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Abstract  

Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to 

establishing their structure-property relationships that underpin their applications from 

piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase 

separation and polydomain formation and analytically predict the corresponding domain volume 

fractions and wall orientations of, relatively low symmetry and theoretically more challenging, 

monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase 

equilibria theory, microelasticity, and phase-field method. Using monoclinic KxNa1-xNbO3(0.5 < 

x < 1.0) thin films as a model system, we establish the polydomain strain-strain phase diagrams, 

from which we identify two types of monoclinic polydomain structures. The analytically predicted 

strain conditions of formation, domain volume fractions, and domain wall orientations for the two 

polydomain structures are consistent with phase-field simulations and in good agreement with 

experimental results in literature. The present study demonstrates a general, powerful analytical 

theoretical framework to predict the strain phase equilibria and domain wall orientations of 
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polydomain structures applicable to both high- and low-symmetry ferroelectrics and provide 

fundamental insights into the equilibrium domain structures of ferroelectric KxNa1-xNbO3 thin 

films that are of technology relevance for lead-free dielectric and piezoelectric applications.  

 

1. Introduction  

The physical responses of ferroelectric materials to external thermal, mechanical, electric, 

magnetic and optical stimuli depend not only on the intrinsic crystal structure but also on the spatial 

configuration of ferroelectric domains and their interfaces known as the domain walls. It is of 

critical importance to understand the formation conditions and equilibrium structures of specific 

ferroelectric domains and domain walls in order to effectively tune the macroscopic performance 

of ferroelectric ceramics, bulk single crystals, epitaxial thin films, and nanostructures for various 

applications such as high-power dielectric capacitors(1), piezoelectric transducers(2), non-volatile 

memories(3), and nonlinear optical devices(4).   

The domain structures of many ferroelectric materials can be considered as an assembly of basic 

building blocks known as polydomains. A polydomain consists of a pair of domain variants 

alternating in space with a well-defined domain wall plane. Understanding the polydomain 

structure is fundamental to the theoretical and experimental studies of more complex, hierarchical 

domain structures. Typical polydomain of tetragonal and rhombohedral ferroelectric thin films are 

schematically shown in Figure 1a and b, respectively. The low-energy, permissible domain walls 

of these polydomain structures are usually parallel to the low-index planes such as {100}pc and 

{110}pc identical to their bulk counterparts, and they have been extensively studied from 

experiments and theories (5,6). However, for orthorhombic ferroelectrics, such as KNbO3, the 

permissible domain walls typically do not coincide with low-index planes but depends on the 



spontaneous strain difference of adjacent domain variants, which is known as the S-walls where S 

stands for strange(7). Moreover, for thin films on a substrate, the lattice mismatch between a film 

and substrate can further distort the orthorhombic phase into monoclinic symmetry, resulting in 

more interesting behavior such as tunable domain walls by varying the chemical composition (8). 

The structural features of polydomain structures in these low-symmetry ferroelectric thin films 

have been much less studied compared with their tetragonal and rhombohedral counterparts, which 

might be attributed to the unavailability of high-quality epitaxial thin films, requirements of 

advanced characterization techniques to distinguish the low-symmetry phases, and necessity for 

more complicated theoretical analyses.  

The recent advances in the epitaxial growth of high-quality, single-crystalline KNN thin films have 

enabled the exploration of ferroelectric phases in these films with various chemical compositions 

and thickness, subject to different misfit strains and temperatures (8–18). Many ferroelectric 

phases have been identified by advanced X-ray diffractions, including orthorhombic c-phase (13), 

orthorhombic a1/a2-phase(14,16), monoclinic a1a2-phase(8,11,15), monoclinic MC-

phase(9,10,12,13,19), and monoclinic MA-phase (9,10,20). Meanwhile, polydomain structures of 

different phases have been directly observed in real space using piezoresponse force microscopy. 

For the MC-phase, stripe-like polydomains consisting of two ferroelastic domain variants  are 

observed(12,13), which we call a1c/a2c polydomains. Another type of polydomain structure 

resembles a herringbone-like pattern, consisting of one domain variant of the MC-phase and one 

variant of the a1a2-phase (15), and we lable them a1a2/MC polydomains. Combination of different 

variants of the polydomains forms hierarchical, superdomain structures(12,15). The domain wall 

orientations of the a1c/a2c and a1a2/MC polydomain structures have also been analysed previously 

(8,12). In both cases, the domain walls are not parallel to any low-index planes. If we define the 



domain wall inclination angles, ξ and ψ, with respect to the in-plane and out-of-plane directions, 

respectively, as shown in Figure 1, the experiments show that ξ = 45° and ψ = 19±3° for the a1c/a2c 

polydomain structure of K0.7Na0.3NbO3 thin films grown on TbScO3 (12) while ψ = 45° and ξ 

varies from 24° to 41° for KxNa1-xNbO3 (0.8 ≤ x ≤ 0.95) grown on NdScO3 depending on the 

composition x(8). These results, however, have not been systematically investigated theoretically.  

There have been several theoretical studies on the KNN epitaxial thin films (21–24). The 

temperature-misfit strain phase diagrams of the KNN thin films are established using the Landau-

Ginsburg-Devonshire (LGD) model (23) and phase-field simulations(21,24). The traditional LGD 

method often assumes either monodomain state or specific domain wall orientations, whereas the 

phase-field method, though free of a priori assumption on the domain structures, is 

computationally expensive. The recently developed strain phase equilibrium theory (25) offers a 

powerful yet efficient approach to determine the polydomain phase diagrams without assumption 

on the specific domain structures and has been successfully employed to study the 

multiphase/multidomain stability in BiFeO3 (26), PbTiO3 (25) and other non-perovskite 

oxides(27). Nevertheless, its application to monoclinic ferroelectrics has not yet been explored.  

For the theoretical prediction of domain wall orientations, despite a few studies focusing on 

monoclinic ferroelectric bulk crystals using the mechanical compatibility condition (28,29), this 

geometry-based method is limited to permissible domain walls where there is no lattice mismatch 

in the domain wall plane and thus no elastic energy is generated(7,30,31). However, for 

polydomains in biaxially strained thin films, the mechanical compatibility condition is not 

completely satisfied in general because of the misfit strains may result in nonequivalent 

spontaneous strains of the domain variants. Therefore, it requires a more general energy-based 



approach to predict the low-energy domain wall orientations for polydomain structures in 

ferroelectric thin films (32–35). 

 

Figure 1 Schematics of typical polydomain structures of (001)pc-oriented ferroelectric thin films 

with different lattice symmetries. (a) The a/c and a1/a2 polydomain of tetragonal phase. (b) The 

r1/r2 and r1/r3 polydomains of rhombohedral phase. (c) The a1c/a2c and a1a2/MC polydomains of 

the orthorhombic/monoclinic phase. The black arrows in each domain variant indicate the direction 

of the polarization vector projected onto the plane. The domain wall inclination angles 𝜓 and 𝜉 are 

labeled.  

The present work aims to demonstrate a general theoretical framework to predict the strain 

equilibrium conditions, domain volume fractions, and wall orientations of polydomain structures 

of low-symmetry ferroelectrics. We take a (001)pc-oriented KNN epitaxial thin film as a model 

system and predict the two representative polydomain structures of monoclinic ferroelectric phase 

(i.e., a1c/a2c and a1a2/MC polydomain) using a combination of LGD theory, strain phase 

equilibrium theory, microelasticity, and phase-field simulations. We construct the strain-strain 

phase diagrams of KNN using the LGD theory and strain phase equilibrium theory to reveal the 



strain conditions for the formation of the two polydomain structures. We determine the volume 

fractions of the coexisting domain variants from a geometric lever-rule construction. We predict 

the energy-favored domain wall orientations using the microelasticity theory with the strain states 

of individual domain variants informed from the strain phase diagram. Further, we perform phase-

field simulations to verify the theoretical predictions and compare them with experiments in 

literature. We also discuss four critical factors affecting the accurate prediction of the domain wall 

orientations.  

The rest of the article is organized as follows. In Section 2, we will first state the conventions, 

notations, and definitions adopted throughout the work to avoid ambiguity. Then, we describe the 

LGD model of ferroelectrics, the strain phase equilibrium theory, the microelasticity theory for 

predicting the low-energy domain wall orientations, and the phase-field model of ferroelectric thin 

films. In Section 3, we present the main results of our theoretical predictions including the 

polydomain strain-strain phase diagrams of KNN thin films, volume fractions of coexisting 

domains, and domain wall orientations and compare them with our phase-field simulation results 

and existing experimental measurements in literature. In Section 4, we discuss four influencing 

factors that affect the accurate determination of domain wall orientations of the polydomain 

structures. We summarize our findings and remark on open questions in Section 5.   

2. Methods 

2.1 Convention, notation, and definitions    

We define the Miller indices denoting the lattice planes and directions either in the pseudocubic 

coordinate system (with pc in the subscript, e.g., (110)pc) or in the orthorhombic phase of the 

scandate substrates (with O in the subscript, e.g., (110)O). Care needs to be taken on the different 

definitions of the pseudocubic lattice constants for the orthogonal scandate substrates and the 



perovskite oxide thin films (36). This is critical in correctly determining the misfit strains of 

biaxially KNN thin films. All the results in the present work are obtained for (001)pc-oriented KNN 

thin films on (001)pc-oriented SrTiO3 or (110)O-oriented scandate substrates. Nevertheless, the 

theoretical approach is applicable to ferroelectric thin films and substrates with arbitrary 

orientations.  

Second, we label different ferroelectric phases and their corresponding spontaneous polarization 

as follows(37): a1-phase (|P1| ≠ 0, |P2| = 0, |P3| = 0), a2-phase (|P1| = 0, |P2| ≠ 0, |P3| = 0), c-phase 

(|P1| = 0, |P2| = 0, |P3| ≠ 0), a1c-phase (|P1| ≠ 0, |P2| = 0, |P3| ≠ 0), a2c-phase (|P1| = 0, |P2| ≠ 0, |P3| 

≠ 0), a1a2-phase (|P1| ≠ 0, |P2| ≠ 0, |P3| = 0), and r-phase (|P1| ≠ 0, |P2| ≠ 0, |P3| ≠ 0). Following Ref. 

(17), by MC-phase we refer to either the a1c- or a2c-phases, despite a1a2-phase also exhibits the 

MC symmetry when |P1|≠|P2|. We do not distinguish the orthorhombic phases as special cases of 

the a1c-, a2c-, and a1a2-phases when the two nonzero polarization components become identical in 

magnitude (e.g., |P1| = |P2| ≠ 0, |P3| = 0). Instead, we refer to all of them as the monoclinic phase. 

The MA-phase can be considered as a special case of the r-phase where |P3|>|P1|=|P2|≠0 or 

|P1|>|P2|=|P3|≠0 or |P2|>|P1|=|P3|≠0, while the MB-phase can be considered as a special case of 

the r-phase where |P3|<|P1|=|P2|≠0 or |P1|<|P2|=|P3|≠0 or |P2|<|P1|=|P3|≠0. Also note that the a1-, 

a2-, and c-phases, while having uniaxial ferroelectric polarization, may have unequal pseudocubic 

lattice constants (a ≠ b ≠ c) in general and thus are referred as the orthorhombic phase in this work, 

following Ref. (16). Each phase consists of several ferroelectric domain variants. For example, 

a1c-phase consists of 𝑎1
+𝑐+, 𝑎1

+𝑐− , 𝑎1
−𝑐+ , 𝑎1

−𝑐− domain variants where the ± in the superscript 

corresponds to the sign of the polarization components. For example, the 𝑎1
+𝑐+ -domain has 

polarization P1 > 0, P2 = 0, P3 > 0. Additionally, we use the term phase and domain loosely. For 



example, the a1c-, a2c-, and a1a2-phases can be regarded as three ferroelastic domain variants of 

the MC-phase.  

Third, in principle, a domain wall refers to an interface separating two domain variants of the same 

phase with the same crystallographic symmetry, whereas an interphase boundary refers to an 

interface separating two phases with different symmetries. In this sense, as will be seen in Section 

3.2.2, the interface of the a1a2/MC-type polydomain should be an interphase boundary. To avoid 

complexity in the terminology, we do not distinguish domain walls and interphase boundaries but 

refer to both of them as domain walls in the rest of this work. By polydomain we mean any periodic 

structure consisting of a pair of alternating domain variants that may or may not have the same 

symmetry. If the neighboring domains of a polydomain structure become identical by a mirror-

symmetry operation with respect to the domain wall plane, we call the polydomain a polytwin. In 

this sense, the a1c/a2c-type polydomain is also polytwin, whereas the a1a2/MC-type polydomain is 

not in general, as will be seen in Section 3.2. In this work, we use polydomain to refer to polytwin 

as well.  

Finally, we employ the Einstein summation in all equations throughout this work unless otherwise 

stated.  

2.2 Landau-Ginzburgh-Devonshire theory of ferroelectric transitions  

The Landau-Ginzburg-Devonshire theory has been successfully applied to describe the 

paraelectric-ferroelectric and ferroelectric-ferroelectric phase transitions in perovskite oxides. For 

proper ferroelectrics, the spontaneous polarization P is the primary order parameter, and the 

corresponding Landau-type free energy density of a homogeneous monodomain ferroelectric can 

be written as   



𝑓 = 𝛼𝑖𝑗𝑃𝑖𝑃𝑗 + 𝛼𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 + 𝛼𝑖𝑗𝑘𝑙𝑚𝑛𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛 + 𝛼𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝 

+
1

2
𝑐𝑖𝑗𝑘𝑙(𝜀𝑖𝑗 − 𝜀𝑖𝑗

0 )(𝜀𝑖𝑗 − 𝜀𝑖𝑗
0 ) −

1

2
𝜅𝑖𝑗𝐸𝑖𝐸𝑗 − 𝑃𝑖𝐸𝑗      (1) 

where the α’s are the Landau coefficients under the stress-free condition, 𝑐𝑖𝑗𝑘𝑙  is the elastic 

compliance of the parent phase under zero-electric field condition, 𝜅𝑖𝑗 is the background dielectric 

permittivity under the zero stress condition, 𝜀𝑖𝑗  is the total strain, 𝜀𝑖𝑗
0  is the spontaneous strain 

calculated as 𝜀𝑖𝑗
0 = 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙  where Qijkl is the electrostrictive coefficient. For the thermodynamic 

analysis in this work, we assume the depolarization field is completely eliminated by the short-

circuit electric boundary condition, and no applied electric field. 

For ferroelectric thin films subject to biaxial strains, the components of the total strain εi (i = 1-6, 

in Voigt notation) can be solved by the conditions,  

𝜀1 = 𝜀𝑥𝑥
𝑚 , 𝜀2 = 𝜀𝑦𝑦

𝑚 ,
𝜕𝑓

𝜕𝜀3
= 0,

𝜕𝑓

𝜕𝜀4
= 0,

𝜕𝑓

𝜕𝜀5
= 0,

𝜕𝑓

𝜕𝜀6
= 0.   (2) 

The misfit strains, 𝜀𝑥𝑥
𝑚  and 𝜀𝑦𝑦

𝑚  , are defined as 𝜀𝑥𝑥
𝑚 =

𝑎𝑠−𝑎𝑓

𝑎𝑓
 and 𝜀𝑥𝑥

𝑚 =
𝑏𝑠−𝑎𝑓

𝑎𝑓
 where as and bs are the 

pseudocubic lattice constants of the substrate while af the pseudocubic lattice constant of the 

ferroelectric film. Notably, in solving Equation (2), we assume 
𝜕𝑓

𝜕𝜀6
= 0 rather than the commonly 

used condition 𝜀6 = 0 to accommodate the nonzero shear component of the spontaneous strain of 

monodomain a1a2 domains, i.e., 𝜀6
0 = 𝑄44𝑃1𝑃2. The physical significance of this replacement is to 

assume that the thin film tends to spontaneously form equal amounts of 𝑎1
+𝑎2

+ and 𝑎1
−𝑎2

+ domain 

variants with opposite spontaneous shear strains, so that 𝜀6
0,𝑎1

+𝑎2
+

+ 𝜀6
0,𝑎1

−𝑎2
+

= 0, to accommodate 

the zero shear strain constraint imposed by the substrate and thus relax the elastic strain energy.  



By plugging the solution of Equation (2) into (1) we arrive at an expression of f in terms of Pi for 

a given set of 𝜀𝑥𝑥
𝑚  and 𝜀𝑦𝑦

𝑚 . The polarization at equilibrium 𝑃𝑖
eq

 for a given domain state can be 

obtained by minimizing f with respect to Pi, i.e.,  

𝜕𝑓

𝜕𝑃𝑖
= 0,

𝜕2𝑓

𝜕𝑃𝑖
2 > 0, 𝑖 = 1,2,3,      (3) 

subject to specific constraints on the polarization components. For example, for a1c domain, 

Equation (3) is solved with the constraints P1 ≠ 0, P2 = 0 and P3 ≠ 0. The solution of (3) is then 

plugged into Equation (1) to obtain the equilibrium free energy 𝑓eq = 𝑓|𝑷=𝑷eq.  

Following this procedure, we obtained 𝑃𝑖
eq

(𝜀𝑥𝑥
𝑚 , 𝜀𝑦𝑦

𝑚 ) and 𝑓eq(𝜀𝑥𝑥
𝑚 , 𝜀𝑦𝑦

𝑚 ) for the three monoclinic 

phases (a1c-, a2c-, and a1a2-phases), three orthorhombic phases (a1-, a2-, and c-phases), and one 

triclinic phase (r-phase) of KNN thin films of different compositions at room temperature. Notice 

that the expressions in Equation (1) can be greatly simplified by considering the cubic symmetry 

of the paraelectric phase of KNN. Nevertheless, the closed-form of 𝑃𝑖
eq

(𝜀𝑥𝑥
𝑚 , 𝜀𝑦𝑦

𝑚 )  and 

𝑓eq(𝜀𝑥𝑥
𝑚 , 𝜀𝑦𝑦

𝑚 ) is not always guaranteed, thereby numerical solution is adopted in the present work. 

All parameters for the LGD model of KNN are listed in Table II as adopted from Ref. (24,38). 

These parameters are also adopted in the phase-field model in Section 2.5. In the rest of the work, 

we will drop the superscript “eq” in 𝑃𝑖
eq

, and by Pi we will always refer to the spontaneous 

polarization at equilibrium.  

2.3 Strain phase equilibrium theory  

We apply the strain phase equilibrium theory to establish the strain-strain phase diagrams of KNN 

thin films. The calculation procedure is briefly outlined below while the detailed derivation can be 

found in Ref. (27). From the LGD theory of monodomain ferroelectrics described in Section 2.2, 



we can obtain the equilibrium free energy density of different phases 𝛼 in terms of the misfit strains 

𝜀𝑥𝑥
𝑚  and 𝜀𝑦𝑦

𝑚 , i.e., 𝑓eq
𝛼 (𝜀𝑥𝑥

𝑚 , 𝜀𝑦𝑦
𝑚 ). For phase 𝛼 ∈ {𝑎1𝑎2, 𝑎1𝑐, 𝑎2𝑐, 𝑎1, 𝑎2, 𝑐, 𝑟}. With the incoherent 

interface assumption, the elastic interaction between neighboring strain domains/phases can be 

neglected, and the orientation of the interphase boundary/domain wall does not need to be assumed 

a priori. In this case, the free energy density of the phase/domain mixture can be written as a 

summation of the individual phases/domains weighted by their volume fractions, and the 

equilibrium is obtained by minimizing the total free energy with respect to the volume fractions 

and strains of individual domains/phases. Geometrically, these conditions for strain phase/domain 

coexistence can be determined by the generalized common tangent construction with respect to 

the strain components, allowing for efficient establishment of high-dimensional strain phase 

diagrams (27). Following this method, we construct the strain-strain phase diagram by determining 

the phase-coexistence between any two or three phases based on the common tangent construction. 

For two-phase equilibria with the two phases denoted as 𝛼  and 𝛽 , the conditions for phase 

coexistence are written as   

𝜕𝑓eq
𝛼

𝜕𝜀𝑥𝑥
𝑚 |𝜀𝑥𝑥

𝑚 =𝜀1
𝛼

𝜀𝑦𝑦
𝑚 =𝜀2

𝛼

=
𝜕𝑓eq

𝛽

𝜕𝜀𝑥𝑥
𝑚 |

𝜀𝑥𝑥
𝑚 =𝜀1

𝛽

𝜀𝑦𝑦
𝑚 =𝜀2

𝛽

= 𝜎1,    (4a)  

𝜕𝑓eq
𝛼

𝜕𝜀2
𝑚|𝜀𝑥𝑥

𝑚 =𝜀1
𝛼

𝜀𝑦𝑦
𝑚 =𝜀2

𝛼

=
𝜕𝑓eq

𝛽

𝜕𝜀2
𝑚|

𝜀𝑥𝑥
𝑚 =𝜀1

𝛽

𝜀𝑦𝑦
𝑚 =𝜀2

𝛽

= 𝜎2,     (4b)  

𝑓eq
𝛼 (𝜀1

𝛼, 𝜀2
𝛼) − 𝜎1𝜀1

𝛼 − 𝜎2𝜀2
𝛼 = 𝑓eq

𝛽
(𝜀1

𝛽
, 𝜀2

𝛽
) − 𝜎1𝜀1

𝛽
− 𝜎2𝜀2

𝛽
,   (4c) 

where (𝜀1
𝛼, 𝜀2

𝛼) and (𝜀1
𝛽

, 𝜀2
𝛽

) are the total strains for the 𝛼 and 𝛽 phases, respectively, and 𝜎1 and 

𝜎2  are the stress at equilibrium. Note that there are six unknowns while there are only five 

equations in Equation (4). Therefore, the solution is not unique, and one of the unknowns should 



serve as an independent parametric variable. This can be understood from the Gibbs phase rule for 

the strain equilibria (25), i.e., for single chemical-component (Nc = 2) and two strain-component 

system (Ns = 2) at a constant temperature, the degree of freedom (Nf) for two-phase coexistence 

(Np = 2) is calculated to be Nf = Ns + Nc – Np = 2 + 1 – 2 = 1. Geometrically, the two-phase region 

in the strain-strain phase diagram corresponds to the projection of a set of common tangent lines 

of the two energy surfaces onto the two-dimensional phase diagram plane, which is known as the 

tie-lines (27,39). The pairs of strains (𝜀1
𝛼, 𝜀2

𝛼) and (𝜀1
𝛽

, 𝜀2
𝛽

) correspond to the endpoints of the tie-

lines and delineate the phase boundaries of the two-phase regions.  

Likewise, for three-phase equilibria between the phase 𝛼, 𝛽 and 𝛾, the equilibrium condition can 

be written as  

𝜕𝑓eq
𝛼

𝜕𝜀𝑥𝑥
𝑚 |𝜀𝑥𝑥

𝑚 =𝜀1
𝛼

𝜀𝑦𝑦
𝑚 =𝜀2

𝛼

=
𝜕𝑓eq

𝛽

𝜕𝜀𝑥𝑥
𝑚 |

𝜀𝑥𝑥
𝑚 =𝜀1

𝛽

𝜀𝑦𝑦
𝑚 =𝜀2

𝛽

=
𝜕𝑓eq

𝛾

𝜕𝜀𝑥𝑥
𝑚 |𝜀𝑥𝑥

𝑚 =𝜀1
𝛾

𝜀𝑦𝑦
𝑚 =𝜀2

𝛾

= 𝜎1,    (5a) 

𝜕𝑓eq
𝛼

𝜕𝜀𝑦𝑦
𝑚 |

𝜀𝑥𝑥
𝑚 =𝜀1

𝛼

𝜀𝑦𝑦
𝑚 =𝜀2

𝛼

=
𝜕𝑓eq

𝛽

𝜕𝜀𝑦𝑦
𝑚 |

𝜀𝑥𝑥
𝑚 =𝜀1

𝛽

𝜀𝑦𝑦
𝑚 =𝜀2

𝛽

=
𝜕𝑓eq

𝛾

𝜕𝜀𝑦𝑦
𝑚 |

𝜀𝑥𝑥
𝑚 =𝜀1

𝛾

𝜀𝑦𝑦
𝑚 =𝜀2

𝛾

= 𝜎2,     (5b) 

𝑓eq
𝛼 (𝜀1

𝛼, 𝜀2
𝛼) − 𝜎1𝜀1

𝛼 − 𝜎2𝜀2
𝛼 = 𝑓eq

𝛽
(𝜀1

𝛽
, 𝜀2

𝛽
) − 𝜎1𝜀1

𝛽
− 𝜎2𝜀2

𝛽
= 𝑓eq

𝛾
(𝜀1

𝛾
, 𝜀2

𝛾
) − 𝜎1𝜀1

𝛾
− 𝜎2𝜀2

𝛾
, (5c) 

from which the pairs of strains (𝜀1
𝛼, 𝜀2

𝛼), (𝜀1
𝛽

, 𝜀2
𝛽

), (𝜀1
𝛾

, 𝜀2
𝛾

) for the 𝛼, 𝛽, and 𝛾 phases, respectively, 

and the stress 𝜎1 and 𝜎2 at equilibrium can be obtained. Since there are eight equations and eight 

unknowns, the solution is unique in this case which is consistent with the Gibbs phase rule (25), 

i.e., Nf = Ns + Nc – Np = 2 + 1 – 3 = 0. Geometrically, the three-phase equilibrium corresponds to 

identifying the common tangent plane of the three free energy surfaces (𝑓eq
𝛼 , 𝑓eq

𝛽
, and 𝑓eq

𝛾
) in terms 

of the strain variables. The common tangent plane is bounded by three common tangent lines of 



the two-phase regions, forming a common tangent triangle which is projected onto the strain-strain 

phase diagram to obtain the three-phase region (27). Notably, depending on the specific form of 

feq, there might be either no solution of Equation (5), which means the three-phase cannot coexist 

under the given condition, or degenerate solution where (𝜀1
𝛼, 𝜀2

𝛼) , (𝜀1
𝛽

, 𝜀2
𝛽

) , (𝜀1
𝛾

, 𝜀2
𝛾

)  become 

identical. In the latter case, the three phase becomes undistinguishable, i.e., the first-order phase 

transition becomes a second-order transition, and the solved strain state corresponds to a critical 

point in the strain-strain phase diagram. As will be seen in Section 3.1, this scenario occurs when 

two monoclinic phases (i.e., a1c-, a2c-, and a1a2-phases) transition into one orthorhombic phase 

(i.e., a1, a2, and c-phases) as the misfit strain varies. The phase boundary for the second-order 

transition is indicated by equating feq of the adjacent phases and represented by dashed curves in 

the phase diagrams (c.f. Figure. 2). Also note that, according to our calculation, the r-phase does 

not become stable phase in the ranges of misfit strains (−2.0% ≤ 𝜀𝑥𝑥
𝑚 ≤ 2.5% and −2.0% ≤

𝜀𝑦𝑦
𝑚 ≤ 2.5%), temperature (T = 300K) and composition (x = 0.5 ~ 1.0) considered in this work.  

2.4 Microelasticity theory for predicting low-energy domain wall orientations 

Permissible domain walls satisfying the mechanical compatibility condition along the domain wall 

plane for all ferroelectric species have been well documented (30,31). Similar compatibility 

conditions have been proposed to account for the charged domain walls (40) and domain walls of 

improper ferroelectrics(41). When the mechanical compatibility conditions are not satisfied, the 

optimal orientation of the domain walls should be determined by minimizing some metrics of the 

incompatibility(32) such as the long-range elastic energy associated with the lattice mismatch at 

the domain wall plane in terms of the domain wall orientation(35,42). The energy-based method 

can be further extended to include long-range electrostatic energy, short-range domain wall 

interfacial energy and surface energy associated with finite-size systems (35), allowing for a more 



comprehensive thermodynamics model of polydomain structures which can be used to estimate 

the equilibrium domain size for a polydomain formation (34). This approach has been employed 

to study the domain walls and heterophase boundaries of Pb(Zr1-xTix)O3 (33), Ba(Zr0.2Ti0.8)O3  (43), 

and BiFeO3 thin films  (34). 

In this work, we assume the elastic strain energy governs the domain wall orientation and adopt 

the microelasticity theory (35,42) to determine the low-energy domain walls. The electrostatic 

compatibility condition is used to distinguish the charged neutral domain walls. According to Ref. 

(34), the coherent elastic strain energy associated with the formation of laminated polydomain 

structure consisting of alternating phase 𝛼 and 𝛽 can be written as 𝐸elas
coh =

1

2
𝜔1𝜔2𝐵(𝒏)𝑉 where V 

is the volume of the system, 𝒏 is the unit normal vector of the interphase boundary, and 𝜔1 and 

𝜔2 are the volume fractions of the two domain variants. The quantity 𝐵(𝒏) can be expressed as:  

𝐵(𝒏) = 𝑐𝑖𝑗𝑘𝑙∆𝜀𝑖𝑗
0 ∆𝜀𝑘𝑙

0 − 𝑛𝑖∆𝜎𝑖𝑗
0 Ω𝑗𝑘∆𝜎𝑘𝑙

0 𝑛𝑙,     (6) 

where 𝑐𝑖𝑗𝑘𝑙 is the elastic stiffness, ∆𝜀𝑖𝑗
0  is the difference between the spontaneous strains of the two 

phases, ∆𝜎𝑖𝑗
0  is defined as 𝜎𝑖𝑗

0 = 𝑐𝑖𝑗𝑘𝑙∆𝜀𝑘𝑙
0 , and Ω𝑖𝑗 is a second-rank tensor whose inverse is defined 

as Ω𝑖𝑗
−1 = 𝑐𝑗𝑘𝑙𝑚𝑛𝑘𝑛𝑙 . For ferroelectric phases 𝛼  and 𝛽  described by Equation (1), ∆𝜀𝑖𝑗

0 =

𝑄𝑖𝑗𝑘𝑙𝑃𝑘
𝛼𝑃𝑙

𝛼 − 𝑄𝑖𝑗𝑘𝑙𝑃𝑘
𝛽

𝑃𝑙
𝛽

. We also assume that 𝑐𝑖𝑗𝑘𝑙  is identical for the two phases and 

homogeneous for the polydomain structure. In this sense, we can determine the energy-favored 

domain wall orientation by minimizing Equation (6) with respect to n. Notably, for permissible 

domain walls, the solution of n reduces to the result based on the mechanical compatibility analysis.  

The minimization of Equation (6) generally results in two solutions of n that are orthogonal to 

each other (42). To determine which one is the optimal domain wall plane for two ferroelectric 



domain variants, we also need to consider the electrostatic energy associated with the domain wall, 

which can be defined as 𝐸elec
⬚ =

1

2
𝜔1𝜔2𝑄(𝒏)𝑉. The quantity 𝑄(𝒏) is written as,  

𝑄(𝒏) =
(∆𝑃𝑖𝑛𝑖)2

𝜅𝑖𝑗𝑛𝑖𝑛𝑗
,      (7) 

where ∆𝑷 = 𝑷𝛼 − 𝑷𝛽 and 𝑷𝛼  and 𝑷𝛽  are the spontaneous polarization of the two adjacent 

domains and 𝜅𝑖𝑗 the dielectric permittivity. When 𝜅𝑖𝑗 is assumed to be isotropic, as adopted in this 

work, the minimization of Equation (7) can be simplified into the minimization of the bound charge 

𝜌𝑏
DW defined as,   

𝜌𝑏
DW(𝒏) = ∆𝑃𝑖𝑛𝑖.      (8) 

Since we assume the elastic energy 𝐸elas
coh  is the dominant factor determining the domain wall 

orientation, we minimize Equations (6) and (8) sequentially to determine to identify the low-

energy domain walls. Notably, if the long-range electrostatic field 𝐸elec
⬚  is comparable to or more 

pronounced than 𝐸elas
coh   and thus cannot be ignored, such as for the case of strongly charged domain 

walls, the domain wall orientation should be determined by minimizing the summation of 

Equations (6) and (7) together.  

2.5 Phase-field method  

The phase-field method of ferroelectric materials has been well established and successfully 

applied to understanding the formation and evolution of domain structures in ferroelectric thin 

films and nanostructures (44,45). It can be regarded as an extension of the LGD model of 

homogeneous ferroelectrics described in Section 2.2 to inhomogeneous ferroelectrics while 

considering the polarization evolution. To obtain the equilibrium states, we employ the time-

dependent Ginzburg-Landau (TDGL) equation to describe the evolution kinetics, i.e.,  



𝜕𝑃𝑖

𝜕𝑡
= −𝐿𝑖𝑗

𝛿𝐹

𝛿𝑃𝑗
,      (9) 

where L is the kinetic coefficient and is assumed to be a constant scalar in this work. The total free 

energy F can be written into several terms, i.e.,    

𝐹 = ∫ (𝑓bulk + 𝑓elas + 𝑓elec + 𝑓grad)𝑑𝑣
⬚

𝑉
.     (10) 

When built upon the LGD theory of ferroelectrics, the combination of bulk, elastic, and electric 

energy densities of the phase-field model, i.e., 𝑓bulk + 𝑓elas + 𝑓elec term in Equation (1), has the 

similar form as Equation (1) except that the uniform polarization P in (1) is replaced by the field 

variable 𝑷(𝒙). The gradient energy density is written as  

𝑓grad =
1

2
𝑔𝑖𝑗𝑘𝑙

𝜕𝑃𝑖

𝜕𝑥𝑗

𝜕𝑃𝑘

𝜕𝑥𝑙
,      (11) 

where gijkl is the gradient energy coefficient. Notably, for homogeneous ferroelectrics, 𝑓grad is zero. 

For thermodynamic models of polydomain structures at equilibrium, it can be equal to half of the 

domain wall energy, i.e., 𝑓grad~𝛾𝑁 where 𝛾 is the domain wall energy density with the unit J/m2 

and 𝑁 the domain wall density with the unit 1/m. In the polydomain model used for the strain 

energy equilibrium theory in Section 2.3, we ignore the domain energy.  

We performed three-dimensional phase-field simulations to obtain the equilibrium polydomain 

structures of KNN thin films. The system is uniformly discretized into 128∆x×128∆y×36∆z voxels 

where the voxel size ∆x = ∆y = ∆z = 1 nm. The periodic boundary condition is imposed along the 

x and y directions for the elastostatic and electrostatic equilibrium equations and the TDGL 

equation for polarization evolution. The superposition method is adopted to handle the non-

periodic boundary condition along the z direction(46,47). The substrate layer with a thickness of 

12∆z is used to accommodate the mechanical displacement relaxation in the substrate(46), along 



with a film layer with a thickness of 20∆z and a buffer layer of the vacuum. The traction-free 

boundary conditions (𝛔 ∙ 𝒏 = 0) on the film top surface and zero-displacement condition (𝒖 = 0) 

at the substrate bottom are adopted for solving the elastostatic equilibrium equation. The short-

circuit boundary condition (𝜙 = 0) is imposed on both the top and bottom surfaces of the film 

layer for solving the electrostatic equilibrium equation. The natural boundary condition is assumed 

for the Equation 9 by truncating the polarization field at both surfaces of the film. Note that the 

electrostatic energy density is considered in our phase-field simulations but is ignored in the 

theoretical methods in Section 2.2 and 2.3. Nevertheless, it turns out to be negligible compared to 

the elastic energy because of the short-circuit boundary condition used in the simulations. 

The parameters used for the phase-field model of KNN are the same as those in Table 1. The 

additional gradient energy coefficient for the phase-field model is assumed to be isotropic (g11 = -

g12 = g44 = 0.64×10-11 N·m4/C2) and independent of composition, which gives a domain wall 

thickness of 0.8 nm for a 180-degree domain wall in the bulk orthorhombic phase of K0.5Na0.5NbO3 

at room temperature. The relative background dielectric permittivity 𝜅𝑖𝑗  of the cubic phase is 

assumed isotropic with a value of 50𝜖0 where 𝜖0 is the vacuum permittivity. Notably, the shear 

component of the electrostrictive tensor, i.e., Q44 in the Voigt notation, of K0.5Na0.5NbO3 shows 

significant discrepancy in the literature, ranging from 0.029 (24) to 0.084 m4/C2 (23). Here, we 

assume that Q44 value is independent of the composition of KNN and equal to that of KNbO3 (48), 

i.e., Q44 = 0.052 m4/C2 for all composition of KNN studied in this work. We will show in Section 

3.3.3 that the choice of Q44 affects the equilibrium domain wall orientations for the polydomain 

structures of KNN thin films, and a careful comparison with experimental measurements in 

literature suggest that Q44 = 0.029 m4/C2 for K0.5Na0.5NbO3 is the best estimation among others.  



The initial state of our phase-field simulations is different from many previous works. Instead of 

starting from a random noise distribution as the initial state, we preset a polydomain structure 

consisting of two periodically alternating domain variants of equal volume fractions and presume 

the domain wall plane orients toward a low-index direction. This treatment is made to obtain 

regular polydomain structure with controlled domain variants for better comparison with the 

predictions based on the analytical or semi-analytical thermodynamic calculations. Specifically, 

we consider the polydomain formed by the 𝑎1
+𝑐+and 𝑎2

+𝑐+ domain variants as a representative 

case of the a1c/a2c polydomain with (110)pc as the initial guess of the domain wall plane, and the 

𝑎1
+𝑎2

+and 𝑎2
+𝑐+ domain variants as a representative case of the a1a2/MC polydomain with (120)pc 

as the initial guess of the domain wall plane. Notably, the periodic boundary conditions imposed 

along the in-plane directions of the simulations may restrict the relaxation of domain walls. This 

issue can be resolved by considering a pair of domain bundles as will be discussed in Section 3.3.4. 

3. Results  

3.1 Strain equilibria phase diagrams  

Following the method described in Section 2.3, we established the misfit strain–misfit strain 

multidomain/multiphase diagrams of KxNa1-xNbO3 at T = 300 K for compositions x = 0.5, 0.7, and 

0.9, as shown in Figure 2. The three phase diagrams are similar in topology, suggesting a minor 

composition dependence of the phase stability in the range studied (x = 0.5 ~ 1.0), in consistent 

with the temperature-composition phase diagrams of KNN ceramics (38) and the temperature-

misfit strain phase diagrams of KNN thin films (24). Without loss of generality, we use Figure 2a 

for K0.7Na0.3NbO3 as an example to examine the main features of the phase diagrams. The misfit 

strain–misfit strain phase diagram consists of six single-phase regions, three two-phase regions, 

and one three-phase region. The phase regions are symmetric with respect to the diagonal of the 



phase diagram, suggesting that the a1c-phase and a2c-phase are equivalent by symmetry. The 

transitions among the three monoclinic phases (i.e., a1c-, a2c- and a1a2-phases) are first order 

characterized by two-phase regions, whereas the transitions between the monoclinic and 

orthorhombic phases (i.e., a1-, a2- and c-phases) are continuous. According to the Gibbs phase rule, 

for a phase diagram with densities as independent variables (such as the strain components), the 

number of maximal coexisting phases in the phase region should either increase or decrease by 

one when crossing the phase boundary of first-order phase transitions (solid lines in Figure 2a) or 

remain unchanged when crossing the phase boundary of a continuous phase transition (dashed 

lines in Figure 2a). These requirements can be easily verified in all the phase regions in Figure 2, 

suggesting the consistency of the present results with the fundamental laws of thermodynamics.  

The strain-strain phase diagrams in Figure 2 provide the strain equilibrium conditions for multi-

phase coexistence in strained KNN at the room temperature. We can verify these predictions by 

comparing them with existing experimental datapoints (8,13,17). To this end, we calculated the 

misfit strains associated with various combinations of film-substrate pairs by using the 

pseudocubic lattice constants of bulk KNN (interpolated by assuming a Vegard’s law between 

KNbO3(49) and K0.5Na0.5NbO3(50,51)) and substrate materials (including SrTiO3 (STO), DyScO3 

(DSO) GdScO3(GSO), TbScO3(TSO), SmScO3(SSO), and NdScO3(NSO))(52–54). We tabulated 

the calculated anisotropic misfit strains and their averaged values (𝜀avg
m =

1

2
(𝜀𝑥𝑥

m + 𝜀𝑦𝑦
m )) in Table 

2 and labeled them in the corresponding phase diagrams in Figure 2. When the misfit strains are 

biaxially compressive with a moderate magnitude, the a1c/a2c phase mixture is preferred, in 

agreement with KNN films (x = 0.70 ~ 0.77) grown on TSO, GSO, and SSO substrates (blue dots 

in Figure 2a). When both misfit strain components are highly compressive beyond the MC- to c-

phase transition point, the single c-phase is stabilized, in agreement with the observation of 



K0.71Na0.29NbO3 grown on DSO (black square in Figure 2c). For K0.5Na0.5NbO3 thin films grown 

on STO, the nominal compressive misfit strain is calculated to be 𝜀𝑥𝑥
m = 𝜀𝑦𝑦

m = −1.8%. However, 

considering the strain relaxation as suggested in the experiments, the effective misfit strains 

become 𝜀𝑥𝑥
m + 𝜀𝑦𝑦

m = −0.71%, which corresponds to a1c/a2c phase mixtures in Figure 2c and also 

agrees with the experimental reports(10).  

 

Figure 2 Multiphase/multidomain strain phase diagrams of KxNa1-xNbO3 under anisotropic misfit 

strains at room temperature for (a) x = 0.7 (b) x = 0.9, and (c) x = 0.5. The labels of single-phase 

and multi-phase regions are given in (a) from which the corresponding labels in (b,c) can be 

deduced. The datapoints from previous experiments in literature are labeled by a red triangle (for 

K0.7Na0.3NbO3 on NdScO3(NSO) substrate), blue disks (for K0.7Na0.3NbO3 on SmScO3(SSO), 

GdScO3(GSO), TbScO3(TSO) substrates and K0.5Na0.5NbO3 SrTiO3(STO) substrates), and a black 

square (for K0.9Na0.1NbO3 on DyScO3(DSO) substrate). The phase boundaries for first-order 

transitions are plotted in thick solid lines and for second-order transitions are plotted in thick 



dashed lines. The segment AB in dotted red and segment CD in dotted blue are used to evaluate 

the volume fractions of the coexisting phases by the lever rule.  

When the misfit strain is highly anisotropic, e.g., being tensile and compressive respectively along 

two orthogonal in-plane directions, Figure 2 suggests that either the a1a2/a1c or a1a2/a2c phase 

mixture is favored. In experiments, the substrate materials that can provide the maximal 

anisotropic misfit strain is NSO, which results in a strain state located in the triple-phase region in 

Figure 2b (labeled by a red triangle). However, K0.9Na0.1NbO3 thin films on NSO substrates 

reported in experiments consist of only two of the three phases, i.e., the a1a2-phase plus either a1c- 

or a2c-phase. In other words, while the theory predicts that a large anisotropy in the misfit strains 

(e.g., 𝜀𝑦𝑦
m − 𝜀𝑥𝑥

m = 1.0%) is required to obtain the two-phase mixtures, experiments suggest it can 

be achieved with a moderate anisotropy (𝜀𝑦𝑦
m − 𝜀𝑥𝑥

m = 0.3%). There seems to be a strong bias for 

the in-plane polarization of the KNN films to align along the [11̅0]O over the [001]O direction of 

the NSO substrate(15). This strong in-plane asymmetry echoes back to the well-known self-poling 

phenomenon in the rhombohedral-like BiFeO3 epitaxial thin films grown on TbScO3 substrates 

which shows preferred 109-degree stripe domains with aligned in-plane polarization (55) and the 

recently discovered quasi-single-domain with preferred in-plane polarization direction in BaTiO3 

epitaxial thin films grown on PrScO3 (56). We hypothesized that it may be attributed to the 

mismatch of octahedral distortions at the interface between the perovskite films and scandate 

substrates (56,57), which is not considered in the present model.  

From the above discussion we conclude that the theoretically predicted strain equilibria of KNN 

thin films agree reasonably well with experimental results in literature, suggesting that the strain 

phase equilibrium theory is a viable method to predict the formation conditions of polydomain 

phase mixtures in ferroelectric thin films.  



3.2 Polydomain structures  

We next predict the domain wall orientation and volume fractions in the two-phase regimes shown 

in Figure 2. To verify the theoretical results, we compare them with our phase-field simulations 

and experiments in literature. To account for the misfit strain effects on the polydomain structure, 

we choose a series of misfit strains along the segment AB in the two-phase region of Figure 2a to 

study the formation of the a1c/a2c polydomain and the segment CD in the two-phase region of 

Figure 2b to study the formation of the a1a2/a2c polydomain. The segment AB passes the strain 

state 𝜀𝑥𝑥
𝑚 = −0.5% and 𝜀𝑦𝑦

𝑚 = −0.5% and parallels with the long-edge of the shaded triangle in 

Figure 2a, while the segment CD passes the strain state 𝜀𝑥𝑥
𝑚 = 0.0% and 𝜀𝑦𝑦

𝑚 = 1.0% and parallels 

with the short-edge of the shaded triangle in Figure 2b. Note that the choice of AB and CD 

segments are arbitrary in the two-phase regions but needs to be the tie-lines to apply the lever rule 

construction. For each case, we determine the domain walls orientations by using the method 

described in Section 2.4 and the volume fractions of coexisting phases by using a lever rule.  

3.2.1 a1c/a2c polydomain  

The calculated domain wall plane for the a1c/a2c polydomain of the biaxially strained 

K0.7Na0.3NbO3 is (11k)pc with k = 0.32, independent of the misfit strain states on AB. The 

corresponding domain wall inclination angles ξ = 45° and ψ = 18°. The independence of the 

domain wall orientation of the misfit strain can be rationalized as follows. According to the strain 

phase equilibrium theory neglecting the local coherency strain and domain wall energy effects due 

to inhomogeneity within the domains, the strain states of coexisting domains remain at the 

endpoints A and B for arbitrary misfit strains on the tie-line. In this sense, the equilibrium 

polarization and associated eigenstrains of the two domain variants remains homogeneous and 

constant and hence their domain wall orientations, according to Equation (6). If the misfit strain 



does not vary along a tie-line, the strain states within each domain will change, which will affect 

the domain wall orientation at equilibrium. This scenario will be discussed in Section 3.3.1.  

 

Figure 3 Phase-field simulations of a1c/a2c polydomain of K0.7Na0.3NbO3 thin films at T = 300K. 

(a) The simulated domain structures at equilibrium with biaxial isotropic misfit strain 𝜀𝑥𝑥
𝑚 = 𝜀𝑦𝑦

𝑚 =

−0.5%. The arrows indicate the spontaneous polarization directions in each domain variant. The 

box on the right illustrates polarization directions of the two domain variants 𝑎1
+𝑐+ and 𝑎2

+𝑐+ in 

the pseudocubic coordinate system. (b) Top views of the polydomain structures at equilibrium 

subject to different misfit strains. The arrows indicate the polarization directions in each domain 

variant. (c) The volume fraction of 𝑎1
+𝑐+ as a function of the anisotropy of the misfit strains 

measured by 𝜀𝑥𝑥
𝑚 − 𝜀𝑦𝑦

𝑚 .  



To test the predicted domain wall orientation, we obtain the corresponding a1c/a2c polydomain 

structures by performing 3D phase-field simulations of K0.7Na0.3NbO3 thin films subject to five 

different strains along segment AB. The results are summarized in Figure 3. Figure 3a shows a 

representative result for 𝜀𝑥𝑥
𝑚 = 𝜀𝑦𝑦

𝑚 = −0.5%. We can see that domain wall plane at equilibrium is 

tilted away from the initial guess, (110)pc, and the inclination angles are measured to be ξ = 45° 

and ψ ~ 20°, corresponding to the (11k)pc plane with k ~ 0.36, which agrees well with the 

analytically predicted value (k = 0.32). Further, the inclination angle ψ was measured to be 19±3° 

for K0.7Na0.3NbO3 thin films on TSO by high-resolution X-ray diffraction techniques (12), which 

also agrees quantitatively well with both the analytical and simulation values. From the cross-

section views of the phase-field simulation results in Figure 3b, we also find negligible changes in 

the domain wall inclination angle ψ or ξ, which also agrees with analytical predictions.   

We then determine the volume fractions of the a1c- and a2c-phases of the polydomain by applying 

the lever rule. Specifically, for a given point X on segment AB, the volume fraction of the a1c-

phase can be calculated as 𝜔𝑎1𝑐 =
|AX|

|AB|
 and similar for the a2c-phase, 𝜔𝑎2𝑐 =

|XB|

|AB|
 where |AB| 

denotes the length of the segment AB. Note that 𝜔𝑎1𝑐 + 𝜔𝑎2𝑐 = 1. We compute 𝜔𝑎1𝑐 as a function 

of the anisotropy of the misfit strains defined as 𝜀𝑥𝑥
𝑚 − 𝜀𝑦𝑦

𝑚  and compare the results with those from 

phase-field simulation in Figure 3c. It is shown that the relative volume fractions of a1c-phase and 

a2c-phases vary with the misfit strain state. This linear relation between the volume fraction and 

the anisotropy of the misfit strain agrees reasonably well with the phase-field simulations (dots in 

Figure 3c) except that the phase-coexisting region obtained from the simulations is narrower. This 

can be clearly seen in the simulated 𝑎1
+𝑐+/𝑎2

+𝑐+ polydomain patterns shown in Figure 3b. Among 

the five misfit strain conditions considered, only three of them can stabilize the polydomain while 

the two endpoints relax into single-domain states. Similar differences in terms of the predicted 



two-phase stability between the strain phase equilibrium theory and phase-field simulations have 

also been reported and discussed for tetragonal PbTiO3 (25) and BiFeO3 (26). It can be ascribed to 

the incoherent interface assumption adopted in the strain phase equilibrium theory (c.f. Section 

2.3). In contrast, the coherent strain energy contribution associated with the domain walls has been 

fully included in the phase-field simulations. We can also draw an analogy of strain phase 

separation or strain spinodal to the coherent versus incoherent spinodal decomposition in chemical 

equilibria of binary solid solution with a miscibility gap. At a given temperature, the coherency 

strain energy tends to suppress phase separation.  

3.2.2 a1a2/MC polydomain  

As a second example, we study the polydomain in the a1a2/a2c phase-coexisting region, which is 

equivalent to the a1a2/a1c region by symmetry argument. The calculated domain wall orientation 

for the a1a2/a2c polydomain of biaxially strained K0.9Na0.1NbO3 is (1h1)pc with k = 0.27, 

independent of the misfit strain states on segment CD in Figure 2b. The corresponding domain 

wall inclination angles are ξ = 15° and ψ = 45°. Similar explanation applies to understanding the 

indifference of the domain wall orientation with respect to the misfit strain as discussed in 3.2.1. 

To test the analytical prediction, we obtain the polydomain structures consisting of 𝑎1
+𝑎2

+ and 

𝑎2
+𝑐+  domain variants by performing 3D phase-field simulations of K0.9Na0.1NbO3 thin films 

under a series of anisotropic misfit strains along the segment CD. The results are summarized in 

Figure 4. As shown in the polydomain structure for 𝜀𝑥𝑥
𝑚 = 0.0% and 𝜀𝑦𝑦

𝑚 = 1.0% (Figure 4a), the 

domain wall inclination angles are measured to be ξ ~ 15° and ψ ~ 45°, corresponding to a domain 

wall plane (1h1)pc plane with h ~ 0.27, which agrees perfectly well with the analytical predictions. 

Further, the angle ξ was measured to be 15~20° for KxNa1-xNbO3 (x = 0.90 ~ 0.95) thin films on 

NSO (8), which agrees reasonably well with our theoretical and simulation results. The simulation 



results also show the independence of the domain wall angle with respect to the misfit strain states 

for the polydomain structures, as shown in Figure 4b. However, one caveat is the restriction 

imposed by the in-plane periodic boundary conditions used in the simulations which might 

artificially cause the invariant domain wall plane. This issue can be avoided by considering double-

bundle domain structures which is detailed in Section 3.3.4.   

 

Figure 4 Phase-field simulations of a1a2/MC polydomain of K0.9Na0.1NbO3 thin films at T = 300K. 

(a) The simulated domain structures at equilibrium with biaxial isotropic misfit strain 𝜀𝑥𝑥
𝑚 = 0.0% 

and 𝜀𝑦𝑦
𝑚 = 1.0%. The arrows indicate the spontaneous polarization directions in each domain 

variant. The box on the right illustrates polarization directions of the two domain variants 𝑎1
+𝑎2

+ 

and 𝑎2
+𝑐+ in the pseudocubic coordinate system. (b) Top views of the polydomain structures at 



equilibrium subject to different misfit strains. The arrows indicate the polarization directions in 

each domain variant. (c) The volume fraction of 𝑎1
+𝑐+ as a function of the misfit strain component 

𝜀𝑥𝑥
𝑚  while keeping 𝜀𝑦𝑦

𝑚 = 1.0%.  

Notably, the strain states of the a1a2-phase and a2c-phase for the a1a2/MC polydomain are different 

while the strain states of the a1c-phase and a2c-phase are equivalent by symmetry. As a result, the 

domain wall for the a1a2/a2c polydomain is generally impermissible walls and cannot be 

determined from the geometric method based on the mechanical compatibility condition(7). 

Notably, under certain conditions the domain wall of the a1a2/MC polydomain becomes 

permissible, i.e., when the two domain variants share the equivalent monoclinic deformation. In 

terms of the spontaneous polarization, this condition corresponds to the ratio |P2|/|P1| of the a1a2-

phase is identical to the ratio |P2|/|P3| of the a2c-phase (or |P1|/|P3| of the a1c-phase). Moreover, the 

angle ξ of the a1a2/MC polydomain will be identical to the angle ψ of the a1c/a2c polydomain given 

that the monoclinic distortions for all the domain variants are identical.  

We also estimate the volume fractions of the a1a2- and a2c-phases by using the lever rule similar 

to the case in Section 3.2.1. For a given point X along the segment CD, the volume fraction of the 

a1a2-phase is calculated as 𝜔𝑎1𝑎2
=

|CX|

|CD|
  and for the a2c-phase, 𝜔𝑎2𝑐 =

|XD|

|AB|
. Note that 𝜔𝑎1𝑎2

+

𝜔𝑎2𝑐 = 1. We evaluate 𝜔𝑎1𝑎2
 as a function of the misfit strain component 𝜀𝑥𝑥

𝑚  along CD and 

compare the results with those from the phase-field simulation in Figure 4c. A reasonably good 

agreement is achieved between the analytical predictions and the simulation results. From the 

simulated 𝑎1
+𝑎2

+/𝑎2
+𝑐+  polydomain patterns displayed in Figure 4b, we also notice that the 

polydomain remains stable for three of the five misfit strain conditions while the two endpoints 

result in single-domain states. Similar to the case of the a1c/a2c polydomain, this result also 

suggests an overestimation of the two-phase mixture regimes in the strain phase diagrams in Figure 



2b due to the neglect of coherency strain energy contribution compared with the phase-field 

simulation results.  

3.3 Factors influencing domain wall orientation  

In this section, we discuss four possible factors that influence the domain wall orientation, 

including the misfit strain states, the choice of electrostrictive coefficient, the domain wall density, 

and an artificial restriction associated with the in-plane periodical boundary conditions in the 

phase-field simulations.  

3.3.1 Effect of misfit strains  

Although the examples shown above seem to suggest no misfit strain effects on the domain wall 

orientation for the two types of polydomain structures considered, this is true only when the misfit 

strains vary along the same tie-line so that the individual strain states of the coexisting domains 

remain unchanged. In general, there is a strong influence of the misfit strains on the low-energy 

domain wall plane for the two polydomain structures considered in this work, as will be shown in 

the following.  

 



Figure 5 The effect of misfit strain on the domain wall orientation of a1c/a2c polydomain for 

K0.7Na0.3NbO3 thin films. (a) The domain wall inclination angle ψ as a function of the biaxial misfit 

strain 𝜀𝑥𝑥
𝑚 = 𝜀𝑦𝑦

𝑚  calculated by the microelasticity theory when using the local strains (blue curve) 

and the overall misfit strains (black curve). The black points are measured angle ψ from phase-

field simulation results. (b) Cross section view of the polarization distribution in the (010)pc plane 

of the simulated polydomain structure subject to different biaxial misfit strains. The definition of 

the domain wall inclination angle ψ is denoted. 

We take the a1c/a2c polydomain of as an example and determine the domain wall orientation as a 

function of the misfit strain by assuming equibiaxial compressive misfit strains (𝜀𝑥𝑥
𝑚 = 𝜀𝑦𝑦

𝑚 =

−0.1% ~ − 0.8% ). The calculated domain wall inclination angle ψ as a function of the 

compressive misfit strain is shown in Figure 5a while the angle ξ remains unchanged ξ = 45°. As 

a comparison, we also performed corresponding phase-field simulations and measured the domain 

wall angles ψ as shown in Figure 5b. Both the theory and simulation suggest that the domain wall 

becomes more slanted with respect to the (110)pc direction as the misfit strain becomes more 

compressive. The domain wall inclination predicted by the theory tends to be slightly lower than 

the phase-field simulation, which may result from the domain wall energy associated with the 

domain size effects in the phase-field simulations, which will be discussed in Section 3.3.3.   

We also notice a correlation between the ratio of polarization vector components and the domain 

wall inclination angle, which can be established analytically as shown below. As the a1c/a2c 

polydomain consists of a1c and a2c domains that are equivalent by symmetry, their domain walls 

are permissible domain walls whose orientation can be derived from the mechanical compatibility 

condition. With a simple algebra we show that the permissible domain wall between the 𝑎1
+𝑐+ and 

𝑎2
+𝑐+ domain variants is (11k)pc with  



𝑘 =
2𝑄44

𝑄11 – 𝑄12

𝑃op

𝑃ip
,      (12) 

where Pip and Pop are the in-plane and out-of-plane polarization of the 𝑎1
+𝑐+domain (same for the 

𝑎2
+𝑐+ domain). The domain wall inclination angle ψ is related to k by ψ = tan-1(k). Therefore, the 

more monoclinic distortion of the lattice (measured by 
𝑃op

𝑃ip
), the more tilted of the domain wall (ψ). 

Similar trends have also been suggested in the theoretical study of monoclinic relaxor-ferroelectric 

bulk crystals(28).  

Notice that in some previous works, the strain states of coexisting domains are assumed to be the 

same as the overall misfit strains. In this sense, we have 𝜀𝑥𝑥
𝛼 = 𝜀𝑥𝑥

𝑚  and 𝜀𝑦𝑦
𝛼 = 𝜀𝑦𝑦

𝑚  for 𝛼 = 𝑎1
+𝑐+ 

and 𝑎2
+𝑐+. This assumption might not affect the domain wall plane when it has a fixed orientation 

as for the polydomain of tetragonal polydomain (e.g., 90° domain walls of a/c domains of PbTiO3), 

but it will significantly influence the domain wall orientation for the monoclinic phase considered 

in this work. This point is demonstrated in the black line in Figure 5a where the overall misfit 

strain is used for the minimization of Equation (6).  

3.3.2 Effect of electrostrictive coefficients  

As suggested by Equation (12), the domain wall orientations of monoclinic polydomains depend 

on the value of the electrostrictive coefficients. However, there is a large discrepancy in the choice 

for Q44 of K0.5Na0.5NbO3 in literature(23,24). Here, we show how the magnitude of Q44 can 

influence the predicted domain wall orientations for the two polydomain structures. The 

analytically predicted and phase-field simulated domain wall inclination angles ψ and ξ  as a 

function of the chemical composition of KNN films are shown in Figure 6a and b, respectively, 

for the a1c/a2c and a1a2/MC polydomain structures by assuming different values of the 𝑄44
KNN. To 

exclude the misfit strain effects, we fixed the values of the misfit strains and strains of individual 



domain/phase for all the cases as labeled in Figure 6. By comparing with the domain wall 

inclination angles measured from experiments (labeled as green points in Figure 6), we find by 

using 𝑄44
KNN = 0.029 m4C−2 the best agreement is achieved for the a1c/a2c polydomain while it is 

not straightforward to distinguish from the a1a2/MC polydomain. Nevertheless, the trend that the 

angle ξ decreases with respect to the composition x for the a1a2/MC polydomain agrees better when 

we use 𝑄44
KNN = 0.029 m4C−2. In addition, we also estimated 𝑄44

KNN based on the lattice constants 

of bulk KNN at varied temperature(50) which gives 𝑄44
KNN = 0.028 m4C−2 . Therefore, we 

conclude that 𝑄44
KNN = 0.029 m4C−2  among others is the most reliable choice and should be 

adopted in the future studies of KNN.  

 

Figure 6 The effect of electrostrictive coefficients on domain wall orientations of the a1c/a2c and 

a1a2/MC polydomain in KxNa1-xNbO3 thin films with various composition x. (a) The domain wall 

inclination angle ψ as a function of x for the a1c/a2c polydomain subject to misfit strains 𝜀𝑥𝑥
𝑚 =

𝜀𝑦𝑦
𝑚 = −0.7%. (b) The domain wall inclination angle ξ as a function of x for the a1a2/MC polytwin 

domains subject to misfit strains 𝜀𝑥𝑥
𝑚 = 0.0% and 𝜀𝑦𝑦

𝑚 = −0.7%. The insets in (a,b) schematically 

show the definition of angles ψ and ξ. The local strains of each domain are denoted explicitly. The 



angles calculated by the microelasticity theory are plotted in lines while the angles measured from 

phase-field simulations are plotted by dots. The angles reported from experiments are labeled by 

green dots with error bars.  

3.3.3 Effect of domain size  

When predicting the domain wall orientation using the analytical strain phase equilibria theory 

described in Section 2.4, we do not include the domain wall energy contribution to the 

thermodynamics, and thus we ignore the finite size of the domains or the finite thickness of the 

films. However, the domain size is directly related to the film thickness as a result of the relaxation 

of elastic strain energy, which is self-consistently considered in the phase-field simulations. 

Therefore, we construct a series of polydomain structures in the phase-field model with different 

numbers of stripes while keeping the same film thickness (i.e., 20 nm) and relax the system to 

obtain the polydomain structure at equilibrium and the domain inclination angles ψ and ξ, as shown 

in Figure 8. We find that, in both cases, the domain walls become more slanted as the domain size 

increases, and a larger domain size dependence is seen for the 𝑎1
+𝑐+/𝑎2

+𝑐+  polydomain. The 

domain size dependency suggested another tunability of the domain wall orientation by 

modulating the domain wall density of the monoclinic ferroelectric thin films.  

 



Figure 7 The effect of domain size on the domain wall orientation of the polydomain structures 

obtained by phase-field simulations. (a) The domain wall inclination angle ψ as a function of the 

domain wall density measured by the number of stripe patterns for the 𝑎1
+𝑐+/𝑎2

+𝑐+ polydomain of 

KNbO3 thin films with misfit strains 𝜀𝑥𝑥
𝑚 = 𝜀𝑦𝑦

𝑚 = −0.5%. (b) The domain wall inclination angle 

ξ as a function of the domain wall density measured by the number of stripe patterns for the 

𝑎1
+𝑎2

+/𝑎2
+𝑐+ polydomain of KNbO3 thin films with misfit strains 𝜀𝑥𝑥

𝑚 = −0.2% and 𝜀𝑦𝑦
𝑚 = 1.0%. 

The insets in (a) are the section views along (010)pc of the simulated polydomain at equilibrium. 

The insets in (b) are the top views of the simulated polydomain at equilibrium. The definitions of 

the angles ψ and ξ are illustrated. The solid black lines in (a,b) are linear fits of the data points.  

3.3.4 Influence of in-plane periodic boundary conditions  

In the phase-field simulations of ferroelectric thin films, the in-plane periodic boundary condition 

is often assumed. It is compatible with stripe-like polydomain patterns when the domain wall 

planes are parallel to the x or y directions but may impose restriction on the domain wall motion 

when the domain wall plane tends to rotate along the out-of-plane direction. We demonstrate this 

scenario here because, without paying attention to this factor, it may lead to incorrect prediction 

of the domain wall behavior.  



 

Figure 8 The influence of in-plane periodic boundary conditions adopted in the phase-field 

simulation on determination of domain wall orientation for the a1a2/MC polydomain. (a,b,c) The 

single-bundle and (d,e,f) two-bundle of 𝑎1
+𝑎2

+/𝑎2
+𝑐+ polydomain structures at equilibrium using 

different electrostrictive coefficient 𝑄44
KNN of K0.5Na0.5NbO3. The misfit strains are kept at 𝜀𝑥𝑥

𝑚 =

−0.2% and 𝜀𝑦𝑦
𝑚 = 1.0% for all the cases.  

We take the 𝑎1
+𝑎2

+/𝑎2
+𝑐+ polydomain for K0.5Na0.5NbO3 thin films subject to 𝜀𝑥𝑥

𝑚 = −0.2% and 

𝜀𝑦𝑦
𝑚 = 1.0% as an example. From the simulated polydomain structure at equilibrium as the initial 

state, we vary the value of 𝑄44
KNN from 0.029 to 0.084 m4C−2 and relax the system. We find that 

the domain wall angle remains unchanged while the elastic strain energy of the system increases, 

suggesting that the relaxation by the domain wall motion is suppressed. This can be attributed to 

the restriction on the domain wall motion imposed by periodic boundary condition. For example, 

if the domain wall inclination angle ξ tends to increase, the junction of the domain walls at the 

upper boundary in Figure 8a tend to move left while the junction of the domain walls at the bottom 

tends to move right, as indicated by the red circles, which is not conformal. To overcome this 



restriction, a simple way is to construct a pair of equivalent polydomain to form the double-bundle 

structure so the domain walls at the system boundaries can move consistently as angle ξ varies. In 

all the calculations shown above, we adopted the double-bundle structure for 𝑎1
+𝑎2

+/𝑎2
+𝑐+ 

polydomain to avoid this artifact. For 𝑎1
+𝑐/𝑎2

+𝑐+polydomains, there is no such issue because angle 

ξ keeps at ξ  = 45° in all cases due to symmetry requirements.  

4. Summary and Perspective 

We demonstrate an analytical strain phase equilibria theory for establishing the strain phase 

diagrams and predicting the domain wall orientations of two types of polydomain of (001)pc-

oriented monoclinic KNN thin films. We show that the analytical predictions from the strain phase 

equilibria theory on the formation of polydomain structures and domain wall orientations are not 

only largely consistent with the results from more realistic but much more computationally 

expensive three-dimensional phase-field simulations but also in good agreement with existing 

experimental measurements. The fact that these agreements have been achieved for KNN thin 

films with various compositions and misfit strain states suggest a general applicability and 

effectiveness of the analytical strain phase equilibria theory. We expect the demonstrated success 

of the theoretical framework can lead to its further extension to understand and predict the strain 

phase equilibria and domain walls in emerging ferroelectric materials such as HfO2 (58).  

Aside from the demonstrated theoretical approach, our work also helps gain fundamental insights 

into the domain structure of monoclinic KNN. KNN-based ceramics have been shown excellent 

electromechanical properties comparable to that of Pb(Zr1-xTix)O3 (PZT) and thus been regarded 

as a promising lead-free alternative to PZT for piezoelectric applications (59). It remains an open 

question whether these excellent functional properties can be retained into thin films. Therefore, 

it would be of great interest to further establish the relationship between the domain structure and 



the piezoelectric and dielectric properties of KNN-based thin films(22) which will be of both 

scientific interest and technological relevance.  

We shall point out that, in this work, we only focus on two polydomain structures of the monoclinic 

MC phase where the difference between the polarization vectors of the neighboring domains is 

small, i.e., corresponding to the 60° domain walls of the undistorted bulk orthorhombic phase. 

There are many other types of polydomain combinations, such as the 𝑎1
+𝑐+  and 𝑎2

+𝑐−  which 

corresponds to the 120° domain walls of the bulk orthorhombic counterpart, and possible charged 

domain walls where the electrostatic energy may dominate the domain wall orientations. A 

comprehensive theoretical investigation of all possible low-energy domain walls of MC-phase 

ferroelectrics will require significant future efforts.   
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Table 1. Materials coefficients used for K1-xNaxNbO3 (0 ≤ x ≤ 0.5) in the Landau-type model and phase-

field simulations in this work. 

Parameters Units Values (Ref.(38)) Parameters Units Values (Ref.(24)) 

𝛼1 

C-2 

m2 N 

2𝑥 × 4.29 × 107 × [coth (
140

𝑇
) −

coth (
140

657
)] + (1 − 2𝑥) × 5.98 ×

107 × [coth (
140

𝑇
) − coth (

140

650
)]  

𝑐11 GPa 230  

𝛼11 

C-4 

m6 N 

2𝑥 × (−2.7302 × 108) + (1 −

2𝑥) × (−6.36 × 108)  

𝑐12 GPa 90  

𝛼12 

C-4 

m6 N 

2𝑥 × (1.0861 × 109) + (1 −

2𝑥) × (9.66 × 108)  

𝑐44 GPa 76  

𝛼111 

C-6 

m10 

N 

2𝑥 × (3.0448 × 109) + (1 −

2𝑥) × (2.81 × 109)  

𝑄11 m4/C2 

2𝑥 × 0.166 + (1 − 2𝑥) ×

0.13  

𝛼112 

C-6 

m10 

N 

2𝑥 × (−2.7270 × 109) + (1 −

2𝑥) × (−1.99 × 109)  

𝑄12 m4/C2 

2𝑥 × (−0.072) + (1 −

2𝑥) × (−0.047)  

𝛼123 

C-6 

m10 

N 

2𝑥 × (1.5513 × 1010) + (1 −

2𝑥) × (4.50 × 109)  

𝑄44 m4/C2 

2𝑥 × 𝑄44
KNN + (1 − 2𝑥) ×

0.052  

𝛼1111 

C-8 

m14 

N 

2𝑥 × (2.4044 × 1010) + (1 −

2𝑥) × (1.74 × 1010)  

𝑄44
KNN m4/C2 0.029, or 0.052, or 0.084a 



𝛼1112 

C-8 

m14 

N 

2𝑥 × (3.7328 × 109) + (1 −

2𝑥) × (5.99 × 109)  

g11 

N 

m4/C2 

0.64×10-11 

𝛼1122 

C-8 

m14 

N 

2𝑥 × (3.3485 × 1010) + (1 −

2𝑥) × (2.5 × 1010)  

g12 

N 

m4/C2 

-0.64×10-11 

𝛼1123 

C-8 

m14 

N 

2𝑥 × (−6.2017 × 1010) + (1 −

2𝑥) × (−1.17 × 1010)  

g44 

N 

m4/C2 

0.64×10-11 

a Various values are used for the Q44 of K0.5Na0.5NbO3 in the literature (23,24); Based on our results, it is 

more accurate to use 0.029 m4/C2
 among others. 

  



Table 2. Calculated misfit strains for KxNa1-xNbO3 epitaxial thin films grown on various substrate materials 

x of KxNa1-

xNbO3 

Substrate 

materials 
 

𝜀𝑥𝑥
m  𝜀𝑦𝑦

m  𝜀avg
m  

Expt. reported 

phases 

Theoretical predicted 

phases 

0.9 NdScO3  
0.06% 0.37% 0.21% a1a2/MC a1a2/MC

* 

0.7b 

SmScO3  
-0.16% 0.08% -0.04% a1c/a2c a1c/a2c 

GdScO3  
-0.54% -0.44% -0.49% a1c/a2c a1c/a2c 

TbScO3  
-0.72% -0.66% -0.69% a1c/a2c a1c/a2c 

DyScO3  
-0.91% -1.04% -0.98% c c 

0.5c SrTiO3  

-1.82% 

(-0.71%)d 

-1.82% 

(-0.71%)d 

-1.82% 

(-0.71%) 

a1c/a2c a1c/a2c 

a With stronger anisotropy of the misfit strains as discussed in the text.  

b The x ranges from 0.54 ~ 0.77 in Ref. (8); x = 0.7 is used here for convenience.  

c The composition is Li0.06K0.47Na0.47NbO3 in Ref. (10). x = 0.5 is used here for convenience.  

d The relaxed misfit strains calculated using the experiment measured lattice constants of the films.   

 

 


