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Abstract

Amorphous thin films of Ti doped GeO, are of interest for coatings of the mir-
rors in gravitational wave detectors (GWDs) due to their low internal friction
(Vajente et al 2021 Phys. Rev. Lett. 127 071101). The addition of Ti to amorph-
ous GeO; (a-GeO,) enables tailoring of the optical and structural properties of
the mixtures. However, the specific modifications that occur in the amorphous
network with the addition of Ti are not known. In this work, x-ray photoelec-
tron spectroscopy is used to identify modifications to the bonding of Ge and
Ti atoms in mixtures of Ti doped a-GeO, with different Ti cation content. The
formation of (Ti-O—Ge) bonds is evidenced from: (1) the presence of a peak
which intensity increases with Ti content and causes a shift to lower binding
energy (BE) of the core level O s peak; (2) the shift to higher BE of the Ti 2p3»
peak and a decrease in the energy split; and (3) the shift to lower BE of the Ge
3ds, peak and increase in the energy split. These changes reflect modifications
to the bonding when Ge replaces Ti in Ti—-O-Ti bonds and Ti replaces Ge in
Ge—0O-Ge bonds due to their difference in electronegativity. A decrease in the
0-0 nearest-neighbour distance due to the incorporation of Ti atom is also
observed from the broadening of the valence band spectra. The results show
the 0.44 Ti doped a-GeO, mixture has a balance between the (Ti—-O-Ge) and
the (Ge—O-Ge) networks, not observed in Ti poor and Ti rich mixtures. This

“ Authors to whom any correspondence should be addressed.

© 2024 IOP Publishing Ltd


https://doi.org/10.1088/1361-6382/ad3c08
https://orcid.org/0000-0002-4347-4383
https://orcid.org/0000-0002-2112-9378
mailto:sangita1@colostate.edu
mailto:Carmen.Menoni@colostate.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ad3c08&domain=pdf&date_stamp=2024-4-22

Class. Quantum Grav. 41 (2024) 105007 S Bhowmick et al

finding could have important consequences in the optimisation of amorphous
Ti doped a-GeO, mixtures for low internal friction coatings of GWDs.

Supplementary material for this article is available online

Keywords: amorphous oxide thin films, amorphous oxide compounds, TiO;,
GeO», x-ray photoelectron spectroscopy

1. Introduction

The mixing of several cations in amorphous oxide compounds makes it possible to control-
lably modify their electronic, structural, and optical properties [1—4]. This capability has been
exploited in many applications, such as in microelectronics [5, 6] and in optics [7, 8]. For
optical applications, mixing or doping of a metal cation into an amorphous oxide matrix mod-
ifies the refractive index and the extinction at the application wavelength. There are also struc-
tural modifications which manifest in increased crystallisation temperature of the matrix, as
has been shown in Ta;Os doped with other metal cations [1, 2, 9—11]. The addition of Ti with
a cation content of ~25% into an amorphous oxide matrix of Ta,Os has proven to be essential
to lower coating Brownian noise in the multilayer dielectric (MLD) coatings of gravitational
wave detectors (GWDs) [9, 12-14]. Coating thermal noise (CTN) arises from elastic energy
dissipation predominant in the high index layer of the ~25% Ti doped Ta;Os [15]. Different
studies of doping of Ta,0Os, both experimental and model simulations, have shown that the
addition of Ti or Zr to amorphous Ta,Ojs alters the atomic network at the medium range which
favourably impacts reduction in internal friction [16—18].

The strategy of doping amorphous oxides to increase crystallisation temperature, tailor
optical properties and reduce internal friction was also used in an alloy of Ti doped amorph-
ous GeO, (a-GeO,), which is a potential alternative candidate to 25% Ti doped Ta;Os as the
high index layer material in the MLD coatings of the mirrors of GWD. Experiments showed
Ti doped a-GeO, with 0.44 Ti cation concentration reaches a value of internal friction three
times lower than that of 0.25 Ti doped Ta,Os when annealed to 600 °C for 100 h [19]. CTN
simulations of MLD coatings of 0.44 Ti doped GeO, and SiO, with the same design as those
of the intermediate and end test masses of advanced Laser Interferometer Gravitational-wave
Observatory (LIGO) predict the CTN can reach values 2 x lower than that of present coatings
[19].

Amorphous GeO, (a-Ge0,) is a glass former. On the other hand, Ti cations are considered
to act as both network formers and network modifiers [20, 21]. Furthermore, the addition of
Ti increases its refractive index, which is necessary to tune its optical properties for used in
MLD coatings. In analogy to Zr doped Ta,Os, one would expect modifications to the net-
work organisation of a-GeO, with Ti doping [16]. In a-GeO, the network organisation in the
short range consists of tetrahedra formed by the Ge atom connected to bridging oxygen at the
corners. These units arrange in rings of different sizes at the medium range [22]. The addi-
tion of Ti atoms is expected to alter the network organisation owing to the presence of four-,
five- and six-fold coordinated polyhedral units [23, 24]. Therefore, O atoms at each corner,
the oxygen bonding environment plays a crucial role in controlling the network organisation
at the nearest-neighbour level of amorphous oxide [17]. However, the exact role of Ti in the
alteration of the network organisation in Ti doped a-GeO; (Ti: a-GeO,) has not been studied
yet.

Herein, we describe the bonding modifications of a-GeO, when Ti is incorporated at dif-
ferent cation concentrations. Results of x-ray photoelectron spectroscopy (XPS) from a set of
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ion beam sputtered Ti-doped a-GeO, with Ti cation concentration between 0 and 0.63 show
a systematic evolution of the mixed (Ti—O—-Ge) network as compared to pure (Ge—O-Ge) and
(Ti—O-Ti) networks as a function of Ti content, demonstrating atomic mixing. Results indicate
that Ti doped a-GeO, samples with 0.44 Ti cation concentration have a balance between Ti—
O-Ge and Ge—O-Ge networks in contrast to Ti-rich and Ti-poor mixtures. Analysis of the near
valence band (VB)-XPS spectra of all the as-deposited mixtures shows the variation in orbital’s
hybridisation upon cation incorporation. The results of this study provide a clear understand-
ing of cation concentration driven atomic structure modification in Ti doped a-GeO, which
could play a decisive role in reducing mechanical loss.

1.1. Experimental details

Thin films of Ti-doped a-GeO, with cation ratio (Ti/Ti + Ge) of 0, 0.10, 0.33, 0.44, 0.63 and
1 were deposited by reactive ion beam sputtering using the Laboratory Alloy and Nanolayer
System manufactured by 4Wave, Inc. [19, 25]. In this deposition tool, a low-energy ion source
is used to generate a plume of Ar ions which are accelerated towards the metal substrate using
a pulsed bias. The desired mixture composition is obtained by sputtering simultaneously the Ti
and Ge targets using a bias pulse length that is adjusted to obtain the desired Ti cation content
at a selected oxygen partial pressure. The base pressure reached 2 x 10~8 Torr whereas the
process pressure was kept near 6 x 10~* Torr. Deposition parameters for Ti doped a-GeO,
films with different Ti percentage are given in table S1 of supplementary material (SM).

Ti doped a-GeO, thin film mixtures of thickness ranging from 250 to 500 nm were deposited
onto silicon substrates for structural characterisation. The dopant cation concentration, atomic
areal density, and oxygen stoichiometry of the films were determined through Rutherford
backscattering spectrometry (RBS) measurements. These measurements were conducted using
He™ ions with an energy of 2.035 MeV generated by a 1.7 MV Tandetron accelerator. Finally,
SIMNRA software was utilised to simulate all RBS spectra [26]. XPS spectra were collected
using the Physical Electronics PE 5800 ESCA/ASE spectrometer with monochromatic Al Ko
x-rays of energy 1486.6 eV and electron take-off angles of 45°. A charge neutraliser was used
with a current of 10 A for all measurements. The base pressure of the system was around
1 x 1077 Torr. All the acquired spectra were analysed using CasaXPS software [27]. The
electron binding energies (BEs) were then corrected by considering the adventitious carbon C
1s peak at 284.9 eV for all samples which arises due to stray carbon impurities [9]. The results
presented herein pertain to the as-deposited thin film mixtures.

1.2. Results and discussion

The evolution of the chemical state of Ti doped a-GeO, mixtures with different cation con-
centration was investigated from the changes in the O 1s, Ti 2p and Ge 3d edges. These peaks
in the high resolution XPS spectra were analysed by deconvoluting the oxidation states with
a Voigt (70% Gaussian + 30% Lorentzian) function after Shirley background subtraction in
CASA XPS. The use of adventitious C 1s peak for the binding energy calibration of the high-
resolution spectra introduces an uncertainty of 0.1 eV in the peak positions [9, 28]. There is
also an uncertainty of +0.1 eV arising from the deconvolution of the peaks with CASA XPS
software, resulting in a 0.2 eV error in peak position.

The high resolution XPS spectra of the O 1s core level for a-GeO, and a-TiO, are shown
in figure 1. As we can see from figure 1(a), the O 1s peak for a-GeO, can be deconvoluted
into two peaks positioned at 533.3 eV and 532.2 eV (assigned as O1, O2), where the higher
intensity peak at 532.2 eV is associated with lattice oxygen, identifying the (Ge—O-Ge) bond

3
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Figure 1. Deconvoluted O 1s XPS spectra for (a) a-GeO», (b) a-TiO,.

[29] while the O1 peak is associated to hydroxyl groups attached to Ge atoms (Ge—OH) [30,
31]. For a-TiO,, the O 1s core level peak (figure 1(b)) also shows the presence of two peaks at
531.6 eV and 530.0 eV (assigned as O3, O5). O3 is associated with —OH molecule attached to
Ti (Ti—-OH) and OS5 is associated with lattice oxygen of a-TiO, (Ti—O-Ti) [32-34]. We should
note here that the appearance of OH radicals indicate their attachment to surface defects such
as oxygen vacancies [34-37].

The O 1s core level in the Ti doped a-GeO, mixtures shows a complex structure, which is
modified as the percentage of Ti in the mixtures increases as shown in figure 2. The shape of
the O 1s core level spectrum transforms due to the appearance of a peak at 531.1 eV (assigned
as O4 in figure 2). The deconvoluted O 1s peak with O1, 02, O3, O4 and O5 components
for Ti doped a-GeO, are tabulated in the table S2 in supplementary material (SM). Both O1
(Ge—OH) and O3 (Ti—OH) peaks show negligible change with cation concentration. However,
as the Ti cation ratio increases the relative intensity of peak O4 increases, as can be seen from
figure 2 and table S2 in SM. For the 0.44 cation concentration alloy, the intensity of peak O4
become comparable to the intensity of peak O2. For 0.63 Ti doped a-GeO; the relative at.% of
05 exceeds 02, due to the increase in Ti—O-Ti contribution as compared to Ge—O—Ge. The fact
that the BE value of peak O4 (at 531.1 eV) does not match the BE value of a-GeO, (at 532.2 eV)
ora-TiO, (at 530.0 eV) lattice oxygen, indicates O4 is associated with oxygen, which is bonded
with both Ti and Ge (i.e. Ti-O-Ge mixed oxide network). Since, the electronegativity of Ti
(1.54, using Pauling’s scale) is lower than of Ge (2.01, using Pauling’s scale), bond weakening
in Ge—O-Ge can be significant due to the formation of Ti-O—Ge bonds via incorporation of
Ti [38]. These modifications in the bond length shift the overall Ols spectra towards lower
BE with increasing Ti content in the mixtures. The evolution of the different Ols components
with Ti percentage, as can be seen from figure 2 and table S2, shows a monotonic increase in
the relative percentage of O4 (Ti—-O-Ge) and a decreasing trend of O2 (Ge—-O-Ge) up to 0.44
Ti cation concentration. As depicted in table S2 in SM, the 0.44 Ti-doped a-GeO, samples
exhibit a mixed network of 42% (Ti—O-Ge) and 44% (Ge—O-Ge) bonds. Notably, the relative
percentage of the (Ti—~O-Ge) network is lower for mixtures with lower cation concentrations
(0.10 and 0.33). In 0.63 Ti-doped a-GeO, while the Ti-O-Ge percentage (41%) is similar
to that of the 0.44 Ti-doped a-GeO,, the (Ti—-O-Ti) percentage (36%) is high. These results
indicate that Ti atoms preferentially form (Ti—~O—Ge) bonds rather than Ti—-O-Ti bonds up to
Ti cation concentrations of 0.44 in contrast to 0.63 Ti doped a-GeO, in which the Ti-O-Ti
network becomes significant.

The changes in the bonding environment of Ti in the Ti doped a-GeO, mixtures (0 < Ti < 1)
were evaluated from the XPS spectra near the Ti 2p level. As shown in figure 3, the Ti 2p peak
for a-TiO, consists of two main peaks at 458.6 eV and 464.3 eV [39, 40]. The doublet peaks at
458.6 eV (Ti2ps;) and 464.3 eV (Ti 2py») are associated with Ti** in the TiO, lattice and arise
from spin—orbit-splitting between Ti 2ps,, and Ti 2py, (ATi 2p = 5.72 £ 0.02 eV). Whereas,
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Figure 2. Deconvoluted O 1s core level XPS spectra for as-deposited Ti doped a-GeO,

mixtures with different Ti cation concentration. The dotted lines indicate the centroids
of 02 (Ge-0-Ge), O4 (Ti—-O-Ge) and O5 (Ti—O-Ti).
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Figure 3. Deconvoluted Ti 2p XPS spectrum for a-TiO,. The experimental data and
fitted curves are shown by black circles and thick green lines, respectively. The Ti 2p
XPS is presented in the inset to show the lower BE peaks, associated with Ti**.
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Figure 4. Deconvoluted Ti 2p XPS spectra for all as-deposited Ti doped a-GeO, mix-
tures with different Ti cation concentration. Here, blue dotted lines represent the position
of Ti 2p32 and Ti 2py.; of a-TiO,, respectively.

the shoulder peaks at 457.3 eV and 463.0 eV (inset of figure 3) with negligible contribution
could be associated with Ti*t in Ti,O;3 [41, 42].

For all Ti doped a-GeO, mixtures, the deconvoluted Ti 2p XPS spectra with Ti 2p3,, and
Ti 2p,» peaks are shown in figure 4. For all the fittings the area ratio for Ti 2ps, and Ti 2p»
was fixed to 2:1. For clarity, the deconvoluted Ti 2p peak positions, their relative intensity
(at.%), and the value of ATi 2p are tabulated in the table S3 (see SM). As can be seen from
figure 4 and table S3 in SM, the Ti 2p peak shifts to higher BE in Ti doped a-GeO, mixtures
as compared to Ti 2p of a-TiO,. For the mixture with a Ti cation content of 10%, the whole
spectrum is shifted by 1 eV to higher BE with respect to a-TiO,, with the Ti 2p3/, at 459.6 eV
and Ti 2p,, at 465.4 eV (ATi 2p = 5.85 £ 0.02 eV). As the percentage of Ti increases, the Ti
2p peak gradually shifts towards lower BE position. Also, the peak separation for mixtures is
significantly different from 5.72 4= 0.02 eV for Ti in a TiO (Ti**) environment. Such change
in the peak separation has previously been attributed to the modifications of the Ti bonding
environment and formation of an atomic mixture in Ti doped TayOs [9, 25]. The change in
the Ti 2p3, peak position and ATi 2p of Ti doped a-GeO, as a function of Ti percentage
is represented in figure 5. The results show a clear decreasing trend in the BE of Ti 2ps3,,
along with reduction in the ATi 2p value with increasing Ti percentage. This indicates that
the chemical environment of the Ti atoms is not same in the mixtures as in a-TiO, [9, 43].
As mentioned earlier, Ti has lower electronegativity than Ge. Thus, in the presence of Ge the
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Figure 5. Change in the peak position of Ti 2ps; (black symbols) and ATi 2p (red
symbols) for Ti doped a-GeO, versus Ti cation content.
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Figure 6. Deconvoluted Ge 3d XPS spectra for a-GeO;. Ge 3d3/, and Ge 3ds;, compon-
ents are represented by the blue and red curve, while the small green peak is associated
with Ge-OH.

electron density around the Ti decreases and the binding energy increases. Hence, the Ti 2p
peak shifts towards lower BE positions as the Ti cation content increases [38]. The observed
shift of Ti 2p peak position as well as the change in the value of ATi 2p, indicates that the
chemical environment of the Ti atoms in Ti doped a-GeO, mixtures is different than a-TiO,
probably due to the formation of Ti-O—Ge bonds in the lattice, revealing atomic mixing.

The Ge 3d core level spectrum of a-GeO, and the spectra of the Ti doped a-GeO, for dif-
ferent Ti cation content are shown in figures 6 and 7, respectively. The Ge 3d XPS peaks were
fitted with a doublet of Voigt functions corresponding to Ge 3ds;, and Ge 3ds;, components
(represented by the blue and red curves in figures 6 and 7, respectively. For all the fittings
the area ratio for Ge 3d3, and Ge3ds, was fixed to 2:3. As can be seen from figure 6, for the
a-GeO;,, Ge 3d shows two peaks at 33.3 eV and 32.7 eV associated with Ge 3ds/, and Ge 3ds),
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Figure 7. Deconvoluted Ge 3d XPS spectra for all mixed Ti doped a-GeO, samples. Ge
3ds/2 and Ge 3ds,, components are represented by blue and red curves, while the green
curve shows negligible contribution of GeOx. Here, blue and red dotted lines represent
the position of Ge 3d3, and Ge 3d 512 of a-GeOs, respectively.

of GeO, (Ge** oxidation state) with an energy splitting AGe 3d = 0.60 & 0.02 eV. The spin—
orbit splitting arises due to the interaction between the electron’s spin and its orbital motion.
The lower intensity peak at 31.2 eV is associated with GeOy bonds [29].

As Ti is introduced into the a-GeO, matrix, the Ge 3d peak position shifts towards lower
BE with respect to a-GeO,, as reflected in figure 7. Moreover, the value of spin—orbit splitting
(AGe 3d) also changes with the incorporation of Ti in the a-GeO, matrix. For clarity, the
deconvoluted Ge 3d peak positions, relative intensity (at.%), and the value of AGe 3d are
tabulated in table S4 (see SM). The change in the Ge 3ds,, peak position and value of AGe 3d
as a function of Ti percentage are plotted in figure 8. From figure 8 and table S4 in SM, it is
clear that BE of Ge 3ds,, decreases and AGe 3d increases with the increase of Ti content.

For the mixture with 0.44 cation concentration, the energy splitting equals (0.67 = 0.02 eV).
A similar increase in the energy splitting for Ta 4f XPS spectra has previously been reported
due to the incorporation of Ti in Ta;Os [9]. The deconvoluted peak positions and relative areas
are presented in table S4 (see SM).

Due to the higher electronegativity of Ge (2.01) as compared to Ti (1.54) the electron
density on Ge increases upon Ti incorporation. This reduces the binding energy of the elec-
trons attached to Ge. This effect is also evidenced in the energy splitting. Therefore, upon the
increase of Ti content, the Ge 3d spectra shifts to lower binding energy and the energy split
AGe 3d increases compared to the Ge 3d peak of a-GeO, [38]. These results provide further
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Figure 9. The near valence band VB-XPS spectra for as-grown Ti doped a-GeO,
samples with different Ti cation content.
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support to the strong evidence of charge transfer and formation of a mixed network in Ti doped
a-GeQO, for all Ti contents.

The modifications to the electronic density of states of Ti doped a-GeO, mixtures with the
incorporation of Ti were obtained from the near VB-XPS spectra of figure 9. A systematic
shift to lower BE in the onset of the VB maximum (VBM) position with the increase of Ti
content from a-GeO; to a-TiO; is evident from figure 9.

The position of the VBM is tabulated in table S5 of SM. This shift is expected because
the bandgap of a-TiO, (Eg ~ 3.4 eV) [44] is smaller than that of a-GeO, (Eg ~ 5.6 eV)
[45]. Figure 9 also shows the near VBM region in a-GeO, contains three peaked structures
positioned around ~6.0 eV, ~9.6 eV, and ~13.3 eV. In a-GeO,, the structure between 4 and
15 eV is derived from the O 2p, Ge 4s, Ge 4p, orbital hybridisation [46, 47]. Instead in a-TiO;,
the near VBM region is composed of two peaked structures positioned around ~4.3 eV, and
~7.0 eV and which arise from the Ti 3d—O 2p orbital hybridisation [46]. It is evident from
figure 9 that the shape of the VB spectra in the mixed Ti doped a-GeO, changes continuously
from a-GeO; to a-TiO,. Since the ionic radius of Ti** is 68 pm and that of the Ge** is 54 pm
[48], substituting Ti in place of Ge effectively decreases the average O—O separation [46, 49,
50]. It is this separation of the oxygen atoms that is responsible for the broadening of the O 2p
nonbonding band and results in the broadening of the VB spectra due to the incorporation of
Ti atoms [46, 49]. A similar type of broadening has previously been reported by Fischer et al,
in SixGe; _xO; due to the reduction in the average O—O separation [46]. The atomic radius of a
Ge atom is larger than that of a Si atom, resulting in the larger bond length of Ge—O = 1.696 A
compared to that of Si—-O = 1.606 A [50]. Therefore, the overall result infers that the Ge—-O—
Ge bonding configuration transforms into a Ti—-O—Ge configuration due to the incorporation
of Ti atoms in a-GeO, which broadens the VB spectra in the mixtures.

1.3 Conclusions

The analysis of the O 1s, Ti 2p and Ge 3d XPS core level signatures conclusively support
the formation of Ti—-O—-Ge bonds in Ti doped a-GeO, mixtures. A systematic increase with
Ti content of the (Ti—-O-Ge) bonds as compared to (Ge—-O-Ge) and (Ti—O-Ti) networks is
reflected in the modifications of the O 1s core level in which a peak with BE intermediate
between a-GeO, and a-TiO, appears and grows in intensity. Based on this analysis, the 0.44
Ti-doped a-GeO, exhibits a balance in the population of Ti—-O-Ge and Ge—O-Ge bonds. The
(Ge—0O-Ge) network dominates in the 0.10 and 0.33 Ti content mixtures. Instead, the (Ti—O—
Ti) network dominates in the 0.63 Ti-doped a-GeO, mixture. Further, modifications to the
chemical environment of Ti consistent with Ti substituting Ge and vice versa are evident from
the shift of the Ti 2p peak to higher binding energy and the shift to lower binding energy of the
Ge 3d peak. Additional evidence of atomic mixing is obtained from the decrease in the O-O
nearest-neighbour distance due to the incorporation of Ti atom in a-GeO, from the broadening
of the VB spectra.

The evidence of atomic mixing for all Ti doped a-GeO, compounds confirms the simultan-
eously sputtering of two metal targets in an oxygen rich atmosphere is effective for shaping
the structural network organisation in amorphous oxides compounds, as previously shown in
Ti doped a-Ta,Os [9]. The substitution of Ge by Ti to form Ti-O-Ge bonds is found in all the
mixtures. However, a balance between the Ti-O—Ge and Ge—O-Ge networks is only observed
in 0.44 Ti doped a-GeO,. This specific atomic network organisation has likely played a decis-
ive role in the reduction of mechanical loss of 0.44 Ti doped a-GeO,, which achieved one of
the lowest values reported in amorphous oxide mixtures, ¢ = 0.96 x 10~* after annealing for
108 h at 600 °C [19]. Further insight on the changes in the atomic bonding beyond the results

10
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presented in this paper requires the use of x-ray or electron pair distribution functions [16] or
Raman spectroscopy [22] which can identify modifications of the bonding at medium range
in Ti doped a-GeO; alloys that correlate with reduction in mechanical loss.

Data availability statement
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supplementary files).
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