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While reliable data-driven decision-making hinges on high-quality labeled data, the
acquisition of quality labels often involves laborious human annotations or slow
and expensive scientific measurements. Machine learning is becoming an appealing
alternative as sophisticated predictive techniques are being used to quickly and cheaply
produce large amounts of predicted labels; e.g., predicted protein structures are used to
supplement experimentally derived structures, predictions of socioeconomic indicators
from satellite imagery are used to supplement accurate survey data, and so on. Since
predictions are imperfect and potentially biased, this practice brings into question
the validity of downstream inferences. We introduce cross-prediction: a method
for valid inference powered by machine learning. With a small labeled dataset and
a large unlabeled dataset, cross-prediction imputes the missing labels via machine
learning and applies a form of debiasing to remedy the prediction inaccuracies. The
resulting inferences achieve the desired error probability and are more powerful than
those that only leverage the labeled data. Closely related is the recent proposal of
prediction-powered inference [A. N. Angelopoulos, S. Bates, C. Fannjiang, M. I.
Jordan, T. Zrnic, Science 382, 669–674 (2023)], which assumes that a good pretrained
model is already available.We show that cross-prediction is consistently more powerful
than an adaptation of prediction-powered inference in which a fraction of the labeled
data is split off and used to train the model. Finally, we observe that cross-prediction
gives more stable conclusions than its competitors; its CIs typically have significantly
lower variability.

statistical inference | CIs | machine learning | prediction

As data-driven decisions fuel progress across science and technology, ensuring that such
decisions are reliable is of critical importance. The reliability of data-driven decision-
making rests on having access to high-quality data on one hand, and properly accounting
for uncertainty on the other.

One frequently discussed issue is that acquiring high-quality data often involves
laborious human labeling, or slow and expensive scientific measurements, or overcoming
privacy concerns when human subjects are involved. Machine learning offers a promising
alternative: Sophisticated techniques such as generative modeling and deep neural
networks are being used to cheaply produce large amounts of data that would otherwise
be too expensive or time-consuming to collect. For example, tools to predict protein
structure are supporting wide-ranging research in biology (1–4); large language models
are being used to generate difficult-to-aggregate information about materials that can
be used to fight climate change (5); predictions of socioeconomic and environmental
conditions based on satellite imagery are being used for downstream policy decisions (6–
9). This increasingly common practice, marked by supplementing high-quality data with
machine learning outputs, calls for new principles of uncertainty quantification.

In this work, we study this problem in the semisupervised context, where labels are
scarce but features are abundant. For example, precise measurements of environmental
conditions are difficult to come by but satellite imagery is abundant. Due to its volume,
satellite imagery is routinely used in combination with computer vision algorithms to
predict a range of factors on a global scale, including deforestation (10), poverty rates
(6), and population densities (11). These predictions provide a compelling substitute
for resource-intensive ground-based measurements and surveys. However, it is crucial
to acknowledge that, while promising, the predictions are not infallible. Consequently,
downstream inferences that uncritically treat them as ground truth will be invalid.

We introduce cross-prediction: a broadly applicable method for semisupervised
inference that leverages the power of machine learning while retaining validity. Assume
a researcher holds both a small labeled dataset and a large unlabeled dataset, and they
seek inference—i.e., a P-value or a CI—about a population-level quantity such as the
mean outcome or a regression coefficient. Cross-prediction carefully leverages black-box
machine learning to impute the missing labels, resulting in both valid and powerful
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Fig. 1. Examples of GEE satellite imagery used in the deforestation analysis
of Bullock et al. (13).

inferences. The validity is a result of a particular debiasing step;
the power is a result of using sophisticated predictive techniques
such as deep learning or random forests. We show that the use of
black-box predictions on the unlabeled data can lead to a massive
improvement in statistical power compared to using the labeled
data alone.

Cross-prediction builds upon the recent proposal of
prediction-powered inference (12). Unlike prediction-powered
inference, we do not assume that our researcher already has access
to a predictive model for imputing the labels. Rather, to apply
prediction-powered inference, the researcher would need to use
a portion of the labeled data to either train a model from scratch
or fine-tune an off-the-shelf model. We show that this leads to a
suboptimal solution. Consider the following example studied by
Angelopoulos et al. (12). The goal is to form a CI for the fraction
of the Amazon rainforest that was lost between 2000 and 2015. A
small number of “gold-standard” deforestation labels for certain
parcels of land are available, having been collected through field
visits (13). In addition, satellite imagery is available for the entire
Amazon; see Fig. 1 forGoogle Earth Engine (GEE) examples used
in the deforestation study of Bullock et al. (13). Angelopoulos
et al. apply prediction-powered inference after using a portion
of the labeled data and a gradient-boosted tree to fine-tune a
regression-tree-based predictor of forest cover (14). Our work
offers an alternative:We can avoid data splitting and instead apply
cross-prediction, still with a gradient-boosted tree, to perform the
fine-tuning. By doing so, we significantly reduce the size of the
CI, as seen in Fig. 2. This trend will be consistent throughout our
experiments: Cross-prediction is more efficient than prediction-
powered inference with data splitting. Fig. 2 also shows that
cross-prediction outperforms “classical” inference, which forms
a CI based on gold-standard labels only and simply ignores the
unlabeled data. Additional details about these experiments can
be found in the Experiments section.

Another important takeaway from Fig. 2 is that cross-
prediction gives more stable inferences: The confidence intervals
have lower variability than the intervals computed via baseline ap-
proaches. Intuitively, classical inference has higher variability due
to the smaller sample size, while prediction-powered inference has
higher variability due to the arbitrariness in the data split. We
will quantify the stability of cross-prediction in the Experiments
section, showcasing its superiority across a range of examples; see
Table 4.

Our work is also related to the literature known as semisu-
pervised inference (15). The main difference between existing
approaches and our work is that our proposal leverages black-
box machine learning methods, allowing for more complicated
data modalities (such as high-dimensional imagery) and more
sophisticated ways of leveraging the unlabeled data. We elaborate
on the relationship to prior work after introducing the formal
problem setup.

Problem Setup
We study statistical inference in a semisupervised setting,
where collecting high-quality labels is challenging but feature
observations are abundant. Formally, we have a dataset consisting
of n i.i.d. feature–label pairs, {(X1, Y1), . . . , (Xn, Yn)} ⇠ Pn. In
addition, we have a dataset consisting ofN unlabeled data points,
{X̃1, . . . , X̃N } ⇠ PN

X , wherePX denotes themarginal distribution
over features according toP.We aremost interested in the regime
whereN � n, as in the case where feature collection is far cheaper
than label collection.

Our goal is to perform inference on a property ✓⇤(P) of the
data-generating distribution P, such as the mean outcome, a
quantile of the outcome distribution, or a regression coefficient.
Our proposal handles all estimands defined as a solution to an
M-estimation problem:

✓⇤(P) = argmin
✓

L(✓), where L(✓) := E [`✓(X, Y )] , [1]

for a convex loss function `✓ . Here and throughout, (X, Y )
denotes a generic sample from P independent of everything else.
All of the aforementioned estimands can be cast in the formEq. 1.
For example, if the target of inference is the mean outcome,
✓⇤(P) = E[Y ], then ✓⇤(P) minimizes the squared loss:

✓⇤(P) = argmin
✓

E[`✓(Y )] = argmin
✓

E[(Y � ✓)2]. [2]

Note that the estimand (and thus the loss) will sometimes only
depend on a subset of the features X or only on the outcome Y , as
in Eq. 2. Also note that this manuscript focuses on ✓⇤(P) 2 Rd

for a fixed d . Studying high-dimensional settings—for example,
understanding what scaling of d is permitted by the theory—is a
valuable direction for future work. Below, we write ✓⇤ = ✓⇤(P)
for short.

The main question we address is this: How should we leverage
the unlabeled data to achieve both valid and powerful inference?
Validity alone is an easy target: We can simply dispense with the
unlabeled data and find the classical estimator ✓̂class, defined as

✓̂class = argmin
✓

Lclass(✓), where Lclass(✓) :=
1
n

nX

i=1
`✓(Xi, Yi).

[3]

Fig. 2. Estimating the deforesta-
tion rate in the Amazon from satel-
lite imagery. Left: Example intervals
constructed by cross-prediction,
classical inference, and prediction-
powered inference (PPI), for five
random splits into labeled and un-
labeled data and a fixed number of
gold-standard deforestation labels,

n = 319. Middle and Right: Coverage and interval width averaged over 100 random splits into labeled and unlabeled data, for n 2 {319,638,957}. The target of
inference is the fraction of the Amazon rainforest lost between 2000 and 2015 (gray line in Left panel). The target coverage is 90% (gray line in Middle panel).
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For all standard estimands defined via M-estimation—including
means, quantiles, linear regression coefficients—there are off-
the-shelf confidence intervals around ✓̂class that cover ✓⇤ with a
desired probability in the large-sample limit, see, e.g., refs. 16
and 17. The classical estimator and the corresponding CIs shall
be the main comparison points used to evaluate the performance
of cross-prediction.

Related Work
We discuss the relationship between our work and the most
closely related technical scholarship.

Semisupervised Inference.Our work falls within the literature
known as semisupervised inference (15). Most existing work
develops methods specialized to particular estimation problems,
such as mean estimation (15, 18), quantile estimation (19), or
linear regression (20, 21). One exception is the recent work of
Song et al. (22), who also study general M-estimation. Their
approach uses a projection-based correction to the classical loss
Eq. 3 based on simple statistics from the unlabeled data, such
as averages of low-degree polynomials of the features. Unlike
existing proposals, our approach is based on imputing themissing
labels using black-box machine learning methods, allowing for
more complicated data modalities and more intricate ways of
leveraging the unlabeled data. For example, it is unclear how to
apply existingmethods when the featuresXi are high-dimensional
images. We also note that the semisupervised observation model
has been long studied in semisupervised learning (23, 24).
However, in this literature, the goal is prediction, rather than
inference.

Prediction-Powered Inference. The core idea in this paper is to
correct imputed predictions, and this derives from the proposal of
prediction-powered inference (12). However, a key assumption
in prediction-powered inference is that, in addition to a labeled
and an unlabeled dataset, the analyst is given a good pretrained
machine learning model. We make no such assumption. To
apply the theory of prediction-powered inference, our setting
would require using a portion of the labeled data for model
training and leaving the rest for inference. In contrast, cross-
prediction leverages each labeled data point for both model
training and inference, leading to a boost in statistical power. The
distinction between having and not having a pretrained model
makes a difference even when comparing prediction-powered
inference and the classical approach. Angelopoulos et al. (12) do
not take into account the data used for model training when
comparing the two baselines, because the model is assumed to
have been trained before the analysis takes place. This makes
sense when considering off-the-shelf models such as AlphaFold.
In our comparisons, we do take the training data into account.

Angelopoulos et al. (25) show a central limit theorem for the
prediction-powered estimator, allowing for computational and
statistical improvements of the original methods for prediction-
powered inference. Our inferences will be based on a similar
central limit theorem for cross-prediction.

Wang et al. (26) similarly study inferences based on machine
learning predictions. They propose using the labeled data to
train a predictor of true outcomes from predicted ones, and
then applying the predictor to debias the predictions on the
unlabeled data. This algorithm does not come with a formal
validity guarantee. Motwani and Witten (27) conduct a detailed
empirical comparison of the method of Wang et al. and
prediction-powered inference.

Theory of Cross-Validation.Cross-prediction is based on a form
of cross-fitting. Consequently, our analysis is related to the
theoretical studies of cross-validation (28–32). In particular, our
theory borrows from the analysis of Bayle et al. (30), who prove a
central limit theorem and study inference on the cross-validation
test error. Our goal, however, is entirely different; we aim to
provide inferential guarantees for an estimand ✓⇤, as defined in
Eq. 1, in a semisupervised setting.

Semiparametric Inference.Our work is also related to the rich
literature on semiparametric inference (33–40), where the goal is
to do estimation in the presence of a high-dimensional nuisance
parameter. Our debiasing strategy closely resembles doubly
robust estimators (41), such as the AIPW estimator (42, 43),
and one-step estimators (44). In this literature, the estimand
is typically an expected value, such as the average treatment
effect. One exception is the work of Jin and Rothenhäusler (45),
who study general M-estimators through a semiparametric lens.
The use of cross-fitting is common in that literature as well
(40, 46, 47).While the technical arguments used in our work bear
resemblance to those classically used in semiparametric inference,
our motivation is different. Our focus is on showcasing how
a theoretically principled use of black-box predictors—neural
networks, random forests, and so on—on massive amounts
of unlabeled data can boost inference. Since the practice of
leveraging unlabeled data through predictions is already prevalent
in domains such as remote sensing, our goal is to ground it in
statistical theory.

Inference with Missing Data. Semisupervised inference can be
seen as a special case of the problem of inference with missing
data (48), where missing information about the labels occurs.
Our proposed method bears similarities to multiple imputation
(49–51) as, at least at a high level, it is based on “averaging
out” multiple imputed predictions for the labels. However, our
method is substantially different frommultiple imputation, most
notably due to the fact that it incorporates a particular form of
debiasing to mitigate prediction inaccuracies.

Inference under Model Misspecification. Finally, our work
relates to a large body of work on inference under model
misspecification e.g., refs. 52–55. In particular, we do not assume
that our predictions follow any “true” statistical model, and
for parameters ✓⇤ defined as a regression solution, we do not
assume that the regression model is correct. For example, if ✓⇤

is the solution to a linear regression, we do not assume that the
data truly follows a linear model. Like in classical M-estimation,
we will show asymptotic normality of our estimator despite the
misspecification.

Cross-Prediction
We propose cross-prediction—an estimation technique based on
a combination of cross-fitting and prediction. The basic idea is
to impute labels for the unlabeled data points, and then remove
the bias arising from the inaccuracies in the predictions using the
labeled data. We give a step-by-step outline of the construction
of the cross-prediction estimator. In the following sections, we
will show how to perform inference with this estimator; that is,
how to perform hypothesis tests or construct confidence intervals
for ✓⇤.

Cross-Prediction for Mean Estimation. Before discussing the
general case, we consider the problem of mean estimation to
gain intuition; the object of inference is simply ✓⇤ = E[Y ].

PNAS 2024 Vol. 121 No. 15 e2322083121 https://doi.org/10.1073/pnas.2322083121 3 of 12
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We begin by partitioning the labeled dataset into K chunks,
I1 = {1, . . . , n/K }, I2 = {n/K + 1, . . . , 2n/K }, and so on (we
assume for simplicity that n is divisible by K ).* Here, K is a
user-specified number of folds, e.g., K = 10. Then, as in cross-
validation, we train a machine learning model K times, each time
training on all data except one fold. Let Atrain denote a possibly
randomized training algorithm, which takes as input a dataset
of arbitrary size and outputs a predictor of labels from features.
Then, for each j 2 [K ], let f (j) be the model obtained by training
on all folds but Ij; that is, f (j) = Atrain({(Xi, Yi)}i2[n]\Ij ). We
note that Atrain can be quite general; it may or may not treat
the training data points symmetrically, and f (j) need not come
from a well-defined family of predictors. Rather, f (j) can be any
black-box model; e.g., a random forest, a gradient-boosted tree,
a neural network, and so on. Moreover, f (j) can be trained from
scratch or obtained by fine-tuning an off-the-shelf model. Finally,
we use the trained models to impute predictions and compute
the cross-prediction estimator, defined as

✓̂+ =
1
KN

KX

j=1

NX

i=1
f (j)(X̃i) �

1
n

KX

j=1

X

i2Ij

(f (j)(Xi) � Yi). [4]

Intuitively, the first term in Eq. 4 is an empirical approximation
of the population mean if we treated the predictions as true
labels. The second term in Eq. 4 serves to debias this heuristic: It
subtracts an estimate of the bias between the predicted labels and
the true labels. We note that the estimator Eq. 4 coincides with
the mean estimator of Zhang and Bradic (18) in the special case
where f (j) are linear models, that is, f (j)(x) = x>�j for some �j.
Our analysis applies more broadly, allowing for complex high-
dimensional models (e.g., image classifiers).

Observe that the cross-prediction estimator is unbiased, i.e.,
E[✓̂+] = ✓⇤. Indeed, since i 2 Ij is not used to train model f (j),
we have E[f (j)(X̃i0)] = E[f (j)(Xi)] for all j 2 [K ], i 2 Ij, i0 2

[N ]. Applying this identity yields E[✓̂+] = E[Y ] = ✓⇤.
The classical estimator is of course the sample mean:

✓̂class =
1
n

nX

i=1
Yi, [5]

which is also unbiased. Given that both the cross-prediction
estimator and the classical estimator are unbiased, it makes sense
to ask which one has a lower variance. The main benefit of
cross-prediction is that, if the trained models f (j) are reasonably
accurate, we expect the variance of the cross-prediction estimator
to be lower. To see this, first recall that, typically, N � n. This
means that the first term in ✓̂+ should have a vanishing variance
due to the magnitude of N . Therefore,

Var(✓̂+) ⇡ Var

0

@1
n

KX

j=1

X

i2Ij

(f (j)(Xi) � Yi)

1

A .

As the sample mean, the remaining term is an average of n terms.
However, when the models are accurate, i.e., f (j)(Xi) ⇡ Yi, we
expect Var(f (j)(Xi) � Yi) ⌧ Var(Yi).

The closest alternative to the cross-prediction estimator is the
prediction-powered estimator (12), that is, its straightforward

*By removing at most K � 1 data points, the size of the labeled dataset can be made
divisible by K . Since in our applications K will typically be equal to 10, this truncation has
a negligible e�ect.

adaptation to the setup without a pretrained model. As discussed
earlier, prediction-powered inference relies on having a pretrained
model f . We can reduce our setting to this case by introducing
data splitting: We use the first ntr  n data points from the
labeled dataset to train a model f and the rest of the labeled data
to compute the prediction-powered estimator:

✓̂PP =
1
N

NX

i=1
f (X̃i) �

1
n � ntr

nX

i=ntr+1
(f (Xi) � Yi). [6]

The prediction-powered estimator is also unbiased:E[✓̂PP] = ✓⇤.
However, this strategy is potentially wasteful because, after
f is trained, the training data are thrown away and not
subsequently used for estimation. Cross-prediction uses the data
more efficiently, by leveraging each data point for both training
and estimation.

General Cross-Prediction. To introduce the cross-prediction
estimator in full generality, recall that we are considering all
estimands of the form Eq. 1. As in the case of mean estimation,
we split the labeled data into K folds and train a predictive model
f (j) on all folds but fold j 2 [K ]. The proposed cross-prediction
estimator is defined as

✓̂+ = argmin
✓

L+(✓), where

L+(✓) :=
1
KN

KX

j=1

NX

i=1

˜̀f
(j)

✓,i �
1
n

KX

j=1

X

i2Ij

(`f
(j)

✓,i � `✓,i).
[7]

Here, we use the short-hand notation ˜̀f
(j)

✓,i := `✓(X̃i, f (j)(X̃i)),

`
f (j)
✓,i := `✓(Xi, f (j)(Xi)), and `✓,i := `✓(Xi, Yi). The intuition
remains the same as before: The first term is an empirical
approximation of the population loss if we treated the predictions
as true labels, and the second term aims to debias this heuristic.
One can verify that the mean estimator in Eq. 4 is indeed a
special case of the general estimator in Eq. 7, by taking `✓ to be
the squared loss, as per Eq. 2.

The cross-prediction estimator optimizes an unbiased ob-
jective, since E[L+(✓)] = L(✓). This follows because
E[`✓(X̃i0 , f (j)(X̃i0))] = E[`✓(Xi, f (j)(Xi))] for all j 2 [K ], i 2

Ij, i0 2 [N ], seeing that i 2 Ij is not used to train model f (j).
Furthermore, by the same argument as before, we expect L+(✓)
to have a lower variance than the classical objective in Eq. 3 ifN is
large and the trained predictors are reasonably accurate. We note
that L+(✓) may not be a convex function in general, but solving
for ✓̂+ is tractable in many cases of interest. For example, in the
case of means and generalized linear models, L+(✓) is convex.

The prediction-powered estimator is similar to the cross-
prediction estimator, but it requires data splitting and does not
average over multiple model fits. It is equal to

✓̂PP = argmin
✓

LPP(✓), where

LPP(✓) :=
1
N

NX

i=1

˜̀f
✓,i �

1
n � ntr

nX

i=ntr+1
(`f✓,i � `✓,i),

where, as before, f is trained on the first ntr labeled data points.
The fact that cross-prediction averages the results of multiple
model fits allows it to achieve more stable inference. Indeed, in
our experiments, we will observe that cross-prediction is more
stable than prediction-powered inference throughout.
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Inference for the Mean
We now discuss inference with the cross-prediction estimator.
For simplicity, we first look at mean estimation, where ✓⇤ =
E[Y ]. We will see that much of the discussion will carry over to
general M-estimation problems.

Inference with the cross-prediction estimator in Eq. 4 is
difficult because the terms being averaged are all dependent
through the labeled data. In contrast, the classical estimator
in Eq. 5 averages independent terms, allowing for confidence
intervals based on the central limit theorem. The prediction-
powered estimator in Eq. 6 is similarly amenable to inference
based on the central limit theorem, seeing that all the terms are
independent conditional on f . In this section, we show that,
under a relatively mild regularity condition, the cross-prediction
estimator likewise satisfies a central limit theorem. This will in
turn immediately allow constructing CIs and hypothesis tests
for ✓⇤.

The central limit theorem will require that, as the sample size
grows, the predictions concentrate sufficiently rapidly around
their expectation. Intuitively, one can think of the condition
as requiring that the predictions are sufficiently stable. While
the stability property is difficult to verify for complex black-
box models, we empirically observe that inference based on the
resulting central limit theorem nevertheless provides the correct
coverage. We observe this across different estimation problems,
data modalities, sample sizes, and so on.

Our analysis based on stability is inspired by the work of Bayle
et al. (30), who study inference on the cross-validation test error,
since the inferential challenges in cross-prediction are similar to
those in cross-validation. The ultimate goals of the two analyses
are, however, entirely different.

Below we state the stability condition. For all x, we define
f̄ (x) := E[f (1)(x)]; the “average” model f̄ is the predictor we
would obtain if we could train many models on independent
datasets of size n � n/K and average out their predictions.

Assumption 1. We say that the predictions are stable if, as n !

1, q
K Var

�
f (1)(X ) � f̄ (X ) | f (1)� L1

! 0.

Assumption 1 requires that the models f (j) converge to their
“average” model f̄ , but there is no assumption that f̄ is by
any means well-specified. If the number of folds is fixed (e.g.,
K = 10), as we will typically assume, then Assumption 1 is
satisfied if the variance of the difference between the learned
predictions f (1)(X ) and the average predictions f̄ (X ) vanishes

at any rate, Var
⇣
f (1)(X ) � f̄ (X ) | f (1)

⌘ L1
! 0. We expect that

any reasonably stable learning algorithm Atrain should satisfy
Assumption 1 (intuitively, any algorithm not too sensitive to
perturbing a single data point). Violations of the assumption
might arise if the number of folds is allowed to grow, e.g., as in
the case of leave-one-out cross-fitting, since then the variance has
to tend to zero sufficiently rapidly.

Equipped with Assumption 1, we can now state the central
limit theorem for cross-prediction.

Theorem 1 (Cross-prediction CLT for the mean). Let ✓⇤ be
the mean outcome, ✓⇤ = E[Y ]. Suppose that the predictions are
stable (Assumption 1). Further, assume that n

N has a limit, and that
�̄2 = Var(f̄ (X )) and �̄2� = Var(f̄ (X )�Y ) have a nonzero limit.
Then,

p
n

q
n
N �̄2 + �̄2�

⇣
✓̂+

� ✓⇤
⌘ d

! N (0, 1) .

With this, inference on ✓⇤ is now straightforward as long as
we can estimate the asymptotic variance consistently. We will
discuss strategies for doing so later on.

Corollary 1 (Cross-prediction inference for the mean). Let
✓⇤ be the mean outcome, ✓⇤ = E[Y ]. Assume the conditions of
Theorem 1, and suppose that we have estimators �̂2

p
! �̄2 and

�̂2�
p

! �̄2�. Let

C+
↵ =

0

@✓̂+
± z1�↵/2

q
n
N �̂2 + �̂2�

p
n

1

A .

Then, lim infn,N P
�
✓⇤ 2 C+

↵
�

� 1 � ↵.

Per standard notation, z1�↵/2 denotes the (1� ↵/2)-quantile of
the standard normal distribution. Corollary 1 follows by a direct
application of Theorem 1, together with Slutsky’s theorem.

Inference for General M-Estimation
We generalize the principle introduced in the last section to
handle arbitrary M-estimation problems. Indeed, the results
presented in this section will strictly subsume the previous results.

As in the case of the mean, we will require that the predictions
are “stable” in an appropriate sense. Naturally, the notion of
stability will depend on the loss function used to define the
M-estimator.

Assumption 2. With f̄ (·) as before, we say that the predictions are
stable if for all ✓, as n ! 1,
q
K Var

�
r`✓(X, f (1)(X )) � r`✓(X, f̄ (X )) | f (1)� L1

! 0.

Here, Var(· | f (1)) denotes the covariance matrix conditional
on f (1). Also, for vectors and matrices, by “ L

1
! 0” we mean

convergence in mean to zero element-wise. Notice that by setting
`✓(y) = (✓ � y)2 to be the squared loss, Assumption 2 reduces
to Assumption 1 in the case of mean estimation. As in the case of
Assumption 1, Assumption 2 should be interpreted as a stability
requirement on Atrain. Moreover, there is again no requirement
of correct specification of f̄ .

We will provide two approaches to inference in this section;
which one is more appropriate will depend on the inference
problem at hand.

One approach will be based on the characterization of ✓⇤

as a zero of the gradient of the expected loss, rL(✓⇤) =
E[r`✓⇤(X, Y )] = 0, which follows by the convexity of the loss. In
particular, wewill construct a confidence set for ✓⇤ by finding all ✓
accepted by a valid test for the null hypothesis that rL(✓) = 0.
Since the test is valid and ✓⇤ satisfies the null condition, the
true solution ✓⇤ will be excluded with small probability. The
hypothesis test for the population gradient rL(✓) will follow
from a central limit theorem for the gradient of the cross-
prediction loss,

rL+(✓) =
1
KN

KX

j=1

NX

i=1
r ˜̀f

(j)

✓,i �
1
n

KX

j=1

X

i2Ij

(r`
f (j)
✓,i � r`✓,i).
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The other approach will be based on showing asymptotic
normality of the cross-prediction estimator. For this, we build
on the proof of asymptotic normality of the prediction-powered
estimator (with a pretrained model) (25), which in turn builds
on classical asymptotic normality of M-estimators (17). The
asymptotic normality will allow forming standard CLT intervals
around ✓̂+.

We implicitly assume mild regularity on the losses `✓(x, y)
and `✓(x, f (j)(x)), in particular that they are differentiable and
locally Lipschitz around ✓⇤ for all possible f (j) (see definition
A.1 in ref. 25). Our second inference approach will require the
usual condition that ✓̂+ is consistent, ✓̂+ p

! ✓⇤; this is satisfied
quite broadly, e.g., when the parameter space is compact or when
L+(✓) is convex. The latter holds for all generalized linearmodels,
for example. See refs. 17 and 25 for further discussion.

Theorem 2 states the main technical result of this section,
which extends Theorem 1 to general M-estimation problems.

Theorem 2 (Cross-predictionCLT). Suppose that the predictions
are stable (Assumption 2). Further, assume that n

N has a limit, and

that ⌃̄✓ = Var(r`
f̄
✓,i) and ⌃̄�,✓ = Var(r`

f̄
✓,i � r`✓,i) have a

nonzero limit. Denote V̄✓ = n
N ⌃̄✓ + ⌃̄�,✓ . Then,

p
nV̄�1/2

✓
�
rL+(✓) � rL(✓)

� d
! N (0, I).

If, additionally, the Hessian H✓⇤ = r2L(✓⇤) is nonsingular,
✓̂+ p

! ✓⇤, and K is constant, then
p
n⌃̄�1/2

⇣
✓̂+

� ✓⇤
⌘ d

! N (0, I),

where ⌃̄ = H�1
✓⇤ V̄✓⇤H�1

✓⇤ .

Theorem 2 immediately yields two methods for computing a
confidence set for ✓⇤, as stated below.

Corollary 2 (Cross-prediction inference). Suppose that we have
estimators ⌃̂

p
! ⌃̄ and V̂✓

p
! V̄✓ , for all ✓. Then, assuming the

conditions of Theorem 2, for either

C+
↵ =

(

✓ :
���V̂�1/2

✓ rL+(✓)
���
2


�2
d,1�↵
n

)

or

C+
↵ =

0

@✓̂+
i ± z1�↵/(2d)

s
⌃̂ii

n
,

1

A
d

i=1

,

we have lim infn,N P
�
✓⇤ 2 C+

↵
�

� 1 � ↵.

Above, �2
d,1�↵ is the (1 � ↵)-quantile of the chi-squared

distribution with d degrees of freedom; when d = 1 (as in
the case of mean estimation), �d,1�↵ is equal to z1�↵/2. Note
also that in the case of mean estimation, the two confidence
sets are identical and reduce to the set from Corollary 1. In the
second confidence set we apply a Bonferroni correction over
the d coordinates of the estimand for simplicity and clarity
of exposition; we can obtain an asymptotically exact (1 � ↵)-

confidence set as C+
↵ =

⇢
✓̂+ + v : v>⌃̂v 

�2
d,1�↵
n

�
.

Next, we apply Theorem 2 and Corollary 2 to concrete
problems—quantile estimation, linear regression, and general-
ized linear models—to get explicit CI constructions.

Example: Quantile Estimation. Assume we are interested in a
quantile of Y , ✓⇤ = inf

�
y : P(Y  y) � q

 
. The quantile can

equivalently be written as any minimizer of the pinball loss,

✓⇤ = argmin
✓

E[`✓(Y )]

= argmin
✓

E[q(Y � ✓)1{Y > ✓}+(1 � q)(✓ � Y )1{Y  ✓}].

The subgradient of the pinball loss is equal to r`✓(y) =
�q1{y > ✓}+(1�q)1{y  ✓} = �q+1{y  ✓}. Plugging this
expression into the first confidence set from Corollary 2 yields

C+
↵ =

8
<

:✓ :
���F̃+(✓) � �+(✓) � q

���  z1�↵/2

q
n
N �̂

2
✓ + �̂2�,✓
p
n

9
=

; ,

where F̃+(✓) = 1
KN

PK
j=1

PN
i=1 1{f (j)(X̃i)  ✓} is the average

empirical CDF of the predictions on the unlabeled data, and
�+(✓) = 1

n
PK

j=1
P

i2Ij (1{f
(j)(Xi)  ✓} � 1{Yi  ✓}) is the

difference between the empirical CDFs of the predictions and
true outcomes on the labeled data. The SEs are equal to �̄2✓ =
Var(1{f̄ (X )  ✓}) and �̄2�,✓ = Var(1{f̄ (X )  ✓}�1{Y  ✓}).
The confidence set C+

↵ thus consists of all values ✓ such that the
average predicted CDF F̃+(✓), corrected by the bias �+(✓), is
close to the target level q.

Example: Linear Regression. In linear regression, the target of
inference is defined by

✓⇤ = argmin
✓

E[`✓(X, Y )] = argmin
✓

1
2

E[(Y � X>✓)2]. [8]

In this case, the cross-prediction estimator, equal to the solution
to rL+(✓̂+) = 0, has a closed-form expression. Letting X̃ 2

RN⇥d (resp. X 2 Rn⇥d ) be the unlabeled (resp. labeled) data
matrix, Y 2 Rn be the vector of labeled outcomes, the solution
is given by

✓̂+ = (X̃>X̃)�1
✓

X̃>favg(K)(X̃) �
N
n

· X> (f1:K (X) � Y)
◆
,

where favg(K)(X̃) = 1
K
PK

j=1 f (j)(X̃) is the vector of av-
erage predictions on the unlabeled data, and f1:K (X) is
the vector of predictions on the labeled data: f1:K (X) =
(f (1)(X1), . . . , f (1)(X n

K
), f (2)(X n

K +1), . . . , f (K )(Xn)). We see
that ✓̂+ resembles the usual least-squares estimator with
favg(K)(X̃) as the response, except for the extra debiasing factor,
N
n · X> (f1:K (X) � Y), that takes into account the prediction
inaccuracies.

Instantiating the relevant terms, Theorem 2 implies that ✓̂+

is asymptotically normal with covariance equal to ⌃OLS =
H�1V̄✓⇤H�1, where H = E[XX>] and V̄✓⇤ = n

N ⌃̄✓⇤ + ⌃̄�, for
⌃̄✓⇤ = Var((f̄ (X ) � X>✓⇤)X ) and ⌃̄� = Var((f̄ (X ) � Y )X ).

For a given coordinate of interest i, a CI for ✓⇤
i can therefore

be obtained as

C+
↵ =

0

@✓̂+
i ± z1�↵/2

q
(⌃̂OLS)ii
p
n

1

A ,

given an estimate ⌃̂OLS of ⌃OLS.
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Fig. 3. Mean estimation. Intervals
from five randomly chosen trials
(Left), coverage (Middle), and aver-
age interval width (Right) of cross-
prediction, classical inference, and
prediction-powered inference (PPI)
in a mean estimation problem.

Example: Generalized Linear Models.We can generalize the
previous example by considering all generalized linear models
(GLMs). In particular, we consider targets of inference given by

✓⇤ = argmin
✓

E[� log p✓(Y |X )]

= argmin
✓

E[�Y ✓>X +  (X>✓)], [9]

where p✓(y|x) = exp(yx>✓� (x>✓)) is the probability density
of the outcome given the features and the log-partition function
 is convex. The objective Eq. 9 recovers the linear-regression
objective Eq. 8 by setting  (s) = 1

2 s
2. It captures logistic

regression by choosing  (s) = log(1 + es).
The asymptotic covariance given by Theorem 2 evaluates to

⌃GLM = H�1
✓⇤ V̄✓⇤H�1

✓⇤ , H✓⇤ = E[ 00(X>✓⇤)XX>], V̄✓⇤ =
n
N Var(( 0(X>✓⇤)� f̄ (X ))X )+Var((f̄ (X )�Y )X ). Therefore,
analogously to the OLS case, given an estimate ⌃̂GLM of ⌃GLM,
we can construct a CI for ✓̂+ as

C+
↵ =

0

@✓̂+
i ± z1�↵/2

q
(⌃̂GLM)ii

p
n

1

A .

Variance Estimation via Bootstrapping
The previous inference results rely on being able to estimate the
asymptotic covariance of ✓̂+. We herewith provide an explicit
estimation strategy that we will use in our experiments.

Recall that the asymptotic covariance is equal to ⌃̄ =

H�1
✓⇤ V̄✓⇤H�1

✓⇤ , where V̄✓ = n
N ⌃̄✓ + ⌃̄�,✓ , for ⌃̄✓ = Var(r`

f̄
✓,i)

and ⌃̄�,✓ = Var(r`
f̄
✓,i � r`✓,i). Estimating the Hessian H✓ is

easy via plug-in estimation; V̄✓ , on the other hand, depends on
the average model f̄ . If the average model f̄ was known, one
could compute estimates of ⌃̄✓ and ⌃̄�,✓ by replacing the true
covarianceswith their empirical counterparts. Thus, the challenge

is to approximate f̄ . To achieve this, we apply the bootstrap to
simulate multiple model training runs, and at the end, we average
the predictions of all the learned models.

In more detail, for each b 2 {1, 2, . . . , B} = [B], we sample
n�

n
K data points uniformly at random from the labeled dataset,

and denote the indices of the samples by I bboot. Then, we use
the sampled data points to train a model f (b)

boot using the same
model-fitting strategy as for the cross-prediction models f (j). To
estimate ⌃̄✓ , we compute

⌃̂✓ = dVar
⇣
r`✓(X̃i, f̄boot(X̃i)), i 2 [N ]

⌘
,

where f̄boot = 1
B
PB

b=1 f
(b)
boot and dVar denotes the empirical

covariance. To estimate ⌃̄�,✓ , we compute

Table 1. SD of the lower (�̂L) and upper (�̂U) endpoints
of the CIs in the mean estimation problem from Fig. 3,
for n = 100

Mean estimation
R2 = 0

Method �̂L �̂U

Cross-prediction 0.2694 0.2696
Classical 0.2124 0.2085
PPI 0.3844 0.3997

R2 = 0.5

Method �̂L �̂U

Cross-prediction 0.1769 0.1897
Classical 0.1908 0.1885
PPI 0.2751 0.2684

R2 = 1

Method �̂L �̂U

Cross-prediction 0.0591 0.0613
Classical 0.2136 0.2102
PPI 0.1045 0.1061

The minimum value in each column is in bold.

PNAS 2024 Vol. 121 No. 15 e2322083121 https://doi.org/10.1073/pnas.2322083121 7 of 12
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Fig. 4. Quantile estimation. Inter-
vals from five randomly chosen tri-
als (Left), coverage (Middle), and av-
erage interval width (Right) of cross-
prediction, classical inference, and
prediction-powered inference (PPI)
in a quantile estimation problem.
The target is the 75th percentile.

⌃̂�,✓ = dVar

 ✓
r`✓(Xi, f

(b)
boot(Xi)) � r`✓(Xi, Yi)

◆

i2[n]\I(b)boot,b2[B]

!

.

Finally, we approximate the covariance by n
N ⌃̂✓ + ⌃̂�,✓ . In

computing ⌃̂�,✓ , we technically do not average out the boot-
strapped models because we want to make sure that every point
(Xi, Yi) used to compute the gradient bias is independent of
its corresponding model f (b)

boot. Intuitively, as per the discussion
following Assumption 1, ifAtrain is stable we expect f

(b)
boot to be a

good approximation of the average model f̄ , which in turnmeans
that the bootstrap covariance estimates should be consistent per
conventional wisdom. We show empirically that the covariance
estimates lead to valid coverage across a range of applications.

To give one concrete example, considermean estimation: ✓⇤ =
E[Y ]. We compute

�̂2 = dVar
⇣
f̄boot(X̃i), i 2 [N ]

⌘
and

�̂2� = dVar
⇣
f (b)
boot(Xi) � Yi, i 2 [n] \ I (b)boot, b 2 [B]

⌘
,

and take C+
↵ =

 

✓̂+ ± z1�↵/2

q
n
N �̂2+�̂

2
�

p
n

!

as the final interval.

Experiments
We evaluate cross-prediction and compare it to baseline ap-
proaches on several datasets; the baselines are the classical infer-
ence method, which only uses the labeled data, and prediction-
powered inference with a data-splitting step in order to train
a predictive model. Code for reproducing the experiments is
available at: https://github.com/tijana-zrnic/cross-ppi (56).

For each experimental setting, we plot the coverage and CI
width estimated over 100 trials for all baselines. We also show
the constructed CIs for five randomly chosen trials. Finally, to
quantify the stability of inferences, we report the SD of the lower
and upper endpoints of the confidence intervals for each method.

We begin with proof-of-concept experiments on synthetic
data. Then, we move on to more complex real datasets.

Proof-of-Concept Experiments on Synthetic Data. To build in-
tuition, we begin with simple experiments on synthetic data. The
purpose is to confirm what we expect in theory: a) as it gets easier
to predict labels from features, cross-prediction, and prediction-
powered inference become more powerful and increasingly
outperform the classical approach; b) cross-prediction uses the
data more efficiently than prediction-powered inference, yielding
smaller intervals; c) cross-prediction gives more stable inferences
than the baselines when the predictions are useful; d) all three
approaches lead to satisfactory coverage.

In all of the following experiments, we have N = 10,000
unlabeled data points, and we vary the size of the labeled data

Table 2. SD of the lower (�̂L) and upper (�̂U) endpoints
of the CIs in the quantile estimationproblem fromFig. 4,
for n = 100

Quantile estimation
R2 = 0

Method �̂L �̂U

Cross-prediction 0.4102 0.3509
Classical 0.2302 0.3024
PPI 0.5424 0.4614

R2 = 0.5

Method �̂L �̂U

Cross-prediction 0.3253 0.3242
Classical 0.2569 0.3305
PPI 0.4141 0.4368

R2 = 1

Method �̂L �̂U

Cross-prediction 0.1345 0.1545
Classical 0.2615 0.2806
PPI 0.2151 0.3280

The minimum value in each column is in bold.

8 of 12 https://doi.org/10.1073/pnas.2322083121 pnas.org
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Fig. 5. Linear regression. Intervals
from five randomly chosen trials
(Left), coverage (Middle), and aver-
age interval width (Right) of cross-
prediction, classical inference, and
prediction-powered inference (PPI)
in a linear regression problem.

n between 100 and 1,000, in 100-point increments. We apply
cross-prediction with K = 10 folds. We estimate the variance
using the bootstrap approach described in the last section, with
B = 30 bootstrap samples. For prediction-powered inference,
we use half of the labeled data for model training. To illustrate
the point that cross-prediction can be applied with any black-
box model, we train gradient-boosted trees via XGBoost (57) to
obtain the models f (j). We use the same model-fitting strategy
for prediction-powered inference. We fix the target error level to
be ↵ = 0.1 and average the results over 100 trials.
Mean estimation. For given parameters R2 and �2Y , the data-
generating distribution is defined as X ⇠ N (0, I2), Y = � +
X>� + ⇠, where �1 = �2 = R�Y /

p
2, and ⇠ ⇠ N (0, �2Y (1 �

R2)) is independent of X . We fix � = 4, �2Y = 4 and vary
R2 = Var(X>�)

Var(Y ) 2 {0, 0.5, 1}. The idea is to vary the degree

Table 3. SD of the lower (�̂L) and upper (�̂U) endpoints
of the CIs in the linear regression problem from Fig. 5,
for n = 100

Linear regression
R20 = 0

Method �̂L �̂U

Cross-prediction 0.2801 0.2969
Classical 0.2091 0.2098
PPI 0.4104 0.4870

R20 = 0.5

Method �̂L �̂U

Cross-prediction 0.1875 0.2250
Classical 0.2271 0.2262
PPI 0.2602 0.3326

R20 = 1

Method �̂L �̂U

Cross-prediction 0.1102 0.1472
Classical 0.1800 0.1809
PPI 0.1522 0.2530

The minimum value in each column is in bold.

to which the outcomes can be explained through the features:
When R2 = 0, the outcome is independent of the features and
we do not expect predictions to help, while when R2 = 1, the
outcome can be perfectly explained through the features and
we expect predictions to be helpful. Given that the variance of
Y is kept constant regardless of R2, classical inference has the
same distribution of widths across R2. The target of inference is
✓⇤ = E[Y ] = �.

In Fig. 3 we plot the coverage and interval width of cross-
prediction, classical inference, and prediction-powered inference,
as well as five example intervals. All three methods approximately
achieve the target coverage, and cross-prediction dominates
prediction-powered inference throughout. Further, we see that
the classical approach dominates the alternatives when the
features are independent of the outcomes, while the alternatives
become more powerful as R2 increases. To evaluate stability, in
Table 1 we report the SD of the lower and upper endpoints of

Table 4. SD of the lower (�̂L) and upper (�̂U) endpoints
of the CIs in the real-data problems

Deforestation analysis

Method �̂L �̂U

Cross-prediction 0.0158 0.0182
Classical 0.0195 0.0232
PPI 0.0200 0.0240

ACS survey analysis

Method �̂L �̂U

Cross-prediction 11.2781 12.2367
Classical 14.5346 15.6106
PPI 13.1378 13.8733

Galaxy analysis

Method �̂L �̂U

Cross-prediction 0.0029 0.0029
Classical 0.0037 0.0038
PPI 0.0036 0.0037

For each problem, we take n to be the smallest labeled dataset size in the considered
range. The minimum value in each column is in bold.

PNAS 2024 Vol. 121 No. 15 e2322083121 https://doi.org/10.1073/pnas.2322083121 9 of 12
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Fig. 6. Subset of the variables available in the ACS PUMS data.

the confidence intervals from Fig. 3, for n = 100. We observe
that the classical approach is the most stable method when
R2 = 0, which makes sense because the predictions can only
introduce noise. When R2 = 0.5, cross-prediction and classical
inference have a similar degree of stability, while when R2 = 1
cross-prediction is significantly more stable. Moreover, cross-
prediction is significantly more stable than prediction-powered
inference throughout. These trends hold across different values of
n; however, we only include the results for n = 100 for simplicity
of exposition.
Quantile estimation.We adopt the same data-generating process
as for mean estimation. We only change the target of inference
✓⇤ to be the 75th percentile of the outcome distribution.

In Fig. 4 we plot the coverage and interval width of cross-
prediction, classical inference, and prediction-powered inference,
as well as five example intervals. We observe a qualitatively
similar comparison as in the case of mean estimation: All three
methods approximately achieve the target coverage, and cross-
prediction dominates prediction-powered inference throughout.
As before, the classical approach dominates the alternatives when
the features are independent of the outcomes, and the alternatives
become increasingly powerful as R2 increases. In Table 2 we
evaluate the stability of the methods by reporting the SD of the
lower and upper endpoints of the confidence intervals fromFig. 4,
for n = 100. As before, Table 2 shows that cross-prediction is
more stable than prediction-powered inference for all values of
R2, and when R2 = 0 classical inference is the most stable
option. When R2 = 0.5, cross-prediction has a slightly more
stable upper endpoint than classical inference, while classical
inference has a more stable lower endpoint. When R2 = 1, cross-
prediction is by far the most stable method. For R2 2 {0, 0.5}.
Again, these trends are largely consistent across different values
of n; however, we only include the results for n = 100
for simplicity.
Linear regression. Finally, we look at linear regression. For
robustness and interpretability, it is common to include only
a subset of the available features in the regression. The process of

deciding which variables to include is known as model selection.
The variables that are not included in the model may still be
predictive of the outcome of interest; we demonstrate that, as
such, they can be useful for inference.

The data-generating distribution is defined as follows: We
generate X ⇠ N (0, I3), Y = X>� + ⇠, where � = (1, 1, R0�Y )
and ⇠ ⇠ N (0, �2Y (1�R2

0)). Again, the idea is to vary how much
of the outcome can be explained through prediction versus how
much of it is exogenous randomness. We fix �2Y = 4 and vary
R0 2 {0, 0.5, 1}. The target of inference is defined as the least-
squares solution when regressing Y on (X1, X2), that is, the first
coordinate of this solution. In this case, this is simply equal to
✓⇤ = �1 = 1.

In Fig. 5 we plot the coverage and interval width of cross-
prediction, classical inference, and prediction-powered inference.
WhenR2

0 = 0, the classical approach outperforms the prediction-
based approaches; as R2

0 grows, meaning more of the randomness
of the outcome can be attributed to X3, the prediction-based
approaches dominate the classical one. As before, cross-prediction
yields smaller intervals than prediction-powered inference. We
remark that, even though the inference problem posits a linear
model, the prediction-based approaches still use XGBoost for
model training. Like in the previous two examples, we report
on the stability of the three methods in Table 3. We again fix
n = 100 for simplicity. Cross-prediction is far more stable than
prediction-powered inference throughout, and it is more stable
than classical inference for nonzero values of R2

0.

Estimating Deforestation from Satellite Imagery.We briefly
revisit the problem of deforestation analysis from Fig. 2. As
we saw in the figure, cross-prediction gave tighter CIs for
the deforestation rate than using gold-standard measurements
of deforestation alone. In other words, cross-prediction can
enable a reduction in the number of necessary field visits to
measure deforestation. Moreover, we saw that cross-prediction
outperformed prediction-powered inference.

Here we argue another benefit of cross-prediction in this
problem: It is a more stable solution than the baselines. Table
4 shows the SD of the endpoints of the confidence intervals
constructed by cross-prediction and its competitors. Cross-
prediction has a significantly lower variability of the endpoints
than both classical inference and prediction-powered inference,
while the latter two exhibit similar variability.

Finally, we provide the experimental details behind Fig. 2. We
have nall = 3,192 data points with gold-standard labels total. To
simulate having unlabeled images, in each trial we randomly split
the data into n points to serve as the labeled data, for varying
n 2 {0.1nall, 0.2nall, 0.3nall}, and treat the remaining points as
unlabeled. The target of inference is the fraction of deforested
areas across the locations contained in the sample.We apply cross-
prediction withK = 10 folds. For prediction-powered inference,
we use ntr = 0.1n points formodel tuning.We average the results
over 100 trials.

Fig. 7. Estimating the relationship
between age, sex, and income in
ACS data. Intervals from five ran-
domly chosen trials (Left), coverage
(Middle), and average interval width
(Right) of cross-prediction, classical
inference, and prediction-powered
inference (PPI) in a linear regression
problem on ACS PUMS data. The
target ✓⇤ is the linear regression
coe�icient when regressing income
on age and sex.
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Fig. 8. Example images of a spiral galaxy (Left) and a nonspiral galaxy (Right).

Estimating Relationships between Socioeconomic Covariates
in Survey Data.We evaluate cross-prediction on the Ameri-
can Community Survey (ACS) Public Use Microdata Sample
(PUMS). We investigate the relationship between age, sex, and
income in survey data collected in California in 2019 (nall =
377, 575 people total). High-quality survey data are generally
difficult and time-consuming to collect. With this experiment,
we hope to demonstrate how, by imputing missing information
based on the available covariates, cross-prediction can achieve
both powerful and valid inferences while reducing the requisite
amount of survey data. See Fig. 6 for a subset of the available
covariates in the ACS PUMS data.

We use the Folktables (58) interface to download the PUMS
data, including income, age, sex, and 15 other demographic
covariates. In each trial, we randomly sample n data points
to serve as the labeled data, for varying n, and treat the
remaining data points as the unlabeled data. We vary n 2

{0.1nall, 0.2nall, 0.3nall}. The target of inference is the linear
regression coefficient when regressing income on age and sex:
✓⇤ = argmin✓ E[(Y � X>

ols✓)
2], where Y is income and Xols

encodes age and sex, Xols = (Xage, Xsex). For the purpose of
evaluating coverage, the corresponding coefficient computed on
the whole dataset is taken as the ground-truth value of the
estimand. To obtain the models f (j), we train gradient-boosted
trees via XGBoost (57). Note that the predictors use all 17
covariates to predict the missing labels, even though the target
of inference is only defined with respect to two covariates. We
apply cross-prediction withK = 5 folds. For prediction-powered
inference, we use ntr = 0.2n points for model training, and we
also train gradient-boosted trees. The target error level is ↵ = 0.1
and we average the results over 100 trials.

In Fig. 7 we plot the coverage and interval width for the
three baselines, together with five example intervals. All three
methods cover the true target with the desired probability.
Moreover, as before, cross-prediction outperforms prediction-
powered inference. In this example, the predictive power of
the trained models is not high enough for prediction-powered
inference to outperform the classical approach; cross-prediction,
however, outperforms both. In Table 4, we report on the stability
of the three methods for n = 0.1nall. We observe that cross-
prediction is more stable than both alternatives. We also observe
that prediction-powered inference has more stable intervals than
the classical approach, despite the fact that they are wider on
average.

Estimating the Prevalence of Spiral Galaxies from Galaxy
Images.We next look at galaxy data from the Galaxy Zoo 2
dataset (59), consisting of human-annotated images of galaxies
from the Sloan Digital Sky Survey (60). Of particular interest are
galaxies with spiral arms, which are correlated with star formation
in the discs of low-redshift galaxies, and thus contribute to
the understanding of star formation. See Fig. 8 for example
images of a spiral and a nonspiral galaxy. We show that, by
leveraging the massive amounts of unlabeled galaxy imagery
together with machine learning, cross-prediction can decrease
the requisite number of human annotations for inference on
galaxy demographics.

We have 167, 434 annotated galaxy images. In each trial, we
randomly split them up into n points to serve as the labeled
data, for n 2 {10,000, 20,000, 30,000}, and treat the remaining
data points as unlabeled. The target of inference is the fraction of
spiral galaxies in the dataset, equal to about 26.22%. To compute
predictions, we fine-tune all layers of a pretrained ResNet50. We
apply cross-prediction withK = 3 folds. For prediction-powered
inference, we use ntr = 0.1n points formodel training. The target
error rate is ↵ = 0.1 and we average the results over 100 trials.

In Fig. 9 we plot the coverage and interval width of the three
methods, as well as the intervals for five randomly chosen trials.
Both cross-prediction and prediction-powered inference yield
smaller intervals than the classical approach. Moreover, cross-
prediction dominates prediction-powered inference. We observe
satisfactory coverage for all three procedures. In Table 4 we
evaluate the stability of the procedures for n = 10, 000. Cross-
prediction is significantly more stable than classical inference and
prediction-powered inference. The latter two achieve a similar
degree of stability.

Evaluating Heuristics
In Fig. 2, we saw that cross-prediction gave tighter CIs than the
baseline approaches for the problem of deforestation analysis. In
this section, we test two heuristic ways of reducing the variance
of the classical approach and prediction-powered inference and
compare the heuristics to cross-prediction.

The first heuristic removes the debiasing from the cross-
prediction estimator and simply averages the predictions on the
large unlabeled dataset:

✓̂nodebias =
1
KN

KX

j=1

NX

i=1
f (j)(X̃i). [10]

This is akin to computing the classical estimator while
pretending that the predicted labels are the ground truth.
The second heuristic trains a model on all the labeled data,
f all = Atrain({(Xi, Yi)}ni=1), and computes

✓̂nofolds =
1
N

NX

i=1
f all(X̃i) �

1
n

nX

i=1
(f all(Xi) � Yi).

Fig. 9. Estimating the prevalence
of spiral galaxies from galaxy im-
ages. Intervals from five randomly
chosen trials (Left), coverage (Mid-
dle), and average interval width
(Right) of cross-prediction, classical
inference, and prediction-powered
inference (PPI) in amean estimation
problem on galaxy image data. The
target ✓⇤ is the fraction of spiral
galaxies.
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Fig. 10. Estimating the deforestation rate in the Amazon from satellite
imagery (revisited). Coverage and average interval width of cross-prediction,
classical inference, and prediction-powered inference (PPI), as well as two
heuristics related to cross-fitting: one that removes the debiasing and one
that trains on all labeled data instead of forming folds. The experimental
setup is the same as in Fig. 2.

This estimator is akin to the prediction-powered estimator if we
treated f all as fixed and independent of the labeled dataset.

For both heuristics, we form confidence intervals based on
the usual central limit theorem that assumes i.i.d. sampling.
For the first heuristic this is done conditional on the trained
models f (j), since the terms ( 1

K
PK

j=1 f (j)(X̃i))i2[N ] are indeed

conditionally independent given f (1), . . . , f (K ). Since the second
heuristic proceeds under the assumption that f all can be seen as
being independent of the labeled data, we apply the central limit
theorem to the two sums separately, as if f all were fixed.

We see in Fig. 10 that removing the debiasing is detrimental
to coverage; removing the folds has a more moderate effect that
vanishes with n, but it is nevertheless significant. Cross-prediction
yields wider intervals than both heuristics, and by doing so it
maintains correct coverage.

Data, Materials, and Software Availability. Code and data for reproducing
the experiments have been deposited in cross-ppi GitHub repository (56).
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