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ARTICLE INFO ABSTRACT

Keywords: In the quest to reduce the environmental impact of the construction sector, the adoption of sustainable and eco-
Geopolymer recycled aggregate concrete friendly materials is imperative. Geopolymer recycled aggregate concrete (GRAC) emerges as a promising so-
Fly ash

lution by substituting supplementary cementitious materials, including fly ash and slag cement, for ordinary
Portland cement and utilizing recycled aggregates from construction and demolition waste, thus significantly
lowering carbon emissions and resource consumption. Despite its potential, the widespread implementation of
GRAC has been hindered by the lack of an effective mix design methodology. This study seeks to bridge this gap
through a novel machine learning (ML)-based approach to accurately model the compressive strength (CS) of
GRAG, a critical parameter for ensuring structural integrity and safety. By compiling a comprehensive database
from existing literature and enhancing it with synthetic data generated through a tabular generative adversarial
network, this research employs eight ensemble ML techniques, comprising three bagging and five boosting
methods, to predict the CS of GRAC with high precision. The boosting models, notably extreme gradient
boosting, light gradient boosting, gradient boosting, and categorical gradient boosting regressors, demonstrated
superior performance, achieving a mean absolute percentage error of less than 6 %. This precision in prediction
underscores the viability of ML in optimizing GRAC formulations for enhanced structural applications. The
identification of testing age, natural fine aggregate content, and recycled aggregate ratio as pivotal factors offers
valuable insights into the mix design process, facilitating more informed decisions in material selection and
proportioning. Moreover, the development of a user-friendly graphical interface for CS prediction exemplifies the
practical application of this research, potentially accelerating the adoption of GRAC in mainstream construction
practices. By enabling the practical use of GRAC, this research contributes to the global effort to promote sus-
tainable development within the construction industry.

Slag cement
Compressive strength
Artificial intelligence
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1. Introduction

The construction industry plays a vital role in the global economy
and population welfare, providing infrastructure, buildings, and facil-
ities essential for modern society. However, this industry is also known
for its significant environmental impact, resource consumption, and
waste generation [1]. As environmental concerns become increasingly
important worldwide, there is a growing imperative to adopt sustainable
and eco-friendly practices in construction. Geopolymer concrete stands
as an interesting innovation in the realm of construction materials,
driven by a strong commitment to sustainability [2]. The key compo-
nents of geopolymer concrete are aggregates, an aluminosilicate source
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material (e.g., silica fume, fly ash, or slag cement), and an alkaline
activator solution (e.g., sodium hydroxide and sodium silicate) [3].
Additionally, activators are chemicals or solutions that initiate and
accelerate the geopolymerization process. They are mixed with the
binder precursor materials to promote the formation of geopolymer gels.

One of the key advantages of geopolymer concrete is its reduced
environmental impact. It requires less energy to produce because it does
not rely on the high-temperature production of Portland cement.
Additionally, it utilizes industrial by-products like fly ash and slag
cement, which can reduce waste and landfill disposal [4]. Geopolymer
concrete can have a significantly lower carbon footprint compared to
conventional concrete due to the reduced CO, emissions associated with
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its production [5]. This makes it an attractive choice for sustainable
construction and environmentally conscious projects. Geopolymer
concrete often exhibits better resistance to chemical attack, corrosion,
and abrasion compared to traditional concrete. It can withstand harsh
environments and is particularly suitable for infrastructure in aggressive
chemical or marine settings [6]. Moreover, geopolymer concrete has
good fire-resistant properties. It can withstand high temperatures
without significant loss of structural integrity [7]. This makes it suitable
for fire-resistant construction elements like tunnels and fireproofing
applications.

The use of recycled aggregates, often sourced from construction and
demolition wastes, in this type of concrete, generates geopolymer
recycled aggregate concrete (GRAC); an environmentally friendly con-
struction material that not only reduces the burden on overflowing
landfills but also optimizes the efficient use of construction resources [8,
9]. However, the use of recycled aggregates in GRAC can decrease its
compressive strength [10], fracture energy [10], acid resistance [11],
durability performance [12], and fire resistance [13] depending on the
proportion of recycled aggregate used. This reduction is mainly due to
the increased porosity of the concrete and weaker interfacial transition
zone [10]. Eliminating traditional Portland cement and using fly ash and
slag cement, obtained from by-products of industrial processes, as
binders of GRAC, provides a sustainable and eco-friendly way to
significantly diminish the carbon footprint [14]. Furthermore, the
incorporation of fly ash, slag cement, and silica fume enhances the
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mechanical and durability properties of GRAC. This improvement is due
to their interaction with calcium silicate hydrate, calcium aluminate
silicate hydrate, and sodium aluminate silicate hydrate gels, which off-
sets the negative effects associated with using 100 % recycled aggregate
[15].

The complexity observed in the behaviour of GRAC arises from
multiple sources [16]. One significant factor is the intricate chemical
reactions involving aluminosilicate source materials, which interact
with activators. The behaviour of GRAC exhibits notable variations
based on the specific characteristics and composition of these source
materials, as well as the activator formulation employed [16].
Furthermore, the properties of recycled aggregates used in the mix can
exert a substantial influence on the concrete’s performance [17].
Additionally, the conditions during the curing process, encompassing
factors like temperature and duration, play a pivotal role in the geo-
polymerization reactions, rendering GRAC highly responsive to varia-
tions in curing methods [18]. Consequently, the absence of a generalized
standardized design method tailored to the intricacies of GRAC becomes
apparent. Given these multifaceted challenges and the imperative to
optimize GRAC for practical applications, the integration of machine
learning (ML) techniques emerges as a valuable approach. ML has the
capacity to model the intricate relationships between input parameters
and the mechanical properties of concrete, thus facilitating more precise
predictions and streamlined mix designs [19].

In the past five years, as summarized in Table 1, several research

Table 1
Studies in the past five years regarding the prediction of CS of geopolymers using ML.
Used SCMs Input features Input Used ML methods Database Refs
number size

FA, SI FA, Sl, NCA, NFA, W, SP, SH, SS 8 GPR, ANN, RFR, GBR 177 [20]

Sl, SF, Zeolite Sl, SF, Zeolite, SH, Age 5 DT, BR, LSBR 351 [21]

FA FA, AA/FA, NCA, NFA, SS/SH, SHC, CT, Age 8 LR, ANN, ABR 154 [22]

FA, Sl, MK FA, Sl, MK, NCA, NFA, W, SP, SH, SHC, CT, CD 11 ANN, RFR, MARS, HEML 1123 [23]

FA FA, NCA, NFA, W, (SiO,, Na,0, CaO, Al,O3, Fe;03, LOIL, SSA) in FA, AA/FA, 17 GEP, ANFIS, ANN 245 [24]
SH, SHC, SS, CT, HCD

Sl, Volcanic ash Volcanic ash/B, SI/B, Na/Al, Si/Al, two features related to room curing 8 LR, Poly2, Elastic Net, Bayesian Ridge, 80 [25]
duration, two features related to oven drying duration SVR, RFR, BR, GBR, XGBR, Stacking

FA (8i0,, Al,03, Fe;03, Ca0, K;0, SO3, Na,0, P,0s, MgO, TiO,, LOI) in FA,NCA/ 21 ANN 896 [26]
FA, NFA/FA, SP/FA, W/FA, SH/FA, SHC, AA/FA, CT, HCD, CD

FA, SI FA, S1, NCA, NFA, W, Reactivity modulus, Hydraulic modulus, SiO; modulus, 18 RFR, ERT, GBR, XGBR 676 [27]
Al;03 modulus, Lime modulus, SH, SS, SS- Na,0, SS- SiO,, SS-W, CT, RH, Age

Sl, Corncob ash Sl, Corncob ash, NCA, NCA, W, SH pellets, SHC, SS, CD, Concrete grade 10 DNN 288 [28]

FA Si0, modulus, Na,O/AA, SiO,/Al,03, Nay0/SiO,, L/S, Pretreatment CT, RFR, GBR, XGBR 492 [29]
HCD, Age

FA, Sl, MK FA/B, SI/B, MK/B, W/B, L/S, SH, SS, SS/AA, SH/AA, CT 10 ANN, RFR, KNN 191 [30]

Sl, Perlite Perlite, SHC, CT, HCD 4 LR, ANN, MARS, GBR 180 [31]

FA, Sl FA, S, NCA, NFA, W, SP, SH, SS, CT, CD, RH, Age 12 ANN 1178 [32]

FA, S], Red mud n(H,0)/n(Nay0), Na,0, n(SiO2)/n(Nay0), n(SiO,)/n(Al,03), n(Si03)/n KNN, SVR, BR, RFR, ETR, GBR, XGBR, 557 [33]
(Ca0), L/S, CT, CD DNN

FA, S|, SF, RHA, FA, SI, SF, RHA, Calcined clay, NCA, NFA, W, SP, SH, SHC, SS, SiO2/Na;O 13 ANN 381 [34]

Calcined clay

FA FA, NCA, NFA, W, SP, SiO,, Al,05, SH, SHC, SS, Na,SiO3/NaOH, AA/FA, CT, 14 ANN, SVR, ELM 110 [35]
HCD

FA FA, NCA, NFA, SH, SHC, SS, SiO,, Na,0, Age DTR, BR, ABR 154 [36]

FA FA, NFA, NCA, SH, SHC, SS, SS/SH, SiO,/Al,03, AA/FA, CT, HCD, Age 12 ANN, DNN, ResNet 860 [37]

FA SS/SH, AA/FA, SHC, CT ANFIS 90 [38]

FA FA, NCA, NFA, W, SP, SH, SHC, SS, Si0,/SS, Na,0/SS, CT, HCD 12 BLR 162 [39]

FA W/FA, SP/FA, Initial CT, CD, Age, TAV, SHC, SiO»/Na,SiO3 8 GEP, MEP 311 [40]

FA FA, NCA, NFA, W, SH, SHC, SS, CT, HCD 9 DNN, ResNet 335 [41]

FA, Sl FA/B, Sl/B, Sodium ion/AA, Silicon ion/AA, Boron ion/AA 5 ANN, GP 114 [42]

AA: Alkaline activators, ABR: Adaptive boosting regressor, Age: Testing age, Al;03: Aluminium oxide, ANFIS: Adaptive neuro-fuzzy inference system, ANN: Artificial
neural network, B: Binder, BLR: Bayesian linear regression, BR: Bagging regressor, CaO: Calcium oxide, CD: Curing duration, CT: Curing temperature, DTR: Decision
tree regressor, ELM: Extreme learning machine, ETR: Extremely randomized trees regressor, FA: Fly ash, Fe;O3: Iron trioxide, GBR: Gradient boosting regressor, GEP:
Gene expression programming, GPR: Gaussian process regression, HCD: High-temperature curing duration, HEML: Hybrid ensemble machine learning model, KNN: K-
nearest neighbour,K;O: Potassium oxide, LR: Linear regression, LOI: Loss on ignition, L/S: Liquid to solid ratio, LSBR: Least-squares boosting regressor, MARS:
Multivariate regression spline, MEP: Multi-expression programming, MgO: Magnesium oxide, MK: Metakaolin, Na,O: Sodium oxide, NCA: Natural coarse aggregate,
NFA: natural fine aggregate, P5Os: Phosphorus pentoxide, Poly2: 2nd-degree polynomial regressor, RFR: Random forest regressor, ResNet: Deep residual network, RH:
Relative humidity, RHA: Rice husk ash, SH: Sodium Hydroxide, SHC: Sodium Hydroxide concentration, SiO,: Silicon dioxide, Sl: Slag cement, SO3: Sulphur trioxide,
SP: Superplasticizer, SS: Sodium Silicate, SSA: Specific surface area, SVR: Support vector regression, TAV: Total aggregate volume, TiO,: Titanium oxide, W: Water,

XGBR: Extreme gradient boosting regressor.
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efforts have aimed to model the CS of geopolymer mortars and concrete
using ML techniques. The best-developed ML models are bolded in this
table. Researchers have primarily focused on investigating the utiliza-
tion of fly ash and slag cement in geopolymers due to their widespread
availability and distinctive chemical properties. These studies have
employed a diverse range of input features, with the number of features
in models ranging from 4 to 21. The size of the datasets used for
developing ML models has exhibited significant variability, ranging
from smaller datasets with 80 samples to more extensive datasets
comprising 1178 samples. The ratio of dataset size to the number of
input features across these 23 studies has fluctuated between 7.6 and
102.1, with an average ratio of 39.2. This diversity underscores the
importance of tailoring dataset size to specific modelling contexts,
considering factors such as problem complexity, choice of regression
models, data quality, and inherent noise. The average ratio of 39.2 from
these studies can serve as a valuable benchmark, suggesting that, on
average, these investigations have found datasets approximately 39
times larger than the number of input features to be suitable for their
regression modelling tasks within the scope of this study. In addition,
researchers have employed various ML techniques in these studies, with
ensemble models being a prevalent choice, featured in nearly half of the
conducted investigations. Remarkably, ensemble models have demon-
strated superior performance compared to other ML model types in
approximately one-third of the studies conducted. These insights not
only provide valuable guidance regarding dataset sizing in this study’s
context but also underscore the effectiveness of ensemble techniques in
accurately modelling the CS of geopolymers.

The existing body of research has revealed a notable deficiency in the
realm of developing ML models specifically tailored to predict the CS of
GRAC. In light of this gap, a comprehensive CS database for GRAC was
meticulously curated by drawing upon available literature sources.
Recognizing the paramount significance of database size during the
model development phase, proactive measures were taken to expand the
size of the database, achieved through the utilization of the tabular
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generative adversarial network (TGAN) technique [43] as a means to
generate synthetic data. A series of rigorous analyses were subsequently
executed with the primary objective of determining the optimal size for
this synthetic database. Furthermore, a diverse array of ensemble
techniques, encompassing both bagging and boosting methodologies,
were harnessed for the purpose of modelling the CS of GRAC. Ensemble
techniques were chosen for their ability to deliver superior predictive
performance, particularly in complex scenarios with non-linear data
relationships. These methods effectively prevent overfitting, ensuring
models perform well on unseen data. They also increase model diversity,
which improves prediction accuracy by aggregating insights from mul-
tiple models. Additionally, ensemble methods enhance interpretability,
offering insights into the importance of different predictors. After
finding the best ML model, sensitivity analysis and a parametric study
were executed to elucidate the significance of input features and
comprehend the CS trends resulting from variations in these inputs. The
rest of the paper is organized as follows: Section 2 presents the study
framework. Detailed explanations about data preparation are given in
Section 3. Section 4 discusses the ML techniques used in this study.
Section 5 presents the results and corresponding discussions, followed
by Section 6, which outlines the key findings and conclusions of the
study.

2. Study framework

The various stages of this study are illustrated in Fig. 1, offering an
overview of the research framework. The study initiates with a crucial
data preparation phase, encompassing essential steps such as data
gathering, data preprocessing, and data partitioning. Subsequently, a
synthetic database is generated, with an examination of numerous pa-
rameters conducted to ensure the reliability of this synthetic database.
Following this, the study delves into the development of eight ensemble
models, comprising three bagging ensemble models and five boosting
ensemble models. These models aim to predict the CS of GRAC. Several

Gather data

~

Preprocess data

Y

Partition data

A4

Generate synthetic database
X
Develop ML model
v

Tune hyperparameters

Verify model
v

Calculate error measures

)
Obtain the best model

Examine ML model

+

Conduct sensitivity analysis

N

Conduct parametric study

N

Design graphical user interface

Fig. 1. The study framework.
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statistical analyses are performed, and various error measures are
computed for the ensemble models using the testing dataset during the
verification phase. These analyses serve to assess the effectiveness of the
developed models, ultimately leading to the selection of the best-
performing machine learning model among the ensembles. Advancing
further, a critical phase dedicated to sensitivity analysis and parametric
study is undertaken. This phase investigates the roles and effects of input
features on the CS of GRAC. Finally, to enhance user interaction and
practical utility, a user-friendly graphical user interface (GUI) is created.
More details regarding the different steps are given in the following
section.

3. Data preparation
3.1. Data gathering and preprocessing

A comprehensive database of the CS of GRAC, including 314 data
samples, was gathered from 14 peer-reviewed papers in the literature.
The collected database included the contents of fly ash (FA), slag cement
(S1), natural coarse aggregate (NCA), recycled coarse aggregate (RCA),
natural fine aggregate (NFA), sodium hydroxide (SH), sodium silicate
(SS), superplasticizer (SP), as well as recycled aggregate water absorp-
tion (RWA), sodium hydroxide concentration (SHC), curing temperature
(CT), high-temperature curing duration (HCD), and testing age (Age) as
candidate predictors, and the CS of GRAC as the dependent feature. The
information on the studies used in this research is given in Table 2.

The Variance Inflation Factor (VIF) serves as a metric for measuring
the extent of multicollinearity. Within this research, a VIF score
exceeding 10 is regarded as an indication of significant multi-
collinearity, which has the potential to influence the outcomes of the
model [58]. Elevated VIF values signal that a predictor variable exhibits
strong correlations with other predictor variables within the model,
which can result in potentially unreliable interpretations. As shown in
Fig. 2(a), three input features, including NFA, RCA, and NCA, exhibit
VIF scores exceeding 10, with the latter two features registering VIF
scores surpassing 100. To address this issue, a new input feature, recy-
cled aggregate ratio (RAR), was introduced as a replacement for both
RCA and NCA. The VIF scores for the input features considering the
newly introduced input feature were then computed, as illustrated in
Fig. 2(b). In this revised scenario, all input features demonstrate VIF

Table 2
Information from studies used in the database of this research.
Sample ID Data Data Ref
number percentage (%)
S-0.8, S-0.7, S-0.6, S-0.5, S-0.4, S-0.3 24 7.64 [44]
GPC-FG30, GPC-FG40, GPC-FG50, GPC- 8 2.55 [45]
FG60
M20, M30, M40, M50, M60 10 3.18 [46]
M1, M2, M3, M4, M5, M6, M7, M8, M9, 44 14.01 [47]
M10, M11, M12
F60G40R0, F40G60R0, F20G80RO, 21 6.69 [48]
F40G60R25, F40G60R50, F40G60R75,
F40G60R100
1,2,3,4,5,6,7,8,9,10, 11, 12 24 7.64 [49]
RO, R25, R50, R100, r-ROS15, r-R25S15, r- 80 25.48 [50]

R50815, r-R100S15, r-R0S30, r-R25S30,
r-R50830, r-R100S30, a-R0S15, a-
R25815, a-R50S815, a-R100S15, a-R0S30,
a-R25830, a-R50S30, a-R100S30

GNAC/B0, GRAC/B0O 6 1.91 [51]
S-0.40, S-0.45, S-0.50 24 7.64 [52]
S00, S10, S20, S30, SOOR50, S10R50, 36 11.46 [53]

S20R50, S30R50, SOOR100, SIOR100,
S20R100, S30R100,

1,2,3,45,6,7,8 8 2.55 [54]
GL8, GL12, GL16, GRS, GR12, GR16 6 1.91 [55]
GPCO0, GPC15, GPC30, GPC50 8 2.55 [56]
GRCO0, GRC50, GRC100 15 4.78 [57]
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scores of approximately six or less, effectively mitigating the risk of
multicollinearity within this study.

3.2. Synthetic database generation

Tabular generative adversarial network (TGAN) is a method used to
create synthetic data samples that mimic the statistical properties and
patterns found in the main database [43]. This serves the purpose of
expanding the database, which can potentially enhance the performance
of ML models. Generating synthetic samples through TGAN proves
particularly beneficial when dealing with limited data, a scenario
commonly encountered in complex regression tasks. By introducing
synthetic data, additional variability is injected into the main dataset,
effectively acting as a regularization technique to prevent overfitting
and improve the generalization capabilities of regression models.

TGAN operates by training two networks, a generator, and a
discriminator, in a competitive manner. The generator network learns to
map random noise vectors to the main data samples, generating syn-
thetic data that closely resembles real data. In the context of TGAN, the
use of a Long Short-Term Memory (LSTM) network as the generator
allows the model to capture sequential dependencies within the data.
Each time step in the LSTM corresponds to a feature in the tabular data,
and the LSTM layer processes these features sequentially. Simulta-
neously, the discriminator network’s role is to distinguish between real
and synthetic data. It undergoes training using a combination of real
data from the main dataset and synthetic data produced by the gener-
ator. The discriminator’s objective is to classify data samples as either
real or synthetic, and it often employs a Multi-Layer Perceptron (MLP), a
feedforward neural network capable of capturing intricate relationships
in tabular data. The MLP architecture in the discriminator enables it to
scrutinize features for discerning real data from synthetically generated
data [43].

When comparing a synthetic database generated by TGAN with the
main database, it is essential to assess how accurately the synthetic data
replicates the underlying patterns, distributions, and relationships
inherent in the main dataset. In this study, the non-parametric Kolmo-
gorov-Smirnov test was employed to compare the overall distributions
between the input features of the main and synthetic databases [59].
Various synthetic database sizes were considered, represented by ratios
to the main database size, including 0.7, 0.8, 0.9, and 1. Fig. 3 visually
represents the p-values of input features obtained from the
Kolmogorov-Smirnov test for different synthetic database sizes. Notably,
for synthetic database size ratios of 0.7 and 0.8, all input features yielded
p-values greater than 0.05, signifying that the distribution of all input
features in the main and synthetic databases closely aligns. Conse-
quently, this study selects a synthetic database size ratio of 0.8 for
further analysis.

Histograms and probability distributions serve as valuable plots for
evaluating the resemblance between synthetic and main databases.
These plots enable the depiction of data attributes and have the potential
to unveil whether the generated data closely mirrors the tendencies,
arrangements, and distributions found in the main database. As
demonstrated in Fig. 4, the histograms and probability distributions of
the input features in both the main and synthetic databases display a
remarkable likeness in their shapes and configurations. This resem-
blance strongly indicates that the generated data effectively captures the
main data’s distributional and probabilistic traits, successfully repli-
cating the statistical characteristics inherent in the main database.

Pairwise feature correlation analysis involves calculating Pearson
correlation coefficients between pairs of features. This analysis helps
understand the relationships and dependencies between different fea-
tures in the dataset. The correlation matrix of input and output features
for the combined database is shown in Fig. 5. In general, the absolute
correlation coefficient between two features above 0.8 indicates a high
degree of linear relationship between them. This could imply that
changes in one variable are often associated with predictable changes in
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Fig. 3. The p-values of the Kolmogorov-Smirnov test of all input features for different synthetic database sizes.

the other. Since the VIF scores of FA, Sl, CT, and HCD features are below
six, their impact on multicollinearity is not substantial, even though the
absolute correlation coefficients between SI-FA and CT-HCD are high.
This is because the increase in standard errors due to multicollinearity is
relatively small, and thereby the impact on the ML model’s predictions
and interpretations is not significant.

Table 3 presents the statistical characteristics of both input and
output features for the main, synthetic, and combined databases. A
detailed examination of these statistical parameters for the main and
synthetic databases reveals a notable degree of alignment, suggesting an
acceptable agreement between the two. This observation implies that
the features within the synthetic database have been effectively
distributed, adhering closely to the underlying feature distributions of
the main database. It is worth mentioning that every data sample in-
corporates fly ash, underscoring its prevalence in the database. More-
over, approximately 63 % of the data samples include slag cement, while
an even higher proportion, approximately 78 %, comprises natural
coarse aggregate. Additionally, about 37 % of the data samples under-
went curing at elevated temperatures, ranging from 40 to 80 °Celsius.
Delving into the CS of GRAC, it was found that the average CS across all
ages stands at 43.4 MPa. However, when explicitly considering a testing
age of 28 days, the average CS significantly elevates to 49.2 MPa. This
substantial increase highlights the potential of GRAC to be categorized
as high-strength concrete.

4. ML techniques used in this study

In this research, a set of eight ensemble methodologies was
employed, comprising three bagging and five boosting ensemble tech-
niques, to create predictive models for the CS of GRAC. The rationale
behind selecting the decision tree regressor (DTR) as the fundamental
building block for our ensemble models stemmed from its favorable
attributes, including interpretability, robustness, and capacity to effec-
tively handle non-linear relationships. In this section, the pivotal role of
the DTR as the foundational component of ensemble techniques is
elucidated. Subsequently, three specific bagging ensemble techniques
are explained, namely the random forest regressor (RFR), bagging re-
gressor (BR), and extremely randomized trees regressor (ETR).
Following that, five distinct boosting ensemble techniques are expoun-
ded: the adaptive boosting regressor (ABR), gradient boosting regressor
(GBR), extreme gradient boosting regressor (XGBR), categorical boost-
ing regressor (CBR), and light gradient boosting regressor (LBR),
providing valuable insights into the role each played in enhancing the
predictive capabilities of ML models.

4.1. DTIR

A DTR is constructed in a hierarchical structure, including nodes and
leaves, that aims to predict a continuous target feature. Nodes represent
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Fig. 4. The distribution histograms of the main database (MD) and synthetic database (SD).

maximum tree depth, a minimum number of data points per leaf, or a
minimum reduction in variance. When the tree-building process is
complete, each leaf node contains a constant value (typically the mean
of the target values in the leaf), which is the predicted numerical value
for the target feature within that leaf’s region.

decision points based on features, while leaves represent the predicted
numerical values [60]. At each node, the DTR algorithm selects a feature
and a threshold to split the data into two subsets. The splitting criterion,
such as Mean Squared Error (MSE), aims to minimize the variance of the
target feature within each subset. The tree-building process is recursive.
It starts at the root node with the entire dataset and recursively splits it
into subsets at each node, moving down the tree. The splitting process
continues until a stopping condition is met, which may include a
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Fig. 5. Correlation matrixes of input and output features for the combined database.
Table 3
Statistical parameters of input and output features for the main, synthetic, and combined databases.
Features Mean* Standard deviation min 25 % 50 % 75 % Max
FA (kg/mz) 327.42/332.73/ 85.71/75.34/81.27 92/175/92 256/280/276 350/350/350 400/400/400 466/428/466
329.76
Sl (kg/m?’) 92.49/85.38/89.35 92.96/79.62/87.32 0/0/0 0/0/0 60/65.68/60 165/132.97/ 368/263.74/368
145.55
RAR 0.56/0.56/0.56 0.41/0.39/0.40 0/0/0 0.20/0.25/0.25 0.5/0.5/0.5 1/1/1 1/1/1
RWA (%) 3.56/3.68/3.61 2.19/2.14/2.17 0/0/0 2.12/2.12/2.12 4.22/4.22/4.22 4.99/4.99/4.99 6.78/6.78/6.78
NFA (kg/m3) 605.19/610.09/ 100.31/96.19/ 465/465/465 540/550/550 560/560/560 720/720/720 806/806/806
607.35 98.45
SH (kg/m3) 65.85/64.95/65.46 20.72/20.14/20.46 18/18/18 51.5/51.5/51.5 61/61/61 80/75.64/80 108/103/108
SHC 11.04/10.67/10.88 2.63/2.41/2.54 6/6/6 8/8/8 12/12/12 12/12/12 16/16/16
(Molarity)
SS (kg/mg) 128.87/127.10/ 28.83/29.27/29.01 69/69/69 120/121.8/120 128.5/128.5/ 150/150/150 171.4/171.4/171.4
128.09 128.5
CT (0%) 41.91/43.93/42.80 21.23/21.57/21.39 26.37/26.37/ 27/27/27 27/27/27 60/60.21/60 90/89/90
26.37
HCD (Hours) 9.48/9.18/9.35 13.45/11.34/12.55 0/0/0 0/0/0 0/0/0 24/24/24 48/24/48
SP (kg/m3) 3.60/3.69/3.64 3.94/3.80/3.88 0/0/0 0/0/0 1.42/1.52/1.42 8/8/8 13.986/8.99/13.99
Age (Days) 24.67/26.10/25.30 24.69/25.13/24.87 3/3/3 7/7/7 14/23.5/20 28/28/28 90/90/90
CS (MPa) 44.37/42.23/43.43 20.36/21.09/20.70 5.97/5.97/5.97 28.96/25.63/ 42.28/40.36/ 56.89/54.03/ 107.15/107.15/
26.90 41.94 55.02 107.15

* The first, second, and third values in (-/-/-) show the statistical parameters of the main, synthetic, and combined databases, respectively.

4.2. RFR

An RFR is an ensemble ML technique that enhances prediction ac-
curacy and robustness by combining the forecasts of multiple base DTRs.
In this approach, each RFR is constructed using a random subset of the
training data (known as bootstrapping) and a random subset of the
features. This randomness introduces diversity among the constituent
trees. The RFR aggregates the predictions made by all the individual
DTRs to arrive at the final prediction which helps mitigate overfitting
when compared to using single DTRs. The DTR offers several hyper-
parameters that can be fine-tuned to optimize model performance [61].
These include the number of trees (NT), the maximum tree depth (MTD),
as well as parameters like the minimum samples required for a split
(MSS), the minimum samples required for a leaf (MSL), and the

maximum number of features considered at each split (MNF).

4.3. BR

BR seeks to enhance the precision and reliability of regression
models by combining forecasts generated by multiple base DTRs. BR and
RFR share similarities in their approaches. However, the principal
distinction lies in the fact that BR does not encompass feature selection,
typically utilizing all available features when constructing each base
DTR [62].

4.4. ETR

An ETR is a bagging ensemble method similar in behavior to an RDR.
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What sets the ETR apart is the degree of randomness injected during the
tree construction process [63]. Like the RFR, it employs bootstrap
sampling to generate multiple subsets of the training data. However, the
ETR takes randomness to a greater extent by introducing extra
randomness when determining split points for each node within the
decision trees. Unlike the traditional DTR, which selects the optimal
split from a subset of features at each node, the ETR opts for random split
points without evaluating all potential splits. This adds an extra layer of
diversity and randomness among the trees.

4.5. ABR

ABR is a boosting ensemble technique crafted to enhance the accu-
racy and robustness of regression models. It operates sequentially,
constructing a series of base DTRs to rectify the errors made by pre-
ceding models. In this algorithm, each data point is assigned a weight
[64]. Initially, all data points carry equal weights. However, as the al-
gorithm advances, these weights are adjusted to assign greater impor-
tance to data points that were associated with higher prediction errors in
earlier base models. This approach employs weighted voting when
making the ultimate prediction, effectively weighting predictions based
on the performance of each base model. Models that perform better are
granted higher weights in the final prediction. ABR offers hyper-
parameters that can be fine-tuned to optimize model performance,
including parameters like the number of trees (NT) and the learning rate
(LR), which govern the contribution of each base DTR to the final
prediction.

4.6. GBR

GBR is a boosting ensemble method engineered to craft precise and
resilient regression models. Similar to ABR, GBR builds an ensemble
model by progressively introducing base DTRs to the ensemble [65].
During each iteration, this algorithm identifies the errors in the existing
ensemble and trains a new base DTR to rectify these errors. It achieves
this by fitting the new DTR to the residual errors of the prior ensemble.
To do this, the technique employs a gradient descent optimization
approach to minimize the loss function. This entails computing the
gradient of the loss function concerning the ensemble’s predictions and
adjusting the predictions in the direction that minimizes the loss. Much
like ABR, GBR employs weighted voting for computing the final pre-
diction. The hyperparameters governing this algorithm are akin to those
used in the RFR. Additionally, there exists a learning rate (LR) parameter
that regulates the step size within the gradient descent process.

4.7. XGBR

XGBR represents an improved and fine-tuned version of the con-
ventional GBR, delivering outstanding predictive precision and resil-
ience. In its approach, it integrates L; (Lasso) and Ly (Ridge)
regularization techniques into the objective function to curb overfitting
and increase the model’s capacity for generalization [66,67]. This al-
gorithm retains the hyperparameters present in GBR, and additionally, it
introduces L; and Ly regularization parameters. As a result, XGBR is
more robust to noisy data and outliers due to its regularization terms and
the ability to penalize extreme values.

4.8. CBR

CBR is especially adept at handling tabular data that includes a mix
of numerical and categorical features. This algorithm incorporates built-
in techniques to mitigate overfitting, reducing the sensitivity to hyper-
parameter tuning. This property can result in more robust models,
particularly in scenarios involving noisy data [68]. In this study, several
key hyperparameters were regarded as influential for CBR, including the
number of trees (NT), maximum tree depth (MTD), learning rate (LR), Ly
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Regularization term, random strength (RS), and bagging temperature
(BT).

4.9. LBR

LBR is recognized for its efficiency, speed, and adeptness at man-
aging extensive datasets. It sequentially introduces trees to rectify the
errors committed by prior trees, progressively refining the model’s
performance using a gradient-based optimization approach [69]. LBR
employs a histogram-based algorithm to identify optimal node splits,
thereby reducing memory consumption and accelerating training. This
algorithm embraces a leaf-wise tree growth strategy, where it extends
the tree by dividing nodes that yield the most substantial reduction in
the loss function. While this approach may result in deeper trees and
potentially enhanced model performance, it does raise the prospect of
overfitting. Furthermore, it leverages regularization methods like L; and
Ly regularization to prevent overfitting and elevate model
generalization.

4.10. Hyperparameters’ tuning

The hyperparameters of ensemble models are predefined parameters
that are not learned from data but significantly influence how the
ensemble model performs. In this research, both k-fold cross-validation
and the Bayesian optimization algorithm are employed to fine-tune
these hyperparameters. The k-fold cross-validation offers each data
point an opportunity to contribute to both the training and validation
phases, effectively mitigating the risk of overfitting [70]. It operates by
dividing the development dataset into k roughly equal-sized folds. The
model undergoes k rounds of training and validating, with each round
employing a different fold as the validation set while the remaining (k-1)
folds serve for training. The ensemble model’s overall performance is
determined by calculating the average validation error across these k
evaluations.

Bayesian optimization is a powerful global optimization technique
[71] used to discover the optimal hyperparameters for ensemble models
efficiently. It initiates with an initial set of hyperparameters and assesses
the average validation error associated with these settings. Based on
these observations, Bayesian optimization constructs a probabilistic
surrogate model of the error function. It then selects the next set of
hyperparameters to evaluate, aiming to minimize this error function.
Importantly, it strikes a balance between exploration (sampling in re-
gions with high uncertainty) and exploitation (sampling in regions with
anticipated high performance). This iterative process continues until
convergence towards the optimal hyperparameter set or the satisfaction
of predefined stopping criteria.

4.11. Model assessment

Assessing the performance of ML models using different error metrics
is necessary for evaluating their predictive capabilities. In this research,
a range of error metrics was employed to comprehensively evaluate the
ensemble models created. These metrics encompass the root mean
squared error (RMSE), normalized root mean squared error (NRMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE),
and coefficient of determination (R?), defined as follows:

1 2
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In the above equations, CS? represents the experimental CS value of
the ith data sample, and CS? signifies the predicted CS value of the same
data sample; SN denotes the total number of data samples; and CS
represents the average CS across the entire database. RMSE serves as an
indicator of the average magnitude of discrepancies between predicted
and experimental CS values. It quantifies how closely the model’s pre-
dictions align with the observed data, with smaller values indicating
better performance. MAE, on the other hand, represents the average
absolute differences between predicted and experimental CS values. It
provides a straightforward measure of prediction accuracy, with lower
values signifying improved model performance. MAPE calculates the
average percentage disparity between predicted and experimental CS
values, offering insight into the relative error in predictions, particularly
useful for assessing prediction accuracy. R? evaluates the goodness of fit
between the model predictions and the experimental results, indicating
the proportion of variance in the dependent feature explained by the
independent features. A R? value closer to 1 suggests a strong fit, while a
lower value indicates a weaker fit. Lastly, NRMSE assesses the dispersion
of predicted CS values around the actual CS values, helping gauge the
spread of predictions. It can be categorized into specific intervals, such
as (NRMSE<O0.1), (0.1<NRMSE<0.2), (0.2<NRMSE<0.3), and
(0.3<NRMSE), each corresponding to “Excellent”, “Good”, “Fair”, and
“Poor” predictions, respectively.

5. Results and discussion

In this research, eight different ensemble techniques were employed
to model the CS of GRAC. During the development phase, 80 % of the
combined database, which includes both the main and synthetic data-
bases, was utilized, leaving the remaining 20 % for the testing phase.
The development dataset was used to set the hyperparameters of the
developed models, while the testing dataset was employed to examine
the performance of the developed model against unknown data. For
hyperparameters’ tuning, k-fold cross-validation with five folds was
conducted and the Bayesian optimization algorithm was employed over
the development dataset for 50 iterations. During the development
phase, four folds were randomly selected for training an ensemble
model, with the remaining fold used for model validation. By varying
the order of folds and utilizing all folds in the training and validation
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phases, a total of five ensemble models were developed and the average
performance of these ensemble models in the validation phase indicates
the error associated with the preset hyperparameter values. Choosing
five folds for k-fold cross-validation was based on computational effi-
ciency, an optimal bias-variance trade-off, and alignment with other
studies in the literature [72,73]. Additionally, ten different initial con-
ditions (seeds) during the model development phase of the ensemble
models were considered. Fig. 6 presents both the average RMSE values
and the best RMSE values from ten independent repetitions of ensemble
algorithms in both the development and testing phases. Generally, the
GBR, XGBR, CBR, and LBR models exhibited superior average and best
performance compared to the other four ensemble models. On the
contrary, the ABR model consistently performed the poorest among all
the developed ensemble models in both the development and testing
phases. It’ is worth noting that the ETR model displayed a larger per-
formance gap between the development and testing phases, suggesting a
comparatively lower generalization capability for this algorithm.

Table 4 provides a comprehensive overview of the optimal hyper-
parameters that have been derived for the top-performing ensemble
models. Notably, the XGBR stands out as having a relatively straight-
forward configuration, employing 244 trees with a maximum depth of 4.
This simplicity in the ensemble model design contributes significantly to
mitigating the risk of overfitting when compared to the other models. On
the contrary, the bagging ensemble models with greater tree depth tend
to produce intricate decision trees, a factor that could potentially esca-
late the likelihood of overfitting. Therefore, it is essential to strike a
balance between model complexity and performance to ensure robust
and accurate predictions.

Table 5 provides a comprehensive overview of the error metrics for
the top-performing ensemble models during both the development and
testing phases, with the best error metrics bolded in the table. In the

Table 4
The optimal hyperparameters of the best-developed ensemble models.

Models  Optimal values

RFR NT=955, MTD=15, MSS=2, MSL=1, MNF=3

BR NT=374, MTD=19

ETR NT=664, MTD=18, MSS=2, MSL=1, MNF=7

ABR NT=423, LR=1.9912

GBR NT=695, MTD=12, MSS=3, MSL=4, MNF=2, LR=0.0206

XGBR NT=244, MTD=4, MNF=7, MSR*=0.8337, LR=0.0800, L;=0.3034,
L»=0.3671

CBR NT=500, MTD=9, BT=2.0343, L,=0.0126, LR=0.1987

LBR NT=528, MTD=12, MSL=2, MNF=8, MSR=0.5436, LR=0.0994,

L,=0.4100, L,=0.6612

MSR: Maximum sample ratio used in each node.
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Fig. 6. The average and best performance of the developed ensemble models in the development and testing phases.
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Table 5

Error metrics of the developed ensemble models for the CS of GRAC.
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Models Development phase Testing phase

RMSE (MPa) MAE (MPa) MAPE (%) R? NRMSE RMSE (MPa) MAE (MPa) MAPE (%) R? NRMSE
RFR 3.1067 1.5882 5.8993 0.9763 0.0725 5.6617 3.1906 9.5231 0.9361 0.1240
BR 3.3630 1.8885 6.9003 0.9722 0.0785 6.3605 3.5136 10.4146 0.9193 0.1393
ETR 0.5632 0.0656 0.1272 0.9992 0.0131 5.6599 2.3650 6.6237 0.9361 0.1240
ABR 9.2359 7.8239 27.4928 0.7906 0.2155 10.4708 8.5151 27.1727 0.7814 0.2293
GBR 0.5633 0.0730 0.1494 0.9992 0.0131 5.3894 1.9313 5.6639 0.9421 0.1180
XGBR 0.6225 0.2476 0.7038 0.9990 0.0145 4.7515 1.8565 5.3076 0.9550 0.1041
CBR 0.5630 0.0609 0.1132 0.9992 0.0131 6.0431 2.0053 5.2951 0.9272 0.1323
LBR 0.6146 0.2299 0.6423 0.9991 0.0143 4.8976 1.9246 5.3042 0.9522 0.1073

development phase, the CBR model stands out as the leader, with the
lowest RMSE, MAE, and MAPE values, closely trailed by the ETR and
GBR models. These three models consistently exhibit significantly su-
perior performance compared to the other models. Furthermore, with
the exception of the ABR model, all models achieve an “Excellent” rating
in NRMSE, indicating an excellent fit to the development data. The R®
values, which signify the goodness of fit, approach one for all models in
the development phase, except for the ABR model, highlighting their
strong fitting capabilities. Transitioning to the testing phase, it is
reasonable to observe that all models experience higher error values
when confronted with unseen data. Notably, the NRMSE values for all
models, except the ABR model, maintain a “Good” performance level
when applied to new data samples. Among these models, the XGBR,
LBR, and GBR models excel in the testing phase, delivering outstanding
results in terms of RMSE, NRMSE, MAE, and R2. Furthermore, the MAPE
values for the GBR, XGBR, CBR, and LBR models consistently remain
below 6 % in their predictions during the testing phase. The R? values for
all models, except the ABR model, continue to register as high (above

Standard deviation (MPa)

0.9), underscoring their ability to elucidate a substantial portion of the
variance in the CS, even in this unseen data scenario. The superiority of
the XGBR and LBR models in modelling the CS of GRAC during the
development phase can be attributed to 1) their efficacy in handling
various types of data, especially their effectiveness in managing sparse
data; 2) the use of regularization techniques to penalize complex
models, thus preventing overfitting; and 3) their high speed compared to
the GBR model, which can lead to better performance on datasets with
complex relationships and interactions among features.

The Taylor diagram offers a visual and comprehensive means to
assess and compare multiple ML models against a reference dataset,
aiding in the identification of the top-performing models in replicating
observed data patterns and statistics. Within this diagram, the “Actual”
point signifies the reference dataset. At the same time, each model is
represented as a data point, with its position indicating how effectively it
reproduces the statistical attributes of the reference data. The distance
from the central point corresponds to the model’s RMSE concerning the
reference data, and the azimuthal angle reflects the correlation between

Standard deviation (MPa)

Fig. 7. Taylor diagram of the developed ensemble models.
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the model’s predictions and the reference dataset. In the context of this
study, the testing phase Taylor diagram (depicted in Fig. 7) demon-
strates that the XGBR model outperforms the others, displaying the
shortest distance to the "Actual" point and showcasing the best perfor-
mance. The LBR and GBR models trail closely behind, whereas the ABR
model shows a significantly lower performance. This indicates that the
XGBR model adeptly strikes a balance between accuracy and general-
ization despite its relative simplicity compared to the other ensemble
models.

Fig. 8 presents a comprehensive view of the experimental CS
alongside the CS predicted by the ensemble models for each testing data
sample, including the ratio of predicted CS to experimental CS across
these samples. The figure demonstrates a strong alignment between the
experimental CS values and the predictions made by the ensemble
models, with the exception of the ABR model. In most cases across the
ensemble models, there is only one testing data sample displaying a
notably high ratio of predicted to experimental CS, hinting at the pos-
sibility of it being an outlier or noisy data point. On average, the pre-
dicted CS tends to slightly overestimate the actual CS of GRAC, as
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indicated by the predicted to experimental CS ratios exceeding one for
all ensemble models. Notably, among the ensemble models developed,
the CBR, LBR, and XGBR models stand out with predicted to experi-
mental CS ratios of 1.0177, 1.0183, and 1.0188, signifying their superior
performance in terms of predictive accuracy.

SHAP values, originating from cooperative game theory and applied
in ML, serve as a technique to gauge the significance of individual input
features within predictive models. They hold great value in compre-
hending intricate model behaviors and find extensive application in
enhancing the interpretability of ML models [74]. The method operates
by introducing random permutations to feature values while maintain-
ing the stability of others, consequently calculating the mean disparity
in model predictions. A higher positive SHAP value indicates a feature’s
propensity to elevate predictions, whereas a lower negative value sig-
nifies its inclination to lower predictions. These values offer compre-
hensive insights on both a global and local scale concerning feature
importance. Fig. 9 demonstrates the mean SHAP values attributed to
input features, as acquired from the three top-performing ensemble
models, i.e., the XGBR, LBR, and GBR models. Notably, there exists a
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Fig. 8. Comparison between the experimental and the predicted CSs.
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Fig. 9. Input features’ importance obtained by the three best ensemble models.

robust alignment in the feature ranking across various ML models,
underscoring the stability of these rankings. The average absolute SHAP
values are enclosed in parentheses within the figure. Concrete age,
boasting a SHAP value of 7.48, emerges as the most influential feature
by a substantial margin in its impact on the CS of GRAC. Following
concrete age is the content of natural fine aggregate, with a SHAP value
of 4.43, securing the second position. Moreover, the recycled aggregate
ratio, slag cemetn content, and curing temperature, exhibiting SHAP
values ranging from 3.79 to 3.17, occupy subsequent positions in terms
of influence.

Due to the interplay of input features on the CS of GRAC, bivariate
effects of these inputs were examined through a counterplot displayed in
Fig. 10. In general, increasing the binder content, including fly ash and
slag cement contents, in the mixture enhances the CS of GRAC which is
in line with findings of [44]. These SCMs are rich in silica and alumina,
crucial components for geopolymerization. When mixed together, they
experience a synergistic geopolymerization reaction, producing a more
robust geopolymer binder that enhances particle adhesion and increases
CS. However, the highest CS was achieved when the fly ash content
ranged from 260 kg/m® to 330 kg/m°>, and the slag cement content
exceeded 190 kg/m> within the database’s limitations. Notably, the
binder amount within the database falls between 250 kg/m® and 666
kg/m®, rendering the results in the extreme upper right and lower left
regions of Fig. 10(a) inconclusive. According to Fig. 10(b), an increase in
recycled aggregate water absorption diminishes the CS of GRAC due to
the recycled aggregate’s tendency to absorb a significant amount of
mixing water, which aligns with the findings of [14]. This leaves
insufficient water for the essential chemical reactions required for geo-
polymerization. Optimal CS is achieved with a recycled aggregate ratio
of less than 0.3, and ratios between 0.65 and 0.8 also yield promising CS,
aligning with prior research [47]. Based on Fig. 10(c), sodium hydroxide
concentrations exceeding approximately 12 expedite geopolymerization
reactions, resulting in faster and more complete geopolymer bond for-
mation, which aligns with the findings of [55]. This yields a denser and
stronger concrete matrix, contributing to higher CS. According to Fig. 10
(d), optimal results are observed when sodium hydroxide ranges be-
tween 70 kg/m® to 100 kg/m> and sodium silicate falls between 125
kg/m?® and 135 kg/m®. These ranges strike a balance between providing
sufficient hydroxide ions for initiating reactions while maintaining the
necessary silicate and alumina content for geopolymer formation. Based
on Fig. 10(e), elevated curing temperatures above 40 Celsius, combined
with curing durations between 8 and 20 h, enhance the CS of GRAC.
Higher temperatures can expedite geopolymerization reactions, result-
ing in faster and more extensive binder formation. The results align with
the findings of [49]. Longer curing durations allow for better

12

development of the geopolymer matrix, enhancing the bond between
aggregates and the binder.

On the contrary, prolonged curing durations exceeding 20 h can
negatively impact CS due to various factors, including excessive mois-
ture loss, microstructural changes, delayed strength gain, increased
porosity, internal stresses, and microcracking, all contributing to
reduced CS. As observed in Fig. 10(f), increasing the proportion of
natural fine aggregate decreases the CS of GRAC due to dilution effects.
A higher concentration of natural fine aggregate dilutes the geopolymer
binder, reducing the availability of reactive materials needed to form the
geopolymer matrix, which is crucial for binding aggregate particles.
From Fig. 10(g), it can be observed that as the testing age increases, the
CS of GRAC also rises since geopolymerization is a process that depends
on time. As seen in Fig. 10(h), CS benefits when SP is below about 8 kg/
m>, enhancing mix stiffness and minimizing bleeding. Conversely,
excessive SP dosage beyond 8 kg/m® can lead to over-fluidity and
segregation in the mix, potentially weakening the concrete and dimin-
ishing CS.

Fig. 11 showcases the graphical user interface (GUI) meticulously
crafted for the purpose of modelling the CS of GRAC. This user-friendly
interface empowers individuals to interact directly with the research
outcomes, simplifying the process of calculating the CS values for GRAC.
This strategic and user-centric design goes beyond scientific rigor and
ensures that the research findings can be readily utilized in practical,
real-world situations. The designed GUI serves as a bridge between the
complexities of the research and its practical implementation, making
valuable insights more accessible and actionable for a broader audience.
For the given example in Fig. 11, the CS predicted by the XGBR and
LGBR models are close, which is consistent with the error metrics pro-
vided in Table 5. The relatively small variance between these model
predictions indeed suggests lower uncertainty in the predicted CS for
GRAC for the given input values.

To bridge the gap between the theoretical aspects of our research and
its practical application in the field, the developed ML tool for predicting
the CS of GRAC can be applied by engineers in several impactful ways: 1)
Engineers can use the ML tool to rapidly assess and optimize GRAC mix
designs for various construction projects; 2) The tool can assist in
selecting the most suitable materials based on their availability and the
environmental impact of their production; 3) The tool can serve as an
educational resource for engineers and researchers to understand the
behavior of GRAC under different conditions.

6. Conclusions

Geopolymer binders, comprised of fly ash and slag cement, along
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with recycled aggregate, are environmentally friendly materials, align-
ing with sustainable development principles. This research focused on
the development of several ensemble machine learning (ML) models to
predict the compressive strength (CS) of geopolymer recycled aggregate
concrete (GRAC). Various factors, including the quantities of fly ash,
slag cement, natural fine aggregate, sodium hydroxide, sodium silicate,
and superplasticizer, as well as the ratio of recycled coarse aggregate,
water absorption of recycled aggregate, concentration of sodium
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hydroxide, curing temperature, high-temperature curing duration, and
testing age, were considered as predictors for GRAC’s CS. The key
findings of this study can be summarized as follows:

o Creating a synthetic GRAC database, which was 80 % the size of the
main GRAC database, proved to be the optimal size for effectively
increasing the database size while maintaining its statistical
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Fig. 11. The graphical user interface designed for modelling the CS of GRAC.

properties. This ratio was selected after examining different ratios of
0.7, 0.8, 0.9, and 1.

Among the eight developed ensemble models, the extreme gradient
boosting regressor (XGBR) stood out with its simplicity, featuring
244 trees and a tree depth of 4. It exhibited the lowest error mea-
sures, including a root mean squared error of 4.7515 MPa, mean
absolute percentage error of 5.3076 %, coefficient of determination
of 0.9550, and a predicted-to-experimental CS ratio of 1.02. This
highlights the effectiveness of regularization techniques in simpli-
fying the model and reducing overfitting risks.

The sensitivity analysis, conducted by calculating SHAP values,
identified the testing age as the most influential feature on the CS of
GRAC, with a SHAP value of 7.48. Natural fine aggregate followed as
the second most influential feature, with a SHAP value of 4.43.
Additionally, the recycled aggregate ratio, content of slag cement,
and curing temperature were ranked next in terms of influence, with
SHAP values ranging from 3.79 to 3.17.

In a bivariate parametric study, optimal CS was achieved when the
fly ash content ranged from 260 kg/m?> to 330 kg/m?, and the slag
cement quantity exceeded 190 kg/m®, within the limitations of the
database. An optimal CS was observed with a recycled aggregate
ratio of less than 0.3, and ratios between 0.65 and 0.8 yielded
promising CS. Sodium hydroxide concentrations exceeded approxi-
mately 12 expedited geopolymerization reactions, resulting in faster
and more complete geopolymer bond formation. Optimal CS was
achieved when sodium hydroxide ranged between 70 kg/m?> to 100
kg/m?®, and sodium silicate fell between 125 kg/m® and 135 kg/m°>.
Elevated curing temperatures above 40 Celsius, combined with
curing durations between 8 and 20 h, enhanced the CS of GRAC.
Increasing the proportion of natural fine aggregate decreased the CS
of GRAC due to dilution effects. Additionally, increasing the testing
age continually boosted the CS of GRAC, reflecting the time-
dependent nature of the geopolymerization process. CS benefited
when superplasticizer content was below about 8 kg/m®, improving
mix stiffness and reducing bleeding.

The CS predictions using the ML models in this study are reliable for
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predictive tasks within the range of the training data and the reliability
decreases with out-of-range input data. Future work could involve
expanding the training dataset to cover a broader range of conditions,
which would enhance the model’s generalization capabilities and
further minimize the uncertainty associated with predictions near or
beyond the data boundaries. While the current study focuses on the CS,
future work could extend to evaluating the long-term durability of GRAC
under various environmental conditions, including exposure to chloride
penetration, carbonation depth, sulfate attack, and freeze-thaw cycles,
by employing ML techniques. This would enhance understanding of
GRAC’s lifecycle performance and its suitability across different climatic
zones. Another potential area of study is the optimization of the GRAC
mix design, with a focus on cost-effectiveness and sustainability. Addi-
tionally, it is suggested that future studies model the CS of GRAC
incorporating other supplementary cementitious materials, such as sil-
ica fume and rice husk ash, as well as exploring various types of alkaline
activator solutions using ML algorithms.
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