curing duration, and 
testing age, were considered as predictors for GRAC’s CS. The key 
findings of this study can be summarized as follows:  

• Creating a synthetic GRAC database, which was 80 % the size of the 
main GRAC database, proved to be the optimal size for effectively 
increasing the database size while maintaining its statistical 

Fig. 10. The effect of a) Sl-FA, b) RWA-RAR, c) SHC-SH, d) SS-SH, e) HCD-CT, f) NFA-FA, g) FA-Age, and h) SP-Sl on the CS of GRAC.  
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properties. This ratio was selected after examining different ratios of 
0.7, 0.8, 0.9, and 1.  

• Among the eight developed ensemble models, the extreme gradient 
boosting regressor (XGBR) stood out with its simplicity, featuring 
244 trees and a tree depth of 4. It exhibited the lowest error mea
sures, including a root mean squared error of 4.7515 MPa, mean 
absolute percentage error of 5.3076 %, coefficient of determination 
of 0.9550, and a predicted-to-experimental CS ratio of 1.02. This 
highlights the effectiveness of regularization techniques in simpli
fying the model and reducing overfitting risks.  

• The sensitivity analysis, conducted by calculating SHAP values, 
identified the testing age as the most influential feature on the CS of 
GRAC, with a SHAP value of 7.48. Natural fine aggregate followed as 
the second most influential feature, with a SHAP value of 4.43. 
Additionally, the recycled aggregate ratio, content of slag cement, 
and curing temperature were ranked next in terms of influence, with 
SHAP values ranging from 3.79 to 3.17.  

• In a bivariate parametric study, optimal CS was achieved when the 
fly ash content ranged from 260 kg/m3 to 330 kg/m3, and the slag 
cement quantity exceeded 190 kg/m3, within the limitations of the 
database. An optimal CS was observed with a recycled aggregate 
ratio of less than 0.3, and ratios between 0.65 and 0.8 yielded 
promising CS. Sodium hydroxide concentrations exceeded approxi
mately 12 expedited geopolymerization reactions, resulting in faster 
and more complete geopolymer bond formation. Optimal CS was 
achieved when sodium hydroxide ranged between 70 kg/m3 to 100 
kg/m3, and sodium silicate fell between 125 kg/m3 and 135 kg/m3. 
Elevated curing temperatures above 40 Celsius, combined with 
curing durations between 8 and 20 h, enhanced the CS of GRAC. 
Increasing the proportion of natural fine aggregate decreased the CS 
of GRAC due to dilution effects. Additionally, increasing the testing 
age continually boosted the CS of GRAC, reflecting the time- 
dependent nature of the geopolymerization process. CS benefited 
when superplasticizer content was below about 8 kg/m3, improving 
mix stiffness and reducing bleeding. 

The CS predictions using the ML models in this study are reliable for 

predictive tasks within the range of the training data and the reliability 
decreases with out-of-range input data. Future work could involve 
expanding the training dataset to cover a broader range of conditions, 
which would enhance the model’s generalization capabilities and 
further minimize the uncertainty associated with predictions near or 
beyond the data boundaries. While the current study focuses on the CS, 
future work could extend to evaluating the long-term durability of GRAC 
under various environmental conditions, including exposure to chloride 
penetration, carbonation depth, sulfate attack, and freeze-thaw cycles, 
by employing ML techniques. This would enhance understanding of 
GRAC’s lifecycle performance and its suitability across different climatic 
zones. Another potential area of study is the optimization of the GRAC 
mix design, with a focus on cost-effectiveness and sustainability. Addi
tionally, it is suggested that future studies model the CS of GRAC 
incorporating other supplementary cementitious materials, such as sil
ica fume and rice husk ash, as well as exploring various types of alkaline 
activator solutions using ML algorithms. 
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