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Abstract

Before deploying a black-box model in high-stakes problems, it is important to evaluate
the model’s performance on sensitive subpopulations. For example, in a recidivism predic-
tion task, we may wish to identify demographic groups for which our prediction model has
unacceptably high false positive rates or certify that no such groups exist. In this paper,
we frame this task, often referred to as “fairness auditing,” in terms of multiple hypothesis
testing. We show how the bootstrap can be used to simultaneously bound performance
disparities over a collection of groups with statistical guarantees. Our methods can be
used to flag subpopulations a↵ected by model underperformance, and certify subpopu-
lations for which the model performs adequately. Crucially, our audit is model-agnostic
and applicable to nearly any performance metric or group fairness criterion. Our methods
also accommodate extremely rich—even infinite—collections of subpopulations. Further,
we generalize beyond subpopulations by showing how to assess performance over certain
distribution shifts. We test the proposed methods on benchmark datasets in predictive
inference and algorithmic fairness and find that our audits can provide interpretable and
trustworthy guarantees.

Keywords: algorithmic fairness, bootstrap, simultaneous inference, multiple testing,
reproducing kernel Hilbert space

1. Introduction

While black-box models may demonstrate impressive accuracy on average, their perfor-
mance can still vary substantially between subpopulations. For example, an algorithm de-
ployed for recidivism prediction exhibits significantly higher false positive rates for African-
American relative to Caucasian parolees (Angwin et al., 2016). Similar performance dis-
parities have been documented in other high-stakes applications such as facial recognition
and hiring (Buolamwini and Gebru, 2018; Dastin, 2018).

Motivated by this concern, numerous stakeholders have solicited methods, often referred
to as “fairness audits,” that can discover and quantify such disparities (Brundage et al.,
2020; Schaake and Clark, 2022). Despite substantial prior work in this area (Morina et al.,
2019; Xue et al., 2020; DiCiccio et al., 2020; Tramer et al., 2017; Taskesen et al., 2021; Si
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et al., 2021; Yan and Zhang, 2022; von Zahn et al., 2023), the definition of fairness auditing
remains fraught. Fairness auditing is often framed as a single statistical test that rejects in
the case of any performance disparity over a limited set of sensitive subpopulations (DiCiccio
et al., 2020; Tramer et al., 2017; Si et al., 2021; Morina et al., 2019; Taskesen et al., 2021; Xue
et al., 2020; Roy and Mohapatra, 2023). While follow-up investigation to localize disparities
is desired (and often performed), this task raises new challenges. For example, empirical
parity across a limited collection of subgroups does not rule out substantial disparities
among smaller subgroups (Kearns et al., 2018). Further, if we consider multiple performance
metrics over a rich collection of subpopulations, discovering some disparity between two
subgroups is hardly surprising. Unfortunately, existing methods for identifying localized
(dis-)parities are accompanied by few statistical guarantees (von Zahn et al., 2023; Yan and
Zhang, 2022; Schaake and Clark, 2022).

We develop a family of statistical methods that rigorously achieve two goals: (1) the
“certification” of subpopulations for which the model performs adequately, and (2) the
“flagging” of subpopulations that su↵er harmful performance disparities. Formally, we
approach these two tasks by allowing the auditor to define a “disparity” by comparing
some measure of model performance on a subpopulation to a potentially data-dependent
target. A certification audit then allows the auditor to identify subpopulations for which
this disparity is acceptably low, while a flagging audit discovers subpopulations for which
this disparity exceeds some prespecified threshold. Our proposed methods only require
access to a so-called “audit trail,” i.e., model predictions on a data set held out from
training (Brundage et al., 2020), but not white-box access to the model itself. A Python
package, fairaudit, implementing these methods is available to install from PyPI and can be
downloaded at github.com/jjcherian/fairaudit.

1.1 Outline

The paper is organized as follows. We first describe the problem setting and associated
notation in Section 2; we subsequently preview two applications of our methodology. Each
section thereafter is devoted to an auditing method. In Section 3, we describe our procedures
for certifying performance disparities over a collection of subpopulations. In Section 4, we
show how to flag performance disparities. Lastly, in Section 5, we show how to extend our
methodology from subpopulations to collections of distribution shifts.

2. Framework and preliminaries

2.1 Definitions and notation

We say that some prediction rule f exhibits a performance disparity on a subpopulation
G if the mean of some metric L(f(X), Y ), conditional on (X,Y ) belonging to G, di↵ers
substantially from some target ✓P 2 R.

Our statistical audits proceed by testing and/or constructing bounds on the group-wise
performance disparity defined below.
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Definition 1 We define a group-wise performance disparity by

✏(G)|{z}
disparity

:= EP [L(f(X), Y ) | (X,Y ) 2 G]| {z }
group-specific

� ✓P|{z}
target

. (1)

Subgroup membership may be defined by a subset of the covariates (e.g., certain sensitive
attributes) that the prediction rule does not directly use. For notational simplicity, however,
we will refer to the same covariate vector X when defining both the prediction rule and
group membership.

Nearly every group fairness definition can be expressed in terms of ✏(G). For example,
when auditing for disparities in the positive classification rate of a binary predictor f(x),
we instantiate the flagging method by testing the null hypothesis H0(G) : ✏(G)  0.05 with

L(f(x), y) = 1 {f(x) = 1} and ✓P = P(f(X) = 1).

See Appendix A for additional examples.
To evaluate these disparities, the audit we devise requires access only to a holdout data

set D = {Xi, Yi}ni=1
iid
⇠ P ; this is sometimes called an “audit trail” (Brundage et al., 2020).

If ✓P is not known a-priori, we will assume that it is possible to use this holdout set
to construct a consistent estimator ✓̂. We omit the argument specifying the data set used
to construct ✓̂ when it is clear from context. In the main text, we will make the following
technical assumption regarding the estimator ✓̂.

Assumption 1 The estimator of the target in Definition 1 is asymptotically linear, i.e.,

p
n(✓̂(D)� ✓P ) =

1
p
n

nX

i=1

 (Xi, Yi) + oP (1).

Remark 2 Assumption 1 is satisfied by any estimator expressible as a di↵erentiable func-
tion of averages, i.e., ✓̂(D) := g(

P
i
h(xi, yi)/n) for some di↵erentiable function g and known

features h : X ⇥ Y ! Rk. In this paper, we most often compare group-wise performance to
the population average ✓P = EP [L(f(X), Y )], and consequently, ✓̂(D) = 1

n

P
n

i=1 L(f(xi), yi)
trivially satisfies this assumption.

Remark 3 Asymptotic linearity is a canonical assumption for Gaussian approximation
methods in statistics. It is also satisfied by any M or Z-estimator, e.g., if ✓̂ is the empirical
risk minimizer for a smooth convex loss (van der Vaart, 2000; Lehmann et al., 2005).

We define the following terms for notational convenience. We replace (X,Y ) 2 G with
G whenever the meaning is clear. For example, we let Pn(G) := 1

n

P
n

i=1 1 {(xi, yi) 2 G}

denote the empirical probability of (X,Y ) belonging to G in the holdout set, and P(G) :=
P((X,Y ) 2 G) denote the population probability of (X,Y ) belonging to G. To further
simplify our notation, we will also replace L(f(X), Y ) by the abbreviation L. We also
employ the shorthand |G| to denote the cardinality of G in the holdout set, i.e., |G| :=
n ·Pn(G). We thus define the plug-in estimator of the disparity, ✏̂(G) := |G|

�1P
i2G

Li� ✓̂.
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2.2 Preview of contributions

To motivate and summarize the main contributions of our paper, we preview two applica-
tions. We consider two concrete examples of performance metrics and subpopulations with
which an auditor may test for either tolerable or excessive disparity compared to a target
threshold. These examples illustrate the breadth of problems to which fairness auditing
may be applicable. In our first example, we show how a certification audit provides practi-
cal guarantees on the performance of a popular predictive inference method. In our second
example, we audit for false positive rate disparities in the canonical COMPAS data set.

2.2.1 Certifying conditional coverage

Consider a training set {(Xi, Yi)}ni=1 and a test point (Xn+1, Yn+1) sampled i.i.d. from
some unknown distribution P . Using {Xi, Yi}ni=1 [ {Xn+1} as input, conformal prediction
produces a set-valued function, denoted by Ĉ(·), that satisfies the guarantee P(Yn+1 2

Ĉ(Xn+1)) � 1 � ↵ marginally over the randomness in the training and test points. This
marginal guarantee does not preclude loss of coverage, however, after we condition on Ĉ
and X 2 G. There may exist subsets G ✓ X such that P(Y 2 Ĉ(X) | Ĉ,X 2 G) ⌧ 1� ↵.
In sensitive applications, for example, this implies that a conformal prediction set can cover
the true label more than (1� ↵)-% of the time for some protected subgroups, while being
untrustworthy for others.

In the language of fairness auditing, the “performance disparity” under consideration
is the gap between the prediction set’s unknown group-conditional coverage and known
marginal coverage. More formally, we aim to certify conditional coverage over all sub-
intervals with endpoints in {0, 0.1, 0.2, . . . , 5} by constructing a lower confidence bound on
✏(G) with

L(Ĉ(x), y) = 1{y 2 Ĉ(x)} and ✓P = 0.9.

We re-visit the synthetic data experiment of Romano et al. (2019) and bound the size
of this disparity over this large collection of groups. Figure 1a plots the data set used in
this experiment and the prediction interval output by the conformalized quantile regression
(CQR) method. Then, for each sub-interval, our audit issues simultaneously valid lower
confidence bounds on the conditional coverage of CQR.

Since it is infeasible to display the 1,275 lower confidence bounds we output for all sub-
intervals, we summarize our results by plotting a lower bound on the conditional coverage
over all sub-intervals of a given width, i.e., minG:width(G)=w P(Y 2 Ĉ(X) | Ĉ,X 2 G).
Figure 1b plots this bound (solid line) as well as the observed conditional coverage (dashed
line), minG:width(G)=w P̂n(Y 2 Ĉ(X) | Ĉ,X 2 G). We define each point on the plotted bound
using the smallest lower confidence bound on ✏(G) over all subgroups of a particular width.
Since the group-wise confidence bounds issued by our audit are simultaneously valid, the
plotted curve is also simultaneously valid over all sub-interval widths with high probability.
For example, we can say with 95% confidence that no sub-interval of length 1 has conditional
coverage worse than 80.2%, and no sub-interval of length 2 has conditional coverage worse
than 83.0%. Crucially, our guarantee is exact: in large samples, the probability that any
lower bound is invalid converges to 5%.
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(a) (b)

Figure 1: In Figure 1a, we plot a 90% conformal prediction set constructed using a quantile
random forest on the synthetic dataset studied in (Romano et al., 2019). Figure 1b dis-
plays the prediction set’s conditional coverage over all sub-intervals of a given width. The
dashed line is the observed coverage, while the solid line plots the simultaneous lower bound
obtained via Algorithm 2 (↵ = 0.05, p⇤ = 0.01, w0 = 1).

In this example, the certification audit produces simultaneously valid lower bounds
over a particular finite collection of sub-intervals. If the auditor has a su�ciently large
computational budget, our method allows for richer collections of sub-intervals, up to and
including the collection of all sub-intervals. See Section 3 for a complete description of our
procedure for producing lower bounds.

2.2.2 Flagging false positive rate disparities

Consider a district court evaluating whether the COMPAS recidivism prediction algorithm
is biased. While the most notable previous work considers subpopulations defined by race
(Angwin et al., 2016), the court is likely to be interested in discrimination against any groups
formed by the intersections of legally protected attributes, e.g., age, gender, ethnicity. Over
this larger collection of subpopulations, identifying the existence of some disparity is no
longer of interest, but accurately localizing severe disparities is of great importance.

Following Angwin et al. (2016), we apply our auditing method to a data set obtained
by ProPublica in 2016 that includes COMPAS risk scores (f(X) 2 {low-risk, high-risk}),
defendant demographics (Xd), and true recidivism outcomes after two years (Y 2 {0, 1})
for n = 6781 individuals. In Figure 2, we shade in red the demographic groups flagged for
having disparate false positive rates, i.e., those G for which

P(f(X) = high-risk | Y = 0, Xd 2 G)� P(f(X) = high-risk | Y = 0) > 0.05.

We can place this task in our auditing framework by defining ✏(G) with

L(f(x), y) = 1 {f(x) = high-risk} and ✓P = P(f(X) = high-risk | Y = 0)
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Figure 2: For the COMPAS algorithm, we audited 58 subpopulations formed by intersec-
tions of race, gender, and age. Here we plot subgroups of the African-American subpopula-
tion. Boxes shaded in red denote groups flagged as having at least 5% higher-than-average
false positive rates.

for all intersectional subgroups with Y = 0. Each flag then corresponds to a rejection of
the null hypothesis H0(G) : ✏(G)  0.05.

To account for the inevitability of finding some false positive rate disparity when auditing
over many groups, our method issues a formal guarantee on the rate at which the issued
flags are invalid. Since falsely flagging a performance disparity is less consequential than
false certification of fairness, we provide a less conservative guarantee than the simultaneous
validity of the previous example. Instead, we provide an asymptotically valid upper bound
on the “false discovery rate,” i.e., the expected proportion of flags that are falsely issued.
For the plotted example, we apply the flagging method described in Section 4 to control
this proportion at 10%.

3. Certifying performance

3.1 Methods

3.1.1 Bound certification

We first consider the problem of certifying subpopulations by providing a simultaneously
valid confidence set for ✏(G). To simplify our exposition, we construct a simultaneously
valid lower bound on the group-wise disparity, i.e., we define ✏lb(G) such that

lim
n!1

P(✏lb(G)  ✏(G) for all G 2 G) = 1� ↵. (2)

Though it may seem counterintuitive to lower bound a performance disparity, recall the
conditional coverage example previewed in Section 2.2.1. Upper confidence bounds and
intervals for ✏(G) are obtained via a trivial modification described in Appendix B.3.

Naively, we might define ✏lb(G) using an upper bound on the maximum deviation be-
tween our performance disparity estimator and the true disparity, i.e., the (1� ↵)-quantile
of supG2G{✏̂(G) � ✏(G)}. Formally defining Quantile(↵;X) := inf{x : ↵  P(X  x)}, we
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could obtain a simultaneously valid lower bound on ✏(G) via

✏̂(G)�Quantile

✓
1� ↵; sup

G2G

{✏̂(G)� ✏(G)}

◆
. (3)

While it is straightforward to prove that (2) holds for the proposed bound, there are two
crucial problems. First, the quantile in (3) cannot be estimated accurately: ✏̂(G) diverges
for small groups, so when G is large, ✏̂(G) does not converge uniformly to ✏(G). As a
consequence, standard asymptotic methods (e.g., bootstrap) will fail. Second, even if we
could estimate this quantile, we would obtain a constant correction to the naive estimator
for all groups. Since any such correction must be large to achieve simultaneously validity
over small groups, this approach would lead to impractically conservative lower bounds.

To circumvent the first of these obstacles, we show that it is possible to consistently
estimate the distribution of

sup
G2G

{P(G) · Pn(G) · (✏̂(G)� ✏(G))}. (4)

Intuitively, multiplying the naive process by P(G)·Pn(G) stabilizes its value for small groups.
We then apply the bootstrap (Efron, 1979; Giné and Zinn, 1990) to estimate the (1 � ↵)-
quantile of this process. Rigorously establishing bootstrap consistency requires a technical
argument; see the proof of Theorem 4 for a detailed exposition.

Mimicking our initial approach, we use an estimate of the (1 � ↵)-quantile of (4) to
construct a simultaneously valid lower bound on the true disparity. For all G 2 G, we define
✏lb(G) such that Pn(G)2 · (✏̂(G) � ✏lb(G)) equals the (1 � ↵)-quantile of (4). Letting t⇤

denote the bootstrap estimate of this quantile, i.e., the output of Algorithm 1, we obtain a
simplified definition of ✏lb(G):

✏lb(G) := ✏̂(G)�
t⇤

Pn(G)2
. (5)

Given a valid estimate of t⇤, the simultaneous validity of ✏lb(G) is a straightforward impli-
cation of our definition:

lim
n!1

P(✏lb(G)  ✏(G) for all G 2 G) = lim
n!1

P(✏̂(G)� t⇤/Pn(G)2  ✏(G) for all G 2 G)

= lim
n!1

P
✓
sup
G2G

Pn(G)2 · (✏̂(G)� ✏(G))  t⇤
◆
.

The first equality follows from our definition of ✏lb(G), and the second follows from rear-
rangement. Replacing Pn(G) with P(G) (by Slutsky’s lemma) and applying the definition
of t⇤ then completes our argument for simultaneous validity:

lim
n!1

P
✓
sup
G2G

Pn(G)2 · (✏̂(G)� ✏(G))  t⇤
◆

= lim
n!1

P
✓
sup
G2G

P(G) · Pn(G) · (✏̂(G)� ✏(G))  t⇤
◆

= 1� ↵.
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Algorithm 1 Bootstrapping the lower confidence bound critical value

1: Input: Subpopulations G, holdout set D, level ↵, number of bootstrap samples B
2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: Define P⇤

b
(G) := 1

n

P
(x⇤

i ,y
⇤
i )2D

⇤
b
1 {(x⇤

i
, y⇤

i
) 2 G};

5: Define ✏⇤
b
(G) := 1

P⇤
b (G)·n

P
(x⇤

i ,y
⇤
i )2D

⇤
b
L⇤

i
� ✓̂(D⇤);

6: t(b) = maxG2G {Pn(G) · P⇤

b
(G) · (✏⇤

b
(G)� ✏̂(G))};

7: end for
8: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

Figure 3: We reproduce the plot from Figure 1b. Here the red curve denotes the lower
bound on conditional coverage obtained via (5). For smaller groups, it is substantially
looser than the blue curve, i.e., the bound in Figure 1b. The blue curve is obtained by
rescaling the bootstrap process using p⇤ = 0.01 and w0 = 1.

While this bound satisfies the validity condition given by (2), directly applying (5)
leads to practically unusable lower bounds on ✏(G) for small groups. This is caused by a
suboptimal dependence on group size in (5). Asymptotically, our bound converges to

✏lb(G) = ✏̂(G)� C0 ·

 s
1

|G| · Pn(G)3

!
,

where C0 is some group-independent constant. Even though the bound correction converges
to 0 at the expected 1/

p
|G| rate, the group-dependent factor of Pn(G)3 catastrophically

inflates our confidence set for even moderately sized groups. Figure 3 reproduces Figure 1b
using (5) and shows that this definition produces vacuous lower bounds for all but the
largest sub-intervals.

To motivate our revised approach, we observe that the classical Wald confidence bound
for ✏(G) has the following asymptotic behavior,

✏ideallb (G) = ✏̂(G)� C1 ·
�Gp
|G|

; (6)
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C1 is group-independent and �G denotes the asymptotic standard deviation of
p
|G|(✏̂(G)�

✏(G)). The behavior of the Wald confidence bound is advantageous in two ways. First, the
width of the confidence bound decays at the desired 1/

p
|G| rate with no additional size-

dependent factors. And second, it is sensitive to heteroskedasticity: the �G term accounts
for whether the estimated performance disparity is more variable in some groups compared
to others.

We can construct Wald-type bounds for all su�ciently large groups by rescaling the
bootstrapped process. To understand how to define this scaling factor, we first study how
rescaling the bootstrap process a↵ects the resulting confidence bound. Let s(G) and ŝ(G)
denote the population value and estimator of the scaling factor, respectively. Then, instead
of bootstrapping the (1� ↵)-quantile of supG2G{P(G) · Pn(G) · (✏̂(G)� ✏(G))}, we estimate
the (1� ↵)-quantile of

sup
G2G

⇢
1

s(G)
· P(G) · Pn(G) · (✏̂(G)� ✏(G))

�
. (7)

Letting t⇤ denote the (1� ↵)-quantile of (7), we mimic the previous derivation and obtain
a closed-form solution for ✏lb(G) in terms of ✏̂(G) and ŝ(G),

✏lb(G) := ✏̂(G)� t⇤ ·
ŝ(G)

Pn(G)2
. (8)

Since t⇤ = OP (1/
p
n), we can match the Wald-type bound in (6) by choosing ŝ(G) to

estimate P(G)3/2 · �G.
Naively rescaling the process reproduces the divergence for small groups problem we en-

countered in our first approach. In particular, bootstrap consistency requires {1/ŝ(G)}G2G

to be a uniformly consistent estimator of {1/s(G)}G2G . To this end, when Pn(G) is small,
we forgo estimating P(G)3/2 · �G exactly. Since we cannot consistently estimate the condi-
tional variance of L for arbitrarily small groups, we shrink our estimator towards a more
naive but consistently estimable quantity: the population variance of our performance met-

ric. Namely, as the group size goes to 0, we scale by the more naive estimator p3/2⇤ ·

q
dVar(L)

where dVar(L) denotes the sample variance.
To rigorously interpolate between these two group-size regimes, we set

ŝ(G) = max{Pn(G), p⇤}
3/2

·

✓
Pn(G)

Pn(G) + w0
· �̂G +

w0

Pn(G) + w0
·dVar(L)1/2

◆
, (9)

where w0 > 0 is a user-specified hyperparameter that controls the degree of shrinkage and
�̂G is any point-wise, but not necessarily uniformly, consistent estimator of �G. We define
such an estimator on Line 7 of Algorithm 2 by expanding the asymptotic variance of ✏̂(G)
and replacing each term in the expansion by its plug-in estimator. For a more formal
derivation, see the proof of Theorem 13 in the Appendix. By shrinking our estimate of
the asymptotic variance of ✏̂(G) to a group-independent quantity, ŝ(G) obtains the desired
uniform consistency. In Algorithm 2, we show how to compute the t⇤ used in (8).

In practice, we observe that estimating the asymptotic variance of ✏̂(G) can harm the
finite-sample validity of ✏lb(G). We thus recommend setting w0 = 1 unless adaptivity to

9
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Algorithm 2 Bootstrapping the (rescaled) lower confidence bound critical value

1: Input: Subpopulations G, holdout set D, level ↵, threshold p⇤, weight w0, number of
bootstrap samples B

2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: Define P⇤

b
(G) := 1

n

P
(x⇤

i ,y
⇤
i )2D

⇤
b
1 {(x⇤

i
, y⇤

i
) 2 G};

5: Define ✏⇤
b
(G) := 1

P⇤
b (G)·n

P
(x⇤

i ,y
⇤
i )2G

L⇤

i
� ✓̂(D⇤

b
);

6: end for
7: Define the asymptotic variance estimator by

�̂2G := dVar(L | G) + Pn(G)
⇣
dVar( )� 2 · dCov(L , | G)

⌘

wheredVar(·) and dCov(·) correspond to the sample (conditional) variance and covariance;
8: Define ŝ(G) by (9);
9: for b = 1, . . . , B do

10: t(b) = maxG2G{
1

ŝ(G) · Pn(G) · P⇤

b
(G) · (✏⇤

b
(G)� ✏̂(G))};

11: end for
12: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

the variance of ✏̂(G) is deemed critical. We also emphasize that our approach to rescaling
the process is only one heuristic for improving the adaptivity of the constructed confidence
bounds. Any uniformly consistent estimator ŝ(G) that is bounded away from 0 would
su�ce.

Using the output of Algorithm 2 in (8), we obtain more practical confidence bounds. We
produce the blue curve in Figure 3 using p⇤ = 0.01 and w0 = 1. There is no free lunch:
observe that the red curve (unscaled) yields a tighter lower confidence bound for the largest
sub-interval widths. Nevertheless, it is clear that the rescaled process produces a usable
lower bound over a much wider range of group sizes.

Theorem 4 states su�cient conditions for bootstrap consistency and, therefore, simul-
taneous validity of the lower bounds defined in (5) or (8).

Theorem 4 (Simultaneous validity) Assume that L is bounded and that L� ✓̂ is non-
constant over at least one non-empty group. Further assume that G has finite Vapnik-
Chernovenkis (VC) dimension. Then, for either definition presented, ✏lb(G) is an asymp-
totic (1 � ↵)-lower confidence bound for ✏(G) that is simultaneously valid for all G 2 G,
i.e.,

lim
n!1

P (✏lb(G)  ✏(G) for all G 2 G) = 1� ↵.

We make two remarks regarding our assumptions.

Remark 5 Our restriction that G has finite VC dimension is satisfied by most interpretable
collections of groups: intervals, rectangles, halfspaces, etc.

Remark 6 In typical fairness applications, L is {0, 1}-valued and satisfies the boundedness
assumption; for unbounded metrics, the auditor might truncate L or, if appropriate, assume
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compactness of the domain. Furthermore, if G is a finite collection, we may relax this
assumption to Var(L) < 1.

Even though Theorem 4 is an asymptotic result, a finite-sample approach, e.g., via
empirical process concentration, can only satisfy a conservative coverage guarantee. By
contrast, the simultaneous coverage of ✏lb(·) converges to exactly 1 � ↵ under any data-
generating distribution. Even at small sample sizes, we show in Section 3.2 that the gap
between nominal and realized coverage is minimal.

3.1.2 Boolean certification

Next, we consider issuing a Boolean certificate for G if ✏(G) lies above some pre-specified
tolerance ✏. The trivial extension of our methods to certifying ✏(G) < ✏ and |✏(G)| < ✏
is described in Appendix B.3. While this approach returns strictly less information to the
auditor compared to the confidence bound certificate, it o↵ers computational benefits and
can be more powerful in certain settings.

Formally, certifying ✏(G) > ✏ corresponds to testing the null hypothesis H̄0(G) : ✏(G) 
✏. We require that, in large samples, all issued certificates are simultaneously valid with
probability 1� ↵. Equivalently,

lim
n!1

P (there exists any falsely certified G 2 G)  ↵.

In the language of multiple testing, this desideratum is (asymptotic) strong family-wise
error rate (FWER) control.

To construct such a test, we show that the bootstrap can conservatively estimate the
(1 � ↵)-quantile of supG2G{Pn(G) · (✏̂(G) � ✏)}. Letting t⇤ denote the estimate output by
Algorithm 3, we certify that ✏(G) > ✏ if Pn(G) · (✏̂(G) � ✏) � t⇤. Simplifying, we reject the
null when

✏̂(G) � ✏+
t⇤

Pn(G)
. (10)

For example, if L is the coverage indicator, we certify G if the empirical conditional coverage
on G is su�ciently high.

Even though the scaling of the rejection threshold in (10) is sub-optimal for small groups,
correcting this would eliminate the singular advantage of the Boolean certification proce-
dure: e�cient optimization over certain infinite group collections, e.g., intervals, slabs.
Observe that

Pn(G) · (✏̂(G)� ✏) =
1

n

nX

i=1

(Li � ✓̂ � ✏)1 {(xi, yi) 2 G} ,

i.e., the process is linear in the group-indicator. Rescaling by ŝ(G) does away with this
linearity, and line 4 of Algorithm 3 then requires brute-force search over all G 2 G. For the
sake of completeness, we describe this rescaled variant of the Boolean certification procedure
in Algorithm 7.

Theorem 7 states that (10) produces valid certificates under the mild assumptions of
Theorem 4.
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Algorithm 3 Bootstrapping the Boolean certificate critical value

1: Input: Subpopulations G, disparity ✏, holdout set D, level ↵, number of bootstrap
samples B

2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: t(b) = maxG2G{P⇤

b
(G) · (✏⇤

b
(G)� ✏)� Pn(G) · (✏̂(G)� ✏)};

5: end for
6: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

Theorem 7 (FWER control for certification) Retain the assumptions of Theorem 4.
Then, the certificates issued by (10) satisfy

lim
n!1

P (there exists any falsely certified G 2 G)  ↵.

Our bootstrap procedure accounts for overlap between subpopulations and improves
upon more naive FWER-controlling procedures such as the Bonferroni test. However, the
asymptotic FWER is only exactly ↵ when ✏(G) = ✏ for all G. This compares unfavorably to
the simultaneous confidence set guarantee, which promises exact Type I error control under
any data-generating distribution. We compare and contrast the finite-sample validity of the
Boolean and confidence set-based certification methods in the sequel.

3.2 Empirical results

3.2.1 Synthetic validation

First, we verify that the (asymptotic) claims of Theorem 4 and Theorem 7 are accurate
in finite samples. We consider three synthetic data experiments; the results from each are
presented in Table 1.

In all of these experiments, we evaluate our method using 500 bootstrap samples; the
computational complexity of the resulting procedure is non-trivial. While our procedure
theoretically accommodates infinite collections of subpopulations, in practice, solving the
optimization problems in Algorithm 3 and Algorithm 6 for each bootstrap sample is tan-
tamount to solving a challenging 0-1 loss optimization problem hundreds of times. Even
though a few infinite collections of subgroups, e.g., intervals and rectangles, admit e�cient
algorithms for Boolean certification, the confidence bound certification method realistically
requires the auditor to limit their analysis to finite G. Nevertheless, we show that it is
possible to e�ciently audit over large finite collections by first discretizing the space over
which we define subpopulations. After this step, which still leads to |G| = 1275 for the ex-
periments considered in this subsection, running a certification audit at the largest sample
size considered (n = 1600) takes under 7 seconds on a 2020 MacBook Pro.

We initially consider a homoskedastic linear model. We sample (Xi, Yi) from

Xi

iid
⇠ Unif(0, 1), Yi

iid
⇠ N (�0Xi, 1). (11)

We then obtain f(x) = �̂x via ordinary least-squares on 1000 training points sampled from
this distribution. The performance metric of interest is squared-error loss, i.e., L(f(X), Y ) =
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(a) (b)

Figure 4: Figure 4a displays a linear model over 400 holdout points generated from (12).
Constructing a 90%-confidence bound for the expected MSE yields upper bounds of 0.5
(true MSE: 0.3) and 1.15 (true MSE: 0.80) for the green and red sub-intervals, respectively.
Figure 4b displays prediction intervals from a conformalized quantile random forest on
400 holdout points from the synthetic data-generating process in Romano et al. (2019).
Constructing a 90%-confidence bound for the conditional coverage yields lower bounds
of 81.1% (true coverage: 92.4%) and 80.1% (true coverage: 89.5%) for the two red sub-
intervals, respectively. These bounds are simultaneously valid over arbitrarily many such
queries.

(Y �f(X))2 and the target ✓P = 0. Using held-out data sets of varying size, we issue Boolean
certificates for sub-intervals G ✓ [0, 1] over which ✏(G) < 1.

In our second experiment, we validate our audit using a heteroskedastic linear model,

Xi

iid
⇠ Unif(0, 1), Yi

iid
⇠ N (�0Xi, Xi). (12)

The model f(X) and metric L(f(X), Y ) is obtained identically to the previous synthetic
experiment. We then issue Boolean certificates for sub-intervals G ✓ [0, 1] over which
✏(G) < ✏ for ✏ 2 {0.4, 0.5}. To simplify the verification of issued certificates, we consider
G with endpoints belonging to {0, 0.1, . . . , 1}. Figure 4a displays a trial experiment with
an holdout set of sample size 400. For this setting, we observe that the nominal error rate
overestimates the realized probability of false certification.

Last, we consider the synthetic dataset introduced by Romano et al. (2019) and displayed
in Figure 4b. Here, the conformalized quantile regression (CQR) is guaranteed to have 90%
marginal coverage, so we consider certifying sub-intervals for which the coverage exceeds
90%, e.g. ✓P = 0.9 and L = 1{Y 2 Ĉ(X)}.

Table 1 displays the FWER of the certification audit over 200 trials. We set the nominal
error rate to 0.1 and vary the sample size n over (100, 200, 400, 800, 1600). The results
corroborate the predictions made by our theory. For large n, the nominal FWER matches
or exceeds the realized level. When the null hypothesis does not hold at the boundary, i.e.,
✏(G) is not approximately equal to the threshold ✏, the nominal FWER can substantially
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Sample size (n)

100 200 400 800 1600

Model (11) (✏ = 1) FWER 0.145 0.145 0.17 0.125 0.095

Model (12) (✏ = 0.5)
FWER 0.105 0.105 0.1 0.075 0.065
Power 0.145 0.268 0.411 0.562 0.709

Model (12) (✏ = 0.4)
FWER 0.045 0.04 0.015 0.025 0.02
Power 0.036 0.079 0.21 0.375 0.57

CQR (✏ = 0.9)
FWER 0.081 0.034 0.019 0.012 0.003
Power 0.019 0.008 0.009 0.02 0.062

Table 1: FWER and power of certificates issued by Algorithm 3 with B = 500 and ↵ = 0.1.
All results are based on 200 trials. We see that, for large n, the simultaneous validity
guarantee holds.

overestimate the true level. Table 1 also displays the power, i.e., the proportion of sub-
intervals achieving the certification threshold that are actually certified by our method.

By contrast, recall that the confidence bound approach to certification guarantees (asymp-
totically) exact coverage under any data-generating distribution. To verify this claim, we
construct simultaneous 90% confidence bounds for each of the aforementioned synthetic
experiments.

Table 2 summarizes our results: we observe that Algorithm 1 and its rescaled variant
Algorithm 2 (p⇤ = 0.01, w0 = 1) obtain the nominal coverage in large samples. For a fixed
threshold ✏, we define the power of a confidence set as the proportion of sub-intervals with
true error rates below ✏ for which the confidence set excludes ✏. Note that while the unscaled
confidence bounds have low power, i.e., they are less likely to exclude the targeted error
level, rescaling largely mitigates this issue. Indeed, even though these confidence bounds
do not require a priori specification of a certification threshold, ✏, their power to certify
error rates below some fixed ✏ is only slightly inferior to the Boolean certificates’ in Table 1.
This performance is attributable to the exact Type I error control of the bound certification
method, as compared to the practically conservative error control of the Boolean certification
approach.

3.2.2 Certifying COMPAS

Next, we reconsider previous analyses of the COMPAS recidivism prediction instrument
(RPI) and show how our methods can be used to establish rigorous guarantees. The COM-
PAS algorithm assigns defendants risk scores ranging from 1 to 10 based on an estimated
likelihood of re-o↵ending. Prior work showed that African-American defendants are more
likely to be mis-classified as high-risk when compared to Caucasian defendants (Angwin
et al., 2016). In response to this finding, the creators of COMPAS, Northpointe Inc., ar-
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Sample size (n)

100 200 400 800 1600

Model (12)
Coverage 0.84 0.83 0.86 0.895 0.905
Power (✏ = 0.5) 0.043 0.081 0.15 0.256 0.378
Power (✏ = 0.4) 0.003 0.005 0.012 0.058 0.187

Model (12) (rescaled)
Coverage 0.84 0.81 0.845 0.885 0.88
Power (✏ = 0.5) 0.149 0.270 0.427 0.608 0.743
Power (✏ = 0.4) 0.038 0.091 0.24 0.457 0.633

CQR (rescaled)
Coverage 0.815 0.87 0.845 0.865 0.91
Power (✏ = 0.9) 0.025 0.011 0.007 0.017 0.055

Table 2: Simultaneous coverage of confidence bounds issued by Algorithm 1 and Algorithm 2

with B = 500, ↵ = 0.1, and p⇤ = 0.01. All results are based on 200 trials. We see that, for
large n, the certification procedure satisfies the simultaneous validity guarantee.

gued that the algorithm is fair when evaluated by the predictive parity criterion (Dieterich
et al., 2016; Flores et al., 2016). While they provide statistical evidence for the absence of a
significant racial bias by this measure, our methods allow for the construction of an explicit
bound on the true disparity.

The predictive parity criterion is satisfied for a single group, G, when the positive
predictive value (PPV) of f for G matches the PPV for the complement of G, i.e.,

P(Y = 1 | f(X) = 1, X 2 G) = P(Y = 1 | f(X) = 1, X 2 Gc).

Intuitively, the PPV measures how informative a positive prediction is. For example, if
COMPAS classifies a defendant as high-risk (f(X) = 1), the PPV corresponds to the
probability that they actually recidivate (Y = 1).

Following prior work, we binarize the COMPAS scores by defining f(X) to be 1 when
the RPI score is 5 or higher. Then, to certify a lower bound on the gap between an
African-American and Caucasian defendant’s PPVs, we consider the subset (n = 2525) of
the holdout set with f(X) = 1 and Xrace 2 {African-American,Caucasian}. We instantiate
our audit with L corresponding to the indicator that Y matches f(X), G containing just
one group (African-American defendants), and ✓P denoting the PPV for White defendants:

L(f(X), Y ) = Y, G = {{(X,Y ) | Xrace = African-American, f(X) = 1}},

✓P = E[Y = 1 | Xrace = Caucasian].

We estimate ✓P using the empirical conditional expectation, ✓̂ = Ên[Y = 1 | Xrace =
Caucasian].

To verify the claim made by Dieterich et al. (2016) that there is no reduction in PPV for
African-American defendants relative to Caucasian defendants, we construct a 90%-lower
confidence bound for ✏(G) := P(Y = 1 | f(X) = 1, X 2 G)� P(Y = 1 | f(X) = 1, X 2 Gc).
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(a) (b)

Figure 5: In Figure 5a, we plot 90% confidence intervals for the di↵erence in COMPAS PPV
between each African-American subgroup and the entire Caucasian subgroup. In Figure 5b,
we plot 90% confidence intervals for the di↵erence in COMPAS PPV between each subgroup
formed by intersections of age and sex and the entire Caucasian subgroup.

Using this approach, we can certify the previous claim: among defendants receiving high-
risk predictions, an African-American defendant is at least 1.87% more likely to recidivate
than a Caucasian defendant.

Our methodology is not essential to establishing this result since we only consider a
single group. With these tools, however, we can establish PPV disparity bounds that hold
simultaneously over every protected subgroup. Again using the COMPAS PPV on Cau-
casian defendants as our target, we construct simultaneously valid 90% confidence intervals
on the PPV disparity for every subpopulation formed by the intersection of race, sex, and
age (|G| = 58). For this collection, the computational burden of this procedure is minimal:
each audit takes under one second on a 2020 Macbook Pro. In Figure 5, we plot the in-
tervals corresponding to subgroups of the African-American subpopulation and subgroups
formed by intersections of sex and age alone. Our results validate Northpointe Inc.’s claims
of PPV parity for several, albeit not all, African-American subpopulations. More generally,
younger male subpopulations appear to have higher COMPAS PPV when compared to the
Caucasian subpopulation.

4. Flagging performance disparities

4.1 Methods

In this section, we consider the other major subtask in fairness auditing: identifying subpop-
ulations for which the predictive model exhibits substantial inaccuracy. Formally, we study
the problem of flagging subpopulations for which the disparity exceeds some tolerance, i.e.,
when

H0(G) : ✏(G)  ✏. (13)
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fails to hold. False flags are less problematic than false certificates of performance, so a
weaker notion of error control than simultaneous validity su�ces. A-priori, we expect most
groups to satisfy the null hypothesis given by (13). This leads us to consider a notion of error
rate that is defined relative to the number of flags issued instead of the number of subgroups
tested; in particular, we control the asymptotic false discovery rate (FDR). In our setting,
controlling the false discovery rate translates to upper bounding the expected proportion of
falsely flagged subpopulations by ↵. For instance, in Section 2.2.2, we controlled the FDR
at 10%, implying that approximately 90% of the flagged subgroups have a false positive
rate at least 5% higher than the population average.

Formalizing this criterion, we require

lim
n!1

E

|{falsely flagged G 2 G}|

|{flagged G 2 G}| _ 1

�
 ↵.

Simultaneous error control (familywise-error rate control) implies control of the false dis-
covery rate, making the latter a strictly weaker criterion.

To contextualize our work, we remark that there are many existing methods for com-
puting performance disparities over various collections of subpopulations G (Saleiro et al.,
2018; Zhang and Neill, 2016). However, it is unclear how we should interpret these naive
estimates. If we search over many subpopulations, we should expect to observe disparities
even if the underlying prediction rule treats each group equitably. Our method shows how
one might prune the set of analyzed subpopulations to a shortlist where the proportion of
falsely flagged groups is controlled.

To accomplish this task for a finite collection of subpopulations, we apply the well-known
Benjamini-Hochberg procedure (denoted by BH(↵) in the sequel). This procedure takes as
input a set of p-values that can be computed via the bootstrap for each tested hypothesis.
Algorithm 4 describes how to compute bootstrap p-values for the flagging null hypothesis
given by (13).

Algorithm 4 Constructing p-values for G 2 G

1: Input: Subpopulations G, holdout set D, bootstrap samples B, tolerance ✏
2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: for G 2 G do
5: t(b)(G) = ✏⇤

b
(G)� ✏̂(G);

6: end for
7: end for
8: for G 2 G do
9: s⇤(G) = 1

�(3/4) ·Quantile(0.5; {|t(b)(G)|}B
b=1);

10: p(G) = 1� � ((✏̂(G)� ✏)/s⇤(G));
11: end for
12: Return: {p(G)}G2G .

The following proposition states that the BH(↵) procedure (applied to the output of
Algorithm 4) controls the asymptotic false discovery rate under two cases of practical interest:
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first, the case of mutually disjoint groups, and second, the case of binary outcomes with
arbitrarily overlapping group structure. The validity of the procedure in the first case is not
surprising since the p-values for disjoint groups are independent. The proof of the second
case is more subtle: we show that the binary metric implies a certain positive dependency1

among the p-values. Given this correlation structure, the BH procedure is known to be
valid (Benjamini and Yekutieli, 2001).

Proposition 8 (FDR control) Assume that P(G) and Var (L | G) are bounded away from
0 for all G 2 G, ✓P is a-priori known, and that at least one of the following conditions holds:

(i) {G}G2G are mutually disjoint;

(ii) L takes values in {0, 1}.

If we flag the rejections of the BH(↵) procedure on {p(G)}G2G, then the false discovery rate
is asymptotically controlled at level ↵.

We expect Theorem 8 to remain valid under violations of the stated assumptions. Even
outside of the two cases stated in Theorem 8 (e.g., when we must estimate ✓P ), prior
experiments with the BH algorithm and our own empirics suggest that this procedure will
not violate FDR control (Fithian and Lei, 2022).

If flagging with FDR control over an infinite collection of subpopulations is desired, we
suggest a generalization of the two-step procedure outlined in the independently-derived
work of von Zahn et al. (2023). First, split the holdout set and use the first split to discover
a finite sub-collection of interpretable subpopulations, e.g., von Zahn et al. (2023) fit a
regression tree and let each leaf define a subpopulation of interest. Then, for the subpopu-
lations identified with the first split, run the flagging procedure validated by Theorem 8 on
p-values computed using the second split.

4.2 Empirical results

4.2.1 Folktables

We evaluate the flagging methodology on an income prediction dataset derived from the
2018 Census American Community Survey Public Use Microdata and made available in the
Folktables package (Ding et al., 2021; Flood, 2015). Using the California data set filtered
to over-16 individuals who earned at least $100 in the past year, we aim to predict whether
an individual’s income exceeds $50,000. We include age, place of birth, education, race,
marital status, occupation, sex, race, and hours worked in the fitted prediction rule.

To validate the (asymptotic) FDR control result in Theorem 8, we fit logistic and linear
regression models to a training set of 1000 data points, and then sample holdout sets of
varying size from the remaining data. We flag subpopulations formed by the intersection
of age, race, and gender (|G| = 89) for which: (1) the misclassification rate is higher
than a fixed threshold of 0.5, (2) the misclassification rate is higher than the population
average error rate, (3) the mean-squared error (MSE) of the predicted income is higher
than the population mean-squared error. Each of these tasks sheds light on the relevance

1. The positive dependency we identify is formally termed positive regression dependence on a subset
(PRDS) (Benjamini and Yekutieli, 2001).
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Sample size (n)

Task 100 200 400 800 1600 3200

Folktables
1 0.045 0.038 0.032 0.025 0.021 0.014
2 0.003 0.005 0.003 0.004 0.003 0.004
3 0.0 0.0 0.0 0.0 0.0 0.002

Table 3: FDR of flags issued with B = 500 and ↵ = 0.1 for the tasks described in Sec-
tion 4.2.1. All results are based on 1000 trials. We see that, for any n, the FDR guarantee
is conservative.

of Theorem 8. The first flagging task satisfies the assumptions of Theorem 8, while the
other two violate the stated assumptions. Since we only consider a finite collection of
subpopulations, these tasks are not computationally burdensome. For the largest sample
size considered (n = 3200), the flagging audit considered takes under 1 second on a 2020
Macbook Pro.

Since the holdout sets are sampled with replacement, the data-generating distribution
P is the uniform distribution over the finite population of data held-out from model fitting.
Therefore, a flag is falsely issued if the flagged subgroup’s error rate on the entire held-
out data set fails to exceed the stated threshold. Table 3 shows that over 1000 trials, the
estimated FDR for each task is well below the nominal bound of 0.1 at every sample size
tested. This is because the null p-values are, in practice, conservative, as the null hypothesis
(13) rarely holds with equality.

4.2.2 COMPAS

Prior analysis of the COMPAS RPI has shown that the false positive rate of the high-risk
designation is substantially higher for African-American defendants compared to Caucasian
defendants (Angwin et al., 2016). We revisit this often-studied example of fairness auditing
to determine if we can identify any other demographic groups that su↵er from false posi-
tive rates at least 5% higher than the average defendant. In particular, we audit over all
intersections of race, sex, and age group (n = 6781, |G| = 48). This flagging audit takes
under 0.5 seconds on a 2020 Macbook Pro. Figure 2 plots the issued flags for subsets of
the African-American subpopulation; we can further localize the false positive rate (FPR)
disparity among African-American defendants to younger African-American defendants. As
shown in Figure 6a, our method also flags nearly every under-25 subgroup, suggesting that
this disparity a↵ects young defendants more generally.

In the previous section, we certified that the positive predictive value (PPV) of the
COMPAS RPI is higher for African-American defendants compared to Caucasian defen-
dants. Since the COMPAS creators claim that PPV is a more appropriate measure of
fairness (Dieterich et al., 2016), we investigate whether any other demographic groups suf-
fer from harmful PPV disparities. As shown in Figure 6b, we are still able to flag certain
subpopulations for having at least 5% lower PPV compared to the average.
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(a) (b)

Figure 6: In Figure 6a, the red boxes correspond to groups flagged as having substan-
tially higher-than-average false positive rates. Most under-25 subpopulations su↵er from
this disparity. In Figure 6b, the red boxes denote groups flagged as having substantially
lower-than-average positive predictive values. Though we are able to flag only three nested
subpopulations (Females, Females under 25, and Caucasian females under 25), these results
suggest that certain subpopulations still face disparities according to this measure.

(a) (b)

Figure 7: In Figure 7a, we plot an indicator tilt that corresponds to conditioning on X
belonging to the interval [�1, 1], and a non-negative tilt that resembles the indicator. Fig-
ure 7b plots the (similar) probability densities over X produced by both tilts.

5. Beyond subpopulations

5.1 Methods

Auditing over subpopulations is equivalent to assessing performance over the class of dis-
tribution shifts indexed by the tilts, {1 {(X,Y ) 2 G}}G2G . In particular,

✏(G) = EP [L | G]� ✓P = EPG [L]� ✓P ,

where dPG(x, y) / 1 {(x, y) 2 G} dP (x, y). In this section, we consider the natural general-
ization of these tilts from 0-1 valued functions to collections of non-negative functions. For
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such a collection, H, we might wish to bound the following discrepancy for each h,

✏(h) = EPh [L(f(X), Y )]� ✓P ,

where dPh(x, y) / h(x, y)dP (x, y). Figure 7 shows how non-negative functions that approx-
imate an indicator can produce similar tilted distributions over X .

To motivate this auditing task, consider the problem of assessing an autonomous vehi-
cle’s performance over a diverse set of environments. While most work on distributional
robustness focuses on assessing performance under the worst-case shift belonging to some
set, such an appraisal of model robustness is inherently limited (Duchi and Namkoong,
2021). The worst-case over some tractable collection of tilts is unlikely to be a useful proxy
for most real-world distribution shifts. By contrast, our methods allow the modeler to query
any shift belonging to the audited collection. As new environments are encountered, the
modeler can reliably assess which environments may have benign e↵ects on performance
and which may be especially problematic.

When H is finite, our methods for certifying and flagging performance are unchanged.
For infinite H, our previous results still apply: we can certify performance discrepancies
over any VC class of tilts. While this is by no means an exhaustive list, such classes include
the set of non-negative polynomials and any collection of bounded monotone tilts over a
single covariate (van der Vaart, 2000).

Generalizing from binary to non-negative tilts expands auditing to certain function
classes with infinite VC dimension. We describe su�cient conditions for bootstrap-based
auditing over general function classes F in Appendix D, but here we highlight one collection
in particular: the unit ball of a reproducing kernel Hilbert space (RKHS).

Let h denote any non-negative function belonging to the unit ball of a RKHS; we denote
the collection of such functions by H

+
1 . Define ✏(h) as the disparity under this tilt, i.e.,

✏(h) := EPh [L] =
EP [(L� ✓P )h(X)]

EP [h(X)]
.

Let Ên[f(X)] denote the plug-in estimator for the expectation of f under the empirical
distribution. Then, we define ✏̂(h) := (Ên[h(X)])�1Ên[(L� ✓̂)h(X)]. We will assume here-
after that ✓P = 0, but a generalization of our approach to estimated targets is given in
Appendix D.

We highlight two important characteristics of the RKHS auditing task. First, for a
suitably chosen RKHS, h can approximate any smooth tilt of the covariate distribution,
PX , defined over a compact subset (Micchelli et al., 2006). Given su�cient data, this allows
us to issue guarantees on model performance for essentially arbitrary groups and covariate
shifts.

Auditing over the RKHS unit ball o↵ers another advantage: we can construct a con-
fidence bound for ✏(h) without the onerous optimization present at each step of Algo-

rithm 1. Recall that in Algorithm 1, we used the bootstrap to estimate the (1� ↵)-quantile
of supG2G{Pn(G) · P(G) · (✏̂(G) � ✏(G))}. Each iteration then required solving a challeng-
ing combinatorial optimization problem over G. At first glance, the analogous task for
RKHS-based auditing appears even more di�cult. For each bootstrap sample, we must
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Algorithm 5 Bootstrapping the RKHS confidence set critical value

1: Input: Kernel k, holdout set D, level ↵, bootstrap samples B
2: Define L := {L(f(xi), yi)}ni=1;
3: Define K := {k(xi, xj)}ni,j=1;
4: for b = 1, . . . , B do
5: Sample w ⇠ Mult

�
n; 1

n
, . . . , 1

n

�
;

6: A = 1
n2

�
(w � L)1> �wL>

�
;

7: t(b) = �max

⇣
K1/2

⇣
A+A>

2

⌘
K1/2

⌘
;

8: end for
9: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

compute

max
h2H

+
1

{Ên[h(X)] · Ê⇤

b
[h(X)] · (✏⇤

b
(h)� ✏̂(h))}.

Naively, this optimization problem is intractable.
In Algorithm 5, however, we are able to reduce this task to computing the top eigenvalue

of a low-rank matrix. Two observations are crucial to this reduction. First, the supremum
of the process indexed by h 2 H

+
1 is upper bounded by the supremum of the same process

indexed by the unrestricted unit ball H1, i.e.,

t⇤
·
= Quantile

✓
1� ↵; sup

h2H1

{EP [h(X)] · Ên[h(X)] · (✏̂(h)� ✏(h))}

◆
. (14)

We can then simplify the maximization problem in each iteration of the bootstrap
algorithm by exploiting the finite-dimensional representer theorem for RKHS functions.
This theorem states that for any finite set {xi}ni=1 and h 2 H1, {h(xi)}ni=1 = Kw for
{Kij}

n

i,j=1 = {k(xi, xj)}ni,j=1 and some w 2 Rn (Steinwart and Christmann, 2008). The
other steps of this reduction, which are technical but uninformative, are deferred to the
proof of Theorem 9.

Using the output of Algorithm 5, we construct a lower confidence bound for ✏(h) as

✏lb(h) := ✏̂(h)�
t⇤

�
1
n

P
n

i=1 h(xi)
�2 . (15)

We remark that a rescaling similar to (7) can also be applied in this setting. The resulting
bootstrap computation for the rescaled RKHS process, however, is prohibitively expensive.
Nevertheless, we include a detailed description of the appropriate rescaling and bootstrap
algorithm in Appendix D.

Theorem 9 states the assumptions under which ✏lb(h) is a simultaneously valid confidence
bound.

Theorem 9 (Simultaneous RKHS confidence bound validity) Assume that Var(L)
is bounded away from 0, kLk1 and kk(X,X)k1 are finite, k(·, x) is continuous for all x,
and that k(·, ·) is a positive definite kernel. Then,

lim
n!1

P
�
✏lb(h)  ✏(h) for all h 2 H

+
1

�
� 1� ↵.
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Sample size (n)

� 100 200 400 800 1600

Model (16)
1 0.92 0.945 0.94 0.89 0.91
0.5 0.93 0.955 0.935 0.885 0.915
0.1 0.95 0.95 0.935 0.93 0.95

Table 4: Realized percentile of t⇤ output by Algorithm 5 with B = 500 and ↵ = 0.1. The
nominal percentile is 1� ↵ = 0.9. All results are based on 200 trials. In small samples, the
bootstrap approximation can be conservative.

Commonly used kernels, such as the Gaussian and Laplace kernels, satisfy the assump-
tions given in Theorem 9.

5.2 Empirical results

We first validate our coverage guarantee for RKHS-based confidence sets using a synthetic
experiment in which the ground truth is known. Formally, we use the same data-generating
process as in (12), but discretize X as follows,

Xi

iid
⇠ Unif({0, 0.01, 0.02, . . . , 1}), Yi = N (�0Xi, Xi). (16)

In each trial, we sample �0
iid
⇠ N (0, 1) and use 1000 training points, (Xi, Yi), to fit the

OLS predictor, f(x) = �̂>x. We then audit over covariate shifts corresponding to the non-
negative functions belonging to the unit ball of a Gaussian RKHS with varying bandwidths
� 2 {0.1, 0.5, 1}. Even though we now analyze performance over an infinite collection,
reducing the optimization task to solving a low-rank eigenvalue problem in Algorithm 5

eases the computational burden substantially: each audit takes approximately 1.5 seconds
on a 2020 MacBook Pro.

Since evaluating the coverage under all non-negative functions in the RKHS is infeasible,
we instead check that the bootstrap approximation to (14) is valid. Recall that t⇤ estimates
the (1� ↵)-quantile of

sup
h2H1

{EP [h(X)] · Ên[h(X)] · (✏̂(h)� ✏(h))}. (17)

In Table 4, we compute the percentile of (17) realized by t⇤ for the synthetic experiment,
i.e., P(suph2H1

{EP [h(X)] · Ên[h(X)] · (✏̂(h) � ✏(h))}  t⇤). Our results show that in small
samples, the RKHS audit may be conservative: the realized percentile is sometimes larger
than the nominal level.

We also revisit the synthetic dataset of Romano et al. (2019) to practically demonstrate
how (15) can provide coverage guarantees over complex subgroups. Figure 8 shows how
an arbitrarily chosen union of 3 sub-intervals2 can be approximated by a Gaussian RKHS
function with bandwidth � = 0.5. Given an holdout set of n = 1000 points, we issue

2. This subgroup is not an element of the sub-interval collection we previously considered.
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Figure 8: To provide an approximate coverage guarantee on the union of the three high-
lighted intervals, we tilt the covariate distribution by the depicted function belonging to
the Gaussian RKHS with bandwidth � = 0.5. For the holdout set displayed, we can lower
bound the “tilted” coverage at 84.0%.

a conditional coverage lower bound of 84.0%; over infinitely many such tilts, the issued
bounds are simultaneously valid with probability at least 90%.
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Appendix A. Connections to fairness

Recall that group fairness definitions ask for approximate parity of L across all protected
subpopulations (Dwork et al., 2012; Hardt et al., 2016; Corbett-Davies et al., 2017; Kearns
et al., 2018). We show how to use our methods to audit two popular group fairness defini-
tions below.

Multicalibration We say that a predictor f(X) is calibrated if the conditional expecta-
tion of the binary label Y given that f(X) = v matches v, i.e., E[Y | f(X) = v] = v. For
the purpose of measuring classification quality across groups, we might require the binary
classifier to be calibrated over many subgroups. Thus, for all subgroups G 2 G̃ and (poten-
tially binned) predicted values v, the �-multicalibration fairness criterion (Hébert-Johnson
et al., 2018) requires that

|E[Y | f(X) = v,X 2 G]� v|  �.

The formal multicalibration definition excludes groups smaller than some auditor-set thresh-
old. Although the user may filter G̃ as they see fit, a-priori, our methods do not exclude
groups by their size. However, we can set a similar threshold in the rescaled certification
method (Algorithm 2). This threshold does not prevent the auditor from querying any
group for a bound on �, but it ensures that confidence sets are narrower for groups above
the threshold.

Choosing L, ✓P , and G carefully, we can apply our methods to certify and flag multical-
ibration over G̃. Letting V denote the set of unique values f(X) can take, we set

L := Y � f(X) ✓P := 0

G := {G \ {(X,Y ) | f(X) = v} | G 2 G̃, v 2 V}.

Let Gv denote each group in G.
Certifying �-multicalibration for G is equivalent to establishing that maxv |✏(Gv)| 

�. Using our auditing methods, we can estimate � by constructing simultaneously valid
confidence intervals for all {✏(Gv)}Gv2G . For a particular G, our bound on � then equals
the maximum (absolute) value taken over all issued intervals for {✏(Gv)}v2V . For a fixed
threshold �, we could also run our Boolean certification method with H0(Gv) : |✏(Gv)| � �
and certify G if the null is rejected for all {Gv}v2V .

Alternatively, we might flag G for violation of �-multicalibration by testing H0(Gv) :
|✏(Gv)| > � + ✏ for some disparity tolerance ✏. Using the method outlined in Section 4, we
can construct p-values for each of these null hypotheses. Then, the BH procedure is run on
all of the p-values computed. If any H0(Gv) is rejected, we flag G.

Equalized odds Given a collection of subsets of X denoted by GX , we say that a binary
predictor f satisfies the equalized odds criterion (Hardt et al., 2016; Woodworth et al.,
2017) if for all G 2 GX , both its true positive rates are equalized,

P(f(X) = 1 | Y = 1, X 2 G) = P(f(X) = 1 | Y = 1),

and its false positive rates are equalized,

P(f(X) = 1 | Y = 0, X 2 G) = P(f(X) = 1 | Y = 0).
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A practitioner interested in this fairness criterion might then wish to audit the perfor-
mance disparity ✏(G) := max(|✏(G0)|, |✏(G1)|) where

✏(Gi) := P(f(X) = 1 | Y = i,X 2 G)� P(f(X) = 1 | Y = i).

We can instantiate a certification audit for ✏(G) by running our methods twice: once to
bound ✏(G0) and a second time for ✏(G1). For the first audit, let

L := 1 {f(x) = 1} ✓P := P(f(X) = 1 | Y = 0) G = {G⇥ {0} | G 2 GX} .

For the second audit, let

L := 1 {f(x) = 1} ✓P := P(f(X) = 1 | Y = 1) G = {G⇥ {1} | G 2 GX} .

We construct confidence sets or Boolean certificates using a nominal Type I error threshold
of ↵/2 for each auditing task. We remark that this union bound is practically tight since the
two data sets corresponding to these audits are disjoint. Our final certificate on ✏(G) then
consists of the “worse” of the two auditor outputs. For example, we might upper bound
✏(G) by the maximum (absolute) value included in the two issued confidence intervals for
✏(G0) and ✏(G1).

For the flagging task, we test H0(Gi) : |✏(Gi)|  ✏. Using the method outlined in
Section 4, we can construct p-values for each of these null hypotheses. Then, the BH

procedure can be directly run on all of the p-values computed. We flag G if either H0(G0)
or H0(G1) is rejected.

Individual fairness Other fairness criteria fall into a category known as “individual fair-
ness” measures. These quantify the intuition that similar inputs, x and x0, should be treated
by f similarly (Dwork et al., 2012). While this definition of fairness cannot be tested us-
ing sampled model predictions, one might audit whether some notion of individual fairness
holds with high probability among protected subgroups. Though we do not elaborate on
such an extension here, we remark that prior work on the bootstrap of U-statistics and pro-
cesses allows the natural extension of our auditing procedures to fairness measures defined
over pairs of data points (Arcones and Gine, 1992; Huskova and Janssen, 1993).

Appendix B. Certification audits

B.1 Notation and review

We will begin by defining some relevant notation and reviewing certain basic results about
the convergence of stochastic processes. Given n i.i.d. samples, Pn := n�1Pn

i=1 �(Xi,Yi)

denotes their empirical distribution. If {(X⇤

i
, Y ⇤

i
)}n

i=1 are i.i.d. samples from Pn conditional
on {(Xi, Yi)}ni=1, then P⇤

n := n�1Pn

i=1 �(X⇤
i ,Y

⇤
i ) denotes their empirical distribution.

For a function f : X ⇥ Y ! Rk, P [f ] is shorthand for EP [f(X,Y )], Pn[f ] is shorthand
for n�1Pn

i=1 f(Xi, Yi), and P⇤
n[f ] is shorthand for n�1Pn

i=1 f(X
⇤

i
, Y ⇤

i
). We also write (Pn�

P )[f ] in place of Pn[f ]�P [f ]. Given a class of functions F , we think of f 7!
p
n(Pn�P )[f ]

as a mapping belonging to `1(F).
We will typically require and/or argue that F is a P -Donsker class. This means that the

empirical process indexed by f 2 F converges in distribution to a tight Gaussian limit in
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`1(F). Formally,
p
n(Pn � P )[·]

d
! G[·] where the limiting process f 7! G[f ] is a Gaussian

process that is also a tight Borel-measurable element of `1(F). If F is a P -Donsker class,

then it is also P -Glivenko-Cantelli (van der Vaart, 2000), i.e., supf2F |(Pn � P )[f ]|
p
! 0.

Next, we recall some results relating Donsker classes to VC dimension and bootstrap
consistency. When we consider function classes of indicators indexed by subpopulations G,
i.e. F = {1 {(X,Y ) 2 G} | G 2 G}, the Donsker property is equivalent to assuming that G
is VC.

Lemma 10 (Theorem 11.4.1 in Dudley (1984)) Under suitable measurability assump-
tions, F := {(x, y) 7! 1{(x, y) 2 G} : G 2 G} is Donsker if and only if VC(G) < 1.

Last, we recall that the bootstrap approximation,
p
n(P⇤

n � Pn)[h], is valid if H is P -
Donsker. Let G⇤

n be shorthand for the bootstrap empirical process
p
n(P⇤

n � Pn) and G
denote the limiting empirical process. Also note that the operator E⇤ refers to taking an
expectation conditional on X1, . . . , Xn.

Lemma 11 (Theorem 23.7 in van der Vaart (2000)) For every Donsker class H of

measurable functions with finite envelope function F , supg2BL1(`1(H)) |E⇤[g(G⇤
n)]� E[g(G)]|

p
!

0 where BL1(`1(H)) is the set of bounded 1-Lipschitz functions taking `1(H) into R.

B.2 Proofs of certification theorems

Estimating ✓P . We assume that the bootstrap and sampling distributions of ✓̂ admit
asymptotic linear expansions:

p
n(✓̂(D⇤)� ✓̂) =

1
p
n

nX

i=1

 (X⇤

i , Y
⇤

i ) + oPn(1)

p
n(✓̂ � ✓P ) =

1
p
n

nX

i=1

 (Xi, Yi) + oP (1).

Here,  is an influence function with mean zero and finite variance. It is easy to verify
that this condition is satisfied by any ✓̂ given in the main text. Our generalization enables
auditing even if ✓̂ is more complicated, e.g., it is the solution to some maximum likelihood
estimation problem.

Next, we prove the main theorems of Section 3. As explained in the main text, the
primary technical di�culty lies in proving that t⇤ consistently estimates the (1�↵)-quantile
of a particular stochastic process. There are two crucial preliminary results required to
establish this result. First, we must show that bootstrap consistency implies consistency of
the quantile estimate. Second, we must show that our proposed rescaling estimator ŝ(G) is
uniformly consistent for some estimand.

Quantile consistency First, to provide a unique definition of the quantile, we define the
↵-quantile of a random variable X as

Quantile(↵;X) := inf
x
{x | ↵  P(X  x)}.

The proof of the main theorem requires continuity and strict increase for the supremum
of the limiting process at its (1�↵)-quantile. The following result establishes mild conditions
under which this holds.
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Lemma 12 Let Z(G) denote some Gaussian process that is the limit of an empirical process
indexed by some countable class G. Then, if Var(Z(G)) > 0 for some G 2 G, the distribution
function of supG2G Z(G) is continuous and strictly increasing on R+ and the distribution
function of infG2G Z(G) is continuous and strictly increasing on R�.

Proof Because Z(G) is a centered process, we remark that supG Z(G)
d
= � infG Z(G). First,

we prove that for all x > 0, the distribution function of supG2G Z(G) is continuous at x.
Under the stated assumptions, Gaenssler et al. (2007, Corollary 1.3) prove that supG |Z(G)|
has a continuous distribution function at x, i.e., P(supG |Z(G)| = x) = 0. Then,

0 = P(sup
G

|Z(G)| = x) = P({sup
G

Z(G) = x} [ {inf
G

Z(G) = �x}),

which implies P(supG Z(G) = x) = P(infG Z(G) = �x) = 0. This is equivalent to the
desired continuity statement.

Next, to prove strict increase at x, we argue by contradiction. If supG Z(G) did not have
a strictly increasing distribution function on R+, then there exists 0 < x1 < x2 such that

P(sup
G

Z(G)  x1) = P(sup
G

Z(G)  x2) () P(inf
G

Z(G) � �x1) = P(inf
G

Z(G) � �x2).

Gaenssler et al. (2007, Corollary 1.3) also prove that supG |Z(G)| satisfies P(supG |Z(G)| 
x1) < P(supG |Z(G)|  x2). Since

P(sup
G

|Z(G)|  x) = P(sup
G

Z(G)  x) + P(inf
G

Z(G) � �x)

� P({sup
G

Z(G)  x} \ {inf
G

Z(G) � �x}),

we conclude that

P({sup
G

Z(G)  x1} \ {inf
G

Z(G) � �x1}) > P({sup
G

Z(G)  x2} \ {inf
G

Z(G) � �x2}).

This is a contradiction since the event on the LHS is a subset of the event on the RHS. We
conclude that both supG Z(G) and infG Z(G) have strictly increasing distribution functions
on the positive and negative reals, respectively.

We make two comments on Theorem 12. First, the cited result of Gaenssler et al. (2007)
is stated for empirical processes indexed by a VC class, but their argument applies to any
limiting Gaussian process indexed by a P -Donsker class. Second, the countable assumption
is not crucial, and is only included to avoid verifying certain technical measurability con-
ditions. In this article, we expect the “pointwise measurability” (approximately equivalent
to well-approximation by a dense countable subset) condition given in van der Vaart and
Wellner (1996) to hold, but this condition must be checked for each function class. As a
consequence, for simplicity, we will also assume throughout that the function classes we
work with are countable.
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Uniform consistency of ŝ Recall that we define

ŝ(G) := max(Pn(G), p⇤)
3/2

· �̂(G,w0)

for

�̂(G,w0) :=

✓
Pn(G)

Pn(G) + w0

◆
· �̂G +

✓
w0

Pn(G) + w0

◆
·

q
dVar(L)

and

�̂2G := dVar(L | G) + Pn(G)
⇣
dVar( )� 2 · dCov(L, | G)

⌘
.

Lemma 13 Assume that 0 < Var(L) < 1 and VC(G) < 1. If p⇤, w0 > 0, then supG2G |1/ŝ(G)�

1/s(G)|
p
! 0, where

s(G) = max(P(G), p⇤)
3/2

·

✓
P(G)

P(G) + w0

◆
· �G +

✓
w0

P(G) + w0

◆
·

p
Var(L)

�
.

Proof To simplify notation, we will replace 1 {(X,Y ) 2 G} with 1G throughout.
We first compute the asymptotic variance of

p
|G|(✏̂(G)�✏(G)) by linearizing the random

quantity:

p
|G| (✏̂(G)� ✏(G)) =

p
|G|

2

4

0

@ 1

|G|

X

(Xi,Yi)2G

Li � ✓̂

1

A� (E[L | G]� ✓P )

3

5

=
p

|G|

"
1

|G|

nX

i=1

(Li � E[L | G]) · 1G �
1

n

nX

i=1

 i

#

=
p
n

"
1

n

nX

i=1

Li � E[L | G]p
P(G)

· 1G �

p
P(G) ·  i

#
+ oP (1).

So, we conclude that

�2G := Var

 
L� E[L | G]p

P(G)
· 1G �

p
P(G) ·  

!

= Var

 
L� E[L | G]p

P(G)
· 1G

!
+Var

⇣p
P(G) ·  

⌘
� 2 · Cov

 
L� E[L | G]p

P(G)
· 1G,

p
P(G) ·  

!

= Var(L | G) + P(G) · (Var( )� 2 · Cov(L, | G)) .

Next, after some rearrangement, observe that 1/ŝ2(G)� 1/s2(G) equals

Pn(G) + w0

max(Pn(G), p⇤)3/2 ·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆

�
P(G) + w0

max(P(G), p⇤)3/2 ·
⇣
P(G) · �G + w0 ·

p
Var(L)

⌘ .
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Combining the two fractions yields a numerator of

(Pn(G) + w0)
⇣
max(P(G), p⇤)

3/2
·

⇣
P(G) · �G + w0 ·

p
Var(L)

⌘⌘

� (P(G) + w0)

✓
max(Pn(G), p⇤)

3/2
·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆◆

and a denominator of

max(Pn(G), p⇤)
3/2

·max(P(G), p⇤)
3/2

·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆

·

⇣
P(G) · �G + w0 ·

p
Var(L)

⌘
.

To prove uniform consistency, it is su�cient to prove that

lim
n!1

inf
G2G

max(Pn(G), p⇤)
3/2

·max(P(G), p⇤)
3/2

·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆

·

⇣
P(G) · �G + w0 ·

p
Var(L)

⌘
> 0

and

lim
n!1

sup
G2G

���(Pn(G) + w0)
⇣
max(P(G), p⇤)

3/2
·

⇣
P(G) · �G + w0 ·

p
Var(L)

⌘⌘

�(P(G) + w0)

✓
max(Pn(G), p⇤)

3/2
·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆◆���� = 0.

For the first of these tasks, observe that the denominator is lower bounded by

p3⇤ ·

✓
w2
0 ·

q
dVar(L) ·

p
Var(L)

◆
! p3⇤ · w

2
0 ·Var(L) > 0.

The numerator requires a more careful analysis. We distribute the Pn(G)+w0 and P(G)+w0

prefactors and analyze the first term in the numerator obtained by matching the terms
beginning with Pn(G) and P(G):
���Pn(G) ·max(P(G), p⇤)

3/2
·

⇣
P(G) · �G + w0 ·

p
Var(L)

⌘

� P(G) ·max(Pn(G), p⇤)
3/2

·

✓
Pn(G) · �̂G + w0 ·

q
dVar(L)

◆���� .

Observe that if this term goes to 0 uniformly over G 2 G, the second term obtained by
replacing both Pn(G) and P(G) with w0 will also uniformly converge to 0. Thus, it su�ces
to analyze this expression.

Adding and subtracting P(G)·max(P(G), p⇤)3/2 ·(P(G)·�G+w0 ·
p
Var(L)) and applying

a triangle inequality, we obtain:

|Pn(G)� P(G)| ·max(P(G), p⇤)
3/2

· (P(G) · �G + w0 ·
p

Var(L))

+
���max(P(G), p⇤)

3/2
�max(Pn(G), p⇤)

3/2
��� · P(G) · (P(G) · �G + w0 ·

p
Var(L))

+ P(G) ·max(Pn(G), p⇤)
3/2

· |P(G) · �G � Pn(G) · �̂G|

+ P(G) ·max(Pn(G), p⇤)
3/2

����w0 · (
p
Var(L)�

q
dVar(L))

���� .
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Since the sample variance of L does not depend on G and is consistent under the stated
assumptions, the uniform convergence of the fourth term to 0 is easy to see. To prove
uniform convergence of the first and second terms, we must show that the n-independent
term is bounded, i.e.,

(P(G) · �G + w0 ·
p

Var(L))  P(G)1/2
p
E[(L� E[L | G])2 · 1G] + w0 ·

p
Var(L))

 P(G)1/2
p
E[(L� E[L])2 · 1G] + w0 ·

p
Var(L))

 P(G)1/2
p
E[(L� E[L])2] + w0 ·

p
Var(L))

 (1 + w0) ·
p
Var(L) = C < 1.

Thus, since VC(G) < 1, (Pn � P )[1G] is P -Glivenko-Cantelli, and

sup
G2G

���(Pn(G)� P(G)) ·max(P(G), p⇤)
3/2

· (P(G) · �G + w0 ·
p
Var(L))

���

 C · sup
G2G

|Pn(G)� P(G)|
p
! 0.

Since a P -Glivenko Cantelli class is preserved under truncation (Example 2.10.11 in van der
Vaart and Wellner (1996)), we then also conclude that

sup
G2G

|max(P(G), p⇤)
3/2

�max(Pn(G), p⇤)
3/2

| · P(G) ·
⇣
P(G) · �G + w0 ·

p
Var(L)

⌘

 C · sup
G2G

|max(P(G), p⇤)
3/2

�max(Pn(G), p⇤)
3/2

|
p
! 0.

Last, we show the third term converges to 0. The n-independent part is bounded by 1, so
we can ignore that. So, we need to show that supG2G |P(G) ·�G�Pn(G) · �̂G|

p
! 0. To avoid

writing the square root, we will square the two terms for the time being. Then,

P(G)2 · �2G = P(G)2 [Var(L | G) + P(G) · (Var( )� 2 · Cov(L, | G))]

= P(G)2(E[L2
| G]� E[L | G]2)

+ P(G)3 · (Var( )� 2 · (E[L ·  | G]� E[L | G]E[ | G]))

= P(G)E[L2
· 1G]� E[L · 1G]

2 + P(G)3 ·Var( )

� 2 · P(G)2 · E[(L ·  )1G]

� 2 · P(G) · E[L · 1G]E[ · 1G]

We can obtain an analogous expansion of Pn(G)2�̂2
G
. Then, we need to show that each

matching term converges uniformly. We will only explicitly work out the argument for one
pair of terms, but the argument for the remainder should be clear. First, observe that
Fg = {g · 1G : G 2 G} is a P -Glivenko-Cantelli class so long as P [|g|] < 1 (Corollary 3 in
Giné and Zinn (1984)). Then,

sup
G2G

��Pn(G)2 · Pn[(L ·  ) · 1G]� P(G)2 · P [(L ·  ) · 1 {X,Y ) 2 G}]
��

 sup
G2G

��Pn(G)2 · (Pn[(L ·  ) · 1G]� P [(L ·  ) · 1G])
��

+ sup
G2G

��(Pn(G)2 � P(G)2) · P [(L ·  ) · 1G]
��
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We can further upper bound the RHS by

sup
G2G

|(Pn � P )[(L ·  ) · 1G]|

| {z }
oP (1)

+2 · P [|L ·  |]| {z }


p
P [L2]P [ 2] < 1

· sup
G2G

|Pn(G)� P(G)|

| {z }
oP (1)

.

A similar argument can be made for each of the other terms in this expression.
Thus, we conclude that the numerator converges uniformly over all G to 0. This yields

the claimed uniform consistency of 1/ŝ(G).

Bound certification First, we prove that our lower confidence bound construction is
valid. Algorithm 6 restates our method for defining the critical value t⇤. Then, using the
output of Algorithm 6, we construct an asymptotically valid lower confidence bound for
arbitrary G 2 G by setting

✏lb(G) = ✏̂(G)� t⇤ ·
ŝ(G)

Pn(G)2
.

Theorem 14 restates Theorem 4.

Algorithm 6 Bootstrapping the (rescaled) lower confidence bound critical value

1: Input: Subpopulations G, holdout set D, level ↵, threshold p⇤, weight w0, number of
bootstrap samples B

2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: Define P⇤

b
(G) := 1

n

P
(x⇤

i ,y
⇤
i )2D

⇤
b
1 {(x⇤

i
, y⇤

i
) 2 G};

5: Define ✏⇤
b
(G) := 1

P⇤
b (G)·n

P
(x⇤

i ,y
⇤
i )2G

L⇤

i
� ✓̂(D⇤

b
);

6: end for
7: Define the asymptotic variance estimator by

�̂2G := dVar(L | G) + Pn(G)
⇣
dVar( )� 2 · dCov(L , | G)

⌘

wheredVar(·) and dCov(·) correspond to the sample (conditional) variance and covariance;
8: Define ŝ(G) by (9);
9: for b = 1, . . . , B do

10: t(b) = maxG2G{
1

ŝ(G) · Pn(G) · P⇤

b
(G) · (✏⇤

b
(G)� ✏̂(G))};

11: end for
12: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

Theorem 14 Assume that L is bounded and that L � ✓̂ is non-constant over at least one
non-empty group. Further assume that G has finite Vapnik-Chernovenkis (VC) dimension.
Then, ✏lb(G) is an asymptotic (1�↵)-lower confidence bound for ✏(G) that is simultaneously
valid for all G 2 G.
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Proof To simplify notation, we will replace 1 {(X,Y ) 2 G} with 1G throughout. We first
restate the result we aim to prove.

lim
n!1

P (9G 2 G s.t. ✏lb(G) > ✏(G)) = lim
n!1

P
✓
9G 2 G s.t. ✏̂(G)� t⇤ ·

s⇤(G)

Pn(G)2
> ✏(G)

◆

Rearranging the latter event, we obtain

lim
n!1

P
✓
sup
G2G

⇢✓
Pn(G)2

ŝ(G)

◆
· (✏̂(G)� ✏(G))

�
> t⇤

◆

= lim
n!1

P
✓
sup
G2G

⇢✓
Pn(G)

ŝ(G)

◆
· Pn[(L� ✓̂ � ✏(G)) · 1G]

�
> t⇤

◆
.

Then, we claim that supG2G |Pn(G)/ŝ(G)�P(G)/s(G)|
p
! 0. This follows by observing that

sup
G2G

����
Pn(G)

ŝ(G)
�

P(G)

s(G)

����  sup
G2G

����
Pn(G)

ŝ(G)
�

Pn(G)

s(G)

����+ sup
G2G

����
Pn(G)

s(G)
�

P(G)

s(G)

����

 sup
G2G

|Pn(G)| · sup
G2G

����
1

ŝ(G)
�

1

s(G)

����+
����

1

infG2G s(G)

���� · sup
G2G

|Pn(G)� P(G)|.

Observe that supG2G |Pn(G)|  1 and infG2G s(G) � p3/2⇤ · (w0/(1 + w0)) ·
p

Var(L) > 0.
Then, by Theorem 13 and the assumption that G is P -Donsker, and thus also P -Glivenko-
Cantelli, we conclude the desired uniform consistency result.

To apply Slutsky’s lemma to the uniformly consistent estimator, we must prove that
p
n · Pn[(L� ✓̂ � ✏(G)) · 1G] = OP (1). Note that

����sup
G2G

p
n · Pn[(L� ✓̂ � ✏(G)) · 1G]

����

=

����sup
G2G

np
n · (Pn � P )[(L� ✓P � ✏(G)) · 1G]�

p
n(✓̂ � ✓P ) · Pn[1G]

o����



����sup
G2G

p
n(Pn � P )[(L� ✓P � ✏(G)) · 1G]

����+
���
p
n(✓̂ � ✓P )

��� · sup
G2G

Pn(G).

By standard Donsker preservation results (van der Vaart and Wellner, 1996, Section
2.10), the function class {(L�✓P�✏(G))·1G | G 2 G} is P -Donsker and hence supG2G

p
n(Pn�

P )[(L� ✓P � ✏(G))1G] = OP (1). Meanwhile, |
p
n(✓̂� ✓P )| · supG2G Pn(G)  |

p
n(✓̂� ✓P )| =

OP (1) by assumption. Thus, this upper bound is OP (1).
Then, applying Slutsky’s lemma, we obtain

✓
Pn[1G]

ŝ(G)

◆
·
p
n · Pn

h⇣
L� ✓̂ � ✏(G)

⌘
1G
i

=
1

s(G)
·
p
n · Pn

h⇣
(L� ✓̂)P [1G]� P [(L� ✓P )1G]

⌘
1G
i
+ oP (1)

=
1

s(G)
·
p
n
⇣
Pn[(L� ✓̂)1G] · P [1G]� P [(L� ✓P )1G] · Pn[1G]

⌘
+ oP (1).
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Our goal is to now prove that the bootstrap analogue to this process is consistent, i.e.,
we must show that this process is indexed by a P -Donsker class. To this end, observe that
we can rewrite the process as

P [1G]

s(G)
·
p
n
⇣
Pn[(L� ✓̂) · 1G]� P [(L� ✓P ) · 1G]

⌘
�
P [(L� ✓P )1G]

s(G)
·
p
n(Pn�P )[1G]+oP (1)

We then linearize the first term by observing that

p
n
⇣
Pn[(L� ✓̂) · 1G]� P [(L� ✓P ) · 1G]

⌘
=

p
n(Pn � P )[L · 1G]� ✓P ·

p
n(Pn � P )[1G]

� P [1G] ·
p
n(✓̂ � ✓P ) +

1
p
n
·
p
n(Pn � P )[1G] ·

p
n(✓̂ � ✓P )

| {z }
oP (1)

.

Replacing this in the previous expansion, we simplify and obtain

p
n(Pn �P )


P [1G]

s(G)
· L · 1G

�
�
p
n(Pn �P )


P [L · 1G]

s(G)
· 1G

�
�
p
n(Pn �P )


P [1G]2

s(G)
·  

�

+ oP (1).

We claim that the three empirical processes in this display are all indexed by Donsker
classes. Using the first process as an example, we observe that {P [1G]/s(G) | G 2 G} is a
universal, uniformly bounded Donsker class, while L · 1G is a P -Donsker class because the
product of a bounded measurable function and a Donsker class is Donsker. The pairwise
product of two uniformly bounded Donsker classes is Donsker. Clearly, {P [1G]/s(G)·L·1G |

G 2 G} is the subset of such a product, so by Theorem 2.10.1 in van der Vaart and Wellner
(1996), the first process is indexed by a Donsker class. Near-identical arguments prove the
last two processes are also P -Donsker. Recall that the Donsker property is preserved under
addition. So, we conclude that

p
n(Pn � P )


P [1G]

s(G)
· L · 1G �

P [L · 1G]

s(G)
· 1G �

P [1G]2

s(G)
·  

�
+ oP (1) (18)

is indexed by a subset of a Donsker class, i.e., a Donsker class.
Via an identical derivation, we also show that the bootstrap process in Algorithm 6,

1
ŝ(G) · Pn(G) · P⇤

n(G) · (✏⇤(G)� ✏̂(G)) is equal to

p
n(P⇤

n � Pn)


P [1G]

s(G)
· L · 1G �

P [L · 1G]

s(G)
· 1G �

P [1G]2

s(G)
·  

�
+ oP (1).

Applying Theorem 11, we conclude that the bootstrap is consistent. Due to the continuous
mapping theorem, we may take a sup over G 2 G and conclude that the process sampled in
Algorithm 6 is asymptotically equivalent to the process stated in the probability of interest,

lim
n!1

P
✓
sup
G2G

⇢
p
n ·

✓
Pn(G)

ŝ(G)

◆
· Pn[(L� ✓̂ � ✏(G)) · 1G]

�
� t⇤ ·

p
n

◆
.
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Last, we must show that t⇤ ·
p
n consistently estimates the (1 � ↵)-quantile of the

supremum of (18). Recall that Lehmann et al. (2005, Lemma 11.2.1(ii)) establishes quantile
consistency whenever the distribution function is continuous and strictly increasing at the
point of interest. Our assumption that L� ✓̂ is non-constant for some non-empty G implies
that the asymptotic variance of

p
n ·

1
s(G) · Pn(G) · P(G) · (✏̂(G)� ✏(G)) is non-zero for some

G. Then, the (1 � ↵)-quantile of the supremized process is strictly greater than 0 and
Theorem 12 implies the desired result.

Completing the proof,

lim
n!1

P (9G 2 G s.t. ✏lb(G) > ✏(G))

= lim
n!1

✓
sup
G2G

⇢
1

ŝ(G)
· Pn(G) · P⇤

n(G) · (✏⇤(G)� ✏̂(G))

�
> t⇤

◆
= ↵.

Boolean certification We next consider Boolean certification, in which we test the null

H0(G) : ✏(G)  ✏.

In Algorithm 7, we define a rescaled variant of Algorithm 3. Recall that we issue a
certificate for G when

✏̂(G) � ✏+
t⇤

Pn(G)
.

Theorem 15 then proves the issued certificates are simultaneously valid with probability
1� ↵.

Theorem 15 Assume that L has finite variance and that L � ✓̂ is non-constant over at
least one non-empty group. Further assume that G has finite VC dimension. Then,

lim
n!1

P(there exists any falsely certified G 2 G)  ↵.

Proof To simplify notation, we will replace 1 {(X,Y ) 2 G} with 1G throughout.
First, we restate the result we need to prove.

lim
n!1

P
 

sup
G2{G:H0(G) holds}

✏̂(G) � ✏+ t⇤ ·
ŝ(G)

Pn(G)

!
 ↵.

Rearranging, we obtain

lim
n!1

P
 

sup
G2{G:H0(G) holds}

✏̂(G) � ✏+ t⇤ ·
ŝ(G)

Pn(G)

!

= lim
n!1

P
 

sup
G2{G:H0(G) holds}

1

ŝ(G)
· Pn(G) · (✏̂(G)� ✏) � t⇤

!
.
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Algorithm 7 Bootstrapping the Boolean certificate critical value (rescaled)

1: Input: Subpopulations G, disparity ✏, holdout set D, level ↵, threshold p⇤, weight w0,
number of bootstrap samples B

2: for b = 1, . . . , B do
3: Let D⇤

b
be a sample with replacement of size n from D;

4: Define P⇤

b
(G) := 1

n

P
(x⇤

i ,y
⇤
i )2D

⇤
b
1 {(x⇤

i
, y⇤

i
) 2 G};

5: Define ✏⇤
b
(G) := 1

P⇤
b (G)·n

P
(x⇤

i ,y
⇤
i )2G

L⇤

i
� ✓̂(D⇤

b
);

6: end for
7: Define the asymptotic variance estimator by

�̂2G := dVar(L | G) + Pn(G)
⇣
dVar( )� 2 · dCov(L , | G)

⌘

wheredVar(·) and dCov(·) correspond to the sample (conditional) variance and covariance;
8: Define ŝ(G) by (9);
9: for b = 1, . . . , B do

10: t(b) = maxG2G

n
1

ŝ(G) · (P
⇤

b
(G) · (✏⇤

b
(G)� ✏)� Pn(G) · (✏̂(G)� ✏))

o
;

11: end for
12: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

Under H0(G), by assumption, P(G) · (✏(G)� ✏)  0, so it follows that

lim
n!1

P
 

sup
G2{G:H0(G) holds}

⇢
1

ŝ(G)
· Pn(G) · (✏̂(G)� ✏)

�
� t⇤

!

 lim
n!1

P
 

sup
G2{G:H0(G) holds}

⇢
1

ŝ(G)
· (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))

�
� t⇤

!

 P
✓
sup
G2G

⇢
1

ŝ(G)
· (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))

�
� t⇤

◆

For B = 1, recall that t⇤ is the (1 � ↵)-quantile of supG2G{(1/ŝ(G)) · (P⇤
n(G) · (✏⇤(G) �

✏) � Pn(G) · (✏̂(G) � ✏))}. We must show that t⇤ is consistent for the (1 � ↵)-quantile of
supG2G{(1/ŝ(G)) · (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))}.

Since we established that 1/ŝ(G) is uniformly consistent for 1/s(G) in the proof of
Theorem 14, we can apply Slutsky’s lemma and replace 1/ŝ(G) with 1

s(G) so long as Pn(G) ·

(✏̂(G)�✏)�P(G) ·(✏(G)�✏) is OP (1). We establish this by showing that it is asymptotically
equivalent to an empirical process indexed by some P -Donsker function class. To this end,
we rewrite

p
n[Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏)] as

p
n(Pn � P )[(L� ✏) · 1G]�

p
n
⇣
✓̂ · Pn[1G]� ✓P · P [1G]

⌘
.
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We can further expand
p
n
⇣
✓̂ · Pn[1G]� ✓P · P [1G]

⌘
to obtain

✓P ·
�p

n(Pn � P )[1G]
�
+ P(G) ·

⇣p
n(✓̂ � ✓P )

⌘
+

1
p
n

�p
n(Pn � P )[1G]

� ⇣p
n(✓̂ � ✓P )

⌘

| {z }
oP (1)

.

Combining these results and applying the asymptotic linearity of
p
n(✓̂ � ✓P ), we can now

linearize
p
n [Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏)] to yield the (asymptotically) equivalent

process,

p
n(Pn � P )[(L� ✏) · 1G]�

p
n(Pn � P )[✓P · 1G]�

p
n(Pn � P )[P(G) ·  ] + oP (1).

Proceeding identically, we can also linearize the bootstrap analogue to this process, i.e.,

p
n(P⇤

n � Pn)[(L � ✏) · 1G] �
p
n(P⇤

n � Pn)[✓P · 1G] �
p
n(P⇤

n � Pn)[P(G) ·  ] + oPn(1).

The three terms are empirical or bootstrap empirical processes, respectively, indexed by the
following function classes:

F1 := {(L� ✏) · 1G | G 2 G} F2 := {✓P · 1G | G 2 G} F3 := {P(G) ·  | G 2 G}.

Applying Lemma 9.9(vi) of Kosorok (2008) with g(x, y) = L � ✏ and F = {1 {x 2 G} :
G 2 G} implies that F1 is VC. Then, our assumption that EP [L2] < 1 implies that H1 is
P -Donsker (Theorem 2.10.20 in van der Vaart and Wellner (1996)). F2 is P -Donsker by
Theorem 10. Last, observe that the uniform entropy integral of F = {P(G) | G 2 G} is
finite. By the same argument as F1, we conclude from Theorem 2.10.20 in van der Vaart
and Wellner (1996) that F3 is P -Donsker.

Since the Donsker property is preserved under pointwise addition (Example 2.10.7 in
van der Vaart and Wellner (1996)) and when taking subsets (Theorem 2.10.1 in van der
Vaart and Wellner (1996)), we conclude that F1+F2+F3 is also P -Donsker. Thus, apply-
ing Slutsky’s lemma and Theorem 11, we have shown that that the bootstrap distribution
p
n [(1/ŝ(G)) · (P⇤

n(G) · (✏⇤(G)� ✏)� Pn(G) · (✏̂(G)� ✏))] consistently estimates the limit-
ing distribution of

p
n [(1/ŝ(G)) · (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))]. Since the sup is

continuous, we can immediately claim by the continuous mapping theorem that

sup
G2G

p
n [(1/ŝ(G)) · (P⇤

n(G) · (✏⇤(G)� ✏)� Pn(G) · (✏̂(G)� ✏))]

consistently estimates its limiting distribution.
To conclude that t⇤ is a valid critical value, we need to prove that the distribution func-

tion of the limiting distribution of supG2G{
p
n [(1/ŝ(G)) · (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))]}

is strictly increasing and continuous at its (1� ↵)-quantile.
The existence of some non-empty G such that L� ✓̂ is non-constant implies this fact. In

particular, this assumption implies that the asymptotic variance of the process evaluated
at G is greater than 0. Thus, the (1� ↵)-quantile of the limiting process is strictly greater
than 0. Then, Theorem 12 yields the desired result.
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Summarizing our argument, we have proven that the asymptotic probability of false
certification can be upper bounded in the following manner,

lim
n!1

P
 

sup
G2{G:H0(G) holds}

✏̂(G) � ✏+ t⇤ ·
ŝ(G)

Pn(G)

!

 lim
n!1

P
✓
sup
G2G

⇢
1

ŝ(G)
· (Pn(G) · (✏̂(G)� ✏)� P(G) · (✏(G)� ✏))

�
� t⇤

◆

= lim
n!1

P
✓
sup
G2G

⇢
1

ŝ(G)
· (P⇤

n(G) · (✏⇤(G)� ✏)� Pn(G) · (✏̂(G)� ✏))

�
� t⇤

◆
= ↵.

Theorem 7 follows immediately from Theorem 15 when ŝ(G) := 1. We remark also that
any looseness in our upper bound of the Type I error disappears if ✏(G) = ✏ for all G. As
alluded to in the main text, this corresponds to the condition under which t⇤ achieves exact
Type I error control.

B.3 Alternative certification goals

Here, we describe how to extend the certification procedures described in the previous
section and the main text to alternative notions of performance disparities.

When constructing upper confidence bounds or certifying ✏(G) < ✏, we simply multiply
t⇤ by �1. So, now ✏ub(G) = ✏̂(G)+t⇤ŝ(G)/Pn(G)2, and we certify when ✏̂(G)  ✏�t⇤/Pn(G).

Observe that the argument for validity of the upper confidence bound / certificate goes
through if we replace the (1 � ↵)-quantile of the sup-process with the ↵-quantile of the
inf-process. The latter, however, is just �1 times the former. Recall that the infimum
of a centered Gaussian process is equal in distribution to �1 times the supremum of that
process.

Next, we consider the problem of constructing confidence intervals. We propose to
bootstrap the absolute process,

sup
G2G

����
1

ŝ(G)
· P(G) · Pn(G) · (✏̂(G)� ✏(G))

���� .

Then, if t⇤ denotes the bootstrap estimate of the (1 � ↵)-quantile of this process, the
confidence set is constructed via


✏̂(G)� t⇤ ·

ŝ(G)

Pn(G)2
, ✏̂(G) + t⇤ ·

ŝ(G)

Pn(G)2

�
.

Last, for the interval certification task, we test the null hypothesis H0(G) : |✏(G)| � ✏.
Equivalently, we test:

H̄0(G) : {✏(G) � ✏}
[

{✏(G)  �✏} .

This is also known as a “bioequivalence” null and it can be tested by running the one-
sided Boolean certification procedures for H0(G) : ✏(G) � ✏ and H0(G) : ✏(G)  �✏ and
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certifying when both are rejected. Formally, observe that we would test the first null at
level ↵ by rejecting when ✏̂(G)  ✏ � t⇤1/Pn(G) and the second null at level ↵ by rejecting
when ✏̂(G) � �✏+ t⇤2/Pn(G). Then, we certify G as satisfying |✏(G)| < ✏ whenever both of
these inequalities simultaneously hold.

Appendix C. Flagging audits

To prove that our flagging procedure is asymptotically valid, we first establish that the
proposed test statistic is asymptotically normal. Recall that ✏̂(G) := |G|

�1P
i2G

Li � ✓̂.
We denote the vector of statistics {✏̂(G)}G2G as ✏̂, and the vector of corresponding true
disparities as ✏.

Proposition 16 Assume that P(G) and Var (L | G) are bounded away from 0 for all G 2 G.
If m = |G| < 1, then

p
n (✏̂� ✏)  Nm (0m,⌃) for some symmetric positive semi-definite

⌃.

Proof Apply the CLT to the asymptotic linear expansion derived in Theorem 13.

For any group Gj 2 G, Theorem 16 implies that the p-values

p1(Gj ; ✏) := �

 p
n (✏̂(Gj)� ✏)p

⌃jj

!
, p2(Gj ; ✏) := 1� �

 p
n (✏̂(Gj) + ✏)p

⌃jj

!
,

p3(Gj) := p1(Gj ;�✏) ^ p2(Gj ;�✏)

are marginally asymptotically valid for the null hypotheses H1(Gj) : ✏(Gj) � ✏, H2(Gj) :
✏(Gj)  �✏, H3(Gj) : |✏(Gj)|  ✏, respectively, i.e., lim supn!1 PHi(pi(Gj)  u)  u.

⌃jj is not known, but by Slutsky’s lemma, we can replace ⌃jj with any consistent esti-
mator. We can compute such an estimator analytically, but below we rely on the bootstrap
to construct such an estimator. In particular, let

s⇤j := Quantile
�
0.5,

p
n |✏⇤(G)� ✏̂(G)|

�
.

Then, Theorem 17 establishes conditions under which s⇤
j
is a consistent estimator of

p
⌃jj .

Lemma 17 Retain the assumptions of Theorem 16. Then, s⇤
j
/��1(3/4)

p
!
p

⌃jj.

Proof Applying the bootstrap delta method and continuous mapping theorem we can
conclude that the bootstrap distribution,

p
n |✏⇤(Gj)� ✏̂(Gj)| consistently estimates the

distribution of
p
n |✏̂(Gj)� ✏(Gj)|. Since the limiting distribution of the latter is continu-

ous and strictly increasing everywhere (Theorem 16), we can apply van der Vaart (2000,
Lemma 5.10) to conclude that the bootstrap estimate of the median absolute deviation is
consistent for the asymptotic median absolute deviation. Then, the result follows by recall-
ing the well-known fact that the median absolute deviation of a Gaussian distribution with
variance �2 is equal to ��1(3/4) · �.
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Theorem 17 thus implies that we can replace
p
⌃jj in the p-value definitions with the

Monte Carlo estimate given by s⇤
j
.

With these results, we can prove Theorem 8 after recalling some definitions and well-
known conditions regarding the validity of the BH procedure.

Definition 18 We say that X has positive regression dependency on a subset I0 (PRDS
on I0) if for any increasing set D and for each i 2 I0, P(X 2 D | Xi = x) is increasing in
x.

Example 1 (Case 3.1 in Benjamini and Yekutieli (2001)) The one-sided Gaussian
p-values obtained by testing H0 : µ  µ⇤ or H0 : µ � µ⇤, using T ⇠ N (µ,⌃) are PRDS on
I0 if ⌃ij � 0 for all i 2 I0 and j 2 [m].

Theorem 19 (Theorem 1.2 in Benjamini and Yekutieli (2001)) If the joint distri-
bution of the test statistics is PRDS on the subset of test statistics corresponding to the m0

true null hypotheses, the BH(↵) procedure controls the FDR at level less than or equal to
m0
m
↵.

For the reader’s convenience, we restate Theorem 8 before completing its proof.

Proposition 20 Assume that P((X,Y ) 2 G) and Var (L(X,Y ) | (X,Y ) 2 G) is bounded
away from 0 for all G 2 G, ✓P is a-priori known, and that one of the following conditions
holds:

(i) {G}G2G are mutually disjoint;

(ii) L takes values in {0, 1}.

If we flag the rejections of the BH(↵) procedure on {p(G)}G2G, then the false discovery rate
is asymptotically controlled at level ↵.

Proof For clearer indexing, we let G = {Gj}
m

j=1. We assume w.l.o.g. that ✓P = 0. Then,
Theorem 16 shows that

p
n {✏̂(Gj)� ✏(Gj)}

m

j=1  N (0m,⌃). The o↵-diagonal entries of ⌃
equal

E [(L� ✏(Gj))(L� ✏(Gk))1 {Gj \Gk}]

P(Gj)P(Gk)
.

Under condition (i), the o↵-diagonal entries are all 0 since the indicator in the numerator
always equals 0.

Consider condition (ii). In this setting, we can rewrite the covariance expression as

(✏(Gj \Gk) (1� ✏(Gj)� ✏(Gk)) + ✏(Gj)✏(Gk))
P(Gj \Gk)

P(Gj)P(Gk)
.

Then, assume for the sake of contradiction that this expression is negative. Then,

0 > ✏(Gj \Gk) (1� ✏(Gj)� ✏(Gk)) + ✏(Gj)✏(Gk)

� 1� ✏(Gj)� ✏(Gk) + ✏(Gj)✏(Gk)

= (1� ✏(Gj))(1� ✏(Gk)).
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But since the last expression is non-negative under condition (ii), we obtain a contradiction
and must conclude that the asymptotic covariance is non-negative.

In both cases, we showed that the asymptotic distribution of these test statistics is a
multivariate Gaussian with non-negative covariance. As a consequence, the one-sided p-
values output by Algorithm 4 are asymptotically PRDS on the set of nulls. Then, applying
the bounded convergence theorem and Theorem 19 yields the desired result.

While we do not have a proof of FDR control when testing the two-sided null, it is widely
speculated that the BH procedure enjoys FDR control in this setting Fithian and Lei (2022).
Moreover, even when the PRDS property does not hold (i.e., outside of the conditions given
in Theorem 8), it is, in practice, quite challenging to obtain substantial violations of FDR
control when applying the BH procedure to asymptotic Gaussian p-values.

Appendix D. Auditing distribution shifts

Before considering the problem of auditing over shifts belonging to the unit ball of an RKHS,
we observe that neither the proof of Theorem 14 nor the proof of Theorem 15 rely on G

being a VC class. Since G is VC, F = {1 {(X,Y ) 2 G} | G 2 G} is a P -Donsker class. This
implies that the proofs employed above are valid even if we replace G with some generic
Donsker function class.

Extending our results to the RKHS setting, however, require some additional work. To
prove that our method for constructing confidence sets on ✏(h) are valid, we must prove
some preliminary results regarding the unit ball of an RKHS.

Lemma 21 Assume that kk(X,X)k1 is finite, and that k(·, x) is continuous. Then, the
unit ball of the RKHS induced by k, which we denote by H1, is a P-Donsker class.

Proof Lemma 4.28 and Lemma 4.33 of Steinwart and Christmann (2008) show that the
assumptions are su�cient to guarantee that H1 is a separable Hilbert space and a subset
of the space of bounded and continuous functions. The conclusion then follows from Theo-
rem 1.1 of Marcus (1985) with T chosen to be the identity. The identity mapping is trivially
linear, and also meets the assumption of continuity in the sup-norm because the former is
dominated by the RKHS norm.

Lemma 22 Retain the assumptions of Theorem 21. Then, for uniformly bounded functions
L and M , H̃1 := {P [L · h] · h | h 2 H1} is a P -Donsker class.

Proof First, observe that P [L · h] is uniformly bounded for all h 2 H1:

P [L · h]  kLk1kk(X,X)k1khkH  kLk1kk(X,X)k1 =: C.

Thus, H̃1 is a subset of HC , i.e., it is a dilation of H1. Since C · H1 is P -Donsker (The-
orem 2.10.6 in van der Vaart and Wellner (1996)) and any subset of a P -Donsker class is
P -Donsker (Theorem 2.10.1 in van der Vaart and Wellner (1996)), we conclude that H̃1 is
P -Donsker.
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Here we generalize the main theorem to include disparities that are defined relative to
an estimated threshold ✓̂; this threshold is assumed to satisfy the asymptotic linearity and
bootstrap consistency assumptions stated in Appendix B.2. Algorithm 8modifies Algorithm 5

so that the bootstrap accounts for estimation error in ✓̂.

Algorithm 8 Bootstrapping the RKHS confidence set critical value with estimated thresh-
old
1: Input: Kernel k, holdout set D, level ↵, bootstrap samples B
2: Define L := {L(f(xi), yi)}ni=1;
3: Define K := {k(xi, xj)}ni,j=1;
4: for b = 1, . . . , B do
5: Sample w ⇠ Mult

�
n; 1

n
, . . . , 1

n

�
;

6: Estimate bootstrap threshold deviation t = 1
n

P
n

i=1(wi � 1) ·  i;
7: A = 1

n2

�
(w � L)1> �wL>

� t · In
�
;

8: t(b) = �max

⇣
K1/2

⇣
A+A>

2

⌘
K1/2

⌘
;

9: end for
10: Return: t⇤ = Quantile(1� ↵; {t(b)}B

b=1)

Lemma 23 For B = 1, the t⇤ output by Algorithm 8 equals the (1� ↵)-quantile of

sup
h2H1

(P⇤

n � Pn)[Pn[h] · L · h� Pn[L · h] · h� Pn[h]
2
·  ].

Proof First, note that we can rewrite the process of interest using a multinomial variable,

sup
h2H1

Pn[W · (L · Pn[h]� Pn[L · h])h]� Pn[h]
2
· Pn[(W � 1) ·  ],

for W ⇠ Mult(n, 1/n).
We can rewrite the process in terms of inner products between the unknown function

h 2 H and the kernel function,

sup
h2H1

(hPn[W · L · k(X, ·)], hihPn[k(X, ·)], hi � hPn[L · k(X, ·)], hihPn[W · k(X, ·)], hi)

� Pn[(W � 1) ·  ]hPn[k(X, ·)], hi2.

Since we know that the optimal h⇤ must be of the form
P

n

i=1 ↵kk(·, xi) (recall the direct
sum decomposition of any RKHS), we can rewrite the above supremum as

sup
↵:↵>K↵1

1

n2

⇣
↵>K(w � L)1>K↵� ↵>KwL>K↵� t · ↵TKK↵

⌘
,

whereK = {k(xi, xj)}ni,j=1, w = (W1, . . . ,Wn)>, L = (L1, . . . , Ln)>, and t = Pn[(W�1)· ].
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Letting A = 1
n2 [(w � L)1> �wL>

� tI], we obtain the equivalent objectives,

sup
↵:↵>K↵1

1

2

⇣
↵>K

⇣
A+A>

⌘
K↵
⌘
= sup

�:k�k21

1

2

⇣
�>K1/2

⇣
A+A>

⌘
K1/2�

⌘

=
1

2
�max

⇣
K1/2

⇣
A+A>

⌘
K1/2

⌘
.

We remark that if ✓P is not estimated, t = 0 and the identity matrix in the definition
of A can be ignored. This greatly simplifies the computation required for the maximum
eigenvalue, since A+AT is now low rank. As a consequence, we generally do not recommend
using RKHS-based confidence sets for performance metrics that are defined relative to an
unknown threshold.

With these preliminary results in hand, we can now prove our main theorem regarding
RKHS confidence set validity. Given t⇤ output by Algorithm 8, recall that we obtain a lower
confidence bound by setting

✏lb(h) := ✏̂(h)�
t⇤

�
1
n

P
n

i=1 h(xi)
�2 .

For notational convenience, we let H+
1 denote the set of all non-negative functions belonging

to H1.

Theorem 24 Assume that Var(L) > 0, kLk1 and kk(X,X)k1 are finite, k(·, x) is con-
tinuous, and that k(·, ·) is a positive definite kernel. Then,

lim
n!1

P
�
✏lb(h)  ✏(h) for all h 2 H

+
1

�
� 1� ↵.

Proof The desired result is equivalent to

lim
n!1

P
�
9h 2 H

+
1 s.t. (Pn[h] · Pn[h] · (✏̂(h)� ✏(h)) > t⇤

�
 ↵.

Multiplying through by Pn[h], the process on the LHS can be rewritten as

Pn[h] · Pn[(L� ✓̂ � ✏(h)) · h].

We claim that Pn[h] is uniformly consistent for P[h]. To see this, first recall that The-
orem 21 implies that H1 is P -Donsker. The Donsker property is preserved for any subset,
so if H1 is P -Donsker, then so is H

+
1 . Uniform consistency follows from P -Donsker =)

P -Glivenko-Cantelli.
To apply Slutsky’s lemma and replace Pn[h] with P[h], we must also show that

p
n ·

Pn[(L� ✓̂ � ✏(h)) · h] is OP (1). To this end, observe that
����� sup
h2H

+
1

p
n · Pn[(L� ✓̂ � ✏(h)) · h]

����� 

����� sup
h2H

+
1

p
n(Pn � P )[(L� ✓P � ✏(h)) · h]

�����

+

����� sup
h2H

+
1

p
n(Pn � P )[ ] · Pn[h]

�����
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We can show that both of the terms on the RHS are OP (1). First, we claim that H̃1 =
{(L� ✏(h))h | h 2 H

+
1 } is P -Donsker. First, observe that

H̃1 ✓ {L · h | h 2 H
+
1 }� {✏(h) · h | h 2 H

+
1 }.

Recalling that any subset of a P -Donsker class is also P -Donsker (Theorem 2.10.1 in van der
Vaart and Wellner (1996)), we need to show that the RHS of this display is P -Donsker. Each
function class on the RHS is P -Donsker. The first is because kLk1 < 1 (Example 2.10.10
in van der Vaart and Wellner (1996)). Then, the second is P -Donsker because it is a subset
of the elementwise product of two uniformly bounded P -Donsker classes (Example 2.10.8
in van der Vaart and Wellner (1996)). Last, elementwise addition of two P -Donsker classes
yields a P -Donsker class (Example 2.10.7 in van der Vaart and Wellner (1996)). Thus, we
conclude that

p
n(Pn � P )[(L� ✏(h))h] = OP (1). We can upper bound the second term by

|
p
n(Pn � P )[ ]|, so this term is also OP (1).
We now apply Slutsky’s lemma and obtain:

P [h] ·
p
n · Pn[(L� ✓̂ � ✏(h))h] =

p
n · (Pn[{(L� ✓̂) · P [h]� P [(L� ✓P ) · h]}h])

= P [h] ·
p
n(Pn[(L� ✓̂) · h]� P [(L� ✓P ) · h])

� P [(L� ✓P ) · h] ·
p
n(Pn � P )[h]

Next, we show that this process is P -Donsker and converges to a tight Gaussian limit.
To do so, we linearize the first term of the process:

P [h] ·
p
n(Pn[(L� ✓̂) · h]� P [(L� ✓P ) · h]) = P [h] ·

p
n(Pn � P )[L · h]

� P [h] ·
p
n(✓̂ · Pn[h]� ✓P · P [h]))

= P [h] ·
p
n(Pn � P )[L · h]

� P [h] · ✓P
p
n(Pn � P )[h]

� P [h]2 ·
p
n(Pn � P )[ ]

+
P [h]
p
n

⇣p
n(✓̂ � ✓P ) ·

p
n(Pn � P )[h]

⌘

| {z }
oP (1)

.

Combining both terms, we conclude that the process is equivalent to

p
n(Pn � P )[P [h] · L · h]�

p
n(Pn � P )[P [L · h] · h]�

p
n(Pn � P )[P [h]2 ·  ]

=
p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ]

Observe that the function class indexing this process can be written as a subset of an
elementwise sum of three classes,

{P [h] · L · h� P [L · h] · h� P [h]2 ·  | h 2 H
+
1 }

✓ {P [h] · L · h | h 2 H
+
1 }� {P [L · h] · h | h 2 H

+
1 }� {P [h]2 ·  | h 2 H

+
1 },

each of which is Donsker.
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We check the first class is Donsker as an example; the arguments for the other two proofs
follow identically. Note that {L · h | h 2 H

+
1 } is a P -Donsker class because L is uniformly

bounded and {h | h 2 H1} is a uniformly bounded Donsker class (Example 2.10.10 in
van der Vaart and Wellner (1996)). Then, {P [h] ·L ·h | h 2 H

+
1 } is a Donsker class because

the subset of an elementwise product of two uniformly bounded Donsker classes is a Donsker
class (Example 2.10.8 in van der Vaart and Wellner (1996)).

Thus, by the definition of a Donsker class and the continuous mapping theorem,

sup
h2H

+
1

p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ]

converges to a tight limit.
Then, since H

+
1 ✓ H1, we can upper bound

lim
n!1

P
 

sup
h2H

+
1

p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ] > t⇤ ·

p
n

!

 lim
n!1

P
✓
sup
h2H1

p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ] > t⇤ ·

p
n

◆

Because this function class is P -Donsker, we also know that the analogous bootstrap
process (replacing Pn with P⇤

n and P with Pn) is consistent for

sup
h2H1

p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ].

Thus, we conclude by Theorem 11 and the continuous mapping theorem that the supre-
mum of the bootstrap process sampled in Algorithm 8 is consistent for the distribution of
the supremum of the limit process.

Last, we need to show that the bootstrap quantile t⇤ is a consistent estimator of the true
limiting quantile. We establish consistency of the bootstrap quantile by verifying that the
limiting distribution has a continuous and strictly increasing CDF at its (1 � ↵)-quantile
(Lehmann et al., 2005, Lemma 11.2.1(ii)). The variance assumption on L guarantees that
for at least some h 2 H, the limiting distribution of

p
n(Pn � P )[P [h] · L · h� P [L · h] · h� P [h]2 ·  ]

is a non-trivial Gaussian, which then implies the desired CDF property. Theorem 12 implies
consistency of t⇤ and, thus, our desired claim regarding simultaneous coverage.

We might adapt the bootstrap process for the RKHS so that the confidence bound width
scales more naturally with the “complexity” of the shift chosen. Here we do not consider
defining Wald-style confidence bounds, but rather simply aim to adjust the process so that
the confidence bound width scales more naturally with the “complexity” of the queried
shift. For example, the current bound scales as

✏lb(h) = ✏̂(h)�
C

p
n · Pn[h]2

,
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while we might wish the bound to scale as

✏lb(h) = ✏̂(h)�
C

p
ne↵

where ne↵ quantifies the “e↵ective sample size” of the reweighted metric.
We motivate our choice of ne↵ = (

P
i
h(xi))2/

P
i
h(xi)2 by observing that the variance

of (
P

n

i=1 zi · h(xi))/(
P

n

i=1 h(xi)) for zi
iid
⇠ Bern(0.5) scales as 1/

p
ne↵.

To motivate our choice of ŝ(h), observe that rescaling the process by 1/ŝ(h) yields a
bound of the form

✏lb(h) = ✏̂(h)� C
ŝ(h)

Pn[h]2 ·
p
n
.

So, if we solve for ŝ(·) that yields the desired
p
ne↵ denominator, we obtain |Pn[h]| ·

p
Pn[h2].

Truncating to ensure uniform consistency, we define

ŝ(h) := max
⇣
|Pn[h]| ·

p
Pn[h2], h⇤

⌘
,

for some threshold h⇤. Unlike p⇤ in (9), note that h⇤ is not interpretable.
Besides the lack of interpretability, the rescaled RKHS process can no longer be e�-

ciently bootstrapped. Even if we assume that ✓P is known, we must now compute in line 8
of Algorithm 8,

t(b) = sup
h2H1

Pb
n[L · h] · Pn[h]� Pn[L · h] · Pb

n[h]

max
⇣
|Pn[h]| ·

p
Pn[h2], h⇤

⌘ .

While one might hope to mimic our previous approach and reduce this computation to some
eigenvalue problem, applying the finite-dimensional representation of the RKHS function
only yields

sup
�:k�k21

�
�>K1/2

�
A+A>

�
K1/2�

�

2 ·max
⇣
|1>K1/2�| ·

p
�>K�, h⇤

⌘ .

The
p
�>K� term in the denominator makes optimizing � extremely challenging. Since

K is full-rank for a positive definite kernel, we cannot rely on any low-rank structure in A
to simplify this problem. At best, a rank-m approximation to K yields an intractable (and
inaccurate) optimization problem over the surface of a (m + 4)-dimensional hypersphere.
If we simply drop the

p
�>K� term from ŝ(G), the bootstrap step can be reduced to an

optimization problem over the surface of a 4-dimensional hypersphere. We can solve that
problem via a brute-force search, but, in practice, we find that the resulting confidence
bounds are not improved. As a consequence, we recommend against rescaling the RKHS
process.
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