
4330 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Tractable Evaluation of Stein’s Unbiased Risk
Estimate With Convex Regularizers

Parth Nobel , Emmanuel Candès , Fellow, IEEE, and Stephen Boyd , Life Fellow, IEEE

Abstract—Stein’s unbiased risk estimate (SURE) gives an
unbiased estimate of the ℓ2 risk of any estimator of the mean
of a Gaussian random vector. We focus here on the case
when the estimator minimizes a quadratic loss term plus a
convex regularizer. For these estimators SURE can be evaluated
analytically for a few special cases, and generically using recently
developed general purpose methods for differentiating through
convex optimization problems; these generic methods however do
not scale to large problems. In this article we describe methods
for evaluating SURE that handle a wide class of estimators, and
also scale to large problem sizes.

Index Terms—Stein’s unbiased risk estimate, SURE, regular-
ized least squares, hyper-parameter selection, trace estimation,
Hutch++, unrolling, matrix completion, robust PCA.

I. INTRODUCTION AND BACKGROUND

A. Stein’s Unbiased Risk Estimate (SURE)

WE consider y ∼ N (µ,σ2I) where µ ∈ Rd and I is the
d × d identity matrix. We assume σ is known and that

we are estimating µ. We are analyzing estimators µ̂ : Rd → Rd

which estimate µ given a single sample y. The ℓ2 risk of an
estimator µ̂ is R(µ̂) = E ∥µ̂(y) − µ∥2

2.
In 1981, Charles Stein introduced in [1] what is now called

Stein’s unbiased risk estimate,

SURE(µ̂, y) = −dσ2 + ∥µ̂(y) − y∥2
2 + 2σ2∇·µ̂(y), (1)

where ∇·µ̂(y) =
∑d

i=1
∂µ̂i

∂yi
(y) is the divergence of µ̂ at y. The

divergence can also be expressed as ∇·µ̂(y) = Tr(Dµ̂(y)),
where Dµ̂(y) is the d × d Jacobian or derivative, evaluated at
y, and Tr denotes the trace of a matrix. Stein showed that
the SURE statistic is an unbiased estimate of the risk in the

Manuscript received 29 November 2022; revised 11 May 2023; accepted
28 September 2023. Date of publication 12 October 2023; date of current
version 21 November 2023. The work of Parth Nobel was supported by the
National Science Foundation Graduate Research Fellowship Program under
Grant DGE-1656518. The work of Emmanuel Candès was supported in part
by the Office of Naval Research under Grant N00014-20-1-2157, in part
by the National Science Foundation under Grant DMS-2032014, in part
by the Simons Foundation under Award 814641, and in part by the ARO
under Grant 2003514594. The work of Stephen Boyd was supported in part
by ACCESS (AI Chip Center for Emerging Smart Systems), sponsored by
InnoHKfunding, Hong Kong SAR, and in part the by the Office of Naval
Research under Grant N00014-22-1-2121. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Yao
Xie. (Corresponding author: Parth Nobel.)

Parth Nobel and Stephen Boyd are with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305 USA (e-mail: ptnobel@
stanford.edu).

Emmanuel Candès is with the Department of Statistics, Stanford University,
Stanford, CA 94305 USA.

Digital Object Identifier 10.1109/TSP.2023.3323046

sense that E SURE(µ̂, y) = R(µ̂). The challenge in evaluating
SURE(µ̂, y) is evaluating the divergence ∇·µ̂(y).

In (1), it is assumed that the estimator µ̂ is weakly differen-
tiable and satisfies some integrability conditions. If this is not
the case, SURE is not defined; we discuss this in more detail
in Section I-G.

B. Convex Regularized Regression

In this article we consider the setting where µ is a known
linear function of unknown parameters β ∈ B, where β can be
a vector, a matrix, or tuples of vectors and matrices, and B is
the vector space of all such parameters, with dimension p. We
will identify B with Rp, using some fixed ordering of the entries
of the vectors and matrices that comprise b ∈ B. For b ∈ B, we
define ∥b∥2

2 as the sum of the squares of the entries of b. In
other words, we use ∥b∥2

2 to mean the square of the ℓ2 norm
of b, interpreted as an element of Rp. For example, if b is a
matrix, ∥b∥2

2 denotes its Frobenius norm, and not its induced ℓ2
norm/maximum singular value. When b is a matrix and we wish
to refer to its induced ℓ2 norm, we use the notation σmax(b).

We take µ = Aβ, where A : B → Rd is linear. Using our
identification of B and Rp, we can represent A explicitly as
a d × p matrix. But for purposes of computing, it is more
convenient to keep it abstract. In the sequel we will denote the
adjoint of the mapping as A∗.

We consider estimators given by convex regularized regres-
sion, i.e., of the form

µ̂(y) = A argmin
b

(
1

2
∥Ab − y∥2

2 + r(b)

)
, (2)

where r : B → R ∪ {∞} is a convex regularizer. The data in
this problem are the linear mapping A, the regularizer r, and the
observed sample y. We will denote the argmin in (2) as β̂(y) so
that µ̂(y) = Aβ̂(y). Many common estimators have this form.
For some of these, there are closed form expressions for either
µ̂(y) or SURE.

C. This Article

In this article we introduce an algorithm to tractably compute
SURE for convex regularized regression. Our algorithm, which
we call SURE-CR, requires no direct access to the regularizer,
only the ability to evaluate and differentiate its proximal op-
erator, i.e., a proximal operator oracle. SURE-CR requires no
knowledge of A beyond the ability to evaluate b *→ Ab and

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8228-7441
https://orcid.org/0000-0001-9234-924X
https://orcid.org/0000-0001-8353-6000
mailto:ptnobel@stanford.edu
mailto:ptnobel@stanford.edu

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4331

v *→ A∗v, i.e., a forward-adjoint oracle for A and A∗. SURE-
CR easily scales to problems with numbers of parameters in
the millions, where forming or storing the matrix Dµ̂(y) would
be impossible.

D. Classical Examples of Convex Regularized Regression

a) Ordinary least squares: In ordinary least squares, A is
a full-rank data matrix X ∈ Rd×p and

µ̂(y) = X argmin
b

1

2
∥Xb − y∥2

2 = X(X∗X)−1X∗y.

With the orthogonal projection matrix H defined as H =
X(X∗X)−1X∗, we have

SURE(µ̂, y) = (2p − d)σ2 + ∥Hy − y∥2
2.

b) Ridge regression: In ridge regression, A is a potentially
rank-deficient data matrix, and

µ̂(y) = X argmin
b

(
1

2
∥Xb − y∥2

2 + λ∥b∥2
2

)

= X(X∗X + λI)−1X∗y,

where λ > 0. With H = X(X∗X + λI)−1X∗, we have

SURE(µ̂, y) = −dσ2 + ∥Hy − y∥2
2 + 2σ2 TrH.

c) LASSO: In LASSO, A is again a data matrix, and

µ̂(y) = X argmin
b

(
1

2
∥Xb − y∥2

2 + λ∥b∥1

)
,

where λ > 0. There is no analytical formula for µ̂(y), but it
is readily evaluated numerically. In the usual case where the
LASSO solution is unique, SURE takes the form

SURE(µ̂, y) = −dσ2 + ∥Xβ̂(y) − y∥2
2 + 2σ2 card β̂(y),

where card(·) is the number of nonzero entries [2].
The function µ̂ is non-differentiable on a set of Lebesgue

measure 0. Therefore, the random data y is almost surely at
a differentiable point of µ̂. Specifically, one consequence of
[3, Lemma 3] is that µ̂ is non-differentiable only on the set⋃p

i=1{z : |(XT z)i| = λ}.

E. Matrix Estimators

We now describe a few examples where A is not a data
matrix, and except for the first example, there are no known
expressions for SURE.

a) Singular value thresholding: The first example is
singular value thresholding, where y and β are matrices in
B = Rm×n and

µ̂(y) = argmin
b

(
1

2
∥b − y∥2

F + λ∥b∥∗
)

,

where λ > 0 and ∥ · ∥∗ is the nuclear norm, i.e., the dual of
the spectral norm, the sum of the singular values of b. Here we
take A to be the identity operator in our generic formulation.
The estimator µ̂ can be expressed analytically as singular value
thresholding, i.e., µ̂(y) = UF (Σ)V ∗, where y = UΣV ∗ is the
singular value decomposition of y, and F (Σ) is the diagonal
matrix with F (Σ)ii = max{Σii − λ, 0}. A closed form expres-
sion for SURE in this case is given in [4].

b) Matrix completion: Our second example is matrix
completion, which extends singular value thresholding to the
setting where only some entries of a matrix are observed. As
in singular value thresholding, we have β ∈ B = Rm×n. In
matrix completion, A : B → Rd is a selection operator, with d
the number of entries of β that are being observed (hence, the
observation µ is a vector containing the observed entries of the
matrix). (A selection operator is one where each entry of Ab is
an entry of b.) The estimator is

µ̂(y) = A argmin
b

(
1

2
∥Ab − y∥2

2 + λ∥b∥∗
)

,

where λ > 0. Unlike singular value thresholding, there is no
known analytical expression for µ̂(y), but it is readily evaluated.
Also, there is no known closed-form expression for SURE for
matrix completion which can be tractably evaluated.

For future use we note that β̂(y) = 0 if and only if

λ≥ λmax = σmax(A∗y), (3)

where A∗y is a matrix which satisfies AA∗y = y and which has
all entries not uniquely determined by that equation equal to 0.

c) Robust PCA: Our final example is robust PCA, where

b = (L, S) ∈ Rm×n × Rm×n

and A(L, S) = L + S. For completeness, we note that A∗V =
(V, V) where V is any matrix. The estimator is given by

µ̂(y) = A argmin
L, S

(
1

2
∥A(L, S) − y∥2

F + λ∥L∥∗ + γ∥S∥1

)
,

where λ > 0 and γ > 0. There is no known closed-form expres-
sion for µ̂(y), but it is readily evaluated. There is no known
closed-form expression for SURE.

Here too we can determine the values of λ and γ for which
the optimal solution obeys β̂(y) = 0. We have β̂(y) = 0 if and
only if

λ≥ λmax = σmax(y) and γ ≥ γmax = ∥y∥∞, (4)

where ∥y∥∞ = maxi,j |yij |. We are not aware of this result
appearing in the literature, so we give a short derivation here.
The necessary and sufficient optimality condition for L and
S is

L + S − y + λ∂∥L∥∗ ∋ 0, L + S − y + γ∂∥S∥1 ∋ 0,

where ∂ denotes the subdifferential. Applying this to L = S = 0
we have that L = S = 0 is optimal if and only if

y ∈ λ∂∥0∥∗, y ∈ γ∂∥0∥1.

Using the fact that the subdifferential of a norm at zero is the
unit ball of the dual norm, we can write this as (4).

F. Algorithms for Convex Regularized Regression

Several algorithms for evaluating the estimator (2) access the
data A and r in the following restricted way: the linear operator
A is accessed only through its forward and adjoint oracle. This
means we can evaluate Ab for any b ∈ B, and A∗z for any z ∈
Rd, where A∗ : Rd → B is the adjoint of A. This allows us to

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

4332 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

handle problems without forming or storing an explicit matrix
representation of A.

The regularizer is accessed only via its proximal operator
proxηr : B → B, given by

proxηr(v) = argmin
b

(
ηr(b) +

1

2
∥b − v∥2

2

)
,

where v, b ∈ B and η is a positive scalar that can be interpreted
(in the context of algorithms) as a step length. Thus our access to
the regularizer is via its proximal operator, i.e., we can evaluate
proxηr(v) for any v. The proximal operators of many common
regularizers are known and readily computed [5], [6], [7], [8].

As examples, in LASSO, r(b) = λ∥b∥1, and its proximal
operator is given elementwise by

(proxηr(v))i =

⎧
⎪⎨

⎪⎩

vi − ηλ if vi > ηλ

−vi + ηλ if vi < ηλ

0 else

.

This function is known as soft-thresholding and we denote
it Tηλ.

In matrix completion, r(b) = λ∥b∥∗ and proxηr(v) is given
by singular value thresholding with regularization parameter
ηλ. In robust PCA, r((L, S)) = λ∥L∥∗ + γ∥S∥1 is separable
with respect to L and S. Therefore,

proxηr((L, S)) = argmin
L′,S′

(
η(λ∥L′∥∗ + γ∥S′∥1)

+
1

2
∥(L′, S′) − (L, S)∥2

2

)

= argmin
L′,S′

(
ηλ∥L′∥∗ + ηγ∥S′∥1

+
1

2
∥L′ − L∥2

2 +
1

2
∥S′ − S∥2

2

)

=

(
argmin

L′

(
ηλ∥L′∥∗ +

1

2
∥L′ − L∥2

2

)
,

argmin
S′

(
ηγ∥S′∥1 +

1

2
∥S′ − S∥2

2

))

=
(
proxη λ∥·∥∗(L),proxη γ∥·∥1

(S)
)

.

These two proximal operators are exactly those in LASSO and
matrix completion.

We now mention three algorithms that only require oracle
access to A, A∗, and proxηr(·).

a) ISTA: The proximal gradient method (also known as
ISTA) [5], [8], [9] consists of the iterations

bk+1 = proxηr

(
bk − ηA∗ (Abk − y

))
.

The algorithm itself requires only multiplication by A and A∗.
The step length η must satisfy η ≤ 2/σmax(A) to guarantee
convergence [8, Section 4.2]; here, σmax(A) is the induced ℓ2
norm, which can be computed by a power algorithm that only
uses multiplication by A and A∗. For our purposes, ISTA can
be initialized with any vector which is selected independently
of y, and we shall require that the Jacobian of b1 with respect
to y always be the zero matrix.

b) FISTA: The accelerated proximal gradient method (also
known as FISTA) [5], [8], [9] consists of adding a momentum
term to the proximal gradient method to obtain the iterations

τk+1 =
1 +

√
1 + 4 (τk)2

2

bk+1/2 = bk +
τk − 1

τk+1

(
bk − bk−1

)

bk+1 = proxηr

(
bk+1/2 − ηA∗

(
Abk+1/2 − y

))
,

where k is the iteration counter and τ1 = 1. The algorithm
itself requires only multiplication by A and A∗. The step
length η must satisfy η ≤ 1/σmax(A) to guarantee convergence
[8, Section 4.3]. It is also possible to use τk = k+2

2 [5, Remark
10.35], as we do in the sequel. For our purposes, FISTA can
be initialized with any vector b1 which is selected independent
of y, i.e., we require that the Jacobian of b1 with respect to y
always be the zero matrix. FISTA is almost always preferable
to ISTA.

c) ADMM: The third algorithm we mention is the al-
ternating direction method of multipliers (ADMM) [10], with
iterations

bk+1 = proxηr(z
k − uk)

zk+1 = (ηA∗A + I)−1(bk+1 + uk + ηA∗y)

uk+1 = uk + bk+1 − zk+1,

where uk, zk ∈ B. For ADMM, the parameter η can take any
positive value. To compute the update step for zk+1 we need to
solve a positive-definite system of equations by only accessing
A∗ and A. There are many methods to do this, for example,
conjugate-gradient (CG) type methods [11], [12], [13].

For all of these algorithms, bk converges to a solution of
(2). There are many other algorithms for evaluating these es-
timators; see, e.g., [5], [14], [15], [16], [17]. The methods for
computing SURE we describe below will work with most of
these as well.

G. Weak Differentiability of Convex Regularized Regression

For SURE to be an unbiased estimate of risk, the estimator
µ̂ must be weakly differentiable [18, Section 6] and obey some
integrability conditions [1]. For our purpose, it is sufficient to
show that µ̂ is Lipschitz continuous [4, Lemma III.2].

We will now show that µ̂ is Lipschitz if r is a closed con-
vex proper function. The coefficient estimate β̂(y) minimizes
r(b) + 1

2∥Ab − y∥2
2, and so by [19, Theorem 3.1.23], we have

for all w,

r(w) ≥ r(β̂(y)) + ⟨A∗y − A∗Aβ̂(y) | w − β̂(y)⟩
= r(β̂(y)) + ⟨y − Aβ̂(y) | Aw − Aβ̂(y)⟩.

Evaluating this at w = β̂(ỹ) gives

r(β̂(ỹ)) ≥ r(β̂(y)) + ⟨y − Aβ̂(y) | Aβ̂(ỹ) − Aβ̂(y)⟩,

and switching the roles of y and ỹ, we obtain

r(β̂(y)) ≥ r(β̂(ỹ)) + ⟨ỹ − Aβ̂(ỹ) | Aβ̂(y) − Aβ̂(ỹ)⟩.

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4333

Adding these two inequalities yields

0 ≥ ⟨y − Aβ̂(y) | Aβ̂(ỹ) − Aβ̂(y)⟩
+ ⟨ỹ − Aβ̂(ỹ) | Aβ̂(y) − Aβ̂(ỹ)⟩

= ⟨y − µ̂(y) − ỹ + µ̂(ỹ) | µ̂(ỹ) − µ̂(y)⟩
= ⟨y − ỹ | µ̂(ỹ) − µ̂(y)⟩ + ∥µ̂(ỹ) − µ̂(y)∥2

2.

Re-arranging and using the Cauchy-Schwartz inequality gives

∥µ̂(ỹ) − µ̂(y)∥2
2 ≤ ⟨ỹ − y | µ̂(ỹ) − µ̂(y)⟩
≤ ∥ỹ − y∥2∥µ̂(ỹ) − µ̂(y)∥2,

eliminating a factor of ∥µ̂(ỹ) − µ̂(y)∥2 shows that µ̂ is
1-Lipschitz.

II. SURE-CR

A. Randomized Trace Estimation

In this section we describe methods for estimating the trace
of a d × d matrix M , that access M only via an oracle that eval-
uates its adjoint, v *→ M∗v. We refer to this oracle as vector-
matrix oracle, since it evaluates (the transpose of) v∗M . We
will apply this to the specific matrix M = Dµ̂(y) to evaluate
the divergence term in SURE.

The naïve approach is to use the oracle to evaluate M∗ei,
where ei is the ith unit vector, for i = 1, . . . , d, whereupon we
can readily evaluate

TrM =
d∑

i=1

e∗i (M
∗ei).

When d is very large, this is slow. It also evidently involves
much wasted computation, since we end up computing all d2

entries of M , only to sum the d diagonal ones.
Randomized methods can be used to estimate TrM using

far fewer than d evaluations of the adjoint mapping. These
methods are based on the simple observation that if the random
variable Z ∈ Rd satisfies EZ = 0 and EZZ∗ = I , then we
have EZ∗MZ = TrM . To approximate this we compute m
independent samples of Z, z1, . . . , zm, and take the empirical
mean as our estimate,

TrM ≈ 1

m

m∑

i=1

z∗i (M∗zi),

which is unbiased. In [20], Hutchinson showed that the variance
of the error in this approximation is minimized if the Zi’s are
i.i.d. random variables taking values ±1, each with probability
1/2, which is known as the Rademacher distribution.

Improvements on this basic randomized method were re-
cently suggested by Meyer, Musco, Musco, and Woodruff in
[21]. They proposed Hutch++, which uses a low-rank approx-
imation of the matrix to project some queries away from large
singular values of the matrix. Hutch++ is also an unbiased
estimator of the trace, and consistently produces a good estimate
of the trace using fewer queries to the vector-matrix oracle than
the basic randomized method. Hutch++’s computation takes
part in three phases, each of which requires an equal number of
calls to the vector-matrix oracle, so the total number of queries

is a multiple of 3. In the first phase, Hutch++ sketches the
matrix; i.e., it multiplies M with a tall rectangular matrix whose
entries are i.i.d. Rademacher random variables, and computes
an orthogonalization of that matrix product, which is an esti-
mate of the dominant dimensions of the matrix. In the second
phase, it computes the exact trace of M projected onto the
dominant dimensions found via the sketch. In the third phase, it
runs the Hutchinson estimator on M projected away from those
dominant dimensions.

In our method for evaluating SURE, we found that 34 queries
per Hutch++ phase, for a total of 102 vector-matrix oracle calls,
consistently produced high quality estimates of the trace. For
small problems, i.e., those of size less than or equal to 102, we
exactly compute the trace without any randomization.

Subsequent works have developed alternative trace estima-
tion algorithms [22], [23].

B. Vector-Jacobian Oracles

In this section we describe methods for computing the ad-
joint oracle v *→ (Dµ̂(y))∗ v. Using µ̂(y) = Aβ̂(y), we have
Dµ̂(y) = ADβ̂(y) and, therefore,

(Dµ̂(y))∗ v =
(
Dβ̂(y)

)∗
(A∗v).

So it suffices to evaluate the mapping u *→
(
Dβ̂(y)

)∗
u.

Roughly speaking, we need to differentiate through the solution
of the optimization problem (2), i.e., the mapping from the data
y to the parameter estimate β̂(y).

a) Differentiability: In many cases µ̂ is not differen-
tiable. However in Section I-G we showed that µ̂ is Lipschitz;
by applying Rademacher’s theorem, we know that µ̂ is a.e.-
differentiable under the Lebesgue measure, and since y has a
Gaussian distribution µ̂ is almost surely differentiable at y [18,
Section 3.1.2].

b) Generic methods: Some recent work shows how to
differentiate through the solution of some convex optimization
problems (when the mapping is differentiable), for example [24]
for quadratic programs (QPs) and [25] for cone programs. These
methods in turn have been integrated into software frameworks
for automatic differentiation such as PyTorch [26] and Tensor-
Flow [27], [28]. Such libraries include CVXPYlayers, diffcp,
and OPTNET [24], [25], [29]. All of these give methods for
evaluating u *→ Dβ̂(y)∗u, without forming the matrix Dβ̂(y).
These generic methods work well for small problems and some
medium-sized problems, but they do not scale to large scale
problems. At non-differentiable points, these methods compute
a heuristic quantity [30, Section 14].

c) Differentiating through an iterative solver: Another
approach to differentiating through a convex problem relies on
a solver or iterative solution algorithm, such as those described
in Section I-F. Existing work differentiates through proximal
operators to use them as non-linear activations in neural net-
works [31], [32], in this work, we differentiate through iterative
optimization algorithms to approximate differentiating the so-
lution map. Here we view the iterative algorithm as a sequence

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

4334 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

of mappings, i.e., we view our iterative algorithm as applying
an operator F k at each iteration such that

bk+1, Sk+1 = F k(bk, Sk, y)

where Sk is any ancillary state in the algorithm (e.g., in FISTA
Sk = bk−1 and in ADMM Sk = (zk, uk)). Suppose it takes
ℓ iterations to converge to a reasonable tolerance, so µ̂(y) ≈
F ℓ(F ℓ−1(. . . , y), y). By implicitly differentiating this recur-
rence and applying the chain rule, we obtain a series of equa-
tions that we use to compute (Dµ̂(y))∗v, given a vector of
output sensitivities v. Our approximation of µ̂ may be non-
differentiable on a set of positive Lebesgue measure. In this
situation, we need to compute a quantity that can serve as a sur-
rogate for the true vector-Jacobian product. In neural network
training, it is common to discuss the vector-Jacobian of a scalar
loss function—which is simply the gradient—even when the
loss function is non-differentiable. Many choices of surrogates
for when differentiability fails have been proposed and seem to
work well here [33], [34]. In Section III-B, our empirical results
show that a continuous extension of the true derivative yields
sufficiently accurate estimates at non-differentiable points of
the derivative of µ̂ so that we still have a good estimate of the
risk of µ̂.

As an example of differentiating our approximation of µ̂,
we work through the derivative of ISTA. ISTA is straightfor-
ward to analyze because there is no ancillary state in the algo-
rithm, but this method easily generalizes to the other algorithms
from Section I-F. To simplify our equations, we let bk+1/2 =
bk − ηA∗ (Abk − y

)
. By differentiating the ISTA iterations

we obtain

Dbk+1 = Dproxηr

(
bk+1/2

)
Dbk − ηA∗ (ADbk − I

)

=
(
Dproxηr

(
bk+1/2

)
− ηA∗A

)
Dbk + ηA∗.

In a forward pass, we can evaluate bk+1/2 for k = 1, . . . , ℓ−
1 and cache them to enable the vector-Jacobian oracle evalua-
tions. Evaluating (Dbℓ)∗v then becomes a recursive problem,
which can be computed using two of the oracles we needed for
the forward pass—A and A∗—and one new oracle: the vector-
Jacobian oracle for the proximal operator. The base case for
our recursion comes from our requirement that b1 is chosen
independently of y i.e. that (Db1)∗v = 0. The difficulty in this
method relies in evaluating the vector-Jacobian oracle of the
proximal operator.

d) Evaluating proximal operator vector-Jacobian ora-
cles: For many proximal operators known in closed-form, the
Jacobians are trivial to find in closed-form. For example, the
ℓ1 norm has proximal operator given by soft-thresholding, Tη .
Since soft-thresholding occurs component-wise, this means that
the Jacobian is a diagonal matrix, whose non-zero entries are 1
if bk+1/2

i is above the threshold, −1 if it is below the negative
of the threshold, and 0 otherwise. In this case, it is possible to
efficiently compute the vector-Jacobian oracle without forming
the whole Jacobian to find
(
Dproxη∥·∥1

(
bk+1/2

))∗
u = diag

(
JTη

(
bk+1/2

))
◦ u,

where a ◦ b denotes Hadamard or component-wise multiplica-
tion. Here we handle the points of non-differentiability by using

the value of the derivative at a point in a very small neighbor-
hood of the non-differentiable point. In particular, since non-
differentiability occurs only when entries of XT y are exactly
equal to η, we can instead interpret our choice of a point in the
neighborhood as evaluating the derivative at a point within the
floating point uncertainty of our vector.

Other closed-form proximal operators have non-trivial Jaco-
bians. For example, the proximal operator of the nuclear norm
is given by

proxη∥·∥∗(b
k+1/2) = UTη(Σ)V ∗,

where bk+1/2 = UΣV ∗ is the singular-value decomposition
of bk+1/2 and Tη is soft-thresholding on Σ. This has a non-
trivial Jacobian because of the multi-valued nature of the SVD
in the presence of repeated singular values. However, since
all proximal operators are Lipschitz, we know that it is a.e.-
differentiable. [4, Lemma IV.2] gives closed-form expressions
for the Jacobian of this proximal operator that hold for sim-
ple and full-rank matrices. However, it is common that later
iterations will involve low-rank matrices, which requires us
to select an approximation of the vector-Jacobian products.
We use the continuous extension of the closed-form vector-
Jacobian product, which exists for all matrices which do not
have any singular values exactly equal to η. We derive an
expression for this extension in Section C. For matrices with
singular values exactly equal to η we just evaluate at a point
within the neighborhood of the matrix similar to how we handle
the ℓ1 norm.

In general, when trying to apply SURE-CR to a new proxi-
mal operator, it is necessary to be able to evaluate the vector-
Jacobian product for that proximal operator. If the proximal
operator has points of non-differentiability which are reached
by the iterative algorithm, then it is necessary to choose a surro-
gate for the vector-Jacobian product. The accuracy of SURE-
CR is limited by the accuracy of the vector-Jacobian product
oracle.

Since (Dµ̂(y))∗ v = ∇y⟨µ̂(y) | v⟩, it is possible to apply
well-known strategies to compute the gradient of a scalar-
valued function. Most notably, reverse-mode automatic differ-
entiation automates much of this section’s work [35]. For many
proximal operators with closed-form expressions, reverse-mode
automatic differentiation can differentiate the proximal operator
without an analytic derivation of a closed-form for the vector-
Jacobian oracle.

As an example we work out how to construct the oracle
for r(b) = ∥b∥1 + ∥b∥2

2 (a weighted sum of these norms is the
regularizer in the elastic net [36]). The proximal operator can
be evaluated by applying separability to find that it is given by
a scaled form of soft-thresholding,

proxηr(v) = argmin
b

(
η∥b∥1 + η∥b∥2

2 +
1

2
∥b − v∥2

2

)

=
1

1 + 2η
Tη(v).

By rewriting soft-thresholding as

Tη(v) = (v − η1)+ − (−v − η1)+,

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4335

we can express this function in terms of elementary operations
that are commonly supported by automatic differentiation li-
braries, meaning no work is required to construct the vector-
Jacobian oracle.

C. Implementation

We have implemented the methods described above in
SURE-CR, an open-source package available at https://github.
com/cvxgrp/SURE-CR. It supports divergence computation
via CVXPYlayers as well as via differentiation through
FISTA and ADMM, and uses Hutch++ to estimate the
divergence.

SURE-CR relies on an existing computational graph li-
brary, pyTorch [26], to enable GPU-acceleration in our solvers
and to enable reverse-mode automatic differentiation. We
have implemented a library to encode the linear operator
A as a computational flow graph. It is available at https://
github.com/cvxgrp/torch_linops. This library adapts Barratt’s
preconditioned conjugate gradient implementation [37] and
implements randomized preconditioners including Nyström
preconditioning [38].

By differentiating through FISTA and ADMM iterations,
SURE-CR is able to scale to large problems. For example
it can evaluate SURE for a matrix completion problem with
b ∈ R2000×1000 and 10% of entries revealed, for which Dµ̂(y)
is a 105 × 105 matrix (which of course is never formed) in 120
seconds on the server described in Section III.

To apply SURE-CR to novel problems and regularizers, the
user should adapt an example from Section A by implementing
their linear operator A and A∗ as shown in Sections A-C
and implementing the proximal operator as a differentiable
torch function. This can be done most easily by expressing
it as the composition of built-in torch functions as shown in
Sections A-B. In the event that a heuristic is used for the
derivative of the proximal operator, it may be valuable to test
that the heuristic and the true vector-Jacobian products found
by CVXPYlayers agree.

SURE-CR currently uses at most one GPU; however, in
hyperparameter sweep problems, users can run different exper-
iments on different GPUs in parallel.

III. NUMERICAL EXAMPLES

In this section we report results of numerical examples of
SURE-CR. We consider three problems, LASSO, matrix com-
pletion, and robust PCA, and for each one, problem instances
ranging from small to large. For each instance we evaluate
various estimates of SURE, as well as an estimate of the ℓ2
risk obtained via a Monte Carlo method described below.

We carry out a few additional experiments that analyze the
variance contributed by SURE itself in high-dimensions, and
also, the variance contributed by our use of a randomized trace
estimator. We will see that the latter is substantially smaller than
the former.

Finally, in our last example, we show how SURE-CR can be
used to carry out hyperparameter selection.

a) Hyperparameter selection: When selecting regulariza-
tion parameters, we swept over the parameters—equally spaced
on a logarithmic scale—on the largest problem size we planned
to run. We then selected a value which had risk less than half
the risk of the maximum likelihood estimator of µ and had a
high iteration count relative to the other runs in the sweep. We
require the risk to be small in order to demonstrate SURE-CR in
problem settings where the estimator is useful. The higher the
iteration count, the longer SURE-CR takes to run since we have
to differentiate through more iterations of the solver algorithm;
accordingly, to give a better sense of worst-case runtime when
using SURE-CR we prefer problem instances that gave higher
iteration counts.

b) SURE estimates: In our first example, LASSO, we
report the value of the analytical expression for SURE. In all
examples we evaluate SURE using CVXPYlayers, where it
was possible, i.e., for the smaller problem instances. For each
problem we use either ADMM or FISTA, depending on which
was faster on small test problems.

c) Monte Carlo ℓ2 risk estimate: Since we are using
synthetic data and know µ = Aβ, we are able to use a Monte
Carlo method to approximate the risk as

R(µ̂) ≈ 1

m

m∑

i=1

∥µ̂(yi) − µ∥2
2,

where yi
i.i.d.∼ N (µ,σ2I). (In practical problem settings, this

Monte Carlo estimation of ℓ2 risk is not possible.)
d) Computational platform: We report timings for running

SURE-CR on the Stanford University Institute for Computa-
tional and Mathematical Engineering’s DGX-1, with 8 Nvidia
Tesla V100-SXM2-32GB-LS GPUs, an Intel Xeon E5-2698 v4
with 80 cores, 540GiB of memory, and 32GiB of GPU memory
per GPU. (However, we were limited to only one GPU during
our tests.)

e) Overview of results: The results are summarized in the
tables below. Comparing the values of the various estimates
of SURE and ℓ2 risk across each row, we see that there is
good agreement, except for the smallest problem instances.
In Section B, we show that recent works by Bellec and Zhang
[39], [40] enables bounding the variance of SURE to be less
than 4σ4d + 2σ2R(µ̂). For our estimators, the risk scales about
affinely with d, and therefore the standard deviation of SURE
grows slower than its expectation, so we see asymptotic con-
vergence to the true value in relative error.

For the largest instances of matrix completion and robust
PCA, each of which have 2 million parameters, we are able
to compute SURE in under two minutes. To our knowledge,
there was no previously known method for computing SURE
for such large instances.

A. LASSO

We compute SURE for LASSO problems, described in Sec-
tion I-D. We consider under-determined problems with p = 2d,
for d = 250, 500, 2500, 5000, 25000.

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cvxgrp/SURE-CR
https://github.com/cvxgrp/SURE-CR
https://github.com/cvxgrp/torch_linops
https://github.com/cvxgrp/torch_linops

4336 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

TABLE I
VALUES OF COORDINATE-WISE SURE ESTIMATES AND COMPUTATION TIMES FOR

FIVE LASSO PROBLEM INSTANCES. COORDINATE-WISE SURE IS GIVEN BY
(1/d)SURE(µ̂, y) AND IS USED TO IMPROVE READABILITY.

TIMES GIVEN IN SECONDS

Dimensions CVXPYlayers FISTA Analytic MC risk
d p Value Time Value Time

250 500 0.51 252 0.51 2.54 0.52 0.48(<0.005)
500 1000 0.43 1929 0.37 2.89 0.40 0.50(<0.005)
2500 5000 * * 0.58 3.10 0.57 0.51(<0.005)
5000 10000 * * 0.47 9.19 0.46 0.53(<0.005)
25000 50000 * * 0.58 287 0.58 0.54(<0.005)

a) Data generation: We draw the entries of the data matrix
i.i.d. from a standard normal distribution. We pick β with d/20
nonzero entries equal to a constant and use σ2 = 2. We pick
the value of the nonzero coefficients so that ∥µ∥2

2

∥µ∥2
2+dσ2 = 0.8.

We sample one y independently from the rest of the data and
select λ = 0.1λmax (defined in (3)).

For each instance we use SURE-CR with CVXPYlayers,
SURE-CR with FISTA, the analytic SURE value computed
against CVXPY’s solution, and the Monte Carlo estimate of
the risk using CVXPY to solve the optimization problem. In
its default configuration, CVXPYlayers has very low accuracy
in moderate dimensions and does not raise warnings about the
errors. To correct for this, we switched CVXPYlayer’s implicit
linear system solver for its direct linear system solver; this did
not significantly impact runtime on problems for which it was
giving accurate results. We present both the risk and time values
for each. When using CVXPYlayers, we report the value as ∗
when CVXPYlayers has a non-standard return status warning,
raises an error, or takes more than 12 hours. The seed used to
generate the Hutch++ queries and the sample point at which to
compute SURE are the same for all problems of a given size.
The results are given in Table I.

B. Matrix Completion

We compute SURE for matrix completion problems, de-
scribed in Section I-E. For all problems, we use d = 0.1mn,
σ2 = 2, and λ = 0.25λmax. For the large problems used to
generate Fig. 1, we use m = 2000, n = 1000, d = 0.1mn =
200000. We use SURE-CR with CVXPYlayers and SURE-CR
with ADMM to compute SURE in Table II. We describe how
we formed µ and β below.

Since A∗A + λI is a diagonal matrix, we replace the precon-
ditioned conjugate gradient step of the ADMM updates with an
exact inverse. This has no significant impact on the numerical
accuracy of our algorithm, but does improve its runtime.

a) Data generation: We first generate β = UΣV ∗ ∈
Rm×n with max(5, 0.02n) non-zero singular values, which
are uniformly distributed over [0, n]. The matrices U and V ∗

are generated by computing the SVD of a matrix where each
entry is independent and identically distributed as uniform over
[0, 1]. For the selection operator A, we selected 10% of the
entries at random without replacement. We then sampled y ∼
N (Aβ,σ2I).

b) Quantifying Hutch++ uncertainty: We verify that the
uncertainty from using Hutch++ to estimate the divergence is

Fig. 1. The green histogram is the relative error between SURE at various
sample points against the Monte Carlo risk. The blue histogram shows the
relative error between SURE-CR at a sample point and the mean of 100 runs
of SURE-CR at that point.

TABLE II
VALUES OF COORDINATE-WISE SURE ESTIMATES AND COMPUTATION TIMES

FOR FIVE MATRIX COMPLETION PROBLEM INSTANCES. COORDINATE-WISE
SURE IS GIVEN BY (1/d)SURE(µ̂, y) AND IS USED TO IMPROVE

READABILITY. TIMES GIVEN IN SECONDS

Dimensions CVXPYlayers ADMM MC risk
d p Value Time Value Time

20 200 1.15 1.51 1.16 5.20 1.33(0.01)
500 5000 0.86 2246 0.88 49.9 0.96(<0.005)
2000 2 × 104 0.84 15866 0.84 45.1 0.90(<0.005)
5 × 104 5 × 105 * * 1.69 41.2 1.70(<0.005)
2 × 105 2 × 106 * * 0.74 114 0.74(<0.005)

dominated by the uncertainty inherent in SURE. For 20 sample
points of y, we ran SURE-CR on each point 100 times. In Fig. 1,
we show in blue the distribution of the relative error between the
SURE-CR values and the sample mean of the SURE-CR runs
on that point: let SURE-CR(y, i) denote the random variable of
the output of running SURE-CR on a point y with seed i. Then
for samples y1, y2, . . . , y10 020, we plot the histogram of

SURE-CR(µ̂, yi, 100i + j)
−100−1

∑100
k=1 SURE-CR(µ̂, yi, 100i + k)

10 000−1
∑10 020

k=21 ∥µ̂(yk) − µ∥2
2

for i = 1, 2, . . . , 20 and j = 1, 2, . . . , 100. We also plot the
histogram of the relative error between 2000 evaluations of

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4337

Fig. 2. The green histogram is the relative error between SURE at various
sample points against the Monte Carlo risk. The blue histogram shows the
relative error between SURE-CR at a sample point and the mean of 100 runs
of SURE-CR at that point.

SURE-CR and the Monte Carlo estimation of the risk. The un-
certainty from the algorithm’s randomization is small compared
to SURE’s uncertainty.

c) SURE as estimate of risk: The green histogram in Fig. 1
shows that SURE-CR is within 2.5% of the Monte Carlo risk at
2000 independent sample points. Precisely, the green histogram
shows the histogram of the quantity

SURE-CR(µ̂, yi, i) − 10 000−1
∑12 000

j=2001 ∥µ̂(yj) − µ∥2
2

10 000−1
∑12 000

j=2001 ∥µ̂(yj) − µ∥2
2

for i = 1, 2, . . . , 2000 and independent samples y1,
y2, . . . , y12 000. This shows SURE is a good estimate of
the true risk.

d) Non-differentiability: In around 5% of the 2000 sam-
ples used to generate the green histogram in Fig. 1, we ob-
served that our approximation of µ̂ was non-differentiable. We
detected this by running our algorithm without using the exten-
sion of the derivative and seeing what percentage of runs en-
countered numerical issues caused by repeated or zero singular
values. We then ran the experiment using the extension of the
derivative, and report those values here. Notably, those samples
are indistinguishable from the other samples in the histogram,
showing that our heuristic is effective at approximating the
vector-Jacobian products for µ̂ and still providing a good
estimate of risk.

C. Robust PCA

We also tested SURE on robust PCA problems, described
in Section I-E. For all problems, we use m = n, σ2 = 2, λ =
0.16λmax, and γ = 0.057γmax. For the large problems used to
generate Fig. 2, we used m = n = 1000. We use SURE-CR with
CVXPYlayers and SURE-CR with ADMM to compute SURE
in Table III.

a) Data generation: We select S with max(10, 10−4n2)
non-zero entries drawn from a uniform distribution over

TABLE III
VALUES OF COORDINATE-WISE SURE ESTIMATES AND COMPUTATION TIMES
FOR FIVE ROBUST PCA PROBLEM INSTANCES. COORDINATE-WISE SURE IS

GIVEN BY (1/d)SURE(µ̂, y) AND IS USED TO IMPROVE READABILITY.
TIMES GIVEN IN SECONDS

Dimensions CVXPYlayers ADMM MC risk
d p Value Time Value Time

100 200 5.14 1.15 5.13 16.0 5.01(0.006)
2500 5000 0.53 115 0.53 19.9 0.59(<0.005)
10000 2 × 104 0.31 1116 0.31 21.5 0.34(<0.005)
2.5 × 105 5 × 105 * * 0.27 22.1 0.27(<0.005)
1 × 106 2 × 106 * * 0.44 31.4 0.44(<0.005)

Fig. 3. Top. SURE-CR and Monte Carlo estimate of ℓ2 risk as a function
of the hyperparameter. A single sample of y was used for all of the SURE-
CR runs. The two lines are visually indistinguishable. Bottom. Relative error
plots for the SURE-CR sweep run on 6 independent samples of y. The Monte
Carlo estimate and the computed SURE value differ by less than 1%.

[0, 100]. We select L with rank max(5, 0.02n) and singular val-
ues distributed uniformly over [0, n]. We sampled y ∼ N (L +
S,σ2I).

b) SURE as estimate of risk: Fig. 2 shows the histogram
of the relative error compared to the Monte Carlo estimate of
the risk for m = n = 1000 and the histogram of the variance
from the randomization in SURE-CR for m = n = 1000. We
ran SURE-CR on 2000 sample points and use 10 000 samples
for the Monte Carlo estimate. We observed only one sample
for which SURE-CR diverged from the Monte Carlo risk by
more than 3%.

D. SURE for Hyperparameter Selection

In this experiment, we aim to select an optimal hyperparam-
eter for matrix completion. We use the same setup as in Section
III-B with m = 2000 and n = 1000, except we now draw a
single sample y.

We then ran a grid search over λ, varying it exponentially
over [1, 2λmax], where λmax is the smallest λ for which β̂(y) =
0. We drew a single sample of y, and then for each λ we ran
SURE-CR with ADMM. We then computed a Monte Carlo
estimation of the risk for each λ. Fig. 3, shows that the risk
versus λ curves are visually indistinguishable. We also show

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

4338 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

that for 6 independent samples of y, the relative error was
consistently below 0.9%.

APPENDIX A
CODE EXAMPLES

A. CVXPYlayers — LASSO

This code sample demonstrates how to use SURE-CR with
CVXPYlayers. It is based on the code used in Section III-A.
import cvxpy as cp

import surecr

X, y, variance, lambda_val = ... # Generate data

beta_cvx = cp.Variable(X.shape[1])
y_cvx = cp.Parameter(y.shape[0])
prob = cp.Problem(

cp.Minimize(
1/ 2 * cp.sum_squares(X @ beta_cvx - y_cvx)
+ lambda_val * cp.pnorm(beta_cvx, 1)

))
solver = surecr.CVXPYSolver(prob, y_cvx, [beta_cvx], lambda b: X @ b)
sure = surecr.SURE(variance, solver)
cvx_sure_val = sure.compute(y)

B. LASSO

This code sample demonstrates how to use SURE-CR with
FISTA and how to define a custom proximal operator. It is based
on the code used in Section III-A.
import torch
import surecr
import linops as lo

X, y, variance, lambda_val = ... # Generate data

d, p = X.shape
A = lo.aslinearoperator(X.cuda())
y_cuda = y.cuda()
def prox(v, t):

return torch.relu(v - lambda_val * t) - torch.relu(-v - lambda_val * t)

solver = surecr.FISTASolver(
A, prox, torch.zeros(p).cuda(),
device=y_cuda.device)

sure = surecr.SURE(variance, solver)

sure_val = sure.compute(y_cuda)

C. Matrix Completion

This code sample demonstrates how to use SURE-CR with
ADMM and how to define a custom linear operator. It is based
on the code used in Section III-B.
import torch
import surecr
import surecr.prox_lib as pl
import linops as lo

revealed_indices, y, variance, lambda_val, m, n = ... # Generate data

class SelectionOperator(lo.LinearOperator):
def __init__(self, shape, idxs):

self._shape = shape
self._adjoint = _AdjointSelectionOperator(idxs,

(self._shape[1], self._shape[0]), self)
self._idxs = idxs

def _matmul_impl(self, X):
return X[self._idxs]

def solve_I_p_lambda_AT_A_x_eq_b(self, lambda_, b):
LHS = torch.ones_like(b)
LHS[self._idxs] += lambda_
return b / LHS

class _AdjointSelectionOperator(lo.LinearOperator):
def __init__(self, idxs, shape, adjoint):

self._shape = shape
self._adjoint = adjoint
self._idxs = idxs

def _matmul_impl(self, y):
z = torch.zeros(self.shape[0], dtype=y.dtype, device=y.device)
z[self._idxs] = y
return z.reshape(-1)

d = len(revealed_indices)
p = m * n
A = SelectionOperator((d, p), revealed_indices)
y_cuda = y.cuda()

Generates a function that applies singular value thresholding, which uses a
continous extension of the derivative for the .backward method.
prox = pl.make_scaled_prox_nuc_norm((m, n), lambda_val)

solver = surecr.ADMMSolver(A, prox, torch.zeros(p).cuda(), device=y_cuda.device)
sure = surecr.SURE(variance, solver)

sure_val = sure.compute(y_cuda)

D. Robust PCA

This code sample demonstrates how to use SURE-CR with
ADMM and how to use advanced features of torch_linops to
generate the linear operator. It is based on the code used in
Section III-C.
import torch
import surecr
import surecr.prox_lib as pl
import linops as lo

y, variance, lambda_val, gamma_val, m, n = ... # Generate data

d = m * n
p = 2 * d
A = lo.hstack([lo.IdentityOperator(d), lo.IdentityOperator(d)])
y_cuda = y.cuda()

Generates a function that applies singular value thresholding, which uses a
continous extension of the derivative for the .backward method.
prox_L = pl.make_scaled_prox_nuc_norm((m, n), lambda_val)

def prox_S(v, t):
return torch.relu(v - gamma_val * t) - torch.relu(-v - gamma_val * t)

def prox(v, t):
return torch.hstack([

prox_L(v[:d], t), prox_S(v[d:], t)
])

solver = surecr.ADMMSolver(A, prox, torch.zeros(p).cuda(), device=y_cuda.device)
sure = surecr.SURE(variance, solver)

sure_val = sure.compute(y_cuda)

APPENDIX B
BOUND ON THE VARIANCE OF SURE

In [40, Theorem 3.2], it is shown that for convex regularized
regression

var(SURE(µ̂, y)) ≤ E[(SURE (µ̂, y) − ∥µ̂(y)−µ∥2
2)

2] + σ4d

and

(SURE(µ̂, y)−∥µ̂(y) − µ∥2
2)

2

≤ 2σ2(∥y − µ̂(y)∥2
2 + SURE(µ̂, y))

almost surely. By applying algebraic manipulation and SURE’s
unbiasedness, we can find that

var(SURE(µ̂, y)) ≤ 3σ4d − 4σ4 E[∇·µ̂(y)] + 4σ2R(µ̂).

In [39, Proposition 5.3], it is shown that Dµ̂(y) is almost
surely positive semi-definite. This suggests that ∇·µ̂(y) =
Tr(Dµ̂(y)) ≥ 0 almost surely and lets us conclude that

var(SURE(µ̂, y)) ≤ 3σ4d + 4σ2R(µ̂).

APPENDIX C
DIFFERENTIATING THE PROXIMAL OPERATOR OF THE

NUCLEAR NORM

The proximal operator of the nuclear norm is given by a
spectral function F (X) such that F (X) = UF (Σ)V T where

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4339

U,Σ, V T are the full SVD of X and where F (Σ) applies the
function Tη(σ) = (σ − η)+ elementwise to all entries of Σ.

The function is non-differentiable when X has repeated sin-
gular values, any singular values equal to 0, or any singular
values equal to η. Formally, the mapping X *→ (DF (X))∗ Z
for a fixed matrix Z, is only defined when X has all distinct
singular values and no singular values equal to 0 or η. However,
it turns out there exists a function continuous on the set of
matrices with no singular values equal to η, which is equal to
the mapping X *→ (DF (X))∗ Z, wherever that mapping is de-
fined. We refer to this function as a continuous extension. In this
section, we find the continuous extension of X *→ (DF (X))∗ Z
for all fixed Z.

We assume that X, Z,Σ, ζ,Γ,∆ ∈ Rm×n, U ∈ Rm×m, V ∈
Rn×n, and that ΩU ,ΩV ,ΩΣ are linear operators from Rm×n to
Rm×n. Without loss of generality, we assume m ≥ n. A simple
matrix is one without repeated singular values.

A. Gradient for Full-Rank and Simple Matrices

[4] gives that for simple and full-rank X:

(DF (X))∆ = U ((ΩU∆)F (Σ) + (ΩΣ∆)+F (Σ)(ΩV ∆)) V T

where

(ΩU∆)ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = j

− 1
σ2

i −σ2
j

(
σj(UT∆V)ij

+σi(UT∆V)ji

) if i ̸=j ∧ i≤n

1
σj

(UT∆V)ij else

,

(ΩV ∆)ij =

⎧
⎪⎨

⎪⎩

0 if i = j
1

σ2
i −σ2

j

(
σi(UT∆V)ij

+σj(UT∆V)ji

) else
,

and

(ΩΣ∆)ij =

{
T ′
η (σi)(UT∆V)ii if i = j

0 if i ̸= j
.

In order to find the adjoint of this mapping we begin by
constructing a convenient orthonormal basis of Rm×n. We then
project the desired quantity (DF (X))∗Z onto the basis vec-
tors. We can then weight and sum the basis elements to form
(DF (X))∗Z.

Let {Eij}i,j∈[m]×[n] be the standard basis of Rm×n, i.e.,
Eij

kℓ = 1 iff i = k and j = ℓ and is otherwise 0. Let ∆ij = uivT
j .

Critically, UT∆ijV = Eij which will greatly simplify the map-
pings given above. For notational simplicity, let ζ = UT ZV .

Evaluating the projection yields

⟨(DF (X))∗Z | ∆ij⟩ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T ′
η (σi)ζii if i = j

Tη(σj)
σj

ζij if i > n
σiTη(σi)−σjTη(σj)

σ2
i −σ2

j
ζij

+σjTη(σi)−σiTη(σj)
σ2

i −σ2
j

ζji

else

.

This projection is not defined for some basis elements whenever
there exists i ̸= j such that σi = σj or i such that σi = 0.

B. Extension by Continuity to All Matrices

Following [4], we seek to extend the projection of
(DF (X))∗Z by continuity to the situation where there
exists i ̸= j, such that σi = σj or there exists σi = 0. Note
that the projection is only ill-defined for basis elements
∆ij such that i ≤ n and i ̸= j. Since simple and full-rank
matrices are dense in Rm×n, we will consider a sequence of
matrices X(k) such that each X(k) is simple and full-rank and
limk→∞ X(k) = X .

From [4], we have that for i ̸= j such that σi = σj > 0,

σ(k)
i Tη(σ

(k)
i) − σ(k)

j Tη(σj)
(
σ(k)

i

)2
−
(
σ(k)

j

)2 ζij →
(

1

2
T ′
η (σi) +

1

2

Tη(σi)

σi

)
ζij ,

and that for i ̸= j such that σi = σj = 0,

σ(k)
i Tη(σ

(k)
i) − σ(k)

j Tη(σj)
(
σ(k)

i

)2
−
(
σ(k)

j

)2 ζij → T ′
η (0)ζij .

A symmetric version of the argument from [4] gives that for
i ̸= j such that σi = σj > 0,

σ(k)
j Tη(σ

(k)
i) − σ(k)

i Tη(σj)
(
σ(k)

i

)2
−
(
σ(k)

j

)2 ζji →
(

1

2
T ′
η (σi) −

1

2

Tη(σi)

σi

)
ζji,

and for i ̸= j such that σi = σj = 0,

σ(k)
j Tη(σ

(k)
i) − σ(k)

i Tη(σj)
(
σ(k)

i

)2
−
(
σ(k)

j

)2 ζji → 0.

Lastly, note that when σj = 0,

lim
σ(k)

j →0

Tη(σ
(k)
j)

σ(k)
j

= T ′
η (0).

In summary, the continuous extension of ⟨(DF (X))∗Z,∆ij for
all X is given by

Γij =

⎧
⎪⎨

⎪⎩

T ′
η (σi)ζii if i = j

R(σj)ζij if i > n

Q(σi,σj)ζij + T (σi,σj)ζji else

where

R(σ) =

{
Tη(σ)

σ if σ > 0

T ′
η (σ) if σ = 0

,

Q(σi,σj) =

⎧
⎪⎨

⎪⎩

1
2T ′

η (σi) + 1
2

Tη(σi)
σi

if σi = σj > 0

T ′
η (0) if σi = σj = 0

σiTη(σi)−σjTη(σj)
σ2

i −σ2
j

else
,

and

T (σi,σj) =

⎧
⎪⎨

⎪⎩

1
2T ′

η (σi) − 1
2

Tη(σi)
σi

if σi = σj > 0

0 if σi = σj = 0
σjTη(σi)−σiTη(σj)

σ2
i −σ2

j
else

.

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

4340 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

C. Numerically Stable Computation

Constructing ∆ij in order to evaluate
∑m

i=1

∑n
j=1 Γij∆ij is

numerically unstable in high dimensions.
However, some simple algebra gives that

m∑

i=1

n∑

j=1

Γij∆
ij = UUT

⎛

⎝
m∑

i=1

n∑

j=1

Γij∆
ij

⎞

⎠V V T

= U

⎛

⎝
m∑

i=1

n∑

j=1

ΓijU
T∆ijV

⎞

⎠V T

= U

⎛

⎝
m∑

i=1

n∑

j=1

ΓijE
ij

⎞

⎠V T = UΓV T .

Experimentally, evaluating UΓV T is numerically stable.

ACKNOWLEDGMENT

The authors thank Mert Pilanci for many helpful comments
during a talk about this article. The authors thank Raphael
Meyer for help with Hutch++. The authors also thank an anony-
mous reviewer for an unusually thorough and careful review
that helped to improve the article. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] C. M. Stein, “Estimation of the mean of a multivariate normal dis-
tribution,” Ann. Statist., vol. 9, no. 6, pp. 1135–1151, 1981. [Online].
Available: http://www.jstor.org/stable/2240405

[2] H. Zou, T. Hastie, and R. Tibshirani, “On the ‘degrees of freedom’ of
the LASSO,” Ann. Statist., vol. 35, no. 5, pp. 2173–2192, 2007.

[3] R. J. Tibshirani and J. Taylor, “Degrees of freedom in lasso prob-
lems,” Ann. Statist., vol. 40, no. 2, pp. 1198–1232, 2012, doi:
10.1214/12-AOS1003.

[4] E. J. Candès, C. A. Sing-Long, and J. D. Trzasko, “Unbiased risk
estimates for singular value thresholding and spectral estimators,” IEEE
Trans. Signal Process., vol. 61, no. 19, pp. 4643–4657, Oct. 2013.

[5] A. Beck, First-Order Methods in Optimization. Philadelphia, PA,
USA: SIAM, 2017.

[6] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet. “The
proximity operator repository.” User’s Guide. Accessed: May 25, 2022.
[Online]. Available: http://proximity-operator.net/

[7] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
éspace Hilbertien,” Comptes Rendus l’Académie Sci. Paris, vol. 255,
no. 22, pp. 2897–2899, 1962.

[8] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[9] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183–202, 2009, doi: 10.1137/080716542.

[10] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Boston,
MA, USA: Now, 2011.

[11] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. Nat. Bur. Standards, vol. 49, no. 6,
p. 409, 1952.

[12] A. Krylov, “On the numerical solution of equations which in technical
questions determine the frequency of small vibrations of material
systems,” Izv. Akad. Nauk SSSR, vol. 7, no. 4, pp. 491–539, 1931.

[13] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep., 1994. [Online]. Available: https://dl.acm.org/doi/book/
10.5555/865018

[14] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vision,
vol. 40, no. 1, pp. 120–145, 2011.

[15] Y. Nesterov, “Gradient methods for minimizing composite functions,”
Math. Program., vol. 140, no. 1, pp. 125–161, Aug. 2013.

[16] J. Nocedal and S. Wright, Numerical Optimization. New York, NY, USA:
Springer-Verlag, 2006.

[17] N. Simon, J. Friedman, and T. Hastie, “A blockwise descent algorithm
for group-penalized multiresponse and multinomial regression,” 2013.
[Online]. Available: https://arxiv.org/abs/1311.6529

[18] L. Evans and R. Gariepy, Measure Theory and Fine Properties of
Functions, Revised ed. New York, NY, USA: CRC Press, 2015.

[19] Y. Nesterov, Lectures on Convex Optimization (Springer Optimization
and Its Applications). Cham, Switzerland: Springer-Verlag, 2018.

[20] M. F. Hutchinson, “A stochastic estimator of the trace of the influ-
ence matrix for Laplacian smoothing splines,” Commun. Statist. —
Simul. Comput., vol. 18, no. 3, pp. 1059–1076, 1989, doi: 10.1080/
03610918908812806.

[21] R. A. Meyer, C. Musco, C. Musco, and D. Woodruff, “Hutch++: Optimal
stochastic trace estimation,” in Proc. 4th Symp. Simplicity Algorithms
(SOSA), 2021, pp. 142–155.

[22] D. Persson, A. Cortinovis, and D. Kressner, “Improved variants of the
Hutch++ algorithm for trace estimation,” SIAM J. Matrix Anal. Appl.,
vol. 43, no. 3, pp. 1162–1185, 2022, doi: 10.1137/21M1447623.

[23] E. N. Epperly, J. A. Tropp, and R. J. Webber, “Xtrace: Making
the most of every sample in stochastic trace estimation,” 2023,
arXiv:2301.07825.

[24] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a
layer in neural networks,” in Proc. 34th Int. Conf. Mach. Learn., Sydney,
Australia: PMLR, 2017, vol. 70, pp. 136–145.

[25] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi, “Differen-
tiating through a cone program,” J. Appl. Numer. Optim., vol. 1, no. 2,
pp. 107–115, 2019.

[26] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[27] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. (2015). TensorFlow. [Online]. Available: https://www.
tensorflow.org/

[28] A. Agrawal et al., “TensorFlow Eager: A multi-stage, Python-embedded
DSL for machine learning,” in Proc. 2nd SysML Conf., 2019,
pp. 178–189.

[29] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 9558–9570.

[30] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Philadelphia, PA, USA:
SIAM, 2008.

[31] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, “Unrolled
optimization with deep priors,” 2018. [Online]. Available: https://arxiv.
org/abs/1705.08041v2

[32] S. Wang, S. Fidler, and R. Urtasun, “Proximal deep structured models,”
in Proc. Adv. Neural Inf. Process. Syst., D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Barcelona, Spain:
Curran Associates, Inc., 2016. [Online]. Available: https://proceedings.
neurips.cc/paper/2016/file/f4be00279ee2e0a53eafdaa94a151e2c-Paper.
pdf

[33] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” 2013.
[Online]. Available: https://arxiv.org/abs/1308.3432

[34] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., G. Gordon, D.
Dunson, and M. Dudík, Eds., vol. 15. Fort Lauderdale, FL, USA: PMLR,
Apr. 11–13, 2011, pp. 315–323. [Online]. Available: https://proceedings.
mlr.press/v15/glorot11a.html

[35] A. Griewank, “On automatic differentiation,” Math. Program., Recent
Develop. Appl., vol. 6, no. 6, pp. 83–107, 1989.

[36] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Roy. Statistical Soc., Ser. B (Statistical Methodology),
vol. 67, no. 2, pp. 301–320, 2005.

[37] S. Barratt. “torch_cg.” GitHub. [Online]. Available: https://github.com/
sbarratt/torch_cg

[38] Z. Frangella, J. A. Tropp, and M. Udell, “Randomized Nyström precon-
ditioning,” 2021. [Online]. Available: https://arxiv.org/abs/2110.02820

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

http://www.jstor.org/stable/2240405
http://doi.org/10.1214/12-AOS1003
http://proximity-operator.net/
http://doi.org/10.1137/080716542
https://dl.acm.org/doi/book/10.5555/865018
https://dl.acm.org/doi/book/10.5555/865018
https://arxiv.org/abs/1311.6529
http://doi.org/10.1080/03610918908812806
http://doi.org/10.1080/03610918908812806
http://doi.org/10.1137/21M1447623
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1705.08041v2
https://arxiv.org/abs/1705.08041v2
https://proceedings.neurips.cc/paper/2016/file/f4be00279ee2e0a53eafdaa94a151e2c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f4be00279ee2e0a53eafdaa94a151e2c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f4be00279ee2e0a53eafdaa94a151e2c-Paper.pdf
https://arxiv.org/abs/1308.3432
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://github.com/sbarratt/torch_cg
https://github.com/sbarratt/torch_cg
https://arxiv.org/abs/2110.02820

NOBEL et al.: TRACTABLE EVALUATION OF SURE WITH CONVEX REGULARIZERS 4341

[39] P. C. Bellec and C.-H. Zhang, “De-biasing convex regularized estimators
and interval estimation in linear models,” 2021. [Online]. Available:
https://arxiv.org/abs/1912.11943

[40] P. C. Bellec and C.-H. Zhang, “Second-order Stein: SURE for SURE
and other applications in high-dimensional inference,” Ann. Statist.,
vol. 49, no. 4, pp. 1864–1903, 2021.

Parth Nobel received the B.S. degree in electrical
engineering and computer science from the UC
Berkeley, in 2021. He is working toward the Ph.D.
degree in electrical engineering with Stanford Uni-
versity. Since 2022, he has been a Visiting Scholar
with the UC Berkeley in electrical engineering and
computer science. His research interests include ap-
plying convex optimization and randomized numer-
ical linear algebra to statistics, signal processing,
and various other application areas.

Emmanuel Candès (Fellow, IEEE) received the
Ph.D. degree in statistics from Stanford Univer-
sity, in 1998. He is the Barnum-Simons Chair
in mathematics and statistics with Stanford Uni-
versity, and a Professor in electrical engineer-
ing (by courtesy). His research interests lie at
the interface of statistics, information theory,
signal processing, and computational mathemat-
ics. He has received several awards, including
the Alan T. Waterman Award from the NSF,
the MacArthur Fellowship, the 2020 Princess of

Asturias Award for Technical and Scientific Research, and the 2021 IEEE Jack
S. Kilby Signal Processing Medal. He was elected to the National Academy
of Sciences and to the American Academy of Arts and Sciences in 2014.

Stephen Boyd (Life Fellow, IEEE) received the
A.B. degree in mathematics from Harvard Uni-
versity, Cambridge, MA, USA, in 1980, and the
Ph.D. degree in electrical engineering and computer
science from the University of California, Berkeley,
CA, USA, in 1985. He is currently the Samsung
Professor in engineering, and a Professor in elec-
trical engineering with Stanford University, Stan-
ford, CA, USA. He is a member of U.S. National
Academy of Engineering (NAE), a foreign member
of the Chinese Academy of Engineering (CAE), and

a foreign member of the National Academy of Engineering of Korea (NAEK).
His current research focuses on convex optimization applications in control,
signal processing, machine learning, and finance.

Authorized licensed use limited to: Stanford University. Downloaded on September 01,2024 at 23:40:18 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1912.11943

