
845

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

2693-9371/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS-C60940.2023.00067

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
Q

ua
lit

y,
 R

el
ia

bi
lit

y,
 a

nd
 S

ec
ur

ity
 C

om
pa

ni
on

 (Q
RS

-C
) |

 9
79

-8
-3

50
3-

59
39

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
Q

RS
-C

60
94

0.
20

23
.0

00
67

Assume(), Capture(), Verify(), Establish():

A Vocabulary for Static Program Analysis

Hessamaldin Mohammadi1,*, Wided Ghardallou2, Elijah Brick 1 and Ali Mili1

1 Ying Wu College of Computing, NTIT, Newark, NJ, USA
2University of Sousse, Sousse, Tunisia

hm385@njit.edu, wided.ghardallou@gmail.com, eb275@njit.edu, mili@njit.edu
*corresponding author

Abstract-We propose a set of functions that a user can invoke
to analyze a program written in a C-like language: Assume()
refers to a label in the source code or to a program part, and
enables the user to make an assumption about the state of the
program at some label or the function of some program part;
Capture() refers to a label or a program part and returns an
assertion about the state of the program at the label or the
function of the program part; Verify() refers to a label or a
program part and tests a unary assertion about the state of the
program at the label or a binary assertion about the function
of the program part; Establish() refers to a label or a program
part and modifies the program code to make Verify() return
TRUE at that label or program part, if it did not originally. We
discuss the foundations of this tool as well as a preliminary
implementation.
Keywords-Assume(), Capture(), Verify(), Establish(), Sym­
bolic execution, while loops, Mathematica (@Wolfran Re­
search), invariant relations.

1. INTRODUCTION: QUERYING A PROGRAM AT SCALE

Despite decades of research in programming language design
and implementation, and despite the emergence of many
programming languages that have advanced, sophisticated
technical attributes, most software being developed, main­
tained and reused today is written in C-like languages.
The six top languages in the July 2023 Tiobe classification
(https: / /www.tiobe.com/) of programming languages
are derived from or inspired by C. As software maintenance
and evolution continue to account for a large, and growing,
percentage of software engineering costs and resources, and
as software is increasingly developed from existing code, the
ability to analyze the function of a software artifact from
a static inspection of its source code becomes increasingly
critical. The recent talk of using artificial intelligence to
generate code makes this capability even more critical because
AI code generation is rather opaque, thereby precluding any
process-based quality controls.
The question of deriving the function of a program written in a
C-like language has eluded researchers for decades, primarily
due to the presence of loops, whose function cannot be easily
modeled in general. In this paper we see how we can, under
some conditions, capture the function of iterative statements,

such as while loops, for loops, repeat loops, etc, at arbitrary
levels of nesting.
But deriving the function of a program in all its minute detail
may be too much information for an analyst to handle; a
programmer who abhors poring over pages of source code
will probably not relish the prospect of poring over pages of
mathematical notation instead. Hence in addition to the ability
to compute the function of a program, we are interested to
offer the user the ability to query the program at scale. To this
effect, we propose four functions, which are invoked in the
context of an interactive session:
• Assume().

- @L: Assume(C), where L is a label and C is a unary
predicate on the state of the program, formulates an
assumption that the user makes about the state of the
program at label L; in particular, this function can be
used to formulate the pre-specification of a program or
a subprogram.

- @P: Assume(C), where Pis a named program part and
C is a binary predicate on the state of the program,
formulates an assumption that the user makes about the
function of P.

• Capture().
- @L: Capture(), where L is a label, calls on the system to

generate two unary conditions: A Reachability Condition,
which is the condition on the initial state of the program
under which execution reaches label L; and a State
Assertion, which captures everything that is known about
the state of the program at label L.

- @P: Capture(), where P is a program part, calls on the
system to generate a binary predicate in the state of the
program (in (s, s')), which captures everything that is
known about the function of P.

• Verify().
@L: Verify(C), where L is a label and C is a unary
condition on the state of the program, calls on the
system to return TRUE of FALSE depending on whether
condition C is assured to be true at label L or not. A user
may invoke Verify(C) to check a program's postcondition
for correctness.

- @P: Verify(C), where P is a program part and C is a
binary condition on the state of the program, calls on the

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 01,2024 at 21:55:10 UTC from IEEE Xplore. Restrictions apply.

846

public class Main
{public static int f(int x) {x=7*x+7;return x;}
public static void main(String argv[])

{int x,y,t,i,j,k; //read x,y,i,j,k,t;
Label Ll; t= i-j; j= i+S;
if (i>j)

{ x= 0 ; y= f (X) ;

while (i!=j)

else

{i=i+k; k=k+l; i=i-k; y=f(y);
Label L2;} Label L3;}

{if (j>i)
{while (j != i)

{j=j+k; k=k-1; j=j-k; y=f(y);};
Label L4;}

else
{while (t!=i)

{for(int z=O;z!=y;z=z+l) {x=x+l;}
y= x-y; t= t+l;} Label LS;}}

k=i+j; j=2*k; Label L6;}}

Figure 1. Sample Java Code

system to return TRUE of FALSE depending on whether
program P refines the binary relation defined by C.

• Establish().
- @L: Establish(C), where L is a label and C is a unary

condition that does not hold at label L. The call to
this function deploys program repair techniques [l] to
generate mutants of the path from the first executable
statement of the program to label L, and selects a mutant
that makes condition C true at label L.

- @P: Establish(C), where P is a program part and C is
a binary predicate on the state of the program that is not
refined by the function of P. The call to this function
deploys program repair technology to generate mutants
of P and select a mutant that makes @P: Verify(C) return
TRUE.

Due to space limitations, we content ourselves with a brief
demo, and refer the interested reader to a video that il­
lustrates the execution of our tool, which we call ACVE.
http://web.njit.eduf'miWacvedemo.mp4.

2. SYSTEM SPECIFICATION THROUGH A USE CASE

The queries we present in this section apply to the code shown
in Figure 1. Due to space limitations, we merely show the
queries and ACVE's responses, and leave it to the reader to
check the validity of these responses.

2.1 @Ll: Assume(i >= 0)
Label Ll is located right after the program's inputs are read;
hence we interpret this query as the pre-condition of this
program. ACVE takes note:

(i>=O) assumed at label Ll.

2.2 @L2: Capture()
We want to know: under what condition label L2 is reached
and what is known about the state of the program when
execution reaches it. The system replies:

Reachability Condition:
j>=O && i>j I I j<O && i>=O
State Assertion:
l+i==j+t&&x==O&&y==56&&t>O&& (j>=O I I j+t>=O)

2.3 @L3: Capture()
We want to enquire about the state of the program at label L3.
The system replies:

Reachability Condition:
i>=O && (j<O I I i>j)
State Assertion:
i==j && x==O && 7A(2+t)==7+6*Y

&& t>O && (j>=O I I j+t>=O)

2.4 @L3: Verify()
If we find the output of Capture() too detailed and just wants
to check a minimal (e.g. safety) condition, then we submit
Verify() queries. Below are three simple examples.

@L3: Verify(t+j>=O)
>> TRUE
@L3: Verify(i!=j)
>> FALSE
@L3: Verify(j>O)
>> FALSE

2.5 @L4: Capture()
We submit query @IA-: Capture() to enquire on the reacha­
bility condition of label L4, and what is known at that label.
The system replies:

Reachability Condition:
>> FALSE
State Assertion:
>> FALSE

2.6 @L4: Verify()
A query such as: @L: Verify(C) means: if execution reaches
label L, does condition C hold for the program state at label
L? Hence if label L is unreachable, then @ L: Verify(C) ought
to return TRUE for any C. Indeed,

@L4: Verify(l==l)
>> TRUE
@L4: Verify(l==O)
>> TRUE

2.7 @L5: Capture()
To query the program at this label L5, after execution of the
nested loop, we use Capture(). The system replies (where Fib
is the Fibonacci function):

Reachability Condition
(i==j) && (j>=O)

State Assertion
(i==t&&j==t&&(y==(x*Fib[t])/Fib[t+l]&&t>O)
I I (t==O&&i==O&&j==O)

Acknowledgement

This work is partially supported by NSF grant DGE2043104.

REFERENCES

[l] Luca Gazzola, Daniela Micucci, and Leonardo Mariani.
Automatic software repair: A survey. IEEE Trans. on Soft.
Eng., 45(1), January 2019.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 01,2024 at 21:55:10 UTC from IEEE Xplore. Restrictions apply.

