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The fairness-aware online learning framework has emerged as a potent tool within the context of continu-

ous lifelong learning. In this scenario, the learner’s objective is to progressively acquire new tasks as they

arrive over time, while also guaranteeing statistical parity among various protected sub-populations, such as

race and gender when it comes to the newly introduced tasks. A significant limitation of current approaches

lies in their heavy reliance on the i.i.d (independent and identically distributed) assumption concerning data,

leading to a static regret analysis of the framework. Nevertheless, it’s crucial to note that achieving low static

regret does not necessarily translate to strong performance in dynamic environments characterized by tasks

sampled from diverse distributions. In this article, to tackle the fairness-aware online learning challenge

in evolving settings, we introduce a unique regret measure, FairSAR, by incorporating long-term fairness

constraints into a strongly adapted loss regret framework. Moreover, to determine an optimal model param-

eter at each time step, we introduce an innovative adaptive fairness-aware online meta-learning algorithm,

referred to as FairSAOML. This algorithm possesses the ability to adjust to dynamic environments by ef-

fectively managing bias control and model accuracy. The problem is framed as a bi-level convex-concave

optimization, considering both the model’s primal and dual parameters, which pertain to its accuracy and

fairness attributes, respectively. Theoretical analysis yields sub-linear upper bounds for both loss regret and

the cumulative violation of fairness constraints. Our experimental evaluation of various real-world datasets

in dynamic environments demonstrates that our proposed FairSAOML algorithm consistently outperforms

alternative approaches rooted in the most advanced prior online learning methods.
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1 INTRODUCTION

In the real world, data that includes biases are often collected incrementally over time, and the
underlying distribution assumptions can undergo significant changes at critical junctures. A case
in point is a recent report by the New York Times [17], which highlights that systematic algorithms
exhibited increased discriminatory tendencies towards African Americans in the context of bank
loans during the COVID-19 pandemic compared to the pre-pandemic era. These algorithms are
constructed from a series of sequentially gathered data streams, where decision-making exhibits
bias towards the protected racial population at each step. This situation underscores two key issues:
(1) Online algorithms typically neglect the crucial aspect of fairness in learning, where fairness is
defined as the equality of predictive performance across different sub-populations, ensuring that
a model’s predictions remain statistically independent of protected characteristics (e.g., race). (2)
Machine learning models heavily rely on the i.i.d assumption, which becomes untenable when the
environment undergoes changes, as exemplified by shifts occurring before and after the pandemic.
To effectively manage bias over time, particularly in the context of ensuring fairness across

various protected sub-populations, fairness-aware online algorithms are designed to address
supervised learning problems where fairness is a prominent concern. These algorithms aim to
sequentially train predictive models that remain unbiased. In particular, the objective of these
algorithms is twofold: first, to ensure that the static loss regret, which measures the cumulative
loss of the learner against the best-fixed action in hindsight, and second, to limit the violation
of various fairness principles, both exhibit sub-linear growth in the total number of time steps
[28]. It’s worth noting that while these approaches achieve cutting-edge theoretical guarantees,
it’s important to recognize that the metric of static regret holds significance primarily in stable
or stationary environments. Low static regret, however, doesn’t necessarily translate to excellent
performance in changing environments because time-invariant benchmarks may perform poorly
under such circumstances [23].
To overcome the challenge posed by changing environments in online learning, two distinct no-

tions of regret have garnered attention: strongly adaptive regret (SAR) [3] and dynamic regret
[30]. These concepts offer differing perspectives on handling changes over time. Dynamic regret
takes a global approach, addressing changes in environments by comparing the cumulative loss of
the learner against a sequence of comparators. Importantly, it allows these comparators to evolve
over time, reflecting the dynamic nature of the learning process. Conversely, SAR adopts a more
localized viewpoint, giving greater consideration to short time intervals. This type of regret can be
seen as the maximum regret statistic across all intervals [3]. While some recent works [12, 23, 24]
have made strides in achieving sub-linear loss regret in online learning within changing environ-
ments, they often overlook the crucial aspect of learning with fairness. This neglect of fairness,
which is a fundamental characteristic of human intelligence, remains a significant limitation in
these approaches.
In this article, we present a new challenge, namely fairness-aware onlinemeta-learning in chang-

ing environments. In this scenario, a series of data batches or tasks are collected sequentially over
time, with the environments associated with these tasks potentially undergoing variations. Our
primary objectives in this research are twofold: Firstly, we aim at extending the applicability of
predictive learning accuracy and model fairness to novel and evolving environments. Secondly,
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we endeavor to minimize both loss regret and the cumulative violation of fairness constraints,
ensuring that they exhibit sublinear growth over time.
To achieve these goals, we introduce a novel online learning algorithm named fair strongly

adaptive online meta-learner (FairSAOML). This algorithm updates model parameters
through a two-level approach: online fair interval-level learning and meta-level learning. These
two levels of problems interact with two sets of parameters: primal parameters θ , which pertain
to model accuracy, and dual parameters λ, which govern fairness considerations. To provide more
details, we draw inspiration from the concept of learning with expert advice [12], and we carefully
design three alternative sets of intervals. At each time step t ∈ [T ], a subset of intervals is chosen
to activate several experts, with each active expert running an interval-specific algorithm. An
expert takes a meta-solution pair (θ t−1,λt−1) from the previous time as input and generates
an interval-level solution (θ t, I ,λt, I ) for the specific interval I . A meta-algorithm combines the
weighted contributions of all experts to form a solution pair (θ t ,λt ) at time t , which is then
utilized to make predictions for the subsequent time step. This approach allows us to address the
challenges of fairness-aware online meta-learning in changing environments effectively.
The main contributions of this article are summarized:

— In this article, we propose a novel framework addressing the problem of fairness-aware on-
line meta-learning in changing environments. We start with the introduction of a novel
adaptive fairness-aware regret FairSAR. A novel algorithm FairSAOML is further proposed
to find a good decision sequentially. At each time, the problem is formulated as a constrained
bi-level convex-concave optimization with respect to a primal-dual parameter pair.

— Based on varying assumptions and motivations, we introduce three distinct sets of intervals,
leading to the creation of three different versions of our proposed FairSAOML algorithm.

— Theoretically grounded analysis justifies the efficiency and effectiveness of all variants
of FairSAOML by demonstrating tighter bounds O((τ logT )1/2) for the loss regret and
O((τT logT )1/4) for violation of fairness constraints.

—We validate the performance of our approach with state-of-the-art techniques on real-world
datasets. Our results demonstrate that FairSAOML can effectively adapt both accuracy and
fairness in changing environments, and it shows substantial improvements over the best
prior works.

This article is organized as follows. In Section 2, some related works are introduced. Section 3
provides notations and some backgrounds of this article. In Section 4, we detail the proposed
methodology. In Section 5, we discuss the theoretically grounded analysis for the learning
approach. Empirical settings and results on real-world benchmarks compared with cutting-edge
techniques are given in Sections 6 and 7. Finally, this article is concluded in Section 8.

2 RELATEDWORK

Changing environments in online learning. Since the pioneering work [30] in online learning,
numerous subsequent researches [9, 21] have been developed under the assumption of a station-
ary environment with static regret. Low static regret, however, cannot imply a good performance
in a changing environment due to time-invariant comparators. To address this limitation, two
regret metrics, dynamic regret [30] and adaptive regret (AR) [10], is devised to measure the
learner’s performance in changing environments. To bind the general dynamic regret, the path-
length of comparators [24, 30] is introduced and further developed. Unlike dynamic regret, AR
handles changing environments from a local perspective by focusing on comparators in short in-
tervals. To reduce the time complexity of AR-based online algorithms, geometric covering intervals
[3, 12, 23] and data streaming techniques [7] are developed. Although existing methods achieve
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state-of-the-art performance, a major drawback is that they immerse in minimizing objective func-
tions but ignore the model fairness of prediction.
Fairness-aware online learning problems assume individuals arrive one at a time and the goal

of such algorithms is to train predictive models free from biases. From the perspective of optimiza-
tion, group fairness notions are normally considered as constraints added to learning objectives.
However, when the constraints are complex, the computational burden of the projection onto con-
straints may be too high. Several closely related works, including FairFML [28], FairGLC [22], and
FairAOGD [11], aim at improving the theoretic guarantees by relaxing the output through a simpler
closed-form projection. However, these methods are not ideal for continual lifelong learning with
changing task distributions, as they assume that all samples come from the same data distribution.
Online meta-learning addresses the issue of learning with fast adaptation, where a meta-

learner learns knowledge transfer from history tasks onto new coming ones. FTML [6] can
be considered as an application of MAML [5] in the setting of online learning. FairFML [28]
extends FTML by controlling bias in an online working paradigm with task-specific adaptation.
Unfortunately, none of such techniques are devised to adapt to changing environments.
Although a recent work [29] tackles the problem of fairness-aware online learning for changing

environments, it heavily depends on the assumption that the number of times is known in advance
and unchanged. The number of learning processes is hence fixed. Besides, due to the setting of
intervals in this work, the learning efficiency at the beginning times is low.
In this article, to bridge the above-mentioned areas, we study the problem of fairness-aware

online meta-learning to deal with changing task environments. In particular, at each time, model
parameters are determined by the proposed novel algorithm FairSAOML. This algorithm refers
to ideas of dynamic programming and expert tracking techniques. Inspired by fairness-aware on-
line learning and meta-learning, a bi-level adaptation strategy is used to accommodate changing
environments and learn models with accuracy and fairness.

3 PRELIMINARIES

3.1 Notations

An index set of a sequence of tasks is defined as [T ] = {1, 2, . . . ,T } and [t ,T ] = {t , t + 1, . . . ,T }.
Vectors are denoted by lowercase boldface letters. Scalars are denoted by lowercase italic letters.
Some important notations are listed in Table 1.

3.2 Constraints for Group Fairness

In general, group fairness criteria used for evaluating and designing machine learning models
focus on the relationships between the protected attribute and the system output [19, 26, 27]. The
problem of group unfairness prevention can be seen as a constrained optimization problem. For
simplicity, we consider one binary protected attribute (e.g., gender) in this work. However, our
ideas can be easily extended to many protected attributes with multiple levels.
Let Z = X ×Y be the data space, where X = E ∪ S. Here E ⊂ Rd is an input space, S =

{−1, 1} is a protected space, and Y = {−1, 1} is an output space for binary classification. Given a
task (batch) of samples {ei ,yi , si }ni=1 ∈ (E × Y × S) where n is the number of datapoints, a fine-
grained measurement to ensure fairness in class label prediction is to design fair classifiers by
controlling the notions of fairness between protected subgroups, such as demographic parity

(DP) and equality of opportunity [14, 20].

Definition 1 (Notions of Fairness [14, 20]). A classifier h : Θ×Rd → R is fair when its predictions
are independent of the protected attribute s = {si }ni=1. To get rid of the indicator function and
relax the exact values, a linear approximated form of the difference between protected subgroups
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Table 1. Important Notations and Corresponding Descriptions

Notations Descriptions

T Total number of learning tasks
t Indices of tasks
τ Length of time intervals in general

DS
t ,DV

t ,D
Q
t Support/Validation/Query set of data Dt

θ t ,λt Meta-level primal/dual parameters at round t
θ t, I ,λt, I Interval-level primal/dual parameters for an expert EI at round t
ft (·) Loss function at round t
дi (·) Fairness function
m Total number of fairness notions
i Indices of fairness notions
G(·) Base learner
U Expert set
At ,St Active/Sleeping expert set at round t
I AGC interval set
Ct Target set of intervals at round t
B Relaxed primal domain
∏

B Projection operation onto domain B
η1,η2 Learning rates
pt, I Expert weight of EI at round t
δ Augmented constant

is defined [14],

д(θ ) =
�

�

�

�

E(e,y,s)∈Z

[

1

p̂1(1 − p̂1)

(

s + 1

2
− p̂1

)

h(θ , e)
] �

�

�

�

− ϵ, (1)

where | · | is the absolute function and ϵ > 0 is the fairness relaxation determined by empirical
analysis. p̂1 is an empirical estimate of pr1. pr1 is the proportion of samples in group s = 1 and
correspondingly 1 − pr1 is the proportion of samples in group s = −1.

Notice that, in Definition 1, when p̂1 = P(e,y,s)∈Z(s = 1), the fairness notion д(θ ) is defined as
the difference of demographic parity (DDP). Similarly, when p̂1 = P(e,y,s)∈Z(y = 1, s = 1), д(θ )
is defined as the difference of equality of opportunity (DEO) [14]. Therefore, parameters θ in
the domain of a task is feasible if it satisfies the fairness constraint д(θ ) ≤ 0.

3.3 Fairness-Aware Online Learning

The protocol of fairness-aware online convex optimization can be viewed as a repeated game be-
tween a learner and an adversary, where the learner is faced with tasks {Dt }Tt=1 one after another.
At each round t ∈ [T ],

— Step 1: The learner selects a model parameter θ t in the fair domain Θ.
— Step 2: The adversary reveals a loss function ft : Θ × Rd → R and m fairness functions
дi : Θ × Rd → R,∀i ∈ [m].

— Step 3: The learner incurs an instantaneous loss ft (θ t ,Dt ) and m fairness notions
дi (θ t ,Dt ),∀i ∈ [m].

— Step 4: Advance to t + 1.

The goal of fairness-aware online learning [22, 28] is to (1) minimize the loss regret over the
rounds, which is to compare to the cumulative loss of the best-fixed model in hindsight and (2)
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ensure the total violation of fair constraints sublinearly increase in T . The loss regret is typically
referred to as static regret since the comparator is time-invariant. To control bias and ensure group
fairness across different protected sub-populations, fairness notions are considered as constraints
on optimization problems.

min
θ 1, ...,θT ∈Θ

Regret(T ) =
T
∑

t=1

ft (θ t ,Dt ) −min
θ ∈Θ

T
∑

t=1

ft (θ ,Dt )

subject to

T
∑

t=1

дi (θ t ,Dt ) ≤ O(T γ ), ∀i ∈ [m], γ ∈ (0, 1)
, (2)

where the summation of fair constraints is defined as long-term constraints in [16]. The big O nota-
tion in the constraint is to bound the total violation of fairness sublinear inT . The main drawback
of using themetric of static regret is that it is onlymeaningful for stationary environments, and low
static regret cannot imply a good performance in changing environments since the time-invariant
comparator in Equation (2) may behave badly [23].

4 METHODOLOGY

4.1 Settings and Problem Formulation

To address the limitation of changing environments in online learning, AR based on [10] is defined
as the maximum static regret over any contiguous intervals. However, AR does not respect short
intervals well. To this end, SAR [3] is proposed to improve AR, which emphasizes the dependence
on lengths of intervals, and it takes the form that

SAR(T ,τ ) = max
[s,s+τ−1]⊆[T ]

(

s+τ−1
∑

t=s

ft (θ t ,Dt ) −min
θ ∈Θ

s+τ−1
∑

t=s

ft (θ ,Dt )
)

, (3)

where τ indicates the length of time interval. In SAR, the learner is competing with changing
comparators, as θ varies with s over [s, s + τ − 1].
In this article, we consider the online meta-learning setting similar in [6, 25, 28], but tasks are

sampled from heterogeneous distributions. Instead of static regret, we define a novel regret Fair-
SAR in Equation (4). Let {θ t }Tt=1 be the sequence of model parameters generated in the Step 1 of
the learning protocol (see Section 3.3). The goal of our problem is to minimize FairSAR under the
long-term fair constraints:

FairSAR(T ,τ ) = max
[s,s+τ−1]⊆[T ]

(

s+τ−1
∑

t=s

ft

(

Gt

(

θ t ,DS
t

)

,DV
t

)

−min
θ ∈Θ

s+τ−1
∑

t=s

ft

(

Gt

(

θ ,DS
t

)

,DV
t

)

)

subject to max
[s,s+τ−1]⊆[T ]

(

s+τ−1
∑

t=s

дi

(

Gt

(

θ t ,DS
t

)

,DV
t

)

)

≤ O(T γ ), ∀i ∈ [m]
, (4)

where γ ∈ (0, 1). DS
t ,DV

t ⊂ Dt are the support and validation set. Gt (·) is the base learner
which corresponds to one or multiple gradient steps [5]. Different from traditional online learning
settings, the long-term constraint violation д(·) : B×Rd → R is satisfied. To facilitate our analysis,
θ t is originally chosen from its domain Θ = {θ ∈ Rd : дi (θ ,Dt ) ≤ 0,∀i ∈ [m]}. A projection
operator is hence typically applied to the updated variables to make them feasible [11, 16, 22].
To lower the computational complexity and accelerate the online processing speed, we relax the
domain Θ to B, where Θ ⊆ B = SK with K being the unit �2 ball centered at the origin, and
S = max{r > 0 : r = | |θ 1 − θ 2 | |2,∀θ 1,θ 2 ∈ Θ}.
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Fig. 1. An illustration of adapting to changing environments using DI. (Left) At time t1 ∈ [T ], a number

of intervals {I1, . . . , It1 } are selected from the interval set IDI . (Right) At time t2 > t1, a different interval

set is selected. Assume that the environment changes at t1, to adapt to the change quickly, larger weights

are given to the outputs through interval-level experts, where such outputs are not based on intervals prior

to t1.

In the protocol stated in Section 3.3, the key step (Step 1) is to find a good parameter θ t at
each time t . In the following subsections, we first introduce three types of intervals where each
interval combines a list of tasks (Section 4.2); then, for each interval, a learning process (an expert)
is proposed to output an interval-level model parameter (Section 4.3); finally, θ t is estimated using
a meta-algorithm in which it combines weighted interval-level model parameters (Section 4.4).

4.2 Intervals

In Equation (4), FairSAR evaluates the learner’s performance on each time interval, and it is the
maximum regret over any contiguous intervals. This subsection introduces three alternative inter-
val sets to adapt to changing environments: dynamic intervals (DI) and two geometric covering-
based intervals (AGC and DGC). Each interval in an interval set refers to a range of time indices
associated with a collection of data batches, as data batches arrive one after another over time. In-
spired by learning with expert advice [12], each interval is built upon a learning process, defined as
an expert, and each expert updates model parameters via G and outputs interval-level parameters
with respect to a specific interval. Details of the interval-level learning are given in Section 4.3.1.

4.2.1 Dynamic Intervals (DI). A heuristic method in designing an effective online learning al-
gorithm for changing environments is to initiate a set of intervals IDI dynamically, where

IDI =
⋃

k ∈[T ]
Ik where Ik = {Ik |Ik = [k,q],∀q ∈ {k, . . . ,T }}

. (5)

An interval Ik ∈ IDI refers to a collection of time indices {k, . . . ,q} associated with corresponding
data batches {Di }qi=k .
Furthermore, at each time t , we introduce a target set CDI

t ⊂ IDI which includes a set of intervals
in IDI .

CDI
t = {Ii |Ii = [i, t], Ii ∈ IDI ,∀i ∈ [t]}. (6)

CDI
t dynamically selects a subset of intervals from IDI . An example is illustrated in Figure 1. At

time t1, the target set CDI
t1

selects t1 intervals where CDI
t1
= {[1, t1], [2, t1], . . . , [t1, t1]}. Similarly,

when at time t2 where t2 > t1, CDI
t2
= {[1, t2], [2, t2], . . . , [t1, t2], . . . , [t2, t2]}.
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Fig. 2. (Upper)A graphical illustration of AGC intervals (base=2) withT = 18. The interval setIAGC consists

of 4 subsets {I0,I1,I2,I3} and each contains different numbers of intervals with fixed length. Intervals

covered by shadow is an example of target subset CAGC
5 when t = 5. (Lower) An illustration of DGC

intervals (base=2) with T is unknown in advance. The interval subsets {I0,I1, . . .} increase as t increases.

Similar to the setting of AGC intervals, when t = 5, the target set CDGC
5 only includes one interval I50 .

To adapt to changing environments, at each time, a number of experts are initiated based on
intervals selected in the target set. At time t2, each expert corresponding to an interval Ij ∈ CDI

t2
,

where Ij = [j, t2],∀j ∈ [t2], takes the parameter θ t2−1 as well as its corresponding dataset {Di }t2i=j
as input. Each expert independently gives an interval-level solution θ t2, Ij on Ij . A good θ t2 is,

therefore, achieved at time t2 by further combining the decisions {θ t2, Ij }
t2
j=1 through weighted

average. More details are stated in Section 4.3.
The key idea of constructing DI is that at time t2, some of the outputs {θ t2, Ij }

t2
j=t1+1

on intervals

{It1+1, . . . , It2 } are not based on any data prior to time t1 where t1 < t2, so that if the environment
changes at t1, those outputs may be given a larger weight by the meta-algorithm, allowing it to
adapt more quickly to the change.
A main drawback with the construction of DI, however, is a factor of t increase in the time

complexity. The number of intervals and learning processes increases linearly in time. To avoid
this, we reduce the complexity to O(log t) by restarting algorithms on a designed set of geometric
covering intervals, i.e., AGC and DGC intervals in Section 4.2.2 and 4.2.3, respectively.

4.2.2 Adaptive Geometric Covering (AGC) Intervals. Inspired by the seminal work of SAR
[3], given the total number of time T , we improve DI by constructing a number of interval sets
where each set Ik ⊂ IAGC contains various intervals with fixed lengths. We name them AGC
intervals. A set of contiguous AGC intervals IAGC are defined as

IAGC =
⋃

k ∈[�logT2 	−1]∪{0}

Ik where ∀k, Ik =
{

I ik |I
i
k =

[

(i − 1) · 2k + 1,min {T , i · 2k }
]

,∀i ∈ N
}

.

(7)
An example with T = 18 is given in Figure 2 to illustrate the composition of AGC intervals. With
selecting 2 as the log base in Equation (7), intervals are hence decomposed into �log182 	 = 4 subsets
(i.e.,I0,I1,I2, andI3) with fixed lengths of 20 = 1, 21 = 2, 22 = 4, and 23 = 8. Notice that the log base
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Table 2. Comparison of Key Different Interval Settings

DI AGC DGC

Require T in advance? No Yes No

Interval lengths in Ik [T − k + 1] 2k 2k

# total experts |Ut | at time t t �logT2 	 �logt2	 + 1
# active experts |At | at time t t ≤ �logT2 	 ≤ �logt2	 + 1
# sleeping experts |St | at time t 0 < �logT2 	 < �logt2	 + 1
Complexity O(t) O(log t) O(log t)

equals 2 is not required, but a larger base number leads to fewer interval subsets. AGC intervals
can be considered a special case of a more general set of intervals, and they efficiently reduce the
time complexity to O(log t).
Similar to DI, a target set CAGC

t ⊂ IAGC including a set of intervals starting from t is selected
from IAGC at each time:

CAGC
t = {I |I ∈ IAGC , t ∈ I , (t − 1) � I }. (8)

As shown in Figure 2, given T = 18 and when t = 5, the target set CAGC
5 contains three intervals,

[5, 5], [5, 6] and [5, 8], where each initiates at t = 5 with interval lengths 1, 2, and 4, respectively.

4.2.3 Dynamic Geometric Covering (DGC) Intervals. Although the setting of AGC inter-
vals efficiently reduces the complexity, one limitation is that the total number of times T needs to
be known and fixed in advance. However, this assumption does not always hold. This leads to the

number of interval sets (i.e., �logT2 	) being unchanged in AGC, as k ∈ {0, . . . , �logT2 	 − 1}.
To tackle this limitation, we alternatively propose another type of interval set, namely, DGC

intervals, IDGC .

IDGC =
⋃

k ∈{0,1,2, ...}
Ik where ∀k, Ik =

{

I ik |I
i
k =

[

i · 2k , (i + 1) · 2k − 1
]

,∀i ∈ N
}

. (9)

Figure 2 illustrates the difference between the settings of DGC and AGC intervals. Since the
total number of times is unknown in advance, the number of interval sets, �log2 t	 + 1, in DGC
increases as t becomes larger. For each interval set Ik , its first interval I 1k ∈ Ik initializes at the

2k -th time, and each interval I i
k
∈ Ik holds the same length of 2k . Furthermore, the setting of the

target set CDGC
t ⊂ IDGC at time t is the same as the one in AGC, referring to Equation (8). As

indicated in Figure 2, in contrast to AGC, in DGC, an additional interval set I4 is initialized at time
t = 16 with an interval length of 24 = 16. Similarly, when t = 5, the target set CDGC

5 includes the
interval [5, 5] only, as there is one interval in IDGC that starts at time 5.

A brief comparison between different interval settings introduced in this section is listed in
Table 2.

4.3 Learning Experts

4.3.1 The Interval-Level Learning within an Expert. As we mentioned at the beginning of
Section 4.2, each interval is built upon a learning process, defined as an expert. At time t , an
expert E is a learning algorithm G : Θ × Rd → Θ (a.k.a., a base learner, such as one or multiple
gradient steps [5]) within an interval that inputs parameters θ t−1 and outputs interval-level
parameters θ t, I specific to the interval I . The interval-level parameter update for an expert E on
interval I at time t is defined

θ t, I := Gt
(

θ ,DS
t, I

)

= argmin
θ

ft

(

θ ,DS
t, I

)

subject to дi

(

θ ,DS
t, I

)

≤ 0,∀i ∈ [m], (10)
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where the loss function ft (·) and the fairness function дi (·) are defined based on the support set
DS

t, I
⊂ Dt, I associated with E.

4.3.2 Active and Sleeping Experts. Inspired by learning with expert advice problems [12], we

dynamically construct a set of experts Ut = {Ek } |Ut |
k=0

at each time t . Recall that we introduce
three types of interval sets in Section 4.2. The number of total experts for each setting is various,
where at time t

— for DI, |UDI
t | = t . The number of experts increases by 1 at each time.

— for AGC intervals, |UAGC
t | = �log2T 	. The number of experts is unchanged at different

times, resulting from T being known in advance and fixed.
— for DGC intervals, |UDGC

t | = �log2 t	+1. The number of experts slowly increases as needed,
without known T in advance.

Furthermore, to adapt to changing environments efficiently, all experts are dynamically par-
titioned into active and sleeping (or inactive) experts at each time t , denoted At ⊆ Ut and
St = Ut\At , respectively. As indicated in Section 4.2, a target set Ct , for all types of intervals
IDI , IAGC , and IDGC , is subsetted from the interval set. Active experts are experts corresponding
to intervals in the target sets, wherein active experts update model parameters at interval-level
using Equation (10). For sleeping experts, as no corresponding intervals are selected in the target
set at time t , their interval-level model parameters are not updated and remain at the last update.
Similarly, the number of active/sleeping experts varies by applying different types of interval sets,
where at time t

— for DI, all experts are active experts ADI
t = {Ek }tk=1 and the number of sleeping experts is

zero, SDI
t = ∅.

— for AGC and DGC intervals, the number of active experts is the cardinality of the selected
target set. As the example shown in Figure 2, when t = 5, active experts are AAGC

5 =

{E0,E1,E2} and ADGC
5 = {E0}, and sleeping experts are SAGC

5 = {E3} and SDGC
5 = {E1,E2}

(experts E3 and E4 are not initialized until t = 8 and t = 16, respectively).

4.4 Learning Dynamically for Bi-Level Adaptation

Recall that in the protocol of fairness-aware online learning (Section 3.3), the main goal for the
learner is to sequentially decide on themodel parameterθ t that performswell on the loss sequence
and the long-term fair constraints. Crucially, inspired by [5], we consider a setting where at each
round t the learner can perform a number of expert-specific updates at an interval level in the
active set At .
As specified in Equation (4), model parameters at each round t are determined by for-

mulating problems with a nested bi-level adaptation process: interval-level and meta-level.
Each level corresponds to a sub-learner, i.e., base and meta learner, respectively, described
in Figure 3. The problem of learning a meta-level parameter θ t is embedded with the opti-
mization problem of finding interval-level parameters θ t, I in Equation (10). For experts in
the sleeping set St , the base learner is not applied. The meta-level problem takes the form in
Equation (11).

min
θ ∈B

∑

Ek ∈At

pt, Ik · ft
(

Gt

(

θ ,DS
t, Ik

)

,DQ
t, Ik

)

+

∑

Ek ∈St
pt, Ik · ft

(

θ t ′, Ik ,D
Q
t, Ik

)

subject to
∑

Ek ∈At

pt, Ik · дi
(

Gt

(

θ ,DS
t, Ik

)

,DQ
t, Ik

)

+

∑

Ek ∈St
pt, Ik · дi

(

θ t ′, Ik ,D
Q
t, Ik

)

≤ 0
, (11)
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Fig. 3. An overview of FairSAOML with AGC or DGC intervals to determine model parameter pair at each

round. A target set (shadowed) of intervals is initially selected and is later used to activate corresponding

experts. Each active expert runs through a base learner for the interval-level parameter-pair adaption, and its

weight is updated. The meta-level parameter pair is finally attained through the meta-learner by combining

the weighted actions of all experts.

where pt, Ik ≥ 0 is the expert weight of Ek at t .DQ
t, Ik

⊂ Dt, Ik is the query set whereD
Q
t, Ik

∩DS
t, Ik
=

∅. θ t ′, Ik is the interval-level model parameter for a sleeping expert Ek ∈ St where the round index
t ′ < t represents the last time this expert was activated.

In the following section, we introduce our proposed algorithm FairSAOML. Instead of op-
timizing primal parameters only, it efficiently deals with the bi-level optimization problem of
Equations (10) and (11) by approximating a sequence of pairs of primal-dual meta parameters
{(θ t ,λt )}Tt=1 where the pair respectively responds for adjusting accuracy and fairness level.

4.5 An Efficient Algorithm: FairSAOML

To find a good model parameter pair (θ t ,λt ) at each time, an efficient working flow is proposed
in Algorithm 1. Inspired by dynamic programming and expert-tracking [15] techniques, experts
at each time are recursively divided into active and sleeping ones. Model parameters in active
experts are locally updated, but those in sleeping experts are directly inherited from the previous
time. Specifically, at the beginning of t , a target set Ct containing intervals is used to activate a
subset of experts in Ut . For each active expert Ek in At , an interval-level algorithm takes the
meta-level solution (θ t−1,λt−1) and outputs an expert-specific solution pair (θ t, Ik ,λt, Ik ). Finally,
through the meta-learner, we combine the weighted solutions of all experts and move to the next
time.
We explain the main steps in Algorithm 1 below. In Step 4, when a new task arrives at time t , a

batch of data DV
t is randomly sampled from Dt for validation purposes, and the performance on

θ t−1 achieved is recorded. A target set of intervals Ct is selected from I in Step 5. For each interval
Ik ∈ Ct (Step 6–8), the corresponding expert Et, Ik is activated, according to a specific Activate-
Experts procedure on the choice of interval sets indicated in the subroutines of FairSAOML in
Algorithm 2.

We present three distinct expert activation procedures in Algorithm 2. For each active expert,

we set adaptive stepsizes ηt, I = S/(G
√

|Ik |), where S is the radius of the Euclidean ball B, and
there exists a constant G > 0 that bounds the (sub)gradients of ft and дi . Following the setting

used in [11], empirically we set S =
√
1 + 2ϵ − 1 and G = max{

√
d + S,maxt {| |e Ik | |2,e Ik ∈ Pt }},

where e Ik is the non-protected features lied in the interval Ik and d is its feature dimension. Pt is
a set which includes all past intervals until time t . Specifically in DI and DGC, at some time t , new
experts are initiated. We set the constants Rt, Ik and Ct, Ik to zeros that are further used to change
the corresponding expert weight to adapt to changing environments.
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ALGORITHM 1: FairSAOML

1: Initialize meta-parameters pair (θ 0,λ0), where θ 0 is the center of B and λ0 ∈ Rm+ is randomly
chosen

2: Create an object-oriented expert E containing interval level parameter pair (θ I ,λI ), learning
rate ηI , constants RI ,CI

3: for each t ∈ [T ] do
4: Sample DV

t ⊂ Dt and record the performance of θ t−1
5: Subset Ct from I using either Equation (6) or Equation (8).
6: for each interval Ik ∈ Ct do
7: ActivateExperts(DI or AGC or DGC)
8: end for

9: for each expert Ek ∈ Ut do

10: Update pt, Ik using Rt, Ik ,Ct, Ik in Equation (12)
11: end for

12: for n = 1, . . . ,Nmeta steps do
13: for each active expert Ek ∈ At do

14: Sample support set DS
t, Ik

⊂ Dt, Ik

15: Adapt interval-level primal and dual variables with DS
t, Ik

using Equation (14)

16: end for

17: for each expert Ek ∈ Ut do

18: Sample query set DQ
t, Ik

⊂ Dt, Ik

19: end for

20: Update meta-level primal and dual variables with D
Q
t, Ik

using Equation (16)

21: end for

22: for each expert Ek ∈ Ut do

23: Rt+1, Ik = Rt, Ik + Ft, Ik (θ t ,λt ) − Ft, Ik (θ t, Ik ,λt, Ik )
24: Ct+1, Ik = Ct, Ik + |Ft, Ik (θ t ,λt ) − Ft, Ik (θ t, Ik ,λt, Ik )|
25: end for

26: end for

In Steps 9–11 of Algorithm 1, for all experts in Ut , a following weight pt, Ik is estimated:

pt, Ik =
w(Rt, Ik ,Ct, Ik )

∑

Ek ∈Ut
w(Rt, Ik ,Ct, Ik )

. (12)

Here, a weight function [15] is defined asw(R,C) = 1
2

(

Φ(R + 1,C + 1) − Φ(R − 1,C − 1)
)

, where

Φ(R,C) = exp([R]2
+
/3C) and [r ]+ = max(0, r ) and Φ(0, 0) = 1. In Steps 12–21, our FairSAOML re-

sponds to the bi-level adaptation stated in Equations (10) and (11). Specifically, to solve the interval-
level problem in Equation (10), for each active expert Ek inAt , we consider following Lagrangian
function

Ft, Ik (θ t−1,λt−1) = ft

(

θ t−1,DS
t, Ik

)

+

m
∑

i=1

λt−1,i · дi
(

θ t−1,DS
t, Ik

)

, (13)

where the interval-level parameter pair for an active expert Ek are initialized with the meta-level
parameter (θ t−1,λt−1). For optimization with simplicity, cumulative constraints in Equation (10)
are approximated with the summarized regularization. Interval-level parameters are updated
through a base learner Gt (·). One example for the learner is updating with one gradient step [5]
using the pre-determined adaptive stepsize ηt, Ik . Notice that for multiple gradient steps, θ t, Ik and
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ALGORITHM 2: FairSAOML Subroutines

1: Require: Choose one of the three settings of intervals.
2: procedure ActivateExperts(DI)

3: Activate expert Ek by letting ηt, Ik = S/(G
√

|Ik |), (θ t, Ik ,λt, Ik ) ← (θ t−1,λt−1)
4: if Identify an Ej ∈ Ut where |Ij | = |Ik | − 1 then
5: Update Rt, Ik ← Rt−1, Ij and Ct, Ik ← Ct−1, Ij
6: Replace Ej with Ek in Ut

7: else

8: Set Rt, Ik = 0 and Ct, Ik = 0.
9: Add the Ek toUt

10: end if

11: end procedure

12: procedure ActivateExperts(AGC)

13: Activate expert Ek by letting ηt, Ik = S/(G
√

|Ik |), (θ t, Ik ,λt, Ik ) ← (θ t−1,λt−1)
14: Identify an Ej ∈ Ut where |Ij | = |Ik |
15: Update Rt, Ik ← Rt−1, Ij and Ct, Ik ← Ct−1, Ij
16: Replace Ej with Ek in Ut

17: end procedure

18: procedure ActivateExperts(DGC)

19: Activate expert Ek by letting ηt, Ik = S/(G
√

|Ik |), (θ t, Ik ,λt, Ik ) ← (θ t−1,λt−1)
20: if Identify an Ej ∈ Ut where |Ij | = |Ik | then
21: Update Rt, Ik ← Rt−1, Ij and Ct, Ik ← Ct−1, Ij
22: Replace Ej with Ek in Ut

23: else

24: Set Rt, Ik = 0 and Ct, Ik = 0.
25: Add the Ek toUt

26: end if

27: end procedure

λt, Ik interplay each other for updating.

θ t, Ik = θ t−1 − ηt, Ik∇θFt, Ik (θ t−1,λt−1); λt, Ik = λt−1 + ηt, Ik∇λFt, Ik (θ t, I ,λt−1). (14)

Next, to solve the meta-level problem in Equation (11), we combine the actions of active experts
together with sleeping experts. We consider the following augmented Lagrangian function and
abuse the symbol t ′ with t in Equation (11):

Lt (θ t, Ik ,λt, Ik ) =
∑

Ek ∈Ut

pt, Ik

(

ft

(

θ t, Ik ,D
Q
t, Ik

)

+

m
∑

i=1

(

λi,t, Ik · дi
(

θ t, Ik ,D
Q
t, Ik

)

− δ (η1 + η2)
2

λ2i,t, Ik

)

)

,

(15)

where δ > 0 is a constant determined by analysis. Note that the last augmented term on the dual
variable is devised to prevent λ from being too large. The update rule for meta-level parameters
follows:

θ t =
∏

B

(

θ t−1 − η1∇θLt (θ t, Ik ,λt, Ik )
)

; λt =
[

λt−1 + η2∇λLt (θ t, Ik ,λt, Ik )
]

+
, (16)

where
∏

B is the projection operation to the relaxed domain B that is introduced in Section 4.1.
This approximates the true desired projection with a simpler closed form. Finally, in Steps 22–25,
we update each expert’s R and C values, determining the expert weight for the next time. The
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intuition of weight update is to re-adjust the difference between the meta-solution and the
interval-level solution given by the expert.

5 ANALYSIS

To analyze, we first make the following assumptions as in [16, 23]. Examples where these assump-
tions hold include logistic regression and L2 regression over a bounded domain. As for constraints,
a family of fairness notions, such as DDP stated in Definition 1, are applicable as discussed in [14].
For simplicity, in this section we omit D used in ft (·),∀t and дi (·),∀i .

Assumption 1 (Convex domain). The convex set Θ is non-empty, closed, bounded, and it is de-

scribed by m convex functions as Θ = {θ : дi (θ ) ≤ 0,∀i ∈ [m]}. The relaxed domain B (where

Θ ⊆ B) contains the origin 0 and its diameter is bounded by S .

Assumption 2. Both the loss functions ft (·),∀t and constraint functions дi (·),∀i ∈ [m] satisfy the
following assumptions

(1) (Lipschitz Continuous) ∀θ 1,θ 2 ∈ B, | | ft (θ 1) − ft (θ 2)| | ≤ Lf | |θ 1 − θ 2 | |, | |дi (θ 1) − дi (θ 2)| | ≤
Lд | |θ 1 − θ 2 | |. Let G = max{Lf ,Lд}, F = maxt ∈[T ] maxθ 1,θ 2∈B ft (θ 1) − ft (θ 2) ≤ 2Lf S , and
D = maxi ∈[m] maxθ ∈B дi (θ ) ≤ LдS .

(2) (Lipschitz Gradient) ft (θ ),∀t are βf -smooth and дi (θ ),∀i are βд-smooth, that is, ∀θ 1,θ 2 ∈ B,

| |∇ft (θ 1) − ∇ft (θ 2)| | ≤ βf | |θ 1 − θ 2 | |, | |∇дi (θ 1) − ∇дi (θ 2)| | ≤ βд | |θ 1 − θ 2 | |.
(3) (Lipschitz Hessian) Twice-differentiable functions ft (θ ),∀t andдi (θ ),∀i have ρf and ρд- Lipschitz

Hessian, respectively. That is, ∀θ 1 − θ 2 ∈ B, | |∇2 ft (θ 1) − ∇2 ft (θ 2)| | ≤ ρf | |θ − ϕ | |, | |∇2дi (θ 1) −
∇2дi (θ 2)| | ≤ ρд | |θ 1 − θ 2 | |.
Assumption 3 (Strongly convexity). Suppose ft (θ ),∀t andдi (θ ),∀i have strong convexity, that

is, ∀θ 1,θ 2 ∈ B, | |∇ft (θ 1) − ∇ft (θ 2)| | ≥ μf | |θ 1 − θ 2 | |, | |∇дi (θ 1) − ∇дi (θ 2)| | ≥ μд | |θ 1 − θ 2 | |.
Under the above assumptions, we first state the key Theorem 1 that the proposed FairSAOML

enjoys a sub-linear guarantee for both regret and long-term fairness constraints in the long run
for Algorithm 1.

Theorem 1. Set θ ∗
= argminθ ∈Θ

∑s+τ−1
t=s ft (Gt (θ )) where [s, s + τ − 1] ⊆ [T ]. Under Assump-

tions 1, 2, and 3, the regret FairSAR proposed in Equation (4) of FairSAOML in Algorithm 1 satisfies

the bounds in Equation (17) for all three interval settings that stated in Section 4.2.

max
[s,s+τ−1]⊆[T ]

( s+τ−1
∑

t=s

ft

(

Gt (θ t )
)

− ft

(

Gt (θ ∗)
)

)

≤ O
(

(τ logT )1/2
)

max
[s,s+τ−1]⊆[T ]

( s+τ−1
∑

t=s

дi

(

Gt (θ t )
)

)

≤ O
(

(τT logT )1/4
)

, ∀i ∈ [m]
. (17)

Under Assumptions 1, 2, and 3, we target Equation (15) and have

Lemma 1 (Theorem 1 in [28]). Suppose f andд : Θ×Rm
+
→ R satisfy Assumptions 1, 2, and 3. The

interval-level update and the augmented Lagrangian function Lt (θ,λ) are defined in Equations (14),

(12) and Equation (15). Then, the function Lt (θ,λ) is convex-concave with respect to the arguments θ

and λ, respectively. Furthermore, as for Lt (·,λ), if stepsize ηt, I for each active expert EI is selected as

ηt, I ≤ min{ μf +λ̄mμд

8(Lf +λ̄mLд )(ρf +λ̄mρд )
, 1
2(βf +λ̄mβд )

}, then Lt (·,λ) enjoys 9
8 (βf + λ̄mβд)-smooth and 1

8 (μf +
λ̄mμд)-strongly convex, where λ̄ ≥ 0 is the mean value of λ.

According to Theorems 1 and 3 in [15] and the Lemma 1 in [23], we have the following lemma
with respect to Equation (15) that
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Lemma 2. Under Assumption 2, for any interval I = [i, j] ∈ I, FairSAOML satisfies

t
∑

u=i

Lu (θu ,λu ) −
t
∑

u=i

Lu (θu, I ,λu, I ) ≤ S
√

6Lf Lд(t − i − 1)c(t),

where c(t) ≤ 1 + ln t + ln(1 + logT2 ) + ln
5+3 ln(1+t )

2 .

By applying Lemma 2 with the Theorem 2 in [23], we have

Lemma 3. Under Assumptions 1 and 2, for any interval I = [i, j] ∈ I, for any (θ,λ) ∈ Θ × Rm
+

FairSAOML satisfies
∑

t ∈I
Lt (Gt (θ t ),λ) −

∑

t ∈I
Lt (θ ,λt, I ) ≤ S

√

|I |(
√

6Lf Lдc(t) +G).

To extend our Lemma 3 to any interval I = [r , s] ⊆ [T ], we refer the following lemma

Lemma 4 (Lemma 3 in [23]). For any interval [r , s] ⊆ [T ], it can be partitioned into two sequences
of disjoint and consecutive intervals, denoted by I−p , . . . , I0 ∈ I and I1, . . . , Iq ∈ I, such that

|I−i |/|I−i+1 | ≤ 1/2,∀i ≥ 1 and |Ii |/|Ii−1 | ≤ 1/2,∀i ≥ 2.

Finally, we prove the proposed Theorem 1.

Proof. By applying Lemma 3 onto Lemma 4 and set θ ∗ being the optimal solution for
minθ ∈Θ

∑s
t=r ft (Gt (θ )) where [r , s] ⊆ [T ], we have

s
∑

t=r

Lt (Gt (θ t ),λ) −
s
∑

t=r

Lt (Gt (θ ∗),λt, I ) =
q
∑

i=−p

(

∑

t ∈Ii
Lt (Gt (θ t ),λ) −

∑

t ∈Ii
Lt (Gt (θ ∗),λt, I )

)

≤
q
∑

i=−p
S
√

|Ii |(
√

6Lf Lдc(s) +G)

≤2S
(√

6Lf Lдc(s) +G
)

∞
∑

i=0

√

2−i |I |

≤8S
(√

6Lf Lдc(s) +G
)

√

|I |

. (18)

By expanding Equation (18) using Equation (15) and following the Theorem 3.1 in [2], we have

s
∑

t=r

{

ft (Gt (θ t )) − ft (Gt (θ ∗))
}

+

m
∑

i=1

{

λi

s
∑

t=r

дi (Gt (θ t )) −
s
∑

t=r

λt,iдi (Gt (θ ∗))
}

− δ (η1 + η2)(s − r + 1)
2

| |λ | |2 + δ (η1 + η2)
2

s
∑

t=r

| |λ | |2 ≤ 8S
(√

6Lf Lдc(s) +G
)

√

|I |
.

Here, we approximately average pt, Ik for all experts Ek ∈ Ut at time t , and hence the subscription
k is omitted. Inspired by the proof of Theorem 4 in [16], we take maximization for λ over (0,+∞)
and get

s
∑

t=r

{

ft (Gt (θ t )) − ft (Gt (θ ∗))
}

+

m
∑

i=1

{
[
∑s

t=r дi (Gt (θ t ))
]2

+

2(δ (η1 + η2)(s − r + 1) + m
η1+η2

) −
s
∑

t=r

λt,iдi (Gt (θ ∗))
}

≤ 8S
(√

6Lf Lдc(s) +G
)

√

|I |

.
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Table 3. Comparison of Upper Bounds in Loss Regret and Constraint Violations across Various Methods

Static Environment Changing Environment

Algorithms FTML[6] FairFML[28] FairAOGD[11] FairGLC[22] AOD[23] CBCE[12] FairSAOML(Ours)

Loss Regret O(logT ) O(logT ) O(T 2/3) O(logT ) O
(

(τ logT )1/2
)

O
(

(τ logT )1/2
)

O
(

(τ logT )1/2
)

Constraint Violations - O
(

(T logT )1/2
)

O(T 2/3) O
(

(T logT )1/2
)

- - O
(

(τT logT )1/4
)

Since дi (Gt (θ ∗)) ≤ 0 and λt,i ≥ 0,∀i ∈ [m], the resulting inequality becomes

s
∑

t=r

{

ft (Gt (θ t )) − ft (Gt (θ ∗))
}

+

m
∑

i=1

[
∑s

t=r дi (Gt (θ t ))
]2

+

2(δ (η1 + η2)(s − r + 1) + m
η1+η2

) ≤ 8S
(√

6Lf Lдc(s) +G
)

√

|I |.

Due to non-negative of
[∑s

t=r дi (Gt (θ t ))]2+
2(δ (η1+η2)(s−r+1)+ m

η1+η2
) , we have

s
∑

t=r

{

ft (Gt (θ t )) − ft (Gt (θ ∗))
}

≤ 8S
(√

6Lf Lдc(s) +G
)

√

|I | = O
(

(|I | log s)1/2
)

.

Furthermore, we have
∑s

t=r { ft (Gt (θ t )) − ft (Gt (θ ∗))} ≥ −F (s − r + 1) according to the assumption
and set η1 = η2 = O(1/√s). We have

s
∑

t=r

дi (Gt (θ t )) ≤ O
(

(|I |s log s)1/4
)

.

Therefore, as for FairSAR proposed in Equation (4), we complete the proof. �

Discussion for Upper Bounds. Under aforementioned assumptions and provable convexity
of Equation (18) in θ (see Lemma 1), the proposed FairSAOML in Algorithm 1 achieves sub-linear
bounds in FairSAR for both loss regret and violation of fairness constraints. Although such
bounds are comparable with the strongly adapted loss regret in [12, 23] (see Table 3) in terms
of online learning in changing environment paradigms, we bound loss regret and cumulative
fairness constraints simultaneously. On the other hand, in terms of fairness-aware online learning,
our proposed method outperforms [11, 22, 28] by giving a tighter bound of fair constraint
violations.

Complexity. The computational complexity of FairSAOML in Algorithm 1 at each time t ∈ [T ]
is O(Nmeta · |Ut |)where Nmeta is the number of meta-level iterations and |Ut | is the total number
of experts that need to be maintained at t , and the complexity of each expert is O(1).

6 EXPERIMENTAL SETTINGS

6.1 Datasets

We use the following publicly available datasets. (1) New York Stop-and-Frisk (NYSF) [13] is a
prominent dataset of a real-world application on policing in New York City from 2009 to 2010. It
documents whether a pedestrian who was stopped on suspicion of weapon possession would in
fact possess a weapon. As this data had a pronounced racial bias on African Americans, for each
frisked record, we consider race as the binary protected attribute, that is black and non-black.
Besides, this dataset consists of records collected in five different sub-districts, Manhattan (M),
Brooklyn (B), Queens (Q), Bronx (R), and Staten (S). Since there are large performance disparities
across districts and race groups, each district is viewed as an independent domain. To adapt
the online learning setting, data in each domain is further split into 32 tasks and each task
corresponds to ten days of a month with 111 non-protected features. According to DDP values
in Definition 1, the fairness levels from low to high are Bronx (0.74), Queens (0.68), Staten (0.65),
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Manhattan (0.53), and Brooklyn (0.44). The larger DDP values indicate a lower fairness level. We
hence consider two settings for domain adaptation where each setting contains 96 tasks in total:
(i) fairness level from high to low: Brooklyn to Manhattan to Staten (B→M→S); and (ii) fairness
level from low to high: Bronx to Queens then Staten (R→Q→S). (2) MovieLens1 contains 100 k
ratings by 943 users on 1,682 movies, and each rating is given a binary label (“recommending” if
the rating is greater than 3, “not recommending” otherwise). We consider gender as the protected
attribute. To generate dynamic environments, following [18], we construct a larger dataset by
combining three copies of the original data and flipping the original values of non-protected
attributes by multiplying -1 for the middle copy. Therefore, each copy is considered as a data
domain. Furthermore, each data copy is split into 30 tasks by timestamps, and there are 90 tasks
in total.

6.2 Evaluation Metrics

Two popular evaluation metrics are introduced that each allows quantifying the extent of bias
taking into account the protected attribute. DP [4] and Equalized Odds (EO) [8] can be formalized
as

DP = k, if DP ≤ 1; DP = 1/k, otherwise, where k =
P(Ŷ = 1|S = −1)
P(Ŷ = 1|S = 1)

EO = k, if EO ≤ 1; EO = 1/k, otherwise, where k =
P(Ŷ = 1|S = −1,Y = y)
P(Ŷ = 1|S = 1,Y = y)

,

where y ∈ {−1, 1}. The EO metric requires that Ŷ have equal true and false positive rates between
sub-groups. For both metrics, a value closer to 1 indicates fairness.

6.3 Competing Methods

We compare the performance of our algorithm FairSAOML on various interval settings (hy-
phenated by DI, AGC, and DGC) with six baseline methods. These baselines are chosen from
three perspectives: online meta-learning (MaskFTML, FairFML), online fairness learning (FairFML,
FairAOGD, FairGLC), and online learning in changing environments (AOD, CBCE).

—MaskFTML [6]: the original FTML finds a sequence of meta parameters by simply applying
MAML [5] at each round. To focus on fairness learning, this approach is applied to modified
datasets by simply removing protected attributes.

— FairFML [28] controls bias in an online working paradigm and aims at attaining zero-shot
generalization with task-specific adaptation. Different from our FairSAOML, FairFML fo-
cuses on a static environment and assumes tasks sampled from an unchangeable distribution.

— FairAOGD [11] is proposed for online learning with long-term constraints. In order to
fit bias-prevention and compare them to FairSAOML, we specify such constraints as DDP
stated in Definition 1.

— FairGLC [22] rectifies FairAOGD by square-clipping the constraints in place of дi (·),∀i .
—AOD [23] minimizes the SAR by running multiple online gradient descent algorithms over
a set of dense geometric covering intervals.

—CBCE [12] adapts to changing environments in an online learning paradigm by combining
the sleeping bandits idea with the coin betting algorithm.

1https://grouplens.org/datasets/movielens/100k/
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6.4 Settings

As discussed in Section 5, the performance of our proposed method has been well justified theo-
retically for machine learning models whose objectives are strongly convex and smooth. However,
in machine learning and fairness studies, due to the nonlinearity of neural networks, many prob-
lems have a non-convex landscape where theoretical analysis is challenging. Nevertheless, algo-
rithms originally developed for convex optimization problems like gradient descent have shown
promising results in practical non-convex settings [6]. Taking inspiration from these successes,
we describe practical instantiations for the proposed online algorithm and empirically evaluate
the performance in Section 7.

For each task, we set the number of fairness constraints to one, i.e., m = 1. For the rest, we
follow the same settings as used in online meta-learning [6, 28]. In particular, we meta-train with
a support size of 400 for each class and 800 for a query set, whereas 90% (hundreds of datapoints)
of task samples for evaluation. Besides, for the NYSF dataset, we chose the base of 2, and the total
number of experts is 96 for DI, 6 for AGC, and 7 for DGC. Similarly, we chose the base of 3 for
the MovieLens dataset; hence, the number of experts is 90 for DI, 4 for AGC, and 5 for DGC. All
the baseline models used to compare with our proposed approach share the same neural network
architecture and parameter settings. All the experiments are repeated ten times with the same
settings, and the mean and standard deviation results are reported.

6.5 Implementation Details and Hyperparameter Tuning

Our neural network trained follows the same architecture used in [5], which contains two hidden
layers of size 40 with ReLU activation functions. In the training process of the MovieLens (NYSF)

data, each gradient is computed using a batch size of 200 (800) examples where each binary class
contains 100 (400) examples. For each dataset, we tune the following hyperparameters: (1) the
initial dual meta parameter λ0 is chosen from {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,
10000}; (2) the interval-level gradient steps are chosen from 1 to 10; (3) the number of iterations
Nmeta are chosen from {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}; (4) learning
rates η1 and η2 for updating meta-level parameters in Equations (16) and (15) are chosen from
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}; (5) the positive constant
δ used in the augmented term are chosen from {10, 25, 50, 75, 100}.

7 RESULTS

7.1 Overall Performance

The consolidated results, depicted in Figure 4, provide a comprehensive evaluation of the effective-
ness and efficiency of the proposed method, utilizing three evaluation metrics: fairness (DP and
EO) and model precision (accuracy).
In all the curves presented for variousmethods, higher values indicate better performance across

all plots. The shaded regions in the figures represent standard errors. The results demonstrate that
our proposed FairSAOML with all interval settings effectively mitigates bias as the learner en-
counters more tasks, eventually satisfying the “80%-rule” fairness condition [1], where DP and EO
exceed 0.8 in the latter stages. Furthermore, FairSAOML consistently outperforms most alterna-
tive approaches in terms of achieving the best model precision, as indicated by the high accuracy
scores.
Regarding learning efficiency, our FairSAOML with the DI setting takes the most running time.

In contrast, FairSAOML with AGC and DGC settings exhibit the shortest running times when
compared to the baseline methods shown in the bar charts of Figure 4. This observation can be
attributed to several factors: (1) the number of experts at each time in AGC and DGC significantly
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Fig. 4. Model performance over real-world datasets through each time. NYSF (a–c) B→M→S, (d–f)

R→Q→S; (g–i)MovieLens.

decreases compared to the one in DI; (2) only active experts, but not sleeping ones, make contri-
butions for parameter updates; (3) instead of the entire data task, a data subset (support) is used
for parameter updates within active experts.

7.2 Adaptability to Changing Environments

The primary objective of our experimental design is to assess the adaptability of FairSAOML con-
cerning fairness and model accuracy as the environment transitions from one to another. To facil-
itate a clearer visualization of these changing environments, we have manually inserted vertical
dotted lines in Figure 4, distinguishing the different environments at specific task indices. Our
experimental findings reveal that, while FairSAOML may not initially outperform other baseline
methods in the first environment, it excels in adapting to changing conditions. As a result, its per-
formance consistently improves in terms of both model fairness and predictive accuracy as the
environment evolves.
In Section 4.2.2, we introduced experts as crucial components in FairSAOML, where the model

parameter pair (θ t ,λt ) at time t is determined by aggregating weighted expert advice. Figure 5
illustrates the evolution of expert weights in FairSAOML-AGC and FairSAOML-DGC. We did not
track the weight changes of experts in FairSAOML-DI due to its larger number of experts (96 in
NYSF and 90 in MovieLens). Our observations are as follows: (1) Experts associated with longer
intervals receive larger weights, and these weights continue to increase as the learner encounters
more tasks; (2) Conversely, experts linked to shorter intervals receive smaller weights and become
less influential over time. These findings align with expectations, as assigning heavier weights to
experts with longer intervals empowers our FairSAOML to effectively adapt to the volatility in
model performance induced by changing environments.
Among the baseline methods, MaskFTML demonstrates superior accuracy performance in the

first environment, as evidenced in Figure 4 (c, g, k). However, it falls short when it comes to
achieving model fairness, suggesting that merely attempting to obscure the protected attribute

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 153. Publication date: April 2024.



153:20 C. Zhao et al.

Fig. 5. Expert weight changes over time. (a–c) FairSAOML-AGC, (d–f) FairSAOML-DGC.

from decision-makers is insufficient to improve prediction fairness. On the other hand, FairFML,
FairAOGD, and FairGLC exhibit an ability to mitigate bias in the first environment. Still, they strug-
gle to adapt both fairness and predictive accuracy when the environment undergoes changes. In
contrast, AOD and CBCE, originally designed for online learning in dynamic environments, pri-
oritize learning accuracy but do not effectively address model fairness when environmental shifts
occur. Furthermore, the pursuit of higher accuracy in AOD often results in a tradeoff in terms of
fairness performance. These observations highlight the challenges and tradeoffs involved in achiev-
ing a balance between accuracy and fairness across various methods in changing environments.

7.3 Ablation Studies

We conducted ablation studies on the NYSF (B→M→S) dataset to assess the contributions of two
pivotal components within FairSAOML: expert weights pt, I and the base learner, as described in
Section 4.3.1.

To elaborate, meta-level parameters are computed at each time by aggregating expert decisions
based on their respective weights. By removing expert weights, all experts contribute equally
to the decision-making process. Furthermore, within active experts, base learners, as defined
in Equation (10), are employed to update model parameters at an interval level. Without base
learners, all active experts share the same model parameters inherited from the previous time
and are consequently assigned equal weight. The key insights from the results presented in
Figure 6 are as follows: (1) Expert weights play a significant role in FairSAOML, indicating their
importance in achieving effective bias control and predictive accuracy; (2) The inclusion of base
learners serves to enhance model performance concerning bias control and predictive accuracy.
These findings emphasize the critical contributions of expert weights and base learners to the
overall effectiveness of the FairSAOML algorithm.

7.4 Sensitive Analysis on Different Bases in AGC and DGC

Sensitive analyses conducted on theMovieLens dataset, as depicted in Figure 7, involve the subset-
ting of intervals using different bases selected from the set {2, 3, 4, 5}. According to Equations (7)
and (9), the configuration with the smallest base value (i.e., 2) results in the highest number of
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Fig. 6. Performance of ablation studies on the NYSF B→M→S dataset. (a–c) FairSAOML-AGC, (d–f)

FairSAOML-DGC.

Fig. 7. Different choices of bases for (a,b) FairSAOML-AGC and (c,d) FairSAOML-DGC on the MovieLens

dataset.

experts (6 for AGC and 7 for DGC). Consequently, the largest expert in this setting carries the
longest intervals (32 for AGC and 64 for DGC).
Our observations regardingmodel fairness reveal that settingswith smaller bases exhibit slightly

better performance than those with larger bases in the first environment. However, the opposite
trend is observed in the last environment. This occurs for twomain reasons: (1) In the first environ-
ment, the largest experts carry more information in the smaller base setting than in the larger base
setting; (2) In the last environment, the largest experts in smaller base settings become less pure
and incorporate data from different environments, leading to a deterioration in fairness. These
findings underscore the sensitivity of the FairSAOML algorithm to the choice of base value and its
impact on model fairness, particularly in different environmental contexts.

8 CONCLUSION

To address the challenges of fairness-aware online learning in changing environments, where data
tasks are sampled from diverse distributions one after another, we introduce a novel regretmeasure
called FairSAR. FairSAR extends SAR by incorporating long-term fairness constraints. In technical
terms, we start by proposing three alternative sets of intervals. At each time step, we dynamically
select a target set consisting of multiple intervals from these sets. Next, we introduce a novel learn-
ing algorithm, named FairSAOML, to sequentially determine model parameters. In this algorithm,
we dynamically activate a subset of experts based on the intervals in the target set and update
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their parameters at an interval level. The meta-level model parameters are then obtained by com-
bining the weighted contributions of all experts. Detailed theoretical analysis and accompanying
proofs provide justification for the efficiency and effectiveness of our proposed algorithm. We
demonstrate upper bounds for loss regret and the violation of fairness constraints. Empirical stud-
ies conducted on real-world datasets demonstrate that our method outperforms state-of-the-art
online learning techniques in terms of both model accuracy and fairness.
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