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Machine Learning for Engineering Meta-Atoms with Tailored
Multipolar Resonances

Wenhao Li, Hooman Barati Sedeh, Dmitrii Tsvetkov, Willie J. Padilla, Simiao Ren,

Jordan Malof, and Natalia M. Litchinitser*

In the rapidly developing ûeld of nanophotonics, machine learning (ML)

methods facilitate the multi-parameter optimization processes and serve as a

valuable technique in tackling inverse design challenges by predicting

nanostructure designs that satisfy speciûc optical property criteria. However,

while considerable efforts have been devoted to applying ML for designing the

overall spectral response of photonic nanostructures, often without

elucidating the underlying physical mechanisms, physics-based models

remain largely unexplored. Here, physics-empowered forward and inverse ML

models to design dielectric meta-atoms with controlled multipolar responses

are introduced. By utilizing the multipole expansion theory, the forward model

efficiently predicts the scattering response of meta-atoms with diverse shapes

and the inverse model designs meta-atoms that possess the desired multipole

resonances. Implementing the inverse design model, uniquely shaped

meta-atoms with enhanced higher-order magnetic resonances and those

supporting a super-scattering regime of light-matter interactions resulting in

nearly ûve-fold enhancement of scattering beyond the single-channel limit are

designed. Finally, an ML model to predict the wavelength-dependent electric

ûeld distribution inside and near the meta-atom is developed. The proposed

ML based models will likely facilitate uncovering new regimes of linear and

nonlinear light-matter interaction at the nanoscale as well as a versatile toolkit

for nanophotonic design.

1. Introduction

Rapid progress in photonics and nanofabrication has opened
up new prospects for realizing engineered structures to manip-
ulate light at the nanoscale.[1] These subwavelength scatterers
can be arranged in isolated, 2 and 3D arrangements, known as
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meta-atoms,[2] metasurfaces,[3] and
metamaterials,[4] respectively, and have
been shown to facilitate various ap-
plications such as beam steering,[5]

holography,[6] nonlinear harmonic
generation,[7] and Kerker, anti-Kerker,
and transverse Kerker effects,[8] to name
a few. While electromagnetic multi-
pole expansion theory, a cornerstone
of light-matter interactions, has facil-
itated the study of these remarkable
optical phenomena, brute force opti-
mization methods relying on an iterative
exploration of various geometries and
materials are conventionally employed
to obtain the desired response.[9–13]

However, these approaches are compu-
tationally demanding and less effective
for intricate designs, which leads to a
fundamental trade-off between perfor-
mance and time, emphasizing the need
for alternative methods that offer faster
and more efficient solutions to overcome
these limitations.
In recent years, the maturation of ma-
chine learning (ML) models has led
to numerous breakthroughs in var-
ious domains, including ûnance,[14]

healthcare,[15] computer vision,[16]

and robotics.[17] Following this
signiûcant progress in other ûelds of research and technology,
ML has recently emerged as a powerful tool in photonics for the
optimization and analysis of various subwavelength structures
and systems.[18–33] In particular, contrary to the conventional nu-
merical approaches,MLmethods offer fast prediction techniques
that facilitate the optimization process within a multi-parameter
space and serve as a valuable technique in tackling inverse de-
sign challenges by predicting nanostructure geometries that sat-
isfy speciûc optical property criteria. Although considerable ef-
fort has been devoted to applying ML for designing the overall
spectral response of optical metasurfaces, often without elucidat-
ing the underlying physical mechanisms,[34–40] only a few studies
of the resonant response of meta-atoms in terms of their multi-
poles (or cavity modes) as well as the electromagnetic ûeld dis-
tributions inside the meta-atoms using ML has been reported. In
this context, Wiecha et al.[41] recently demonstrated the feasibility
of predicting electromagnetic ûeld distributions within subwave-
length meta-atoms at ûxed wavelengths. Other recent studies
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employed ML and optimization techniques for meta-atom de-
sign primarily involving regular and relatively simple geome-
tries such as spheres,[42] core–shell structures,[43–46] cubes,[47] and
cylinders,[48] which typically support only low-order multipolar
resonances. However, if ML could be applied to design the mul-
tipolar response itself by optimizing the shape of the individual
meta-atoms, it may facilitate entirely new regimes of light-matter
interactions relying on higher-order electric and magnetic mul-
tipolar resonances that have been largely neglected to date. Judi-
cious design of such higher-order resonances is likely to enable
high conûnement and large mode overlap of electromagnetic
ûelds at different frequencies essential for enhancing nonlinear
frequency conversion efficiency[49–55] or establishing strong cou-
pling in 2D materials.[56–58]

Here, we apply ML to design dielectric meta-atoms support-
ing desired multipolar moments as schematically illustrated in
Figure 1. In particular, we use multipole expansion theory to
expand electromagnetic ûelds on a multipolar basis and estab-
lish a connection between the induced electromagnetic ûelds and
the topological features of meta-atoms.[9–13] To the best of our
knowledge, this is the ûrst time ML has been employed in this
context. We demonstrate the effectiveness of the ML approach
in generating uniquely shaped meta-atoms with tailored reso-
nances by developing forward prediction models (FPM) to es-
tablish the relationships between scattering response and topo-
logical attributes of individual meta-atoms (shown in the blue
box in Figure 1) and an inverse design model (IDM) to retrieve
the meta-atoms with desired multipolar moments (orange box).
To address the unique challenges of inverse modeling, we em-
ploy a specialized deep learning architecture, termed the Tan-
dem model, which we use to maximize a particular multipolar
moment. We demonstrate the effectiveness of the proposed ap-
proach with two examples. First, we design meta-atoms support-
ing higher-order magnetic dipole and octupole resonant modes
contributing 60% to the optical response. Next, we optimize
meta-atoms for establishing a super-scattering regime of light-
matter interactions, with nearly a ûve-fold scattering enhance-
ment beyond the single-channel limit. Additionally, we devel-
oped an ML model to predict the wavelength-dependent elec-
tric ûeld distribution inside and near the meta-atom (green box
in Figure 1). The developed approach can be readily applied
to existing datasets and integrated with various network archi-
tectures and problem domains, making it a valuable tool in
nanophotonics.

1.1. Forward Prediction Model

The induced polarization due to the interaction of light with a
meta-atom is related to the ûeld distribution inside the meta-
atom through P = ÿ0 (ÿp − ÿd)Ep, where ÿ0, ÿp and ÿd are the
dielectric permittivities of free space, the meta-atom, and the sur-
rounding medium, respectively, and Ep is the total electric ûeld
within the meta-atom.[9–13] Since induced polarization can be de-
scribed in terms of induced multipoles, the availability of an effi-
cient tool for designing suchmultipoles with speciûcmagnitudes
at a givenwavelength is essential. However, computingmultipole
moments using conventional numerical methods such as the û-
nite elements method (FEM) can be time-consuming, particu-

larly for complex structures. Therefore, here we develop an ML
approach as an efficient alternative and develop an FPM capable
of approximating multipolar resonances based on the shape of a
meta-atom in the target spectral range of 500–900 nm. The FPM
employs a densely connected convolutional network (DenseNet)
encoder architecture,[59] which is orders ofmagnitude faster than
conventional commercial software-based simulations. In this ap-
proach, the meta-atom shape information is compressed into
a reduced dimension (bottleneck) following a series of down-
conversion blocks (DCBs). This condensed information and the
associated wavelength are then passed through fully connected
dense layers to predict themultipolar resonances at a given wave-
length, as shown in Figure 2a.
A dataset of 36 300 distinct combinations of titanium diox-

ide (TiO2) meta-atom shapes and wavelengths were used to train
and validate the ML model. The height of meta-atoms was ûxed
to 320 nm, while their geometrical cross-sections in the trans-
verse plane were varied as a function of azimuthal angle (see
Supporting Information for more details). First, numerical sim-
ulations using the FEM implemented in COMSOL Multiphysics
have been performed at 21 discrete points within the spectral win-
dow of interest to calculate the electric ûeld distribution and the
induced multipoles corresponding to various TiO2 meta-atoms
geometries. Contrary to most prior studies, which primarily con-
sider the ûrst four multipole moments to characterize the opti-
cal response of regular-shaped optical meta-atoms,[41–48] we take
into account higher-ordermultipoles up to themagnetic octupole
term (see Experimental Section for details). While lower-order
multipoles dominate in the scattering cross-section of the regu-
larly shapedmeta-atoms such as cylinders or cubes, higher-order
moments become important in the case of irregularly shaped
meta-atoms. Figure 2b shows the scattering cross-section of a par-
ticular TiO2 meta-atom that was used in training the ML model
(shape (ii) in panel (a)) across the spectral range of 500–900 nm.
As can be seen, the spectral response of the meta-atom at vari-
ous wavelengths is predominantly governed by distinct types of
moments. Speciûcally, its response can be primarily attributed
to the electric and magnetic dipoles at longer wavelengths, while
contributions from higher-order moments become increasingly
evident at shorter wavelengths. The emergence of higher-order
moments at shorter wavelengths can be ascribed to the meta-
atom size in this region being comparable with the operating
wavelength. Comparing the total scattering response of themeta-
atom and the response derived from the summation of the ûrst
six multipoles, including electric and magnetic dipoles, electric
(ED, MD) and magnetic quadrupoles (EQ, MQ), and electric and
magnetic octupoles (EO, MO), justiûes the sufficiency of consid-
ering the ûrst six multipole moments and neglecting the multi-
polar terms higher than MO.
We have also compared the results obtained from the multi-

pole expansion with those derived from Mie theory for the light
scattered by spherical particles (see Supporting Information for
more details of this comparative analysis). Figure 2c demon-
strates the average values, their corresponding standard devia-
tions, and types of resonant modes supported by the training
dataset. At longer wavelengths, the major contribution to the
overall dataset comes from the low-order ED and MD moments,
whereas at shorter wavelengths, higher-order moments such as
MO, are emerging. The performance of the predictive model is
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Figure 1. Schematic illustration of the concept of ML for Mie-Tronics. In the FPM, shown in the blue box, the meta-atom geometry serves as the input,
allowing the model to predict its optical response in terms of multipole moments up to the magnetic octupole. In the IDM, shown in the orange color,
the model uses the magnitudes of the desired multipolar moments at a given wavelength, given by ÿD, as an input and predicts the explicit geometry
that yields the speciûed response. The third model, shown in the green box, predicts the electric ûeld distribution inside the meta-atom of a particular
shape at the desired operating wavelength.
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Figure 2. Predictions of the meta-atom optical response using the FPM. a) The schematic illustration of an FPM is used to predict the optical response
of the input meta-atom. The shape information undergoes compression into a reduced dimension using multiple DCBs. Subsequently, this condensed
information, in conjunction with wavelength information, is processed through fully connected dense layers to accurately predict multipolar resonances
for a speciûed wavelength. b) The scattering cross-section of a single meta-atom corresponding to the shape (ii) in panel (a). c) The statistical repre-
sentation of moments for the complete training dataset shown within the spectral range spanning from 500 to 900 nm. The solid lines and error bars
within the graph correspond respectively to the mean and standard deviation of the speciûc moments. d) A comparison of the scattering cross-section
between direct simulation results (solid line) and predictions from the FPM (circle marker) for an arbitrary input meta-atom (shape (iii) in panel (a)).

assessed using the root mean square error (RMSE) loss metric,
which quantiûes the deviation of the predicted resonance val-
ues from the actual ones. In particular, the RMSE loss for the
predicted resonances in the validation dataset is calculated to
be 6.4 × 10−3μm2, which is more than two orders of magnitude
lower than the average value of the resonances, demonstrating
the competency of the employed model to generate accurate pre-
dictions with minimal error relative to the overall resonance val-
ues (see Supporting Information for more details).
Figure 2d shows a comparison of the resonances of a meta-

atom (corresponding to shape (iii) in panel (a)) obtained through
direct simulation (solid line) and those predicted by FPM (cir-
cle curves) across 21 wavelengths in the spectral range of 500–
900 nm. The close agreement between the simulation and FPM-
predicted results illustrates the accuracy of the implemented
model in predicting the response of meta-atoms.

1.2. Inverse Design Model

While the developed FPM provides a fast and accurate way of es-
timating the multipolar resonances for a given meta-atom, de-
signing a meta-atom with on-demand resonances still requires

searching the shapes of the meta-atoms. To simplify the design-
ing process, an inverse design method that obtains the meta-
atom corresponding to a desired multipolar response is needed.
Inverse design problems are often deemed ill-posed for twomain
reasons: i) existence—a meta-atom with the given multipolar
resonances might not exist, and ii) uniqueness—multiple meta-
atoms could share highly similar multipolar resonances.[18–40] In
the meta-atoms design process, our primary concern revolves
around the relative strength of resonances at the intended wave-
length. Therefore, we opt to use the moments speciûcally at the
design wavelength as input rather than considering moments
across the entire wavelength range. This approach helps mitigate
the existence issue, but it may introduce the uniqueness chal-
lenge due to the reduced number of input elements required.
For such reasons, conventional deep learning models (e.g., a

DenseNet) would not work well when applied directly to learn an
inverse relationship. To overcome such an issue and avoid gener-
ating inaccurate designs due to sample non-uniqueness, we im-
plemented a Tandem inverse design model (TIDM),[60] schemat-
ically shown in Figure 3a. The TIDMmodel was chosen because
of its reliable training procedure. Also, based on a recent com-
parison of inverse modeling approaches, we found it to offer a
useful tradeoff between accuracy and computation time.[61] In
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Figure 3. Meta-atom optimization using inverse design model. a) The schematic diagram of the implemented IDM used for designing meta-atom
geometry based on the desired optical response at a speciûed operating wavelength. The MSE loss (the difference between the target response and the
one predicted by the FPM) is incorporated as feedback to ensure ûnding an optimal solution. b) Histogram of the RMSE on validation dataset for the
TIDMmodel and DenseNet model. c) Conceptual illustration of the approach implemented to address a potential nonexistence problem that may arise
during the inverse design process. d) Illustration of the optimization-based inverse design procedure.

particular, the employed model consists of two components: a
DenseNet decoder for designing meta-atom shapes and a pre-
trained FPM for validating the resonances of the designed meta-
atom. To ensure the design convergence, the MSE metric, which
quantiûes the difference between the desired resonances (i.e., tar-
get response) and the ones obtained from FPM is implemented
as the feedback for updating the decoder weights while main-
taining its FPM counterparts ûxed.Within this conûguration, the
IDM is forced to select a single realization of meta-atoms capable
of generating the desired resonances while ignoring alternative
possibilities.
To evaluate the performance of the IDM, meta-atoms are de-

signed using the wavelength and resonances from the validation
dataset, and their resonances are predicted using FPM. Figure 3b
demonstrates the histogram of the RMSE between the predicted
and designed resonances using the TIDM andDenseNetmodels.
The average RMSE from TIDM is 6.5 × 10−3μm2, which is two
orders of magnitude lower than the average of the resonances,
while the DenseNet model yields an RMSE of 1.4 × 10−2μm2.
The superior performance of TIDM suggests that it contributes
to mitigating the uniqueness problem. It should be noted that in
the process of designing a meta-atom, it is inherently uncertain
whether meta-atoms with speciûed resonances exist or not.
Moreover, if such meta-atoms could be found, their shape char-
acteristics could diverge considerably from those of the training
samples, leading to an underwhelming performance of the IDM.

To address this issue, we tested the performance of the IDM by
providing it with input moments that signiûcantly deviate from
those in the training dataset, and it is found that the IDM tends
to generate results that align closely with the training dataset
examples within a speciûc conûdence range as it is shown in
Figure 3c (see Supporting Information for more details). Based
on the performance of IDM for the case of non-existence, we
developed an optimization-based inverse design procedure as
illustrated in Figure 3d. First, the IDM provides a meta-atom de-
sign given a desired set of multipolar moments. We then propose
a second inverse design step to further improve the IDM-based
meta-atom design, inspired by the so-called Neural-Adjoint
method from the deep learning literature.[62] Our proposed
approach relies upon using the FPM to estimate the moments
of the IDM-designed meta-atoms, and with this information,
we can evaluate the discrepancy between the moments of our
design and those that we ultimately desire. We can quantify
this discrepancy using a loss function that takes the predicted
moments and the desired moments as input and returns a single
scalar value indicating the relative level of discrepancy between
the two (i.e., higher numbers mean greater discrepancy). As long
as the loss function is differentiable, it can be customized to pre-
cisely reüect the properties of the moments that we desire (e.g.,
acceptable loss functions include mean squared error, or mean
absolute error). The loss function and the FPN together create a
fully differentiable function that maps a given meta-atom design
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Figure 4. Engineering magnetic and super-scattering responses through IDM. The scattering spectra of the designed meta-atoms for supporting a) MD
and c) MOwith the contribution of 61% and 50% of the total response at the operating wavelengths of ÿMD = 780 and ÿMO = 500 nm, respectively. The
3D near-ûeld distribution of the representative examples supporting b) MD and d) MO resonant modes, with black arrows representing the electric ûeld.
e) The scattering spectra of the third meta-atom, designed to support a super-scattering state at ÿSS = 633 nm. A ûve-fold enhancement of scattering,
compared to the single-channel limit (

ÿTotal
ÿmax
ED

≈ 5) can be observed at the designed wavelength. f) The amplitude of the electric ûeld within the super-

scatterer at ÿSS = 633 nm and g) its corresponding intensity distribution in the background environment. The black arrows in panel (g) represent the
relative Poynting vectors, which tend to scatter in the forward direction. h) The far-ûeld radiation pattern of the super-scatterer at ÿSS. The designed
meta-atom signiûcantly scatters in the direction of the incident beam with a maximal directivity of ≈9 dB.

to its loss, and therefore we can compute the derivative of the loss
with respect to the meta-atom design and use gradient descent
to iteratively adjust the meta-atom design to minimize our loss,
and thereby improve the quality of our meta-atom design. We
demonstrated the inverse design procedure using the following
examples: we engineered meta-atoms with i) dominant strong
magnetic multipolar responses and ii) super-scattering.

1.3. Magnetic Octupolar Response

The realization of efficient optical magnetism using nonmag-
netic nanostructures is of interest for many potential ap-
plications such as Fano resonances,[63–65] enhanced optical
nonlinearity,[66] directional scattering of light,[67–70] and Purcell
factor enhancements[71] to name a few. Therefore, next, we show
examples of meta-atoms with the dominant contributions of
magnetic resonances such as MD, MQ, and/or MO relative
to other resonant modes. Although to date, various methods
have been proposed to attain this particular regime of light-
matter interaction, these approaches typically involve constraints
in terms of geometry, such as core–shell structures,[72] or de-
pend on the speciûc excitation of nonradiating states, such as
optical anapolis.[73] Here we demonstrate the capability of our
IDM to predict and design two different meta-atoms support-
ing magnetic responses (MD and MO) at two distinct operating
wavelengths. To maximize the dipole and octupole magnetic re-
sponses, the loss functions for each of the representing examples
are set to be LMD = −ÿMD ∕ÿTot and LMO = −ÿMO ∕ÿTot, wherein
ÿÿ denote the scattering cross-section of a particular resonant

mode of ÿ, being MD, MO or total in this case. These loss func-
tions are subsequently employed to iteratively update the reso-
nant characteristics within the input layer (i.e., the meta-atom
design) until they converge to a minimum value. Once this con-
vergence is achieved, the design of the meta-atom is extracted
from the optimized parameters. Using this method, we designed
a meta-atom with the MD resonance contribution of ≈61% of
the total response at an operating wavelength ÿMD = 780 nm
as shown in Figure 4a. We note that at the corresponding wave-
length of ÿMD, the contribution of MD is almost two times higher
than that of the ED moment, i.e., ÿMD∕ÿED ≈ 2, in a relatively
broad bandwidth of ≈ Δ193 m. In the second example, we de-
signed a meta-atom supporting MOmoment contributing ≈50%
of the total scattering cross-sections at ÿMO = 500 nm, as shown
in Figure 4c (see Supporting Information for more details on the
optical response of the MOmeta-atom in the region of 450 nm <

ÿ < 550 nm). We note that to the best of our knowledge, achiev-
ing such a high degree of magnetic contribution, particularly
for higher-order moments such as MO, has not been previously
demonstrated within an isolated scatterer. In addition to the scat-
tering cross-section spectra, Figure 4b,d show the ûeld distribu-
tion within the meta-atoms at their respective MD and MO reso-
nant modes’ operating wavelengths, respectively.

1.4. Super-Scattering Optical Response

Achieving enhanced wave scattering from subwavelength par-
ticles is of utmost importance in various applications, includ-
ing sensors, miniaturized antennas, and energy harvesting
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devices.[71–76] However, the design of such scatterers is challeng-
ing owing to the inherent limitation known as the single-channel
limit that establishes an upper boundary for the scattering cross-
section of such meta-atoms which is bounded to (2l + 1)ÿ2∕2ÿ,
wherein l represents the order of the multipole and can only
be achieved under resonance conditions for a speciûc scatter-
ing mode or channel.[64,80,81] However, if multiple modes reso-
nantly scatter at a particular frequency, this limit can be over-
come resulting in the so-called super-scattering state. As a re-
sult, in the super-scattering regime, the total scattering cross-
section surpasses the given single-channel limit of an electric

dipole (l = 1) such that
ÿTot

ÿmax
ED

=
2ÿ ÿTotal

3ÿ2
> 1.[71–79] Although the ini-

tial proposal for achieving a state of super-scattering concentrated
on cylindrical structures comprising multiple plasmonic and di-
electric layers,[75] the experimental results revealed that the mea-
sured enhancement in wave scattering was ≈50% less than pre-
dicted (from eight times enhancement to four times) or, in some
cases, even nonexistent,[82] which was attributed to the losses in
the plasmonicmaterials. A similar phenomenon was observed in
core–shell plasmonic nanowires, where the scattering cross sec-
tion slightly exceeded the single-channel limit in the presence
of material losses[82] and both in the terahertz and microwave
frequency regimes.[83,84] To minimize the effect of losses, we em-
ploy our developed IDM to design an all-dielectricmeta-atom that
supports a state of super-scattering. Remarkably, our proposed
structure surpasses the previously reported enhancement values
while maintaining a rather simple design as compared to the
multilayered structures or the utilization of metasurfaces around
the meta-atom.[85] In contrast to previous studies that aimed to
spectrally align the peaks of contributing moments at a single
frequency, our approach focuses on directly maximizing the to-
tal scattering cross-section (i.e., ÿTot) offering several advantages.
First, it incorporates all potential contributions up to theMOmo-
ment, allowing for a detailed analysis of various scattering re-
sponses. Additionally, it broadens the design space since themax-
imum total scattering cross-section does not necessarily corre-
spond to the case of all peaks aligned at a single frequency (which
is a difficult or sometimes not feasible condition to achieve). To
this end, we deûned the corresponding loss function to be LSS =
−ÿTot, which is used to update the resonant characteristics within
the input layer of theMLmodel until the ûnal design of themeta-
atom with the optimized parameters is found. The optimized ge-
ometry shown in the inset of Figure 4e possesses a total scattering
cross-section of ÿTot = 0.94 ÿm2 (0.945 ÿm2 predicted by FPM) at
the operating wavelength of ÿSS = 633 nm. According to the ob-
tained result, such a meta-atom operates in the super-scattering
regime with the total enhancement of

ÿTotal

ÿmax
ED

≈ 5, which to the best

of our knowledge is the highest reported value calculated within a
simple all-dielectric platform that is not reliant on the alignment
of peaks from individual contributing moments, but rather on
their collective overlap as shown in Figure 4e. This signiûcant im-
provement in scattering arises from themaximization of the total
scattering cross-section, which considers the overall contribution
of each moment, rather than focusing solely on individual mo-
ments. Figure 4f,g show the near-ûeld and intensity distributions
at the corresponding wavelength of ÿSS within themeta-atom and
its background environment, respectively. The directional scatter-
ing behavior of the designed meta-atom is evident from the com-

ponents of the relative Poynting vector in panel 4(g), indicating
that the meta-atom preferably scatters light in the forward direc-
tion, while the backscattering is minimized. This unidirectional
scattering behavior is also reüected in the meta-atoms radiation
pattern, which exhibits a high directivity, as shown in Figure 4h.
The directivity of the meta-atoms has been calculated using D =

4ÿ U(ÿ,ÿ)

∫ 2ÿ
0 ∫ ÿ

0 U(ÿ,ÿ) sin(ÿ)dÿdÿ
, wherein U(ÿ,ÿ) represent the radiation in-

tensity, while ÿ and ÿ denote the elevation and azimuthal an-
gles, respectively.[83,86]Wenote that while thismeta-atom demon-
strated the highest scattering at the stated wavelength within
our dataset, we observed other meta-atoms with superior en-
hancements at different wavelengths. However, given the sig-
niûcance of the operating wavelength in design considerations,
direct comparisons with meta-atoms optimized for other wave-
lengths would be inappropriate. In addition, to enhance scatter-
ing further, one potential strategy involves reûning our training
dataset to include meta-atoms supporting higher multipolar re-
sponses. As can be seen from Figure 4e, the optical response
of the current meta-atom lacks dominant MO and EO resonant
modes, which subsequently decreases the value of the total scat-
tering cross-section as well as the total enhancement compared to
the single channel limit. The other approach would be to include
more conditions in the input such that the highest scattering re-
sponse comes together with the spectral overlap of the resonant
peaks rather than the mere contribution of each moment.

1.5. E-Field Prediction Model

While the FPM and IDM have been valuable in designing meta-
atoms for/from far-ûeld scattering spectra, the complete descrip-
tion of meta-atom scattering behavior would also beneût from
understanding the electric ûeld distribution within meta-atoms
as it directly inüuences their scattering characteristics and is a
complement to multipolar moments for applications wherein
spatial overlap integral of the modes are crucial such as in non-
linear photonics.[87] In nanostructured resonant systems, the ef-
ûciency of a particular nonlinear process, such as second or third
harmonic generation, depends on the spatial ûeld overlap be-
tween the fundamental wavelength ûeld and the harmonic ûeld.
Hence, optimizing the meta-atom shape to maximize such an
overlap at the corresponding wavelengths is essential for enhanc-
ing the efficiency of the desired nonlinear process. To mitigate
the computational burden associated with direct FEM-based nu-
merical simulations of the electric ûeld distribution, we devel-
oped a 3D electric ûeld prediction model (EPM) capable of pre-
dicting the electric ûeld within the given meta-atoms as shown
in Figure 5a. In particular, the implemented model employs a
3D DenseNet architecture that takes the shape of the meta-atom
and compresses it into reduced dimensions using six DCBs. The
condensed information and the desired operating wavelength are
then passed through three dense layers and six up-conversion
blocks (UCBs) to accurately predict the electric ûelds within the
given meta-atom. More speciûcally, the output layer consists of
six channels, each corresponding to the real and imaginary parts
of the electric ûeld components or equivalently the electric ûeld
amplitude in each plane.
To quantify how far the predicted values of EPM are from

the ones directly calculated with the COMSOL simulations, we
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Figure 5. Electric ûeld prediction (EPM) model for the E-ûeld prediction. a) The schematic of the EPM for predicting the E-ûeld distribution of the given
meta-atom. The shape information is compressed into lower dimensions using multiple DCBs. The condensed information and the corresponding
wavelength are then passed through three dense layers and multiple UCBs to predict the electric ûelds within the given meta-atom. b) The percentage of
the total training dataset as a function of the calculated RMSE of the developed EPM. With only 13% of the dataset falling beyond the RMSE of 10% and
an average RMSE of 7%, the developed EPM accurately predicts ûeld distribution within the meta-atoms. c) The output of the EPM (top row) and direct
simulations (bottom row) for the presented case of super-scatterer in the (x-z), (y-x), and (z-y) planes at the operating wavelength of ÿSS = 633 nm. The
same color bar range is utilized for both cases to ensure consistent visualization and comparison between the two methods. d) A comparison between
the 3D near-ûeld distributions of another representative example obtained from the EPM and direct simulations. The arrows represent the electric ûeld.

used the RMSE metric, as is shown in Figure 5b. In the depicted
histogram plot, the x-axis represents the value of the RMSE,
whereas the y-axis denotes the percentage of the whole dataset
that lies within the corresponding RMSE. As can be seen from
this panel, the total average error of the whole training dataset is
≈7%, while the total percentage of the dataset with RMSE above
10% is less than 13%, which indicates a good accuracy of the
employed electric ûeld prediction model. To further validate the
developed EPM, we input the meta-atom geometry (Figure 4e)
to our model and calculate the electric ûeld amplitude in three
distinct planes, namely (x-z), (y-x), and (z-y), at the operating
wavelength of ÿSS = 633 nm, as shown in Figure 5c and com-
pare the results with those obtained from direct numerical sim-
ulations (bottom row). As can be seen, the electric ûeld distri-
butions obtained from the EPM closely match the correspond-
ing distributions from the direct simulations. We also tested our
model on another meta-atom with a distinct geometry, shown
in Figure 5d. Here, we compared the 3D electric ûeld distribu-
tions obtained from direct simulations (left side of the panel)
with those predicted by the EPM (right part of the panel). Since
the results of these two approaches are in excellent agreement,
while the EPM is much faster as compared to the direct numer-
ical simulations, we conclude that the EPM might be used as a

viable alternative to direct numerical simulations to designmeta-
atoms with desired ûeld distribution. Additionally, the compo-
nents of the electric ûeld within the meta-atom obtained from
the EPM facilitate a comprehensive analysis of the ûeld distri-
bution within the irregularly shaped meta-atoms (see Movies S1
and S2, Supporting Information for additional time-dependent
visualizations).

2. Discussion

We have developed ML-based tools to design dielectric meta-
atoms with targeted multipolar moments. By employing the
FPM, IDM, and EPM, we achieved accurate prediction of
the multipolar moment, retrieval of the meta-atom shapes
from the speciûed magnitudes of the multipolar moments,
and estimation of the electric ûeld distributions in irregu-
larly shaped meta-atoms, respectively. Speciûcally, the FPM
was implemented to provide accurate and efficient predic-
tions of the scattering response for meta-atoms of arbitrary
shapes, eliminating the need for time-consuming numeri-
cal simulations, with high prediction accuracy as indicated
by the RMSE value of 6.5 × 10−4μm2. Moreover, the IDM
was employed to retrieve three representative meta-atom
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Table 1. A comparative analysis of the presented study against existing literature.

Reference Materials Structure Physics FPM IDM EPM Model

[43–46] Plasmonic-Dielectric Core–Shell Only ÿTot ⨯ ✓ ⨯ [43] CNN,[44] DNN,[45] MDAN, [46]TCNN

[48] Plasmonic-Dielectric Multilayer Cylinder Up to ÿMQ ⨯ ✓ ⨯ Bayesian Optimization

[41] Plasmonic and Dielectric Arbitrary Shape Only ÿTot ⨯ ⨯ ✓ ResNet

[42] Dielectric Sphere Only ÿTot ✓ ✓ ⨯ Hybrid*

[47] Plasmonic and Dielectric Cube Only ÿTot ✓ ⨯ ⨯ GPR

This work Dielectric Arbitrary Shape Up to ÿMO ✓ ✓ ✓ DenseNet & TIDM

CNN, Convolutional neural network; DNN, Deep neural network; MDAN, Modiûed denoising autoencoder network; TCNN, Two-channel neural networks; GPR, Gaussian

process regression ∗Hybrid approach combines ML and genetic algorithm for inverse modeling of a single sphere scattering.

shapes optimized to support dominant magnetic octupolar
response and achieve super-scattering states. We applied the
developed tools to design the meta-atoms with maximized
contributions of MD and MOmoments at two distinct operating
wavelengths, with their combined response reaching up to 61%
and 50% of the total scattering response, respectively. Addition-
ally, the designed super-scatterer demonstrated nearly a ûve-fold
enhancement of scattering beyond the single-channel limit.
The EPM was shown to accurately predict the ûeld distribution
within the given meta-atoms, allowing for the maximization of
spatial mode overlap integral, which is particularly relevant in
nonlinear optics.
We also note that the spectral position and type of the sup-

ported Mie resonance depend on three factors i) refractive in-
dex contrast between the meta-atom and environment, ii) geo-
metrical shape and dimensions of the scatterer, iii) the incident
wave’s structural features (regular plane waves or structured light
beams). Each of these parameters can affect the optical response
of the meta-atom signiûcantly and thus needs to be chosen del-
icately to achieve the desired response. In our study, the height
of the meta-atoms that critically inüuence the spectral character-
istics and the nature of the Mie resonances was held constant at
320 nm. This deliberate choice was made to ensure a focused in-
vestigation of the inüuence of other geometrical parameters and
tomaintain amanageable complexity within our training dataset.
Given the ûxed height parameter, the training dataset was explic-
itly designed to capture a wide range of responses up to magnetic
octupole based on only one mid-index lossless material (TiO2)
and the variations in geometry. Consequently, in the inverse de-
sign methodology applied, the suggested meta-atom conûgura-
tion adheres to this predeûned height and material constraints
when soliciting a design for a speciûc optical response. We ac-
knowledge that altering the height and refractive index signiû-
cantly from the current values could lead to discrepancies in the
predicted optical response compared to actual behavior. Minor
parameter adjustments might only result in slight spectral shifts
while preserving the overall response characteristics. However,
substantial changes in height or refractive index would necessi-
tate a reevaluation of themodel’s predictions, as the fundamental
assumptions on which the model was trained would no longer
apply. It should be noted that the perceived limitations regarding
the applicability of the model to such cases stem not from its in-
herent design but rather from the underlying physics governing
light-matter interactions. In this perspective, one viable approach
to address potential discrepancies and enhance the model’s gen-
erality is expanding the training dataset to include the effects of

varying heights and different materials on the Mie resonances.
By incorporating data across a spectrum of heights and materi-
als, the model could be trained to consider these parameters as
additional parameters. This enhancement would enable the in-
verse design model to not only suggest the optimal geometrical
shape for a desired optical response but also recommend the ap-
propriate height and material for the meta-atoms. Such an exten-
sion would signiûcantly improve the model’s applicability to a
broader range of meta-atom designs, including those with varied
thicknesses or composed of high-index materials.
Table 1 provides a comprehensive comparison between the

method proposed in this paper and other existing works, taking
into consideration various aspects such as materials, shapes, the
underlying physics involved in light-matter interactions, and the
speciûc implemented neural networks. The presence of a cross
symbol in Table 1 indicates the absence of a speciûc response
or characteristic in the corresponding work. This comparison
serves to highlight the distinct features and advantages of the
method presented in this study as compared to other approaches
in the ûeld. The ML-based models developed and presented here
rely on actual physical characteristics of the nanoscale resonators
(meta-atoms)—their modes (multipole moments), thus offering
not only a versatile tool for nanophotonic design but also an ef-
ûcient technique to study the underlying physics of light-matter
interactions in complex-shaped resonators in linear and nonlin-
ear optical regimes.
We note that this work primarily explores the application of

ML in Mie-Tronics, focusing on how it can be utilized to cus-
tomize light-matter interactions at the nanoscale. In this perspec-
tive, our focus was not on developing novel ML methodologies,
which, while potentially beneûcial, was beyond the scope of our
main objectives. Indeed, our primary interest was in assessing
and applying existing neural network models to investigate the
physics and structure of these interactions. Finally, it should be
remarked that the proposed techniques can be easily applied to
a wide range of nanophotonic devices and system applications,
including metasurfaces and meta-waveguides.

3. Experimental Section

Numerical Simulations: The numerical simulations were carried out
using the ûnite-element method (FEM) implemented in the commercial
software COMSOL Multiphysics. In particular, the Wave Optics Module
was utilized to solve Maxwell’s equations in the frequency domain to-
gether with proper boundary conditions. Here, a spherical domain ûlled
with air and a radius of 4ÿ was used as the background medium, while
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perfectly matched layers of thickness 0.6ÿ were positioned outside of the
background medium to act as absorbers and avoid back-scattering. The
tetrahedral mesh was also chosen to ensure the accuracy of the results
and allow numerical convergence. Themeta-atoms were under plane wave
excitation propagating along the x-axis with it was electric ûeld pointing to-
ward the y-axis.

Multipole Decomposition: According to the multipole expansion the-
ory used to describe light interactions with subwavelength meta-atoms,
the scattered ûeld in the far ûeld could be expressed as the su-
perposition of various multipoles (up to the electric octupole term)
as[9–13]

Esct (n) =
k2
0
exp (ik0r)

4ÿÿ0r

(
[n × [D × n]] +

1

c
[m × n] +

ik0
6

[
n ×

[
n × Q̂n

]]

+
ik0
2c

[
n × M̂n

]
+

k2
0

6

[
n ×

[
n × Ô(e) (nn)

]]

+
k2
0

6c

[
n ×

[
n × Ô(m) (nn)

]])
(1)

where D corresponds to the exact total electric dipole (TED), m is the ex-

act magnetic dipole (MD) moment, and Q̂, Ô(e), M̂, and Ô(m) represent
the electric quadrupole (EQ), electric octupole (EO), magnetic quadrupole
(MQ), and magnetic octupole (MO) tensors, respectively; n = r∕r is the
unit vector directed from the meta-atom’s center toward an observation
point, and c and k0 are the speed of light and wavenumber in a vacuum.
Using these notations, the scattering cross-section, can be written as fol-
lows

ÿSct ≈
k4
0

12ÿÿ2
0
ÿ0I0

|D|2 +
k4
0
ÿ0

12ÿÿ0ÿ0I0
|m|2 +

k6
0

1440ÿÿ2
0
ÿ0I0

∑

x1 ,x2

|||Qx1x2

|||
2

+
k6
0
ÿ0

160ÿÿ0ÿ0I0

∑

x1 ,x2

|||Mx1x2

|||
2
+

k8
0

3780ÿÿ2
0
ÿ0I0

∑

x1 ,x2 ,x3

|||O
(e)
x1x2x3

|||
2

+
k8
0
ÿ0

3780ÿÿ0ÿ0I0

∑

x1 ,x2 ,x3

|||O
(m)
x1x2x3

|||
2

(2)

where I0 corresponds to the maximum beam intensity in a focal plane, ÿ0,
ÿ0, and μ0 are the impedance, permittivity, and permeability of free space,
respectively, and x1, x2, and x3 represent the different components of each
tensor. Each of the moments in Equation (2) can be expressed in terms of
the induced current within the meta-atom (J = ÿP∕ÿt) as

D =
i

ÿ ∫ j0
(
k0r

′
)
J
(
r′
)
dr′ +

ik2
d

2ÿ ∫
j2 (kdr

′)

(kdr
′)2

[
3
(
r′ ⋅ J

)
r′ − r

′2J
]
dr′

(3)

m =
3

2 ∫
j1 (kdr

′)

kdr
′

[
r′ × J

]
dr′ (4)

M̂ = 5∫
j2 (kdr

′)

(kdr
′)2

([
r′ × J

]
⊗ r′ + r′ ⊗

[
r′ × J

])
dr′ (5)

Q̂ =
3i

ÿ ∫
j1 (kdr

′)

kdr
′

[
3
(
r′ ⊗ J + J⊗ r′

)
− 2

(
r′ ⋅ J

) =

I

]
dr′

+
i6k2

d

ÿ ∫
j3 (kdr

′)

(kdr
′)3

[
5
(
r′ ⋅ J

)
r′ ⊗ r′ − r

′2
(
J⊗ r′ + r′ ⊗ J

)

−
(
J ⋅ r′

)
r
′2

=

I

]
dr′ (6)

Ô(e) =
15i

ÿ ∫
j2 (kdr

′)

(kdr
′)2

(
J⊗ r′ ⊗ r′ + r′ ⊗ J⊗ r′ + r′ ⊗ r′ ⊗ J − Â

)
dr′

(7)

Ô(m) =
105

4 ∫
j3 (kdr

′)

(kdr
′)3

([
r′ × J

]
⊗ r′ ⊗ r′ + r′ ⊗

[
r′ × J

]

⊗ r′ + r′ ⊗ r′ ⊗
[
r′ × J

]
− B̂

)
dr′ (8)

where jl(x) is the lth order spherical Bessel function, kd is the wave number

in the surroundingmedium,
=

I is the 3 × 3 unit tensor, and the operators of
⋅, ×, and⊗ represent the scalar, vector, and tensor products, respectively.
It should be noted that Â and B̂ are auxiliary tensors whose components
are obtained according to Ax1x2 x3

= ÿx1x2 Vx3 + ÿx1x3Vx2 + ÿx2x3Vx1 , and

Bx1x2 x3
= ÿx1x2 V′

x3
+ ÿx1x3V

′
x2
+ ÿx2x3V

′
x1
which x1 = (x, y, z), x2 = (x, y, z),

x3 = (x, y, z) and ÿ is the Dirac delta while V = 0.2[2(r′ ⋅ J)⊗ r′ + r′2 J]

and V′ = 0.2[r′ × J]r′2.
Machine Learning (ML)Models: A forward predictionmodel (FPM) us-

ing Dense Convolutional Network (DenseNet) architecture was developed
to predict the multipolar resonances of speciûc meta-atoms as functions
of wavelength.[59] In particular, the meta-atom shapes were input into six
down-conversion dense blocks before reaching the bottleneck layer. The
FPM output comprises multipolar resonance arrays connected to the bot-
tleneck layer through three consecutive fully connected layers. The advan-
tage of employing DenseNet architecture lies in the fact that each layer
within the model could receive inputs from all previous layers while for-
warding it was feature maps to all subsequent layers. This ML process
takes mere seconds, offering a signiûcant speed advantage compared to
FEM simulations. It also notes that the performance of the meta-atom de-
sign using IDM was closely tied to the variety of examples implemented in
the training dataset. In particular, during the training phase, the range of
the size and height of the scatterers was constrained, focusing on studying
the effect of different geometric cross-sections on the induced multipolar
moments within the meta-atoms. Within this framework, it was possible
that the optimal meta-atom design for the targeted multipolar resonances
might be achieved at sizes or heights beyond the limited range used, a
scenario the current IDM was not equipped to handle directly. Neverthe-
less, by incorporating a broader range ofmeta-atom examples with diverse
shapes and sizes, the training dataset could be enlarged and enhance the
performance of the implemented ML models.
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