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A B S T R A C T

Efficiently monitoring the condition of civil infrastructure requires automating the structural condition
assessment in visual inspection. This paper proposes an Attention-Enhanced Co-Interactive Fusion Network
(AECIF-Net) for automatic structural condition assessment in visual bridge inspection. AECIF-Net can si-
multaneously parse structural elements and segment surface defects on the elements in inspection images.
It integrates two task-specific relearning subnets to extract task-specific features from an overall feature
embedding. A co-interactive feature fusion module further captures the spatial correlation and facilitates
information sharing between tasks. Experimental results demonstrate that the proposed AECIF-Net outperforms
the current state-of-the-art approaches, achieving promising performance with 92.11% mIoU for element
segmentation and 87.16% mIoU for corrosion segmentation on the test set of the new benchmark dataset Steel
Bridge Condition Inspection Visual (SBCIV). An ablation study verifies the merits of the designs for AECIF-Net,
and a case study demonstrates its capability to automate structural condition assessment.

1. Introduction

Visual inspection, a crucial component of structural health mon-
itoring (SHM), is performed periodically to evaluate the condition
of infrastructure [1]. However, traditional manual inspections have
inherent limitations. Desires for time-cost efficiency, reliability, and
safety have driven a growing interest in automating visual inspection
with cutting-edge technologies like robotics and artificial intelligence
[2]. Unmanned aerial vehicles (UAVs), equipped with one or multiple
types of non-destructive evaluation sensors, have gained popularity for
capturing inspection videos and images of infrastructure [3]. Maximiz-
ing the potential of robotic inspection platforms and the automation
process necessitates the employment of efficient and reliable techniques
for inspection image analysis. Deep convolutional neural networks
(DCNNs), in particular, have shown tremendous potential for analyzing
images and extracting vital information about the inspected structures,
inspiring researchers to investigate their applications in SHM [4]. For
example, a drone with mounted RGB cameras can quickly assess the
condition of a bridge at the inspection site and narrow down to spots
where other high-resolution yet time-consuming diagnostic sensors
should be used to collect detailed information, such as infrared sensors,
ground-penetrating radar, ultrasound scanning, and others.

∗ Corresponding author.
E-mail address: ruwen.qin@stonybrook.edu (R. Qin).

According to the infrastructure inspection manuals and standards
[5–8], it is necessary to associate structural elements with the severity
of defects developed in the elements to evaluate the condition of
individual elements, which builds the foundation for assessing the
condition of the overall structure. That is, it is required to not only
recognize and localize key structural elements and defects in images
captured by inspection robots, but also spatially associate them. This
capability will offer a reference for prioritizing subsequent structural
condition assessment that is usually more expensive.

Researchers have made progress in identifying or segmenting struc-
tural elements and defects using DCNNs [9–11]. However, most studies
were dedicated to addressing one task, leading to three challenges
in deep learning-based visual inspection. Firstly, the appearance of
structural elements may be inaccurately recognized due to the pres-
ence of surface defects. For example, Fig. 1(a) shows a rusted girder
section and a below-bearing share similar surface defects. The girder’s
rusted or flaking portion might be mistakenly identified as part of the
bearing due to the similarities in appearance caused by the defects. Sec-
ondly, surface inhomogeneity, shadows, and poor lighting conditions,
as shown in Fig. 1(b), continue to pose challenges for reliably assessing
defects on surfaces of structural elements. Lastly, the spatial correlation
between element segmentation and defect segmentation tasks, as shown
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Fig. 1. Challenges in deep learning-based visual inspection: (a) potential confusion due to surface defects, where a rusted girder might be mistakenly identified as a bearing; (b)
issues from surface inhomogeneity, shadows, and poor lighting affecting defect assessment; (c) overlooked spatial correlation between element segmentation and defect segmentation
tasks.
Source: Origin images courtesy of [16].

in Fig. 1(c), has been overlooked, leading to unreasonable predictions.
For example, the presence of steel corrosion in the background area is
apparently a wrong prediction result because it is impossible in reality.
Several attempts have explored solutions to these challenges, mainly
using multi-task learning (MTL) methods [12–14]. MTL is an efficient
approach that learns to perform the two related tasks simultaneously
with a unified model [15]. While those studies have laid a solid
foundation for visual assessment of the structure’s condition, several
research needs must be addressed further to improve the technology
readiness of image analysis for automated visual inspection.

MTL can adopt a powerful deep encoder that generates a deep
feature embedding to represent each input inspection image [15].
There are many choices of deep encoders for semantic segmentation.
The guidance for choosing one deep encoder that is well-suited for the
tasks of this paper has not been available. Moreover, the overall em-
bedding encompasses information related to both structural elements
and surface defects. While a simple method named feature projection
[14] has been developed to decouple task-specific features intertwined
in the overall embedding, a more advanced method to extract task-
specific features called feature relearning has not been explored yet.
Last but not least, how to leverage the spatial correlation between
structural elements and defects to let one task benefit from the other
task and vice versa is still an unsolved question. A cross-talk method
[14] was created for this purpose. However, that design does not
explicitly integrate the physical meaning of spatial information that one
task can provide to another. The spatial attention mechanism, which
focuses on spatial attributes such as shape and boundaries within an
image, is critical in image analysis. Upon obtaining the spatial attention
maps and task-specific features, the design of a suitable network archi-
tecture becomes pivotal. Such an architecture should facilitate efficient
communication and information exchange across tasks. Incorporating
this diverse information can enhance a model’s understanding of the
complex interrelations within the data, leading to more robust feature
representations and improved semantic segmentation outcomes.

In addressing the above-discussed technical needs, this paper has
the following contributions:

• A new MTL model, named Attention-Enhanced Co-Interactive
Fusion Network (AECIF-Net), is introduced. It has a share-split-
interaction pipeline composed of a shared high-resolution deep
encoder, two task-specific relearning subnets, and a co-interactive
feature fusion module.

• A new dataset, named Steel Bridge Condition Inspection Visual
(SBCIV) dataset, is developed to support the development and
evaluation of MTL models for automating the bridge element
inspection.

• A comprehensive study employing both numerical experiments
and qualitative evaluation is conducted to verify the strengths
of AECIF-Net and reveal reasons for achieving satisfying perfor-
mance.

Based on the proposed AECIF-Net, the automatic structural con-
dition assessment framework in visual bridge inspection is shown in
Fig. 2.

The remainder of the paper is organized as follows. The next section
is a summary of related work. Then, Section 3 presents the design of
the AECIF-Net, followed by details of executing the model. Section 5
discusses results from the experimental studies for evaluating AECIF-
Net, and Section 6 further presents an assessment case study. In the end,
Section 7 summarizes insights gained from this study and suggestions
for important future work. The code and dataset used in this study are
available at https://github.com/itschenyu/AECIF-Net.

2. Related work

This paper is built on studies that contributed to structural condition
assessment in visual inspection, either directly or indirectly. The related
literature is summarized below.

2.1. DCNN-based defect segmentation

An intensively studied topic related to the visual inspection of
infrastructures is defect detection, which is about finding structural
surface defects or damage in inspection images or videos [17]. The
majority of current research efforts are centered on DCNN-based defect
segmentation, where each pixel of an inspection image is classified as
defect or non-defect [18]. Segmentation can provide pixel-level posi-
tion information of defects, resulting in superior accuracy compared to
object detection methods [19]. Deep feature extractors, such as DCNNs,
are employed due to their ability to facilitate automated representation
learning and embed rich information, ultimately capturing complex
real-world data features through multi-level feature abstraction [20].

DCNN-based crack segmentation methods have shown considerable
success in detecting and analyzing defects across various civil struc-
tures, including buildings, bridges, tunnels, and roads [21]. Dung and
Anh [22] utilized a Fully Convolutional Network (FCN) [23] for crack
element marking, while Ji et al. [24] aimed at accurately quantifying
cracks by training an atrous convolution-based DeepLabv3+ model
[25]. Mei et al. [26] focused on crack connectivity through a densely
connected DCNN architecture. Liu and Wang [27] incorporated vi-
sual explanations into a U-Net [28] based model to highlight crack
semantics.

Recently, DCNNs have been utilized for the detection and seg-
mentation of corrosion in steel structures. Atha and Jahanshahi [29]
demonstrated that DCNNs surpass conventional vision-based corrosion
detection methods that rely on texture and color analysis using a basic
multi-layer perceptron network. Rahman et al. [30] introduced a corro-
sion assessment approach that applied DeepLab [31] to infrastructure
inspection images. Han et al. [32] developed a two-stage corrosion
location method by integrating Feature Pyramid Network (FPN) [33]
and Path Aggregation Network (PANet) [34] to identify corrosion areas
on structural surfaces. Jiang et al. [35] proposed an enhanced U-net,
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Fig. 2. Framework of the automated visual bridge inspection using UAVs, where AECIF-Net analyzes collected images to segment structural elements and defects, leads to a
comprehensive structural condition assessment.
Source: Example images courtesy of Shengqian Zheng and [16].

Fusion-Attention-U-net (FAU-net), which incorporated a fusion module
and an attention module within the U-net for segmenting three types
of corrosion-related damage within dim steel box girders. Katsamenis
et al. [36] applied U-Net for the automated simultaneous detection and
localization of corrosion and rust grade recognition from inspection im-
ages of metal structures. These studies have laid a solid methodological
groundwork for identifying defects in structural elements.

2.2. DCNN-based structural element segmentation

Structural element inspection requires associating elements with
defects developed on them. A stream of recent studies was motivated
to focus on structural element segmentation in inspection images us-
ing various DCNN-based methods. This segmentation process aims at
identifying structural elements within these images, typically achieved
through object detection or segmentation within the given scene. Accu-
rate identification of critical elements enables a thorough and precise
evaluation of the infrastructure’s overall condition, considering fac-
tors like defect shape, size, location, and compliance with established
standards. Gao and Mosalam [37] developed a hierarchical framework
applicable to a range of classification tasks, including recognizing
building component types of damage states. Yeum et al. [38] detected
damage in welded joints on truss structures by extracting and classi-
fying target image areas. Narazaki et al. [9] presented an FCN-based
method for bridge component recognition. Czerniawski and Leite [39]
developed a DeepLab-based model incorporating RGB-D (color and
depth) images for component segmentation in thirteen buildings. Wang
et al. [40] proposed an enhanced U-Net model with a novel geometric
consistency loss for geometry-informed structural component segmen-
tation of post-earthquake buildings. Karim et al. [10] transferred a
pre-trained Mask R-CNN [41] to the task of bridge elements segmen-
tation and created a semi-supervised self-training method to refine
the transferred network iteratively. Through a comparative analysis
of the state-of-the-art semantic segmentation networks, Zhang et al.
[42] revealed the aptitude of High-Resolution Network (HRNet) [43]
in efficiently extracting deep features for segmenting various structural
elements in bridge inspection images. Furthermore, the study investi-
gated factors that impact the network’s performance, such as transfer
learning, the size of the training set, data augmentation techniques, and
the role of class weights.

Although impressive, the above methods exhibit some limitations in
identifying and capturing the highly irregular and significantly deterio-
rated elements from inspection images. Furthermore, these approaches

have yet to explore feature fusion’s potential to enhance element seg-
mentation capability. Notably, compared to the extensively studied
defect segmentation, structural element segmentation remains in a
relatively nascent stage of development.

2.3. MTL in visual structural assessment

MTL has proven effective in various civil engineering applications,
such as SHM data reconstruction [44], bridge damage diagnosis [45],
landslide evolution state prediction [46], and more. The prevalent
method for achieving MTL is to share the feature extractor and branch
downstream tasks for respective predictions [47]. This shared feature
extractor learns a common representation for all tasks, significantly
reducing the risk of over-fitting and enhancing generalization [15].
However, one task can easily dominate others in this conventional
approach, which negatively impacts the overall performance.

Hoskere et al. [12] introduced MaDnet, a DCNN comprising a
shared feature extractor and multiple semantic segmentation pathways
to identify material and damage types. This framework indicates that
one segmentation task can provide contextual information for another.
Ye et al. [13] developed the MT-HRNet that employs the HRNetV2-W18
backbone and two segmentation heads for element recognition and
damage identification in synthetic bridge images. To further address
the challenges of task domination and improve task-specific feature
sharing, Zhang et al. [14] proposed the MTL-D and MTL-I models
that both can simultaneously segment bridge elements and surface
corrosion. These models project the shared features for respective tasks
and utilize the cross-talk feature sharing between tasks to enhance
performance and prevent the dominance of a single task.

Despite remarkable advancements in this direction, most studies
remain at the stage of Naive MTL models. While attempts were ob-
served to exchange information among different tasks, they have yet to
explicitly model the spatial association between elements and defects.
The effective utilization of this spatial relationship will mitigate the task
domination issue and enhance the overall performance, which remains
a further exploration.

3. AECIF-Net

In filling the above-discussed gaps, this paper introduces an
Attention-Enhanced Co-Interactive Fusion Network (AECIF-Net), shown
in Fig. 3. AECIF-Net analyzes each input RGB image to parse the bridge
in the image into structural elements and segment the surface defects on
the elements. The backbone of AECIF-Net encodes the input image as an
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Fig. 3. Architecture of the AECIF-Net, which features a share-split-interaction pipeline composed of a shared high-resolution deep encoder, two task-specific relearning subnets,
and a co-interactive feature fusion module.

overall feature embedding. Then, two relearning subnets respectively
extract element- and defect-specific feature maps from the encoded
overall embedding. After that, a co-interactive module generates spatial
attention maps to guide the feature fusion for performing the two
downstream tasks. Finally, two reconstruction decoders respectively
perform the pixel-level classification for element segmentation and
defect segmentation. Details of the AECIF-Net’s key components are
delineated below.

3.1. Shared encoder

AECIF-Net employs HRNetV2-W48 [43] as its shared encoder, at-
tributed to its capability to produce high-resolution feature maps
through parallel high-to-low-resolution convolutions. Before entering
the shared encoder, an inspection image captured by the robot-mounted
RGB camera is reshaped to be the size 3 × 520 × 520. The shared
encoder serves as a feature extractor to capture an overall feature
embedding, 𝒇 (∈ R

720×120×120), from the input image. The overall feature
embedding integrates multi-dimensional information, encompassing
both structural elements and surface defects. Using the shared en-
coder improves computational efficiency, ensuring the extraction of
comprehensive, effective, and non-redundant feature embedding.

3.2. Task-specific feature relearning subnets

𝛺 = {e, d} is the index set of tasks, where e and d stand for element
segmentation and defect segmentation tasks, respectively. These two
tasks concentrate on distinct characteristics and minutiae. Therefore,
two task-specific relearning subnets follow the shared encoder. These
subnets refine the overall feature embedding from the shared encoder
to further extract task-specific feature maps with lower dimensions,
𝒇 𝑖 (∈ R

512×120×120), for 𝑖 ∈ 𝛺. They enhance the precision in feature
extraction and optimize computational performance, which is crucial
for reliable bridge condition assessments.

Each relearning subnet consists of a convolutional layer (COV), a
batch normalization layer (BN), and the rectified linear unit (ReLU)
activation function in sequence:

𝒇 𝑖 = ReLU
(
BN(COV

(
𝒇 ;𝜽rln,𝑖

)
)
)
, ∀𝑖 ∈ 𝛺. (1)

The convolutional operation in Eq. (1) uses a kernel size of 3, a
stride of 1, padding of 1, and 512 output channels. 𝜽rln,𝑖 are learnable
parameters of the convolutional layer in the relearning (rln) subnet for
task 𝑖, with a total of 3.32 million parameters in each subnet.

3.3. Co-interactive fusion module

The co-interactive fusion module is an essential component in the
AECIF-Net, acting as a bridge between the element and defect seg-
mentation branches. This is conceived with the understanding that

structural elements and defects often exhibit spatial correlations in
bridge inspection images. Recognizing that these tasks are not mutually
exclusive but rather complementary, the module is strategically de-
signed to enable information exchange and knowledge transfer between
tasks. In this way, the performance of each task is enhanced. More
technically, the module employs an additive fusion, wherein the task-
specific feature map for one task is enriched with additional spatial
information from the other:

𝒇 ∗
𝑖 = 𝒇 𝑖 ⊕

(
𝑺 𝑖 ⊗ 𝒇 𝑗

)
, ∀𝑖, 𝑗 ∈ 𝛺 and 𝑖 ≠ 𝑗 (2)

Here, ⊗ represents the element-wise multiplication, ⊕ denotes the
element-wise addition, 𝑺 𝑖 (∈ R

512×120×120) is the spatial attention mask
for guiding the feature fusion for task 𝑖, and 𝒇 ∗

𝑖 is the resulting spatial
attention-enhanced feature map for the task.

As specified in Eq. (2), the spatial attention mask for one task is
used to assign scores that modify the other task’s feature map during
this fusion process. The mechanism thus works to fine-tune each task’s
features based on the complementary strengths of the other, contribut-
ing to the model’s performance improvement. These scores are learned
by a convolutional layer (with a kernel size of 3, a stride of 1, and
padding of 1) and normalized using the Sigmoid function:

𝑺 𝑖 = Sigmoid(COV(𝒇 𝑖;𝜽att,𝑖)), ∀𝑖 ∈ 𝛺 (3)

where 𝜽att,𝑖 are the learnable parameters of the attention (att) module
for task 𝑖, with a total of 2.36 million parameters in each attention
module.

3.4. Reconstruction decoder

In leaving the co-interactive fusion module, the spatial attention-
enhanced feature map for any task 𝑖, 𝒇 ∗

𝑖 , flows into the task’s recon-
struction decoder. This component plays a pivotal role in converting
the abstract feature representation into meaningful segmentation pre-
dictions. First, the segmentation head (SH) in the decoder performs the
pixel-level classification, which is composed of a convolutional layer
(with a kernel size of 1, a stride of 1, and 512 output channels), a
batch normalization layer, a ReLU activation function, and another
convolutional layer (with a kernel size of 1, a stride of 1, and 𝑁𝑖 output
channels). Then, the obtained segmentation map is upsampled (UP)
using the bilinear interpolation to give the pixel-level prediction scores
for all classes, 𝒚𝑖 (∈ R

𝑁𝑖×520×520). That is,

𝒚𝑖 = UP(SH(𝒇 ∗
𝑖 ;𝜽sh,𝑖)), ∀𝑖 ∈ 𝛺 (4)

where 𝜽sh,𝑖 are learnable parameters of the convolutional layers in the
segmentation head of task 𝑖, with 0.27 million parameters in each
segmentation head.
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3.5. Loss function

Learnable parameters of the proposed AECIF-Net are determined
through model training that minimizes a differentiable loss function
through backpropagation. The loss function is an aggregated measure
of the pixel-level dissimilarity between the ground truth and prediction
on a training dataset.

Images in the training set are indexed by 𝑘, 𝒚𝑖(𝑘) (∈ 𝑅𝑁𝑖×520×520)
represents the one-hot encoding of the image’s pixel-level ground truth
associated with task 𝑖, and 𝒚𝑖(𝑘) (∈ 𝑅𝑁𝑖×520×520) denotes the pixel-level
prediction. The cross-entropy loss of AECIF-Net in performing task 𝑖 is

𝑖 = −
∑

𝑘

⟨𝒚𝑖(𝑘), log 𝒚𝑖(𝑘)⟩, ∀𝑖 ∈ 𝛺 (5)

where ⟨, ⟩ is the operation to obtain the Frobenius inner product on
two tensors, which performs the element-wise product of the two input
tensors to become one in the same size and then sums up all the
elements of the resulting tensor.

The loss functions defined for the individual tasks need to be
integrated as a total loss function so that AECIF-Net learns the two tasks
at once. This paper employs a straightforward yet efficient weighting
scheme, known as Dynamic Weight Average (DWA) [48], to adaptively
balance the individual loss functions during training. Given that 𝑡 is the
index of training epochs and 𝑖,𝑡 is the loss function of task 𝑖 calculated
using Eq. (5) at epoch 𝑡, the relative loss descending rates of the two
tasks in the last training epoch are:

𝒘𝑡−1 =

[
e,𝑡−1

e,𝑡−2

,
d,𝑡−1

d,𝑡−2

]
(6)

These rates are references for assigning weights to the individual
loss functions at the current epoch. 𝒘𝑡 is initialized as [1, 1] at 𝑡 = 1, 2.
The weights 𝜆e,𝑡 and 𝜆d,𝑡 for aggregating the individual loss functions
are obtained by applying the Softmax operation to 𝒘𝑡−1,

𝝀𝑡 = 2 ⋅ Sof tmax[𝒘𝑡−1∕𝜏] (7)

where 𝝀𝑡 = [𝜆e,𝑡, 𝜆d,𝑡] is the vector of weights at 𝑡, and 𝜏 is a temperature
parameter for controlling the softness of this weighting scheme, chosen
as 2 in this study. Multiplying the outcomes of the Softmax function by
a scaling factor of two ensures

∑
𝑖∈𝛺 𝜆𝑖,𝑡 = 2. This setting is consistent

with a default scenario where, without any weighting method, every
task receives a weight of 1.

The total loss function, tot , is attained by aggregating the individ-
ual training loss functions e,𝑡 and d,𝑡 using the weights calculated in
Eq. (7):

tot = 𝜆e,𝑡e,𝑡 + 𝜆d,𝑡d,𝑡 (8)

With the DWA scheme, the task with the larger relative loss de-
scending rate is the slower learner. As such, a recent slower-learning
task receives a larger weight (>1), while the other faster one obtains a
smaller weight (<1), in the next training epoch.

4. Experimental setup

This section discusses the details of the dataset development, model
implementation, and evaluation metrics.

4.1. Dataset and data augmentation

Lacking publicly available datasets with the annotations for de-
veloping the proposed MTL model, this study created a new dataset,
called the Steel Bridge Condition Inspection Visual (SBCIV) dataset, to
address the pressing need for appropriate data. Distinct from existing
datasets, the SBCIV dataset offers detailed pixel-level annotations from
genuine bridge inspection images, focusing on structural element and
surface defect segmentation. This unique dataset not only advances the
development and validation of MTL models, but also establishes a novel
benchmark for research in SHM and visual inspection.

Fig. 4. Illustration of bridge element classes that collectively define the structural area
within inspection images.
Source: Base images courtesy of [16] and [49].

4.1.1. Data collection
The SBCIV dataset comprises 440 high-resolution images procured

from two publicly available datasets: the Common Objects in Con-
text for Bridge Inspection (COCO-Bridge) dataset [16] and Corrosion
Condition State Semantic Segmentation dataset [49].

The COCO-Bridge dataset is an image-based dataset assisting UAVs
in element identification. It consists of 774 images, focusing on identi-
fying specific parts of bridges or structural details to make autonomous
decisions during flight. The Corrosion Condition State Semantic Seg-
mentation dataset has 440 annotated images. It provides four corrosion
class categories: good, fair, poor, and severe. The annotations are
aligned with the corrosion condition state guidelines in the Manual
for Bridge Element Inspection [6] and the Bridge Inspector’s Reference
Manual [7]. Both datasets are created from the Virginia Department
of Transportation’s Bridge Inspection Reports and have been acknowl-
edged by the department for their practical use in bridge condition
assessment. Besides, these datasets are also gaining popularity in SHM
and visual inspection research (e.g., [14,50–54]).

4.1.2. Data annotation
Annotations of the SBCIV dataset provide pixel-level labels for criti-

cal structural elements and surface defects of steel plate girder bridges.
As illustrated in Fig. 4, the dataset covers six predominant structural
elements: bearing, bracing, deck, floor beam, girder, and substructure.
These elements collectively define and parse the entire structural area
within the inspection images.

The pixel-level defect annotation for SBCIV is binary: corrosion and
non-corrosion. Images from the Corrosion Condition State Semantic
Segmentation dataset were initially labeled as four classes, which were
converted into binary labels in this study. Images selected from the
COCO-Bridge dataset had no defect annotation. This study semantically
labeled defects in those images and ensured the annotation consistency
between the two data sources.

To ensure the accuracy and reliability of data annotation, the La-
belMe [55] labeling tool, known for its precision and user-friendly
interface, was employed during the annotation process. To maintain
rigorous consistency and precision, the Bridge Inspector’s Reference
Manual and the corrosion condition state guidelines outlined in the
Manual for Bridge Element Inspection were strictly followed.

4.1.3. Dataset split and class distribution
For evaluating the performance of AECIF-Net, a set of 100 images

was reserved as the test set. The remaining 340 images are further
split into the training and validation sets according to a 9:1 ratio. The
306 training images are used for comprehensively training the model,
whereas the 34 validation images are for performance monitoring and
hyperparameter optimization in the training stage. Separating data for
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Fig. 5. Data distributions of the SBCIV dataset, split by training, validation, and test: (a) by the number of element classes in an image, (b) by the number of elements in an
image. The dataset contains a wide range of different examples that are important for teaching models to handle various situations.

training, validation, and testing is a model development strategy for
preventing over-fitting and improving generalization. The data distribu-
tion chosen by this study ensures adequate data for model development
and independent evaluations in both training and inference.

The number of element classes and the number of elements varies
from one image to another. Fig. 5 shows the frequency distributions of
images by these two variables, split by training, validation, and test.
Fig. 5(a) indicates that most images contain 3∼5 element classes. The
number of elements per image spans from 1 to 20+. Such diversity
prepares models for both simple and complex assessment scenarios.
The data distribution among training, validation, and test sets is appro-
priate, ensuring comprehensive model training, accurate optimization,
and unbiased evaluation.

Deep learning models usually require a large amount of data to
be trained effectively. Yet, creating a large dataset with the required
annotation for the problem of study is expensive. The issue of small
data can be partially addressed by data augmentation that aims to
not only increase the data quantity but also cover situations that are
not in the original dataset but could occur in the real world. To
achieve this, five image data augmentation methods were employed in
this paper, including random scale transformation, random rotations
between ±10◦, random horizontal flipping, random image intensity
noise using a 5 × 5 Gaussian kernel, and HSV augment that randomly
adjusts hue (H), saturation (S), and value (V) of images.

4.2. Implementation details

The AECIF-Net was built based on the PyTorch 1.10.0 library and
trained on a server with an Nvidia Tesla V100 GPU (32 GB mem-
ory). The Adam optimizer with an initial learning rate of 5e−4 and
a minimum learning rate of 5e−6 was utilized for training the model.
A cosine learning rate scheduler was used to adjust the learning rate
during training. Owing to the limited dataset size in this study, transfer
learning was applied, where the backbone of AECIF-Net was initialized
with weights pre-trained on the Cityscapes dataset [56]. The model was
fine-tuned for 150 epochs with a batch size of 8. For computational
efficiency, all images were resized from the original size to 520 × 520
pixels. The model achieving the lowest loss on the validation set was
saved as the final model.

The AECIF-Net was evaluated through comparative studies that
measure its performance against related models and state-of-the-art
summarized below.

• Single-task models: Two models, that use HRNetV2-W48 as the
backbone, were trained separately using the hyperparameters

mentioned above. They perform the structural element segmenta-
tion and defect segmentation tasks, respectively. The two single-
task models serve as the baseline for assessing MTL models in this
paper.

• Variants of AECIF-Net : Three variants of AECIF-Net were trained
to evaluate the designs of AECIF-Net. The Naive MTL model
drops both the task-specific relearning (TR) subnets and the co-
interactive fusion (CF) module from the AECIF-Net. The AECIF-
Net without TR is the model that drops only the task-specific
relearning subnets, whereas the AECIF-Net without CF drops only
the co-interactive fusion module.

• State-of-the-art models: The recently developed MTL models, in-
cluding MaDnet [12], MT-HRNet [13], and MTL-I [14], have
shown state-of-the-art performance in segmenting both bridge
elements and surface defects. AECIF-Net was compared to these
models to demonstrate the improvement it can achieve. To ensure
a fair comparison, these networks were trained and tested on
the SBCIV dataset using the same data augmentation methods.
The training and testing of these models strictly followed the
hyperparameter settings in their papers.

4.3. Evaluation metrics

To ensure a holistic and comparative analysis of the models’ perfor-
mance, metrics for assessing the segmentation performance are defined
at the class-, task-, and model-levels. The class-level comparison focuses
on the model’s performance in handling the specific categories within
each task. The task-level comparison evaluates the multi-task model’s
accuracy in performing individual tasks. The model-level comparison
assesses the overall performance of the multi-task model.

For any of the datasets, a vector of binary variables, 𝒚𝑖,𝑗 , denotes the
ground truth of class 𝑗 in task 𝑖 for all pixels in that dataset, and the
other vector of binary variables, 𝒚𝑖,𝑗 , is the prediction. 𝛬𝑖 designates
the set of classes in task 𝑖, for 𝑖 ∈ 𝛺 = {e,d}. Here, 𝛬e = {Bear-
ing, Bracing, Deck, Floor beam, Girder, Substructure, Background} is
the set of classes in the structural element segmentation task, and
𝛬d = {Corrosion, Non-corrosion} is the set of classes in the defect
segmentation task.

In performing task 𝑖, a model’s ability to predict class 𝑗 pixels
is assessed using three widely recognized class-level metrics, namely
Intersection over Union (IoU), Precision, and Recall:

IoU𝑖,𝑗 =
‖𝒚𝑖,𝑗 ∧ 𝒚𝑖,𝑗‖1
‖𝒚𝑖,𝑗 ∨ 𝒚𝑖,𝑗‖1

(9)

Precision𝑖,𝑗 =
‖𝒚𝑖,𝑗 ∧ 𝒚𝑖,𝑗‖1

‖𝒚𝑖,𝑗‖1
(10)
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Table 1
Ablation study for the evaluation of AECIF-Net’s key components.

Method Element segmentation Defect segmentation

mIoU mAcc pAcc mIoU mAcc pAcc

Single-task 91.86 95.34 96.96 84.88 90.34 96.91
Naive MTL 89.60 94.86 96.61 85.26 90.54 97.07
AECIF-Net without CF 91.83 95.25 96.40 85.61 90.00 97.20
AECIF-Net without TR 91.62 95.16 97.23 86.72 90.63 97.42
AECIF-Net 92.11 95.56 97.27 87.16 90.79 97.54

Note: The highest value for each performance metric among all networks is in bold;
MTL = Multi-task learning; CF = Co-interactive fusion module; TR = Task-specific
feature relearning subnets.

Recall𝑖,𝑗 =
‖𝒚𝑖,𝑗 ∧ 𝒚𝑖,𝑗‖1

‖𝒚𝑖,𝑗‖1
(11)

where ∧ is the element-wise AND operator, ∨ is the element-wise OR
operator, and ‖ ⋅ ‖1 is norm 1 that can count the non-zero elements
of the vector. IoU𝑖,𝑗 in Eq. (9) calculates the intersection of the class 𝑗
ground truth and the prediction over their union, for any class 𝑗 ∈ 𝛬𝑖.
Precision𝑖,𝑗 in Eq. (10) is the percentage of pixels predicted as class 𝑗
which are predicted correctly, and Recall𝑖,𝑗 in Eq. (11) is the percentage
of class 𝑗 pixels that are correctly predicted.

For the task-level evaluation, three commonly used metrics were
adopted, which are mean IoU (mIoU), mean Accuracy (mAcc), and
pixel Accuracy (pAcc). For any task 𝑖, mIoU is calculated by averaging
the IoU values of all the classes,

mIoU𝑖 =
1

|𝛬𝑖|
∑

𝑗∈𝛬𝑖

IoU𝑖,𝑗 (12)

mAcc is the mean of class-level Recall values,

mAcc𝑖 =
1

|𝛬𝑖|
∑

𝑗∈𝛬𝑖

Recall𝑖,𝑗 (13)

and pAcc denotes the micro-level accuracy evaluated without regard to
the classes,

pAcc𝑖 =

∑
𝑗∈𝛬𝑖

‖𝒚𝑖,𝑗 ∧ 𝒚𝑖,𝑗‖1
∑

𝑗∈𝛬𝑖
‖𝒚𝑖,𝑗‖1

(14)

Finally, at the model-level, using the two single-task models as the
baseline, the study measured the incremental of an MTL model’s overall
performance against the baseline by averaging the percent increase of
every task-level metric:

𝛥 =
1

|𝛺| ⋅ |𝛺m|
∑

𝑖∈𝛺,𝑙∈𝛺m

𝛿𝑖,𝑙 , ∀𝑖 ∈ 𝛺 and 𝑙 ∈ 𝛺m (15)

where 𝛿𝑖,𝑙 is the percent increase of metric 𝑙 in task 𝑖, 𝛺 = {e,d} is the
index set of tasks, 𝛺m = {mIoU,mAcc, pAcc} denotes the index set of
task-level performance metrics, and | ⋅ | means the size of an index set.

5. Experiments and results

Experiments are conducted to verify the effectiveness of the pro-
posed AECIF-Net on the newly developed SBCIV dataset.

5.1. Ablation study

An ablation study was performed to thoroughly evaluate the effec-
tiveness of the key components designed for AECIF-Net. The single-
task models utilizing the HRNetV2-W48, along with variants of the
AECIF-Net, were trained and pitted against the AECIF-Net. Results are
summarized in Table 1 and discussed below.

From Table 1, it can be observed that the Naive MTL model favors
the defect segmentation task more than the element segmentation task,
as compared to the single-task models. Although the mIoU value of
defect segmentation in the Naive MTL model slightly improves by

0.38%, the mIoU value of element segmentation significantly drops by
2.26%. Therefore, the Naive MTL model exhibits an overall decline
in performance compared to the single-task models. It indicates that
performing two different tasks by directly utilizing the overall feature
embedding from the shared deep feature extractor is not as effective as
the task-specific single-task models.

After introducing the two task-specific feature relearning subnets,
the Naive MTL model becomes the AECIF-Net without CF model in
Table 1. The added subnets effectively enhance the performance of the
AECIF-Net without CF model, resulting in a respective improvement of
2.23% and 0.35% in the mIoU values of the two tasks, as compared
to the Naive MTL model. The observed improvement verifies the effec-
tiveness of further-learned task-specific features from the overall deep
feature for the downstream tasks.

The AECIF-Net without TR is obtained by adding the co-interactive
fusion module to the Naive MTL model. Compared to the single-task
models, the AECIF-Net without TR maintains equivalent performance
levels on the task of element segmentation yet displays a significant im-
provement in the task of defect segmentation. The comparison demon-
strates the benefit of incorporating spatial information of structural
elements in the defect segmentation task, and vice versa.

Different from the Naive MTL model, the proposed AECIF-Net has
both the task-specific relearning subnets and the co-interactive fu-
sion module. AECIF-Net effectively addresses the limitation of the
Naive MTL model, evidenced by increases of the task-level metrics for
0.25∼2.51%. AECIF-Net exceeds the performance of the two single-task
models on all metrics for 0.22∼2.28%.

5.2. Comparison to state-of-the-art models

This study comprehensively compares the proposed AECIF-Net with
existing models by employing both quantitative experiments and qual-
itative evaluation, followed by model complexity assessment.

5.2.1. Quantitative comparisons
The quantitative comparisons were conducted at both task-level and

class-level to be comprehensive.
Comparison at the task-level. This study compared the proposed

AECIF-Net with existing models: MaDnet [12], MT-HRNet [13], and
MTL-I [14]. The following discussion is mainly based on mIoU values.
Observations from the model comparisons using other metrics, such as
mAcc and pAcc, are similar.

Table 2 shows that MaDnet, using a single-scale limited-capacity
network, achieves 74.85% and 78.66% mIoU on the element seg-
mentation task and defect segmentation task, respectively. MT-HRNet,
which uses the most lightweight HRNetV2-W18 as the feature extractor,
performs slightly better on the two tasks. However, among all the
models considered, MaDnet and MT-HRNet exhibit the least favorable
performance, which could be attributed to the utilization of less power-
ful encoders. Naive MTL model effectively boosts the two tasks’ mIoU
values to 89.60% and 85.26% by utilizing the most robust version
of HRNet, HRNetV2-W48, as the encoder, although it keeps the same
architecture as MT-HRNet. Despite the MTL-I model utilizing the less
robust HRNetV2-W32 encoder, it achieves comparable outcomes on
both tasks to the Naive MTL model that employs the more powerful
HRNetV2-W48 encoder. That is, the performance improvement that an
MTL model can gain from integrating the feature projection and cross-
talk feature sharing is approximately equivalent to the improvement
obtained from substituting the encoder HRNetV2-W48 for HRNetV2-
W32. Among all the compared methods, AECIF-Net achieves the best
performance in all the metrics, whose mIoU values are 17.26% and
8.50% higher than MaDnet’s values, further verifying the advantage of
the proposed approach.

Comparison at the class-level. AECIF-Net also achieves good
performance at the class-level compared to state-of-the-art models,
as shown in Table 3. AECIF-Net clearly outperforms the competitors
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Fig. 6. Qualitative comparison with state-of-the-art, where AECIF-Net excels in segmenting small or irregular elements, as seen in (a), (b), (c), (d), and (e), and it offers more
precise edges, evident in (b) and (e); AECIF-Net produces fewer false positives in defect segmentation, especially in small corrosion areas observed in (b), (c), and (d).

Table 2
Quantitative comparison results with state-of-the-art methods at the task-level,
highlighting AECIF-Net’s superior performance across all metrics.

Method Element segmentation Defect segmentation

mIoU mAcc pAcc mIoU mAcc pAcc

MaDnet [12] 74.85 83.54 90.66 78.66 84.58 95.67
MT-HRNet [13] 78.09 87.88 91.56 79.76 85.39 95.93
Naive MTL 89.60 94.86 96.61 85.26 90.54 97.07
MTL-I [14] 89.07 94.54 96.17 84.30 90.07 96.84
AECIF-Net (Ours) 92.11 95.56 97.27 87.16 90.79 97.54

Note: The highest value for each performance metric among all networks is in bold.

among all classes. MaDnet and MT-HRNet are notably less capable of
segmenting bracings and floor beams than other types of elements,
which could be attributed to their irregular shapes. For example,
bracings are predominantly cross-shaped. Compared to MaDnet, the
Naive MTL model increases the IoU values in segmenting bracings
by 27.56% and 11.23% for segmenting floor beams. The significant
improvement is merely due to upgrading the encoder to a more capable
one. Compared to the Naive MTL model, the MTL-I model further
increases the IoU in segmenting bracings for another 0.18% and 6.29%
in segmenting floor beams, indicating the effectiveness of feature disen-
tanglement and information sharing in segmenting irregularly shaped
elements. Ultimately, AECIF-Net achieves the highest IoUs, 92.11%
in segmenting bracings and 86.19% in segmenting floor beams. The
increased IoUs for another 5.30% and 0.37% that AECIF-Net achieved,
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Fig. 7. Examples of AECIF-Net on the testing set demonstrate its high-quality predictions in close alignment with the ground truth.

compared to MTL-I, indicate that the relearning subnets and the co-
interactive fusion module are better designs than their counterparts
in MTL-I. In segmenting girders and substructures, which represent
the majority of pixels across all classes, all models demonstrate at
least acceptable results. A noticeable trend is observed, where the IoU
value progressively increases from the leftmost to the rightmost model.
The progress improvements are mainly due to the introduction of a
powerful deep feature extractor, feature disentanglement or relearning,
and feature fusion to MTL. The increases in IoU values in segmenting
bearings and decks are primarily attributed to using HRNet as the deep
feature extractor.

AECIF-Net also demonstrates dominantly better performance in seg-
menting defects than other models. Compared to MaDnet, AECIF-Net
increases the IoU value in segmenting corrosion by 15.02%, with
11.74% contributed by the adoption of HRNetV2-W48 as the backbone
and the remaining 3.28% from feature relearning and co-interactive
feature fusion. AECIF-Net also increases the ability to segment non-
corrosion areas by 1.98%.

5.2.2. Qualitative comparison
Fig. 6 illustrates five examples of bridge element segmentation and

defect segmentation results to demonstrate the effectiveness of the
proposed AECIF-Net. These examples represent various scenarios with
extensive, partial, and scarcely defects.

The qualitative evaluation of the element segmentation results
demonstrates that AECIF-Net generates superior predictions, as ev-
idenced by the segmentation of small objects, such as the distant
floor beam in Fig. 6(b), bearings in Fig. 6(c), distant small bracing
in Fig. 6(d), and floor beam in Fig. 6(e). This is also apparent in
segmenting irregular elements, as demonstrated by the bracings in
Fig. 6(a)(d). Furthermore, AECIF-Net facilitates more pronounced and
smooth edges of object segmentation, as evidenced by the boundary of
floor beam segmentation in Fig. 6(b) and substructure in Fig. 6(e).

The qualitative comparison of the defect segmentation results re-
veals that AECIF-Net can produce competitive outcomes, as it generates
fewer false positives than other methods when the corrosion area is
small or less visible, which is evident in Fig. 6(b)(c)(d).
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Table 3
Class-level IoU metric comparison showing AECIF-Net’s remarkable performance against
state-of-the-art methods across all classes.

Class Method

MaD- MT- Naïve MTL AECIF-Net
net [12] HRNet [13] MTL -I [14] (Ours)

Element
Bearing 72.69 74.76 90.47 88.32 91.68
Bracing 59.07 66.00 86.63 86.81 92.11
Deck 79.81 87.76 92.77 90.99 94.89
Floor beam 68.30 67.56 79.53 85.82 86.19
Girder 88.81 88.76 95.61 95.65 96.68
Substructure 87.91 89.39 96.02 94.35 96.16
Background 67.38 72.49 86.21 81.58 87.09

Defect
No corrosion 95.34 95.61 96.80 96.56 97.32
Corrosion 61.97 63.90 73.71 72.05 76.99

Note: The highest values of each metric for each class among all networks are shown
in bold.

Fig. 7 further presents AECIF-Net’s results in analyzing fourteen
examples from the testing set. It is evident that the predictions given by
AECIF-Net exhibit high quality and closely align with the ground truth.

5.2.3. Model complexity comparison
A deep learning model’s complexity is a cost for the model’s per-

formance improvement. Therefore, the performance assessment should
keep the model complexity in consideration. The count of trainable
parameters in a DCNN is a straightforward and widely recognized
metric for quantifying model complexity. In this study, it demonstrates
a high degree of correlation with both calculated floating point opera-
tions (FLOPs) and inference time. Consequently, the count of trainable
parameters is used to measure the model’s complexity. Fig. 8 presents
AECIF-Net and other state-of-the-art models on the diagram of model-
level performance increment, 𝛥, in percentage vs. model complexity
(parameters in millions).

MaDnet has the fewest parameters due to its simplistic structure,
while MT-HRNet has slightly more parameters because it utilizes the
lightweight HRNetV2-W18. Consequently, the performance of these
two models is less than ideal. MTL-I, which employs HRNetV2-W32 as
its backbone, results in a significant performance improvement com-
pared to MaDnet and MT-HRNet. The performance of MTL-I still falls
below the single-task baseline, but its parameters are about 77% less
than the baseline. By replacing the backbone of MTL-I with HRNetV2-
W48, the upgraded version, MTL-I (HRNetV2-W48), outperforms its
HRNetV2-W32 counterpart and the single-task models. When MT-
HRNet’s backbone is changed to HRNetV2-W48, the newer version, MT-
HRNet (HRNetV2-W48), and Naive MTL share the same architecture
and the number of parameters, yet Naive MTL performs substantially
better due to the optimized selection of hyperparameters. AECIF-Net
achieves the best performance among all models, although the number
of parameters it utilizes is only about 60% of single-task models’
parameters. The single-task models are a collection of two independent
networks, with each dedicated to one task. Each independent network
has 65.85 million parameters, leading to a total of 131.70 million
parameters. In contrast, AECIF-Net streamlines this with a unified
network of 77.22 million parameters, a reduction primarily due to
its shared encoder. Notably, the inclusion of AECIF-Net’s task-specific
subnets (3.32 × 2 = 6.64 million) and the co-interactive fusion module
(2.36 × 2 = 4.72 million) adds another 11.36 million parameters.
Converting features with different dimensions (720 × 120 × 120 in
single-task models and 512 × 120 × 120 in AECIF-Net) into seg-
mentation predictions also needs distinct parameter quantities for the
reconstruction decoders (0.52 × 2 = 1.04 million for single-task models
while 0.267 × 2 ≈ 0.53 million for AECIF-Net). Consequently, AECIF-
Net achieves a net saving of 54.48 (= 65.33−11.36−0.53+1.04) million
parameters, underscoring its efficiency in its overall reduced parameter

Fig. 8. Comparisons of models by their performance and complexity, which use single-
task models as the baseline for comparison. The comparison shows that AECIF-Net
achieves the best balance between performance and complexity among all models.

count. Compared to MaDnet, AECIF-Net’s complexity has increased by
72.96 million, with the majority (61.60 million) added by replacing
the original backbone with HRNetV2-W48 for representation learning
and the remainder (11.36 million) from the relearning subnets and
co-interactive fusion module.

5.3. Understanding of feature maps and masks

Task-specific feature relearning and co-interactive feature fusion are
two important designs for AECIF-Net. To better comprehend the roles
of those modules, feature maps (𝒇 , 𝒇 e, 𝒇 d, 𝒇

∗
e
, 𝒇 ∗

d
) and attention masks

(𝑺e and 𝑺d) learned by AECIF-Net are visualized for six examples in
Fig. 9. These visualizations utilize the feature embeddings from the
second channel to show primary features, with the values of each image
rescaled to be within the range from 0 to 255 to accommodate the
colors. Bicubic interpolation is applied to resize the feature maps and
attention masks to 520 × 520, the dimension of the input images of
AECIF-Net.

The 2nd row in Fig. 9 visualizes the overall feature embedding 𝒇

that essentially encompasses information relevant to both tasks. With
the two feature relearning subnets, the element-specific feature map 𝒇 e

and defect-specific feature map 𝒇 d are respectively extracted from the
overall feature embedding. The 3rd row visualizes the element-specific
feature maps that primarily capture relatively global information about
elements, such as position, shape, and scale. In contrast, the defect-
specific feature maps visualized in the 4th row mainly capture appear-
ance information of surface defects, such as texture and color. The 5th
row visualizes the element masks 𝑺e, whereas the 6th row presents the
defect masks 𝑺d. A distinct difference in the two tasks’ attention masks
is evident. Each task’s mask functions as a feature selector that masks
out uninformative portions of the other task’s feature map in feature
fusion. It is noteworthy that the element masks exhibit a significantly
higher contrast, transitioning from blue to yellow, while the defect
masks predominantly present a yellow hue in the same area. This
finding implies that the element task benefits more from the extraction
of task-specific features. The 7th and 8th rows are spatial-attention-
enhanced feature maps 𝒇 ∗

e
and 𝒇 ∗

d
. Compared to 𝒇 e in the 3rd row, 𝒇

∗
e

in the 7th row captures more detailed appearance information about
the elements and thus enhances the ability to differentiate different
types of elements. Similarly, compared to 𝒇 d (the 4th row), 𝒇

∗
d
(the

8th row) integrates the context information about where the defect
is developed, which enhances the ability to differentiate defects from
defect-like texture such as watermarks on substructures and shadows.
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Fig. 9. The evolution of image features from the overall embedding to task-specific features, along with the attention-enhanced co-interactive feature fusion in AECIF-Net, reveals
the reasons behind its effective multi-task performance.

6. Case study on structural condition assessment

The potential application of AECIF-Net in bridge inspection is fur-
ther illustrated in a preliminary structural condition assessment case
study. To illustrate how AECIF-Net performs the visual assessment for
bridge elements, ten examples in the testing set are presented in Fig. 10.
Each steel element is preliminarily evaluated based on the proportion of
the corroded area observed on the element (the ratio of the corroded
area to the entire element area). The structural conditions of bridge
elements are then categorized into four distinct levels: Good, Fair, Poor,
and Severe. These classifications are determined by specific thresholds
of corrosion coverage: 0%, 25%, and 50%. These thresholds, which
define the intervals between the various condition classifications, are
graphically depicted in Fig. 2.

AECIF-Net demonstrates promising initial evaluation results in sce-
narios where the bridge elements are in good condition, as illustrated in
Fig. 10(c)(g). Moreover, the proposed method is capable of accurately
identifying the elements of interest in cases with severe damage, even
when there is extensive surface deterioration. The AECIF-Net provides
precise preliminary evaluation outcomes in such instances, as displayed
in Fig. 10(a)(d)(e)(f)(j). In scenes featuring a mixture of elements
in both well or unsatisfactory conditions, AECIF-Net is capable of
accurately determining the condition of each element, which can be

observed in Fig. 10(b)(h)(i). This level of accuracy and reliability in
detecting and assessing both well-maintained and heavily damaged
bridge elements underscores the potential of AECIF-Net as a valuable
tool in the field of infrastructure inspection.

7. Conclusions

This paper presented a deep learning architecture called Attention-
Enhanced Co-Interactive Fusion Network (AECIF-Net) and a newly
annotated Steel Bridge Condition Inspection Visual (SBCIV) dataset,
to automate visual bridge inspection for structural condition assess-
ment. AECIF-Net, employing a share-split-interaction pipeline, is a
unified model that can simultaneously segment bridge structural ele-
ments and surface defects on them from inspection images. The two
tasks share a deep, high-resolution encoder HRNetV2-W48, but they
have their own task-specific relearning subnets. The co-interactive
feature fusion module further improves the task-specific features with
spatial-attention-enhanced feature fusion. AECIF-Net has surpassed the
current state-of-the-art MTL methods for structural condition assess-
ment, achieving 92.11% element segmentation mIoU and 87.16% cor-
rosion segmentation mIoU on the test set of SBCIV. The ablation
study revealed how AECIF-Net’s key modules contribute to performance
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Fig. 10. Structural condition assessment using AECIF-Net showcases its ability to accurately assess the conditions of bridge elements, underlining its potential in infrastructure
inspection.

improvement, and the evaluation on the test set further demonstrated
the capability of AECIF-Net in automated visual inspection.

While AECIF-Net has shown promising results in extracting struc-
tural elements in inspection images and assessing the elements’ condi-
tions, addressing limitations presented in the current work will broaden
the impact of AECIF-Net on the visual inspection of civil infrastruc-
ture. One obstacle to be addressed is the scarcity of annotated data.
Bridges are diverse in types and designs. The condition of the same
bridge is also changing over time due to deterioration or reparation.
The performance of AECIF-Net will drop by a certain amount if the
inspection images contain new elements or new defect types. Annotated
data are required to adapt AECIF-Net to new tasks. An efficient data
annotation tool is desired to accommodate the need for annotated data.
Besides, in drone-assisted bridge inspections, challenges like varying
image quality, inconsistent capture angles, motion blurs, and reflections
can impact the effective training of developed models. To counter
these issues, preprocessing techniques such as contrast adjustment,
geometric modifications, deblurring algorithms, and color corrections
can be employed for better adaptability under challenging data acqui-
sition scenarios. Furthermore, AECIF-Net’s enhanced task performance
is partly attributed to incorporating a deep feature encoder. Deep fea-
ture extraction is the most time-consuming portion of image analysis.
Lightweight feature extractors that are as powerful as the deep feature
extractors are desired because the runtime efficiency would support
inspectors’ decisions at inspection fields, such as utilizing additional ad-
vanced inspection methods (e.g., infrared cameras, ground-penetrating
radar, ultrasound scanning) to collect data at concerned areas identified
from the visual inspection. Those future studies will move the research
on this topic forward, and the automation of infrastructure inspection
will continue blooming.
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