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Abstract: Computational tools have been used in structural engineering design for numerous
objectives, typically focusing on optimizing a design process. We first provide a detailed literature
review for optimizing truss structures with metaheuristic algorithms. Then, we evaluate an effective
solution for designing truss structures used in structural engineering through a method called the
mountain gazelle optimizer, which is a nature-inspired meta-heuristic algorithm derived from the
social behavior of wild mountain gazelles. We use benchmark problems for truss optimization and a
penalty method for handling constraints. The performance of the proposed optimization algorithm
will be evaluated by solving complex and challenging problems, which are common in structural
engineering design. The problems include a high number of locally optimal solutions and a
non-convex search space function, as these are considered suitable to evaluate the capabilities of
optimization algorithms. This work is the first of its kind, as it examines the performance of the
mountain gazelle optimizer applied to the structural engineering design field while assessing its
ability to handle such design problems effectively. The results are compared to other optimization
algorithms, showing that the mountain gazelle optimizer can provide optimal and efficient design
solutions with the lowest possible weight.
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1. Introduction

Optimization involves determining the best values for a system's design parameters to minimize
or maximize the fitness function while satisfying all constraints. Challenges in optimization are
encountered across various industries, academic fields and research areas. There are different
strategies for optimization, including exact algorithms and heuristic and metaheuristic algorithms.
The former category, exact algorithms, requires fewer complex computations, making it quicker to
execute but potentially less useful and practical. Conversely, the second category, metaheuristic
algorithms, displays random or stochastic characteristics and makes an informed search decision in
some intelligent areas [1].

A meta-heuristic algorithm is a high-level strategy used to guide the search for a solution to an
optimization problem. These algorithms are often used when the complexity of the problem cannot
be processed by traditional computational optimization methods, for which a known solution does
not exist. There are many examples of meta-heuristic algorithms that are used for structure problems,
such as genetic algorithms (GAs) [2], an artificial bee colony (ABC) [3], the chaotic coyote
algorithm [4], ant colony optimization (ACO) [5], the artificial gorilla troops optimizer (AGTO) [6],
big bang—big crunch (BB-BC) [7] and the stochastic paint optimizer (SPO) [8].

The meta-heuristic algorithms vary in the different types, such as hybrid, multi-objective and
improved versions. Some of the existing hybrid versions include the invasive weed optimization
shuffled with frog-leaping algorithms (SFLA-IWO) [9], the particle swarm optimization with genetic
algorithms (PSO-GA) [10], the optimality criterion with genetic algorithms (OC-GA) [11], the
cuckoo search with stochastic paint optimizers (CSSPO) [12] and moth-flame optimization with
simulated annealing (MFO-SA) [13].

On the other hand, some of the well-known multi-objective versions, which can solve problems
with multiple aims or goals, include thermal exchange optimization (MOTEQ) [14], the stochastic
paint optimizer (MOSPO) [15], chaos game optimization (MOCGO) [16], teaching-learning based
optimization (MOTLBO) [17], moth-flame optimization (MMFO) [18], the chimp optimizer
(MOCO) [19], the arithmetic optimization algorithm (MAOA) [20], atomic orbital search
(MOAQS) [21], the search group algorithm (MOSGA) [22] and the artificial hummingbird algorithm
(MOAHA) [23].

In addition, enhanced versions of meta-heuristic algorithms include the chaotic stochastic paint
optimizer (CSPO) [24], improved chicken swarm optimization (ICSO) [25] and the advanced neural
network algorithm (ANNA) [26]. These algorithms have also been developed for use in structural
engineering design and other fields [27-30]. These algorithms improve a candidate solution
iteratively through a series of random or probabilistic moves guided by some form of heuristic or
rule of thumb.

The overarching goal of the algorithms is to converge on a near-optimal or optimal solution
within a reasonable amount of time. Two significant components of any meta-heuristic algorithm are
exploration and exploitation. Exploration refers to generating diverse solutions to explore the search
space on a global scale. Furthermore, exploitation means focusing on the search in a local region by
exploiting the information that a current good solution is found in this region. Meta-heuristic
algorithms must maintain an adequate balance between the exploration and exploitation tendencies to
be competitive in terms of robustness and performance [31].

While the simplicity and flexibility of meta-heuristic algorithms make algorithms most
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appealing, it is impossible to guarantee that in any given problem, a globally optimal solution can be
found in any given problem. This is because most algorithms are presented as stochastic
optimizations, meaning the final solution depends heavily on various kinds of generated random
variable fields [32].

Structural optimization has ushered in advanced methodologies, transcending the confines of
traditional analysis, which often relied solely on a designer's experience and intuition. The evolution
of digital computing capabilities has significantly empowered and enabled the application of
contemporary optimization algorithms. Consequently, designers can now ascertain optimal solutions
in a time-efficient manner, solutions that might have remained elusive when only conventional
methods were employed [33].

Trusses in structural engineering are a structural form of members subjected to pure tension or
compression. Members are connected by means of pin joints to create rigid structures. The joints are
subjected to external forces. Trusses are deemed efficient because they ensure a consistent stress
level across the entire cross-section of each member, depending on the loading conditions.

Deterministic and random methods are the two major categories of optimization
problem-solving techniques. Optimization issues that are linear, continuous, differentiable and
convex are well-handled by deterministic methods. The drawback of these methods is that they are
unable to solve problems that are nonlinear, nonconvex, nondifferentiable, high dimensional,
NP-hard (non-deterministic polynomial-time hardness) and involve discrete search spaces.

These elements are among the characteristics of real-world optimization problems and have
caused deterministic approaches to fail. Stochastic algorithms—particularly metaheuristic
algorithms—have been developed to meet this challenge. By utilizing random search in the
problem-solving space and relying on random operators, metaheuristic algorithms can offer suitable
solutions to optimization problems.

It is important to note that there is no assurance that a solution found using metaheuristic
algorithms will be the best or globally optimal. Researchers have created numerous metaheuristic
algorithms because of this fact and produce better solutions. The No Free Lunch (NFL) theorem [34]
states that an algorithm can only be expected to offer optimal solutions for certain problems while it
may deliver average results for others. This is why the ongoing search for more algorithms for truss
optimization is necessary.

Many researchers have found that metaheuristic algorithms are useful for designing and
analyzing truss structures with numerous members [35]. However, the efficiency of optimization
algorithms is problem-dependent, meaning that not all algorithms perform well in every scenario.
Hence, it is crucial to evaluate and contrast the efficiency of the recently developed algorithm
mountain gazelle optimizer (MGO) [36], which has not been utilized in structural optimization, by
implementing it across various practical engineering problems.

The motivation for this work is that mountain gazelles have demonstrated encouraging results in
a different optimization area, making them a valuable candidate for consideration in the optimization
of truss structures.

Recently, Abdollahzadeh et al. [36] introduced MGO, a nature-inspired meta-heuristic algorithm
inspired by wild mountain gazelles' social behavior and hierarchical structure. The algorithm utilizes
mathematical formulations to emulate gazelle populations' hierarchical and social dynamics. This
approach is intended to improve the search for optimal solutions to optimization problems. To this
end, the application of MGO for structural optimization is proposed herein as a technique applied to
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optimize truss structures.
In summary, this paper makes several key contributions:

* It compares four different metaheuristic algorithms on three design optimization problems.
« It uses three space truss structures to evaluate the algorithms mentioned.

* It includes comparing different methods using statistical results and convergence curves.

» It found that the proposed MGO algorithm outperformed the other algorithms mentioned.

The next section of this paper provides a detailed literature review of the optimization of truss
structures with metaheuristic algorithms. Then, the application of MGO is presented and defined,
followed by the problem definition, and results from the analysis of three truss structures are reported.
Lastly, the conclusions are provided, introducing optimum design methodologies for designing truss
structures using MGO compared to other optimization algorithms. The comparison is made with the
arithmetic optimization algorithm (AOA) [37], material generation algorithm (MGA) [38] and
crystal structure algorithm (CRY) [39].

2. Truss structures related works

In recent years, metaheuristic algorithms have been utilized as an optimization technique for the
optimum design of various structural systems. Optimal design of structures refers to finding the best
design plan under an array of different constraints; such constraints may include the lightest weight,
lowest cost, project construction time and/or maximum rigidity. Typically, the structure's behavior
and the project's cost-effectiveness are critical, and the approach presented herein considers both in
the optimization. Additionally, it ensures the structure's safety, reduces construction costs and
minimizes the use of natural resources and materials.

Degertekin [40] suggested two new harmony search (HS) algorithms, the efficient harmony
search algorithm (EHS) and the self-adapting harmony search algorithm (SAHS), for the sizing
optimization of truss structures. It is known that the HS algorithm is extremely sensitive to the tuning
parameters even though the efficiency of the HS algorithm has been demonstrated in numerous
engineering optimization applications. Four classic truss construction weight minimization issues
were described to show the suggested algorithm efficiency. The outcomes of the current algorithms
were contrasted with those of the HS algorithm and other meta-heuristic algorithms.

Degertekin and Hayalioglu [41] optimized truss structures using a novel meta-heuristic search
technique called teaching-learning based optimization (TLBO). The approach utilized the similarity
between how students learn and how solutions to optimization issues are found. The teacher phase
and learner phase are the two phases of the TLBO. The four design examples showed the method's
applicability. Results for the design examples showed that while the TLBO occasionally produced
slightly heavier designs than other meta-heuristic methods, for the most part, it achieved results that
were at least as good compared to other meta-heuristic optimization methods in terms of
convergence capability and optimum solutions.

For the best truss structure design, a novel fusion of swarm intelligence and chaos theory was
provided by Kaveh et al. [42]. The technique is known as the chaotic swarming of particles (CSP)
and was inspired by the tendency to form swarms found in various animals and chaos theory. The
CSP algorithm was used to optimize truss structures, and the outcomes were compared to those of
the previous meta-heuristic algorithms to demonstrate the effectiveness of the new approach.

The weight of truss constructions was reduced using the created flower pollination algorithm
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(FPA) by Bekdas et al. [43] which also took into account design variables for sizing. Because
flowering plants self-pollinate and cross-pollinate, the new algorithm may effectively combine local
and global searches. It also employed an iterative constraint management strategy where trial designs
were approved or disapproved depending on the permitted level of a constraint violation, which
progressively decreased as the search process got closer to the optimum. More important, this
approach searched to produce optimum designs that were always realizable. Three traditional 2D and
3D truss structure sizing optimization tasks were used to test the novel approach. According to
optimization findings, the suggested method was competitive with other cutting-edge metaheuristic
algorithms.

Recently, Jawad et al. [44] studied the combined optimization of truss structures using the
artificial bee colony algorithm (ABC), a swarm intelligence-based optimization technique. The goal
was to maximize truss structure architecture and member size under displacement, stress and
buckling constraints. The foundation of the ABC is the simulation of honeybees' clever foraging
activity. The design factors for shape and size optimization for the truss structure system were the
cross-sectional areas of the members and the nodal coordinates of the joints. The problem constraints
were regarded as the allowable stress, the Euler buckling stress and the displacement. Four
benchmark structural optimization tasks put the ABC to the test. The outcomes showed that ABC is
better than other algorithms regarding optimal weight, standard deviation and quantity of structural
analyses. With a 100% success rate, ABC has had a strong performance.

Structural optimization has also been completed using the recent political optimizer (PO)
method proposed by Awad [45]. The algorithm, modeled after the multi-phased political process in
parliamentary democracies, effectively balances exploration and exploitation by logically dividing
the search agent population into political parties competing for dominance of constituencies. While
preserving algorithmic speed and efficiency, this competitive-based population partitioning technique
ensured that sufficient search space was adequately examined for the global optima. Three planar
trusses—10 members, 18 members and 200 members—and four space trusses—22 members, 25
members, 72 members and 942 members—with various loading circumstances and design
restrictions had been taken into consideration in order to evaluate the algorithm's effectiveness
statistically. The results showed that the PO algorithm outperforms all previously proposed
state-of-the-art optimization methodologies for small to medium-sized structural systems in every
aspect, including final optimized weight, algorithmic stability and convergence speeds.

The search group algorithm (SGA), a metaheuristic optimization technique, was presented by
Gongalves et al. [46] to address truss structure optimization specifically. A selection of benchmark
issues from the literature was used to illustrate the usefulness of the SGA. Due to truss complexity,
problems were given special consideration, including topology optimization, discrete design
variables and/or natural frequency limitations. The key finding of these numerical tests was that the
SGA was capable of producing the lightest structures yet discovered for five of the six samples
examined. In most instances, it also enhanced the statistics of the algorithm's independent runs.
These findings highlight the SGA's strengths in this area and promote its continued improvement and
use in solving applied engineering challenges.

Most recently, in order to optimize space trusses with continuous design variables,
Goodarzimehr et al. [47] seeks to offer a new hybrid technique that combines particle swarm
optimization and genetic algorithm (PSOGA), resulting in an effective hybridization algorithm for
solving optimization issues. These algorithms have demonstrated exceptional performance when it
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comes to resolving optimization issues involving continuous variables. The PSO essentially
simulates how individual birds communicate with one another to provide information about their
position, velocity and fitness. The outcomes show that both exploration and exploitation were
enhanced using the hybrid PSO algorithm. Hence, optimizing the weight of structural issues under
stress and displacement constraints applies the PSO method.

A dynamic variant of the water strider algorithm (DWSA) has been suggested by Kaveh
et al. [48]. The dynamic water strider algorithm (DWSA) and WSA were both used to reduce the
weight of various skeletal components. The water strider insect's territorial behavior, intelligent
ripple communication, mating style, feeding mechanics and succession are all mimicked by the
nature-inspired metaheuristic known as WSA. These algorithms' effectiveness was examined by
optimizing various truss and frame constructions that were subject to various loading circumstances
and limitations. When DWSA findings were compared to those of other approaches, it was clear that
DWSA is an effective methodology for maximizing structural design and reducing structural weight
while meeting all limitations.

The most effective hybrid optimization approach for truss design has been provided by Kaveh
etal. [49]. Based on the invasive weed optimization algorithm and the shuffled frog-leaping
algorithm (ISO-SFLA), the suggested technique uses the shuffled frog-leaping algorithm to find
optimal solution regions quickly. The invasive weed optimization takes advantage of global solutions.
The novel hybrid method was used to improve several benchmark truss structures. In comparison to
specific other approaches, this algorithm converged to better or at least equivalent solutions while
using less structural analysis. The results were compared to those acquired previously utilizing other
recently established metaheuristic optimization techniques.

An enhanced chicken swarm optimization (CSO) technique for truss structure optimization was
presented by Li et al. [25] in order to increase the effectiveness of the structural optimization design
in truss computation. The idea of mixing chaotic strategy with reverse learning strategy was
introduced in the initialization of the fundamental CSO algorithm to guarantee the capability of a
global search. In order to more effectively mix global and local search, the inertia weighting element
and the learning component were added to the chicken position updating mechanism. The differential
evolution method was then used to maximize the algorithm's total individual position. This study
offered a novel technique for optimizing truss structures.

3. Problem definition

Three truss structure optimization designs are solved using the MGO algorithm to evaluate the
performance of the MGO algorithm compared to alternative metaheuristic algorithms. The
alternative algorithms include the arithmetic optimization algorithm (AOA) [37], material generation
algorithm (MGA) [38] and crystal structure algorithm (CRY) [39].

Population size and the maximum number of function evaluations were consistent with other
algorithms for a fair comparison. Using a termination criterion based on the maximum number of
function evaluations ensures a fair comparison. Each problem is tackled separately, with 30 runs
conducted for each one. The parameters for each algorithm are modified based on a review of the
existing literature. The algorithm was developed using MATLAB 2023a, and the trusses were solved
using the direct stiffness method with SAP2000 v14.1 and API. The computer used for testing had an
Apple M2 Max and 96 GB of RAM on a Macintosh Ventura operating system. Three specific truss
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structure case studies are conducted: spatial structure with 25 members, spatial structure with 72
members and dome structure with 120 members. Results are compared to other methods.

The mathematical formulas for the size optimization of truss structures solved herein are
presented in Eq. (1). The optimization aims to find the optimal cross-section (4;) values that
minimize the structural weight of the W while satisfying constraints on the design variable sizes
and structural responses. The problem is formulated as follows:

Minimize: W{x}) = Xy A Li(x) €))
subject to: Smin < 6; < Omax i=12,....m
Omin < 0; < Opmax i=12,...,n
o’ <d<0 i=12,...,ns
Apin < Ai < Apax i=12,...,ng

The optimization problem is formulated as follows: W ({x}) is the weight of the structure, n is
the number of members in the structure, m is the number of nodes, ns is the number of compression
elements and ng is the number of design variables or member groups. Here, y; is the material
density of member i,L; is the length of member i, and W ({x}) is the cross-sectional area of
member { chosen between A,;, and A, where min and max indicate the lower and upper
bounds, respectively. o; and 6; are the stress and nodal deflection, respectively. The penalty
function is as follows:

Foenatty (X) = (1 + &1.v)% v= " max[0,v] )

where v is the total amount of constraints violated, and constants &; and &, are chosen based on
the exploration and exploitation rate of the search space. In this case, &;is set to 1, and ¢, is chosen
to minimize penalties and reduce cross-sections. At the start of the search process, &, is set to 1.5
and is then increased to 3.

4. The mountain gazelle optimizer

The algorithm, known as the mountain gazelle optimizer (MGO) [36], uses a mathematical
model based on mountain gazelles' social behaviors and life patterns. It optimizes using four key
aspects of gazelle life: bachelor male herds, maternity herds, solitary, territorial males and migration
to find food. The MGO algorithm assigns each gazelle (X;) to a herd of maternity herds, bachelor
male herds or solitary, territorial males during the optimization process. A new gazelle can be born
from any of these herds.

The best global solution in the MGO is represented by adult male gazelles in their herd
territories. One-third of the search population is estimated to have the lowest cost, as the gazelles in
the male bachelor herds are young and not yet mature enough to reproduce or lead the female
gazelles. Gazelles represent other potential solutions in maternity herds, where strong gazelles with
good solutions engage in both exploitation and exploration. This means that a solution can both
move towards the best solution and perform exploration, as determined by the four mechanisms in
the MGO model.

In addition, other solutions offered to the general population are compared to gazelles in a herd.
The strong gazelles with effective solutions are kept at the end of each cycle. Other solutions
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introduced to the general population with a low cost are considered weak and eliminated from the
entire population. The MGO's mathematical formulae for optimization are described as follows.

4.1. Territorial solitary males (TSM)

When male mountain gazelles mature and attain strength, they establish individual territories
and display territorial behavior, with substantial spaces between territories. The conflict between
adult male gazelles occurs over territory control or mating rights to the females. Young males attempt
to take over the territory or female, while adult males strive to defend their territory. Egs. (3) to (5)
have been utilized to simulate the adult male's territory.

TSM = maleygepe — |(riy X BH — iy x X(©)) X F| x Cof, 3)
N

BH = X, X |11] + My, X [1;], ra = {[g] N} )

F = N;(D) X 2—1It x( 2 ) 5

-t exp % \Maxiter )

In Eq. (3), the male j4,0y. rtepresents the position vector of the optimal global solution (adult
male). The variables ri; and ri, are random integers, either 1 or 2. BH is the coefficient vector
for the group of young males, calculated with Eq. (4). F is calculated using Eq. (5). Cof, is a
randomly chosen coefficient vector that is updated in each iteration to enhance search capability,
computed using Eq. (6).

In Eq. (4), X,, refers to a random solution (young male) within the range of ra. M,
represents the average number of randomly selected search agents. N stands for the total number of
gazelles, and r; and r, are random values between 0 and 1. In Eq. (5), N; is a random number
derived from a standard distribution in the dimensions of the problem. The exponential function is
denoted as exp. MaxIter signifies the total number of iterations, and Iter represents the current
iteration number.

( (a+1)+r;,
N, (D),
Cof; = ey ©)
N3(D) X Ny(D)? x cos((ry x 2) x N3(D)),
a=—1+Iter x (—Ma;llter) )

In Eq. (6), a is calculated using Eq. (7), while r3 and 1y, are random numbers within the
range of 0 and 1. N,, N3 and N, are random numbers in the standard range and dimensions of the
problem. In the problem dimensions, 7, is also a random number between 0 and 1. Finally, cos
represents the Cosine function.

4.2. Maternity herds (MH)

Maternity herds are crucial in the life cycle of mountain gazelles, as they give birth to strong
male gazelles. Male gazelles can also be involved in the delivery of gazelles and young males trying
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to claim females, which is modeled using Eq. (8).
MH = (BH + Cofl,r) + (ri3 X maleggzere — iy X and) X Cofi , (8)

In Eq. (8), BH represents the impact factor vector of young males, calculated using Eq. (4).
malegg,eye stands for the best global solution (adult male) in the current iteration. Finally, X, ,nq is
the vector position of a randomly selected gazelle from the entire population.

4.3. Bachelor male herds (BMH)

As male gazelles grow stronger, they establish their own territory and compete to control female
gazelles. Young males fight against adult males for the territory and possession of the females,
sometimes resulting in violent confrontations.

BMH = (X(t) — D) + (ris X maleygzene — ris X BH) X Cof, 9)

D = (IX(®)| + |malegazene |) X (2 X 15 — 1) (10)

This behavior is represented mathematically in Eq. (9) using variables such as X(t) (the
position of the gazelle in the current iteration), D (calculated using Eq. (10)), ris and rig (random
integers 1 or 2), BH (the impact factor of the young male herd, calculated using Eq. (4)),
malegg,ene (the position of the male gazelle, the best solution) and 75 (a random number between
0 and 1). Eq. (10) uses X(t) and maleyq, .y, (the positions of the gazelle vectors in the current
iteration and the best solution, respectively).

4.4. Migration to Search for Food (MSF)

Mountain gazelles roam to find food and migrate due to their high speed and jumping ability.
The behavior is modeled in Eq. (11) as follows:

MSF = (ub —1b) xr, +1b (11)
where ub and b represent the upper and lower limits of the problem, and 7, is a random integer
between 0 and 1.

The TSM, MH, BMH and MSF mechanisms are applied to all gazelles to generate new
generations. After each era, the gazelles are ranked, and the best ones, with high-quality and low-cost
solutions, are kept while the old and weak ones are removed from the population. The best gazelle is
the adult male who owns the territory. The MGO general flowchart and pseudo-code are depicted in
Figures 1 and 2. MGO can make optimization more accessible to engineers and designers who may
not have specialized knowledge in optimization techniques by being easier to use or implement than
existing methods.
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Figure 1. MGO flowchart.

Algorithm
Pseudo-code of MGO

Inputs: The population size N and the maximum number of iterations T
Outputs: Gazelle's location and fitness potential
Create a random population using X;(i = 1,1,...,N)
Calculate Gazelle's fitness levels
While the stopping condition is not met
For each Gazelle (X;)
Calculate TSM using Eq. (3)
Calculate MH using Eq. (8)
Calculate BMH using Eq. (9)
Calculate MSF using Eq. (11)
Calculate the fitness values of TSM, MH, BMH and MSF, then add them to the habitat
End For
Sort the entire population in ascending order
Update best;yzeiie
Save the bestgy,eye in the maximum number of populations
End While
Return XpociGazelle

Figure 2. Pseudo-Code of MGO [36].
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5. Truss structures

For each truss structure described below, the MGO solution results are compared with the
existing metaheuristic methods available in the literature. To this end, the statistical approaches
required several independent optimization runs to be conducted in this work, where a total of 30 runs
were performed. The truss structural details were complementary to these optimization runs.

5.1. Spatial structure with 25 members

The first truss structure in this work is a spatial truss structure with 25-member elements.
Structural members are made of steel with yield stresses of +£40 ksi and a modulus of elasticity of
104 ksi. The density of steel material is 0.1 [b/in3. Table 1 presents a classification of the members
by number, indicating each member's beginning and end node. Figure 3 illustrates a schematic view
of the structure with dimensions, as well as truss member and node numbering. Each node is
constrained by a maximum displacement limit of £0.35 inches in each direction, where Table 2
shows the corresponding axial load restrictions for each group. The cross-sectional areas for the
members ranged from 0.01 to 3.4 square inches. Table 3 shows the allowable stress for each
element.

The convergence history of the MGO for the best run and the average runs against the other
algorithms (AOA, MGA and CRY) is provided in Figure 4. The figures show the superior capability
of MGO for solving this truss design optimization, clearly outperforming the other methods as the
number of iterations quickly reduces.

Table 1. Element group number.

G1 G2 G3 G4 G5 G6 G7 G8

13( 2:(1,4) 6:(2,4) 10:(6,3) 12:(3,4) 14:(3,10) 18:(4,7) 22:(10,6)
3:(2,3) 7:(2,5) 11:(5,4) 13:(6,5) 15:(6,7) 19:(3.8) 23:(3,7)
4:(1,5) 8:(1,3) 16:(4.,9) 20:(5,10) 24:(4,8)
5:(2,6) 9:(1,6) 17:(5.8) 21:(6,9) 25:(5,9)

Table 2. Load Condition for 25-member truss.

Node. No Load Case 1 (Kips) Load Case 2 (Kips)
b I P, b P, P,
1 0 20 -5 1 10 -5
2 0 -20 -5 0 10 -5
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0
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Table 3. Compressive and tensile limitations of 25-member truss.

Element Compressive stress Limitations Ksi Tensile stress
Group (MPa) Limitations Ksi (MPa)
1: A 35.092 (241.96) 40.0 (275.80)
2: Ay-As 11.590 (79.0913) 40.0 (275.80)
3: Ag-Ay 17.305 (119.31) 40.0 (275.80)
4: App-Aq 35.092 (241.96) 40.0 (275.80)
5:Apn-Aps 35.092 (241.96) 40.0 (275.80)
6: Ayy-Ays 6.759 (46.603) 40.0 (275.80)
7: As-Ag 6.959 (47.982) 40.0 (275.80)
8: Ay - Ays 11.082 (76.410) 40.0 (275.80)

Figure 3. Schematic view of spatial structure with 25 members.
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Figure 4. Best run and average run convergence curve's spatial structure with 25

members with different methods

Table 4. The MGO results of spatial structure with 25 members.

Group Member AOA CRY MGA MGO
1(A) 0.210 0.010 1.441 0.010
2 (Ay-As5) 1.915 1.895 2.165 1.879
3 (Ag-Ay) 3.400 3.324 2.613 3.106
4 (Ap-Apn) 0.010 0.010 0.167 0.010
5(An-Ap) 0.324 0.010 0.298 0.010
6 (A1s-Aq7) 0.597 0.606 0.860 0.653
7 (Aig-Ay) 1.576 1.630 1.731 1.728
8 (Ax-Ays) 2.661 2.690 2.636 2.661
Optimum weight (1b.) 555.88 548.37 571.10 545.72
Average weight (Ib.) 578.68 556.72 612.96 548.01
Standard deviation 17.46 5.51 21.00 2.12
Number of analyses 1000 7000 1000 2300

Applied Computing and Intelligence

Volume 3, Issue 2, 116144



129

Table 4 Summarizes the optimum outcome of the several optimization runs using MGO and
other alternative methods to solve the spatial structure with 25 members problem. The minimum
acceptable weight for the truss is determined to be the MGA's target weight. To understand the
MGA's strength in predicting the optimal weight of the structure, several alternative metaheuristics
are obtained to have a better perspective on the capabilities of the MGO.

As reported in Table 4, we can see that the MGA is able to predict a weight of 545.72 [b. In
this design example, the maximum number of function evaluations was limited to 10,000, and
MGO obtained the best results with just 2300 function evaluation numbers. According to the
statistical results, close similarities are observed between the mean of multiple runs by MGO and the
best run. Also, 30 independent runs are shown in Figure 5. The MGO resulted in the lightest estimate
for the mean weight of the spatial structure with 25 members (548.01 Ib), followed by AOA. In the
case of the 25-member truss structure, the MGO algorithm provides the lowest standard deviation
(SD), equal to 2.12, whereas the CRY method can deliver only an SD of 5.51. Figure 6 presents the
design constraints, including stresses in each truss member and displacements that occurred in each
member, for the best optimization run performed by the MGO. This figure also puts the capacity of
the MGO method in constraint handling technique into context.
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Figure 5. The 30 Independent runs for spatial structure with 25 members with MGO.
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Figure 6. Stress and Displacement ratio for spatial structure with 25 members with MGO.

5.2. Spatial structure with 72 members

This design's truss structure comprises 72 truss members pinned to the ground at four nodes.
Structural members are made of steel with yield stresses of +25 ksi and a modulus of elasticity of
10* ksi. The density of steel material is 0.1 Ib/in3. Each member's minimum and maximum
permissible cross-section area is 0.10 in® and 4.00 in?. Figure 7 presents a schematic view of the
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structure with truss members, node numbering and overall dimensions. The convergence history of
the MGO for the best run and average runs against all other methods is shown in Figure 8, indicating
that the MGO method ranks first based on the number of iterations completed to reach an optimum
solution.

ul p9xy
B Lt L L L T T pepEp—————

Figure 7. Schematic view of spatial structure with 72 members.

Table 5 presents the best solution achieved via 30 optimization runs performed by the MGO, in
addition to the statistical findings. The MGO's results are compared to the other optimization
techniques, and it is determined that 379.95 [b is the minimum weight this example can support. In
addition, MGO has more reasonable statistical findings, with a mean of 382.54 b and SD of
2.04 lb. However, while taking into account the standard deviation, the MGO algorithm provided the
lowest SD, the CRY method achieved the second lowest SD value of equal to 33.74, while the MGA
algorithm arrived at the highest SD value of 85.17 for the 72-member truss structure.
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Table 5. The MGO results of spatial structure with 72 members.

Group Member AO CRY MGA MGO
1(A-Ay) 2.1 2.221 0.931 1.824
2 (As-Ap) 0.7 0.404 0.434 0.515
3(Az-Aygg) 0.1 0.100 0.507 0.100
4 (A7-Agg) 0.1 0.100 0.100 0.100
5(A-Ap) 1.5 1.410 1.745 1.245
6 (Ax-Azp) 0.4 0.447 0.714 0.536
7 (Asr-Azg) 0.1 0.105 0.783 0.100
8 (Ass-Azg) 1.0 0.114 0.882 0.100
9 (Asz7- Ay) 0.7 0.332 1.579 0.554
10 (Ag1-Aygg) 0.3 0.754 0.629 0.520
11 (Agp-As)y) 1.3 0.100 0.683 0.100
12 (As3- Asy) 0.1 0.175 0.100 0.100
13 (Ass- Asg) 0.1 0.471 2.398 0.156
14 (Aso- Agg) 1.1 0.534 0.903 0.538
15 (Ag7- A7) 0.5 0.765 0.104 0.380
16 (A71- A7) 0.1 0.953 0.521 0.592
Optimum weight (1b.) 545 432.97 687.77 379.95
Average weight (Ib.) 643 485.69 881.59 382.54
Standard deviation 64. 33.74 85.17 2.04
Number of analyses 100 9150 10000 6800

Figure 9 presents the design constraints, including stresses in each truss member and
displacements that occurred in each member, for the best optimization run performed by the MGO.
This figure also puts the capacity of the MGO method in constraint handling technique into context.
The 30 independent runs for MGO are shown in Figure 10. According to this figure, the best eight
and mean weights of all runs are depicted, as well as all other obtained weights.
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5.3. Dome structure with 120 members

The third truss design addresses minimizing the dome structure's weight with 120 members, as
shown in Figure 11. Soh and Yang [50] studied this design case as a configuration optimization
problem. The tensile and compressive stresses were established based on the AISC [51] code. The
modulus of elasticity is 30450 ksi (210000 MPa), the density of the material is 0.288 lb/
in3 (7971.810 Ib/in3) and the yield stress of steel used is 58.0 ksi (400 MPa). The members of
the dome are divided into seven groups.

The dome is subjected to vertical loads on all unsupported joints, with a load of —13.49 kips
(60 kN) at node 1, —6.744 kips (30 kN) at nodes 2-14 and —2.248 kips (10 kN) at remaining
nodes. The minimum cross-sectional area of elements is 0.775 in® (5 cm?) and the constraints
considered are stress based on the AISC [51] code and displacement constraints of
+0.1969 in (5 mm).
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Figure 11. Schematic view of dome structure with 120 members.

Figure 12 shows the 30 independent runs carried out to solve the dome structure with 120
members design using MGO. Results for the truss-optimized weight of MGO compared with AOA,
MGA and CRY are presented in Table 6, showing that MGO obtains the optimal design. Similar to
25-member and 72-member truss problems, the MGO method is able to predict the lowest weight for
the structure. The authors calculate the results of the other three metaheuristics algorithms in Table 6
to compare algorithm strengths against the MGO. As reported, the MGO is able to calculate an
overall weight of 33281.68 [b for the truss, which is again the lowest compared to other methods,
such as CRY, which is able to predict an overall weight of 34052.17 lb.

In terms of the statistical findings, the MGO can provide a mean of 33418.16 b and an SD of
121.10; these values have been computed most accurately up to this point for this particular truss
design. Hence, the MGO algorithm can provide reasonable and economical results, as represented in
Figure 13, showing that the MGO can calculate the most optimum weight for the structure. The
results of achieved stresses and displacement within the members using MGO optimization runs for
load cases are presented in Figure 14. The figures define stress and displacement limits, and the
capability of the constraint-handling approach is in perspective.
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Table 6. The MGO results in dome structure with 120 members.

Group Member AQO CRY MGA MGO

1 3.99 3.134 3.589 3.026

2 20.0 12.330 8.594 15.051

3 4.96 5.276 6.170 4.982

4 3.70 3.269 3.935 3.116

5 7.41 9413 11.411 8.280

6 343 3.687 5.764 3.590

7 2.57 2.765 4.206 2.496
Optimum weight (1b.) 3692 34052.17 41028.10 33281.68
Average weight (Ib.) 4188 36872.80 4435435 33418.16
Standard deviation 3266 1148.37 2526.17 121.10
Number of analyses 1000 10000 10000 2650
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6. Conclusions

This work introduces the Mountain Gazelle Optimizer (MGO), which is a nature-inspired
meta-heuristic algorithm, as a truss optimization method. After a detailed literature review of the
optimization of truss structures with metaheuristic algorithms, MGO is used to solve three different
benchmark truss design examples with different orientations and geometries under predefined
loading conditions, namely trusses with 25-, 72- and 120-member elements. MGO results are
compared with the AOA, MGA and CRY. A penalty method was complementary to incorporate
constraint handling. Several runs using optimization algorithms were carried out to get accurate
statistical data to compare the results between the selected metaheuristic algorithms. In all three truss
designs, the MGO algorithm provided reasonable results with the most optimum structural weight
compared to other metaheuristic algorithms and the lowest number of function evaluations, which is
considered the minimum value for problems with higher complexity. MGO can reduce the time
required to design and analyze truss structures by finding solutions more quickly than existing
methods based on the convergence rate. It can lead to more economical structures by finding better
solutions with low standard deviation that are more cost-effective and lighter. This work is the first
evidence showing how MGO effectively solves and optimizes structural engineering problems, such
as trusses. Moreover, this work can be expanded to other structural engineering optimization
problems, including binary and multi-objective versions of MGO.
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