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Abstract

Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to
establishing their structure-property relationships that underpin their applications from
piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase
separation and polydomain formation and analytically predict the corresponding domain volume
fractions and wall orientations of, relatively low symmetry and theoretically more challenging,
monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase
equilibria theory, microelasticity, and phase-field method. Using monoclinic KNa;.NbO3(0.5 <
x < 1.0) thin films as a model system, we establish the polydomain strain-strain phase diagrams,
from which we identify two types of monoclinic polydomain structures. The analytically predicted
strain conditions of formation, domain volume fractions, and domain wall orientations for the two
polydomain structures are consistent with phase-field simulations and in good agreement with
experimental results in literature. The present study demonstrates a general, powerful analytical
theoretical framework to predict the strain phase equilibria and domain wall orientations of
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polydomain structures applicable to both high- and low-symmetry ferroelectrics and provide
fundamental insights into the equilibrium domain structures of ferroelectric KNa;..NbO3 thin

films that are of technology relevance for lead-free dielectric and piezoelectric applications.

1. Introduction

The physical responses of ferroelectric materials to external thermal, mechanical, electric,
magnetic and optical stimuli depend not only on the intrinsic crystal structure but also on the spatial
configuration of ferroelectric domains and their interfaces known as the domain walls. It is of
critical importance to understand the formation conditions and equilibrium structures of specific
ferroelectric domains and domain walls in order to effectively tune the macroscopic performance
of ferroelectric ceramics, bulk single crystals, epitaxial thin films, and nanostructures for various
applications such as high-power dielectric capacitors(1), piezoelectric transducers(2), non-volatile

memories(3), and nonlinear optical devices(4).

The domain structures of many ferroelectric materials can be considered as an assembly of basic
building blocks known as polydomains. A polydomain consists of a pair of domain variants
alternating in space with a well-defined domain wall plane. Understanding the polydomain
structure is fundamental to the theoretical and experimental studies of more complex, hierarchical
domain structures. Typical polydomain of tetragonal and rhombohedral ferroelectric thin films are
schematically shown in Figure 1a and b, respectively. The low-energy, permissible domain walls
of these polydomain structures are usually parallel to the low-index planes such as {100},. and
{110}, identical to their bulk counterparts, and they have been extensively studied from
experiments and theories (5,6). However, for orthorhombic ferroelectrics, such as KNbOs3, the

permissible domain walls typically do not coincide with low-index planes but depends on the



spontaneous strain difference of adjacent domain variants, which is known as the S-walls where S
stands for strange(7). Moreover, for thin films on a substrate, the lattice mismatch between a film
and substrate can further distort the orthorhombic phase into monoclinic symmetry, resulting in
more interesting behavior such as tunable domain walls by varying the chemical composition (8).
The structural features of polydomain structures in these low-symmetry ferroelectric thin films
have been much less studied compared with their tetragonal and rhombohedral counterparts, which
might be attributed to the unavailability of high-quality epitaxial thin films, requirements of
advanced characterization techniques to distinguish the low-symmetry phases, and necessity for

more complicated theoretical analyses.

The recent advances in the epitaxial growth of high-quality, single-crystalline KNN thin films have
enabled the exploration of ferroelectric phases in these films with various chemical compositions
and thickness, subject to different misfit strains and temperatures (8—18). Many ferroelectric
phases have been identified by advanced X-ray diffractions, including orthorhombic c-phase (13),
orthorhombic  ai/ax-phase(14,16), monoclinic  aja>-phase(8,11,15), monoclinic = Mc-
phase(9,10,12,13,19), and monoclinic Ma-phase (9,10,20). Meanwhile, polydomain structures of
different phases have been directly observed in real space using piezoresponse force microscopy.
For the Mc-phase, stripe-like polydomains consisting of two ferroelastic domain variants are
observed(12,13), which we call aic/axc polydomains. Another type of polydomain structure
resembles a herringbone-like pattern, consisting of one domain variant of the Mc-phase and one
variant of the a1a2-phase (15), and we lable them aia2/Mc polydomains. Combination of different
variants of the polydomains forms hierarchical, superdomain structures(12,15). The domain wall
orientations of the aic/axc and a1a2/Mc polydomain structures have also been analysed previously

(8,12). In both cases, the domain walls are not parallel to any low-index planes. If we define the



domain wall inclination angles, £ and y, with respect to the in-plane and out-of-plane directions,
respectively, as shown in Figure 1, the experiments show that =45° and = 19+3° for the aic/axc
polydomain structure of Ko7Nao3NbO;3 thin films grown on TbScO3 (12) while w = 45° and ¢

varies from 24° to 41° for KiNa;.:NbO3 (0.8 < x < 0.95) grown on NdScOs depending on the

composition x(8). These results, however, have not been systematically investigated theoretically.

There have been several theoretical studies on the KNN epitaxial thin films (21-24). The
temperature-misfit strain phase diagrams of the KNN thin films are established using the Landau-
Ginsburg-Devonshire (LGD) model (23) and phase-field simulations(21,24). The traditional LGD
method often assumes either monodomain state or specific domain wall orientations, whereas the
phase-field method, though free of a priori assumption on the domain structures, is
computationally expensive. The recently developed strain phase equilibrium theory (25) offers a
powerful yet efficient approach to determine the polydomain phase diagrams without assumption
on the specific domain structures and has been successfully employed to study the
multiphase/multidomain stability in BiFeOs (26), PbTiO3; (25) and other non-perovskite

oxides(27). Nevertheless, its application to monoclinic ferroelectrics has not yet been explored.

For the theoretical prediction of domain wall orientations, despite a few studies focusing on
monoclinic ferroelectric bulk crystals using the mechanical compatibility condition (28,29), this
geometry-based method is limited to permissible domain walls where there is no lattice mismatch
in the domain wall plane and thus no elastic energy is generated(7,30,31). However, for
polydomains in biaxially strained thin films, the mechanical compatibility condition is not
completely satisfied in general because of the misfit strains may result in nonequivalent

spontaneous strains of the domain variants. Therefore, it requires a more general energy-based



approach to predict the low-energy domain wall orientations for polydomain structures in

ferroelectric thin films (32-35).
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Figure 1 Schematics of typical polydomain structures of (001),c-oriented ferroelectric thin films
with different lattice symmetries. (a) The a/c and ai/a> polydomain of tetragonal phase. (b) The
ri/r2 and r1/r3 polydomains of rhombohedral phase. (¢) The aic/axc and aia2/Mc polydomains of
the orthorhombic/monoclinic phase. The black arrows in each domain variant indicate the direction
of the polarization vector projected onto the plane. The domain wall inclination angles 1 and ¢ are

labeled.

The present work aims to demonstrate a general theoretical framework to predict the strain
equilibrium conditions, domain volume fractions, and wall orientations of polydomain structures
of low-symmetry ferroelectrics. We take a (001)pc-oriented KNN epitaxial thin film as a model
system and predict the two representative polydomain structures of monoclinic ferroelectric phase
(i.e., aic/axc and aiax/Mc polydomain) using a combination of LGD theory, strain phase
equilibrium theory, microelasticity, and phase-field simulations. We construct the strain-strain

phase diagrams of KNN using the LGD theory and strain phase equilibrium theory to reveal the



strain conditions for the formation of the two polydomain structures. We determine the volume
fractions of the coexisting domain variants from a geometric lever-rule construction. We predict
the energy-favored domain wall orientations using the microelasticity theory with the strain states
of individual domain variants informed from the strain phase diagram. Further, we perform phase-
field simulations to verify the theoretical predictions and compare them with experiments in
literature. We also discuss four critical factors affecting the accurate prediction of the domain wall

orientations.

The rest of the article is organized as follows. In Section 2, we will first state the conventions,
notations, and definitions adopted throughout the work to avoid ambiguity. Then, we describe the
LGD model of ferroelectrics, the strain phase equilibrium theory, the microelasticity theory for
predicting the low-energy domain wall orientations, and the phase-field model of ferroelectric thin
films. In Section 3, we present the main results of our theoretical predictions including the
polydomain strain-strain phase diagrams of KNN thin films, volume fractions of coexisting
domains, and domain wall orientations and compare them with our phase-field simulation results
and existing experimental measurements in literature. In Section 4, we discuss four influencing
factors that affect the accurate determination of domain wall orientations of the polydomain

structures. We summarize our findings and remark on open questions in Section 5.

2. Methods

2.1 Convention, notation, and definitions

We define the Miller indices denoting the lattice planes and directions either in the pseudocubic
coordinate system (with pc in the subscript, e.g., (110)pc) or in the orthorhombic phase of the
scandate substrates (with O in the subscript, e.g., (110)o). Care needs to be taken on the different

definitions of the pseudocubic lattice constants for the orthogonal scandate substrates and the



perovskite oxide thin films (36). This is critical in correctly determining the misfit strains of
biaxially KNN thin films. All the results in the present work are obtained for (001 ),c-oriented KNN
thin films on (001)pc-oriented SrTiOs or (110)o-oriented scandate substrates. Nevertheless, the
theoretical approach is applicable to ferroelectric thin films and substrates with arbitrary

orientations.

Second, we label different ferroelectric phases and their corresponding spontaneous polarization
as follows(37): ai-phase (|P1]| # 0, |P2| = 0, |P3| = 0), az-phase (|P1| =0, |P2| # 0, |P3| = 0), c-phase
(IP1] = 0, |P2| = 0, | P3| # 0), aic-phase (|P1]| # 0, |P2| = 0, |P3| # 0), axc-phase (|P1| = 0, |P2| # 0, |P3]
#0), aiaz-phase (|P1| # 0, |P2| # 0, |P3| = 0), and r-phase (|P1]| # 0, |P2| # 0, |P3| # 0). Following Ref.
(17), by Mc-phase we refer to either the aic- or axc-phases, despite aiaz-phase also exhibits the

Mc symmetry when |P1]|#|P2|. We do not distinguish the orthorhombic phases as special cases of

the aic-, axc-, and a1a2-phases when the two nonzero polarization components become identical in
magnitude (e.g., |P1| = |P2| # 0, |P3| = 0). Instead, we refer to all of them as the monoclinic phase.

The Ma-phase can be considered as a special case of the r-phase where |P3[>|Pi|=|P2|# 0 or
|P1[>|P2|=|P3|7#0 or |P2|>|P1|=|P3|#0, while the Mg-phase can be considered as a special case of
the r-phase where |P3|<|P1|=|P2| # 0 or |P1|<|P2|=|P3| 7 0 or |P2|<|P1|=|P3| #0. Also note that the ai-,

az-, and c-phases, while having uniaxial ferroelectric polarization, may have unequal pseudocubic
lattice constants (a # b # ¢) in general and thus are referred as the orthorhombic phase in this work,
following Ref. (16). Each phase consists of several ferroelectric domain variants. For example,
aic-phase consists of aj ct, afc™, ajct, aj ¢~ domain variants where the + in the superscript
corresponds to the sign of the polarization components. For example, the afc*t-domain has

polarization P > 0, P> = 0, P3 > 0. Additionally, we use the term phase and domain loosely. For



example, the aic-, axc-, and aiaz-phases can be regarded as three ferroelastic domain variants of

the Mc-phase.

Third, in principle, a domain wall refers to an interface separating two domain variants of the same
phase with the same crystallographic symmetry, whereas an interphase boundary refers to an
interface separating two phases with different symmetries. In this sense, as will be seen in Section
3.2.2, the interface of the aiax/Mc-type polydomain should be an interphase boundary. To avoid
complexity in the terminology, we do not distinguish domain walls and interphase boundaries but
refer to both of them as domain walls in the rest of this work. By polydomain we mean any periodic
structure consisting of a pair of alternating domain variants that may or may not have the same
symmetry. If the neighboring domains of a polydomain structure become identical by a mirror-
symmetry operation with respect to the domain wall plane, we call the polydomain a polytwin. In
this sense, the aic/axc-type polydomain is also polytwin, whereas the aja2/Mc-type polydomain is
not in general, as will be seen in Section 3.2. In this work, we use polydomain to refer to polytwin

as well.

Finally, we employ the Einstein summation in all equations throughout this work unless otherwise

stated.
2.2 Landau-Ginzburgh-Devonshire theory of ferroelectric transitions

The Landau-Ginzburg-Devonshire theory has been successfully applied to describe the
paraelectric-ferroelectric and ferroelectric-ferroelectric phase transitions in perovskite oxides. For
proper ferroelectrics, the spontaneous polarization P is the primary order parameter, and the
corresponding Landau-type free energy density of a homogeneous monodomain ferroelectric can

be written as



f = aijPin + aijklPinPkPl + aijklmnPinPkPlePn + aijklmnopPinPkPlePnPoPp
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where the o’s are the Landau coefficients under the stress-free condition, c;jy; is the elastic
compliance of the parent phase under zero-electric field condition, k;; is the background dielectric
permittivity under the zero stress condition, &;; is the total strain, eioj is the spontaneous strain
calculated as elpj = Q;jkiPrP; where Qj is the electrostrictive coefficient. For the thermodynamic

analysis in this work, we assume the depolarization field is completely eliminated by the short-

circuit electric boundary condition, and no applied electric field.

For ferroelectric thin films subject to biaxial strains, the components of the total strain ; (i = 1-6,

in Voigt notation) can be solved by the conditions,

of of of of
=g =gm L _— _— = _— = —_— =
81 gxx: 82 eyyl 383 ) 354_ ] 385 0; 686 0 (2)

. . as—a bs—a
The misfit strains, £3 and &}}, , are defined as e7; = Sa—f and et = Sa—f where a; and b are the
f f

pseudocubic lattice constants of the substrate while ar the pseudocubic lattice constant of the

ferroelectric film. Notably, in solving Equation (2), we assume aan = 0 rather than the commonly
6

used condition &g = 0 to accommodate the nonzero shear component of the spontaneous strain of
monodomain aia> domains, i.e., €2 = Q44P; P,. The physical significance of this replacement is to

assume that the thin film tends to spontaneously form equal amounts of af af and a7 aj domain

0,atad 0,a;ai
+ &

variants with opposite spontaneous shear strains, so that &, = 0, to accommodate

the zero shear strain constraint imposed by the substrate and thus relax the elastic strain energy.



By plugging the solution of Equation (2) into (1) we arrive at an expression of f'in terms of P; for
a given set of & and &J},. The polarization at equilibrium Pieq for a given domain state can be

obtained by minimizing f with respect to P, i.e.,

of _ o 9*f .
ap, O’apl? >0,i =123, 3)

subject to specific constraints on the polarization components. For example, for aic domain,

Equation (3) is solved with the constraints P; # 0, P> =0 and P3; # 0. The solution of (3) is then

plugged into Equation (1) to obtain the equilibrium free energy foq = f|p=pea.

Following this procedure, we obtained Pieq (&xx €yy) and foq(€xx, €yy) for the three monoclinic
phases (aic-, axc-, and aiax-phases), three orthorhombic phases (a1-, a2-, and c-phases), and one
triclinic phase (7-phase) of KNN thin films of different compositions at room temperature. Notice
that the expressions in Equation (1) can be greatly simplified by considering the cubic symmetry
of the paraelectric phase of KNN. Nevertheless, the closed-form of Pieq (exx: &yy) and
feq(€xx, €yy) is not always guaranteed, thereby numerical solution is adopted in the present work.
All parameters for the LGD model of KNN are listed in Table II as adopted from Ref. (24,38).
These parameters are also adopted in the phase-field model in Section 2.5. In the rest of the work,
we will drop the superscript “eq” in Pieq, and by P; we will always refer to the spontaneous

polarization at equilibrium.
2.3 Strain phase equilibrium theory

We apply the strain phase equilibrium theory to establish the strain-strain phase diagrams of KNN
thin films. The calculation procedure is briefly outlined below while the detailed derivation can be

found in Ref. (27). From the LGD theory of monodomain ferroelectrics described in Section 2.2,



we can obtain the equilibrium free energy density of different phases a in terms of the misfit strains
e and &)Y, ie., f&(em,€)%). For phase a € {a,a,,a,¢, a,c, as,a,,c,r}. With the incoherent
interface assumption, the elastic interaction between neighboring strain domains/phases can be
neglected, and the orientation of the interphase boundary/domain wall does not need to be assumed
a priori. In this case, the free energy density of the phase/domain mixture can be written as a
summation of the individual phases/domains weighted by their volume fractions, and the
equilibrium is obtained by minimizing the total free energy with respect to the volume fractions
and strains of individual domains/phases. Geometrically, these conditions for strain phase/domain
coexistence can be determined by the generalized common tangent construction with respect to
the strain components, allowing for efficient establishment of high-dimensional strain phase
diagrams (27). Following this method, we construct the strain-strain phase diagram by determining
the phase-coexistence between any two or three phases based on the common tangent construction.
For two-phase equilibria with the two phases denoted as a and f§, the conditions for phase

coexistence are written as

B
afeofq afeq
— = — = 0 4a
oel% exx=ef oels g}c’}czgf 1> ( )
el =g
yy=e2 _B
Eyy=¢,
B
afeaq afeq
=— = 0. 4b
ol exy=ef ol g%:gf 2> ( )
g%:g? m __ B
Eyy=¢&;
A (A A a a_ B(.B B B B
feq(51 ,€3) — 01&1 — 065 = feq(€1 € ) — 0181 — 028, (40)

where (&7, €5) and (ef , sf ) are the total strains for the @ and f phases, respectively, and o; and
0, are the stress at equilibrium. Note that there are six unknowns while there are only five

equations in Equation (4). Therefore, the solution is not unique, and one of the unknowns should



serve as an independent parametric variable. This can be understood from the Gibbs phase rule for
the strain equilibria (25), i.e., for single chemical-component (N. = 2) and two strain-component
system (Ns = 2) at a constant temperature, the degree of freedom (Nr) for two-phase coexistence
(Np =2) is calculated to be Nf= Ns + Ne — Np, =2 + 1 — 2 = 1. Geometrically, the two-phase region
in the strain-strain phase diagram corresponds to the projection of a set of common tangent lines
of the two energy surfaces onto the two-dimensional phase diagram plane, which is known as the
tie-lines (27,39). The pairs of strains (&7, €5) and (sf , sf ) correspond to the endpoints of the tie-

lines and delineate the phase boundaries of the two-phase regions.

Likewise, for three-phase equilibria between the phase «, f and y, the equilibrium condition can

be written as

a B Y
afeq m_.a = afﬂ = afeq m_.Y = O- (53)
0elt | Exx=¢€1 ol g}c@c=£f AT |Exx=¢€1 1>
g%:g‘zz B em =€Y
g;nyzgz yy—c=2
a B 14
dfeq — Ofeq — Ofeq y =0 (5b)
oel |ele=el T aell |em=ef T 0l |eii=el T U2
m _.a m _.V
Eyy=éz sgly=s§ Eyy=€2

fE(ef, €8) — oy — 0,68 = feﬁ(sf,ef) —o16f —0,6F = fo (€], €)) — one] — o€}, (50)

from which the pairs of strains (&f, £5), (sf , ef ), (SI , s;/ ) forthe a, S, and y phases, respectively,
and the stress 0y and g, at equilibrium can be obtained. Since there are eight equations and eight
unknowns, the solution is unique in this case which is consistent with the Gibbs phase rule (25),
1.e., Nr=Ns+ Nc— Ny, =2+ 1 -3 =0. Geometrically, the three-phase equilibrium corresponds to
identifying the common tangent plane of the three free energy surfaces (f.g, fe{;, and fe]a) in terms

of the strain variables. The common tangent plane is bounded by three common tangent lines of



the two-phase regions, forming a common tangent triangle which is projected onto the strain-strain
phase diagram to obtain the three-phase region (27). Notably, depending on the specific form of

feq, there might be either no solution of Equation (5), which means the three-phase cannot coexist
under the given condition, or degenerate solution where (&f,&5), (elﬁ ,sf ), (si’ , sg ) become
identical. In the latter case, the three phase becomes undistinguishable, i.e., the first-order phase
transition becomes a second-order transition, and the solved strain state corresponds to a critical
point in the strain-strain phase diagram. As will be seen in Section 3.1, this scenario occurs when
two monoclinic phases (i.e., aic-, axc-, and aiaz-phases) transition into one orthorhombic phase
(i.e., a1, a2, and c-phases) as the misfit strain varies. The phase boundary for the second-order
transition is indicated by equating fcq of the adjacent phases and represented by dashed curves in
the phase diagrams (c.f. Figure. 2). Also note that, according to our calculation, the r-phase does
not become stable phase in the ranges of misfit strains (—2.0% < &% < 2.5% and —2.0% <

&yy < 2.5%), temperature (7'= 300K) and composition (x = 0.5 ~ 1.0) considered in this work.

2.4 Microelasticity theory for predicting low-energy domain wall orientations

Permissible domain walls satisfying the mechanical compatibility condition along the domain wall
plane for all ferroelectric species have been well documented (30,31). Similar compatibility
conditions have been proposed to account for the charged domain walls (40) and domain walls of
improper ferroelectrics(41). When the mechanical compatibility conditions are not satisfied, the
optimal orientation of the domain walls should be determined by minimizing some metrics of the
incompatibility(32) such as the long-range elastic energy associated with the lattice mismatch at
the domain wall plane in terms of the domain wall orientation(35,42). The energy-based method
can be further extended to include long-range electrostatic energy, short-range domain wall

interfacial energy and surface energy associated with finite-size systems (35), allowing for a more



comprehensive thermodynamics model of polydomain structures which can be used to estimate
the equilibrium domain size for a polydomain formation (34). This approach has been employed
to study the domain walls and heterophase boundaries of Pb(Zr1<Tix)O3 (33), Ba(Zro.2Tio8)O3 (43),

and BiFeOs thin films (34).

In this work, we assume the elastic strain energy governs the domain wall orientation and adopt
the microelasticity theory (35,42) to determine the low-energy domain walls. The electrostatic
compatibility condition is used to distinguish the charged neutral domain walls. According to Ref.

(34), the coherent elastic strain energy associated with the formation of laminated polydomain

1
coh — Sw1w,B(M)V where V/

structure consisting of alternating phase @ and f can be written as E,
is the volume of the system, n is the unit normal vector of the interphase boundary, and w; and

w, are the volume fractions of the two domain variants. The quantity B(n) can be expressed as:

B(n) = CijklAglijglgl - TliAO'i(}ijAO'Ingll, (6)

where ¢;j; 1s the elastic stiffness, Ael-oj is the difference between the spontaneous strains of the two
phases, Aal%- is defined as 08- = jklAe,gl, and ();; is a second-rank tensor whose inverse is defined
as Qi"jl = CjumMiny . For ferroelectric phases a and B described by Equation (1), Ael-oj =

QijklP,‘(xPl“—QijklPkﬁ Plﬁ . We also assume that ¢;j; is identical for the two phases and

homogeneous for the polydomain structure. In this sense, we can determine the energy-favored
domain wall orientation by minimizing Equation (6) with respect to n. Notably, for permissible

domain walls, the solution of n reduces to the result based on the mechanical compatibility analysis.

The minimization of Equation (6) generally results in two solutions of n that are orthogonal to

each other (42). To determine which one is the optimal domain wall plane for two ferroelectric



domain variants, we also need to consider the electrostatic energy associated with the domain wall,

which can be defined as Ej,. = %a)l w,Q(n)V. The quantity Q (n) is written as,

(APiTli)z

Qm) = —— (7)

s
Jcijninj

where AP = P* — PP and P® and PP are the spontaneous polarization of the two adjacent
domains and k;; the dielectric permittivity. When k;; is assumed to be isotropic, as adopted in this
work, the minimization of Equation (7) can be simplified into the minimization of the bound charge

pPW defined as,

pp" (n) = APn;. (8)

Since we assume the elastic energy ESXL is the dominant factor determining the domain wall

orientation, we minimize Equations (6) and (8) sequentially to determine to identify the low-

energy domain walls. Notably, if the long-range electrostatic field Eeiec is comparable to or more

pronounced than ES2"

olas and thus cannot be ignored, such as for the case of strongly charged domain

walls, the domain wall orientation should be determined by minimizing the summation of

Equations (6) and (7) together.
2.5 Phase-field method

The phase-field method of ferroelectric materials has been well established and successfully
applied to understanding the formation and evolution of domain structures in ferroelectric thin
films and nanostructures (44,45). It can be regarded as an extension of the LGD model of
homogeneous ferroelectrics described in Section 2.2 to inhomogeneous ferroelectrics while
considering the polarization evolution. To obtain the equilibrium states, we employ the time-

dependent Ginzburg-Landau (TDGL) equation to describe the evolution kinetics, i.e.,



aPi__ 6F
e~ Liises )

where L is the kinetic coefficient and is assumed to be a constant scalar in this work. The total free

energy F can be written into several terms, i.e.,

F= f;.(fbulk + felas + felec + fgrad)dv- (10)

When built upon the LGD theory of ferroelectrics, the combination of bulk, elastic, and electric
energy densities of the phase-field model, i.e., fyuk + felas T felec term in Equation (1), has the
similar form as Equation (1) except that the uniform polarization P in (1) is replaced by the field

variable P(x). The gradient energy density is written as

1 OP; 0Py
feraa = Egijkla_x;a_xla (11)

where gjji 1s the gradient energy coefficient. Notably, for homogeneous ferroelectrics, fgraq i zero.

For thermodynamic models of polydomain structures at equilibrium, it can be equal to half of the

domain wall energy, i.e., fgrag~YN where y is the domain wall energy density with the unit J/m?
and N the domain wall density with the unit 1/m. In the polydomain model used for the strain

energy equilibrium theory in Section 2.3, we ignore the domain energy.

We performed three-dimensional phase-field simulations to obtain the equilibrium polydomain
structures of KNN thin films. The system is uniformly discretized into 128 Axx128Ay*x36Az voxels
where the voxel size Ax = Ay = Az =1 nm. The periodic boundary condition is imposed along the
x and y directions for the elastostatic and electrostatic equilibrium equations and the TDGL
equation for polarization evolution. The superposition method is adopted to handle the non-
periodic boundary condition along the z direction(46,47). The substrate layer with a thickness of

12Az is used to accommodate the mechanical displacement relaxation in the substrate(46), along



with a film layer with a thickness of 20Az and a buffer layer of the vacuum. The traction-free
boundary conditions (¢ - n = 0) on the film top surface and zero-displacement condition (u = 0)
at the substrate bottom are adopted for solving the elastostatic equilibrium equation. The short-
circuit boundary condition (¢ = 0) is imposed on both the top and bottom surfaces of the film
layer for solving the electrostatic equilibrium equation. The natural boundary condition is assumed
for the Equation 9 by truncating the polarization field at both surfaces of the film. Note that the
electrostatic energy density is considered in our phase-field simulations but is ignored in the
theoretical methods in Section 2.2 and 2.3. Nevertheless, it turns out to be negligible compared to

the elastic energy because of the short-circuit boundary condition used in the simulations.

The parameters used for the phase-field model of KNN are the same as those in Table 1. The
additional gradient energy coefficient for the phase-field model is assumed to be isotropic (g11 = -
g12 = gas = 0.64x10°"" N-m*/C?) and independent of composition, which gives a domain wall
thickness of 0.8 nm for a 180-degree domain wall in the bulk orthorhombic phase of Ko sNao.sNbOs
at room temperature. The relative background dielectric permittivity k;; of the cubic phase is
assumed isotropic with a value of 50¢, where €, is the vacuum permittivity. Notably, the shear
component of the electrostrictive tensor, i.e., Qa4 in the Voigt notation, of KosNaosNbO3z shows
significant discrepancy in the literature, ranging from 0.029 (24) to 0.084 m*/C? (23). Here, we
assume that Qa4 value is independent of the composition of KNN and equal to that of KNbOs (48),
i.e., Oua = 0.052 m*/C? for all composition of KNN studied in this work. We will show in Section
3.3.3 that the choice of Q4 affects the equilibrium domain wall orientations for the polydomain
structures of KNN thin films, and a careful comparison with experimental measurements in

literature suggest that Qas = 0.029 m*/C? for Ko sNagsNbO3 is the best estimation among others.



The initial state of our phase-field simulations is different from many previous works. Instead of
starting from a random noise distribution as the initial state, we preset a polydomain structure
consisting of two periodically alternating domain variants of equal volume fractions and presume
the domain wall plane orients toward a low-index direction. This treatment is made to obtain
regular polydomain structure with controlled domain variants for better comparison with the
predictions based on the analytical or semi-analytical thermodynamic calculations. Specifically,
we consider the polydomain formed by the af ctand ajc* domain variants as a representative
case of the aic/axc polydomain with (110),c as the initial guess of the domain wall plane, and the
afayand a; ct domain variants as a representative case of the aia2/Mc polydomain with (120)y.
as the initial guess of the domain wall plane. Notably, the periodic boundary conditions imposed
along the in-plane directions of the simulations may restrict the relaxation of domain walls. This

issue can be resolved by considering a pair of domain bundles as will be discussed in Section 3.3.4.

3. Results

3.1 Strain equilibria phase diagrams

Following the method described in Section 2.3, we established the misfit strain—misfit strain
multidomain/multiphase diagrams of K:Na;..NbOs at 7= 300 K for compositions x = 0.5, 0.7, and
0.9, as shown in Figure 2. The three phase diagrams are similar in topology, suggesting a minor
composition dependence of the phase stability in the range studied (x = 0.5 ~ 1.0), in consistent
with the temperature-composition phase diagrams of KNN ceramics (38) and the temperature-
misfit strain phase diagrams of KNN thin films (24). Without loss of generality, we use Figure 2a
for Ko.7Nao3NbO3 as an example to examine the main features of the phase diagrams. The misfit
strain—misfit strain phase diagram consists of six single-phase regions, three two-phase regions,

and one three-phase region. The phase regions are symmetric with respect to the diagonal of the



phase diagram, suggesting that the aic-phase and a>c-phase are equivalent by symmetry. The
transitions among the three monoclinic phases (i.e., aic-, axc- and aiaz-phases) are first order
characterized by two-phase regions, whereas the transitions between the monoclinic and
orthorhombic phases (i.e., a1-, a2- and c-phases) are continuous. According to the Gibbs phase rule,
for a phase diagram with densities as independent variables (such as the strain components), the
number of maximal coexisting phases in the phase region should either increase or decrease by
one when crossing the phase boundary of first-order phase transitions (solid lines in Figure 2a) or
remain unchanged when crossing the phase boundary of a continuous phase transition (dashed
lines in Figure 2a). These requirements can be easily verified in all the phase regions in Figure 2,

suggesting the consistency of the present results with the fundamental laws of thermodynamics.

The strain-strain phase diagrams in Figure 2 provide the strain equilibrium conditions for multi-
phase coexistence in strained KNN at the room temperature. We can verify these predictions by
comparing them with existing experimental datapoints (8,13,17). To this end, we calculated the
misfit strains associated with various combinations of film-substrate pairs by using the
pseudocubic lattice constants of bulk KNN (interpolated by assuming a Vegard’s law between
KNbO3(49) and Ko.5Nao.sNbO3(50,51)) and substrate materials (including SrTiO3; (STO), DyScOs

(DSO) GdScO3(GSO), TbScO3(TSO), SmScO3(SSO), and NdScO3(NSO))(52-54). We tabulated
the calculated anisotropic misfit strains and their averaged values (&3y5 = %(s,‘}}c + &5})) in Table

2 and labeled them in the corresponding phase diagrams in Figure 2. When the misfit strains are
biaxially compressive with a moderate magnitude, the aic/a>c phase mixture is preferred, in
agreement with KNN films (x = 0.70 ~ 0.77) grown on TSO, GSO, and SSO substrates (blue dots
in Figure 2a). When both misfit strain components are highly compressive beyond the Mc- to c-

phase transition point, the single c-phase is stabilized, in agreement with the observation of



Ko.71Nag20NbO3 grown on DSO (black square in Figure 2c¢). For Ko 5sNao.sNbO3 thin films grown

on STO, the nominal compressive misfit strain is calculated to be ey = &), = —1.8%. However,

considering the strain relaxation as suggested in the experiments, the effective misfit strains

become 5 + &3 = —0.71%, which corresponds to aic/azc phase mixtures in Figure 2¢ and also

agrees with the experimental reports(10).
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Figure 2 Multiphase/multidomain strain phase diagrams of KNa;..NbO3 under anisotropic misfit
strains at room temperature for (a) x = 0.7 (b) x = 0.9, and (¢) x = 0.5. The labels of single-phase
and multi-phase regions are given in (a) from which the corresponding labels in (b,c) can be
deduced. The datapoints from previous experiments in literature are labeled by a red triangle (for
Ko.7Nag3NbO3 on NdScO3(NSO) substrate), blue disks (for Ko.7Nag3NbO3 on SmScO3(SSO),
GdScO3(GSO), TbScO3(TSO) substrates and Ko sNag sNbO3 SrTiO3(STO) substrates), and a black
square (for Ko.9Nao1NbO3 on DyScO3(DSO) substrate). The phase boundaries for first-order

transitions are plotted in thick solid lines and for second-order transitions are plotted in thick



dashed lines. The segment AB in dotted red and segment CD in dotted blue are used to evaluate

the volume fractions of the coexisting phases by the lever rule.

When the misfit strain is highly anisotropic, e.g., being tensile and compressive respectively along
two orthogonal in-plane directions, Figure 2 suggests that either the aia>/aic or aiax/axc phase
mixture is favored. In experiments, the substrate materials that can provide the maximal
anisotropic misfit strain is NSO, which results in a strain state located in the triple-phase region in
Figure 2b (labeled by a red triangle). However, Ko9Nao.1NbOs thin films on NSO substrates
reported in experiments consist of only two of the three phases, i.e., the a1a>-phase plus either aic-
or axc-phase. In other words, while the theory predicts that a large anisotropy in the misfit strains

e.g., el — el = 1.0%) is required to obtain the two-phase mixtures, experiments suggest it can
g Eyy xx q p p g2
be achieved with a moderate anisotropy (&), — &xx = 0.3%). There seems to be a strong bias for

the in-plane polarization of the KNN films to align along the [110]o over the [001]o direction of
the NSO substrate(15). This strong in-plane asymmetry echoes back to the well-known self-poling
phenomenon in the rhombohedral-like BiFeOs epitaxial thin films grown on TbScOs3 substrates
which shows preferred 109-degree stripe domains with aligned in-plane polarization (55) and the
recently discovered quasi-single-domain with preferred in-plane polarization direction in BaTiOs
epitaxial thin films grown on PrScO; (56). We hypothesized that it may be attributed to the
mismatch of octahedral distortions at the interface between the perovskite films and scandate

substrates (56,57), which is not considered in the present model.

From the above discussion we conclude that the theoretically predicted strain equilibria of KNN
thin films agree reasonably well with experimental results in literature, suggesting that the strain
phase equilibrium theory is a viable method to predict the formation conditions of polydomain

phase mixtures in ferroelectric thin films.



3.2 Polydomain structures

We next predict the domain wall orientation and volume fractions in the two-phase regimes shown
in Figure 2. To verify the theoretical results, we compare them with our phase-field simulations
and experiments in literature. To account for the misfit strain effects on the polydomain structure,
we choose a series of misfit strains along the segment AB in the two-phase region of Figure 2a to
study the formation of the aic/a>c polydomain and the segment CD in the two-phase region of
Figure 2b to study the formation of the aja2/axc polydomain. The segment AB passes the strain
state £y = —0.5% and &7}, = —0.5% and parallels with the long-edge of the shaded triangle in
Figure 2a, while the segment CD passes the strain state exy = 0.0% and &y3, = 1.0% and parallels
with the short-edge of the shaded triangle in Figure 2b. Note that the choice of AB and CD
segments are arbitrary in the two-phase regions but needs to be the tie-lines to apply the lever rule
construction. For each case, we determine the domain walls orientations by using the method

described in Section 2.4 and the volume fractions of coexisting phases by using a lever rule.
3.2.1 aic/azc polydomain

The calculated domain wall plane for the aic/axc polydomain of the biaxially strained
Ko0.7Nao3NbO; is (11k),c with & = 0.32, independent of the misfit strain states on AB. The
corresponding domain wall inclination angles ¢ = 45° and y = 18°. The independence of the
domain wall orientation of the misfit strain can be rationalized as follows. According to the strain
phase equilibrium theory neglecting the local coherency strain and domain wall energy effects due
to inhomogeneity within the domains, the strain states of coexisting domains remain at the
endpoints A and B for arbitrary misfit strains on the tie-line. In this sense, the equilibrium
polarization and associated eigenstrains of the two domain variants remains homogeneous and

constant and hence their domain wall orientations, according to Equation (6). If the misfit strain



does not vary along a tie-line, the strain states within each domain will change, which will affect

the domain wall orientation at equilibrium. This scenario will be discussed in Section 3.3.1.
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Figure 3 Phase-field simulations of aic/azc polydomain of Ko 7Nao3NbOs thin films at 7= 300K.
(a) The simulated domain structures at equilibrium with biaxial isotropic misfit strain &5 = &7}, =
—0.5%. The arrows indicate the spontaneous polarization directions in each domain variant. The
box on the right illustrates polarization directions of the two domain variants af ¢* and afc* in
the pseudocubic coordinate system. (b) Top views of the polydomain structures at equilibrium
subject to different misfit strains. The arrows indicate the polarization directions in each domain

variant. (c) The volume fraction of af ¢* as a function of the anisotropy of the misfit strains

measured by &3y — €77,



To test the predicted domain wall orientation, we obtain the corresponding aic/axc polydomain
structures by performing 3D phase-field simulations of Ko.7Nao3NbOs thin films subject to five
different strains along segment AB. The results are summarized in Figure 3. Figure 3a shows a
representative result for £y = &3, = —0.5%. We can see that domain wall plane at equilibrium is
tilted away from the initial guess, (110),c, and the inclination angles are measured to be ¢ = 45°
and y ~ 20°, corresponding to the (11k),c plane with & ~ 0.36, which agrees well with the
analytically predicted value (k = 0.32). Further, the inclination angle y was measured to be 19+3°
for Ko.7Nag3NbOs thin films on TSO by high-resolution X-ray diffraction techniques (12), which
also agrees quantitatively well with both the analytical and simulation values. From the cross-
section views of the phase-field simulation results in Figure 3b, we also find negligible changes in

the domain wall inclination angle w or &, which also agrees with analytical predictions.

We then determine the volume fractions of the aic- and axc-phases of the polydomain by applying

the lever rule. Specifically, for a given point X on segment AB, the volume fraction of the aic-

_|AX| o _
phase can be calculated as wg, . = 1AB| and similar for the a>c-phase, wg,. =

|XB|

AB| where |AB|

denotes the length of the segment AB. Note that w, . + wg,. = 1. We compute wy, ¢ as a function
of the anisotropy of the misfit strains defined as &)} — &7, and compare the results with those from
phase-field simulation in Figure 3c. It is shown that the relative volume fractions of ai1c-phase and
axc-phases vary with the misfit strain state. This linear relation between the volume fraction and
the anisotropy of the misfit strain agrees reasonably well with the phase-field simulations (dots in
Figure 3c) except that the phase-coexisting region obtained from the simulations is narrower. This
can be clearly seen in the simulated a; ¢t /a} c* polydomain patterns shown in Figure 3b. Among
the five misfit strain conditions considered, only three of them can stabilize the polydomain while

the two endpoints relax into single-domain states. Similar differences in terms of the predicted



two-phase stability between the strain phase equilibrium theory and phase-field simulations have
also been reported and discussed for tetragonal PbTiO3 (25) and BiFeOs (26). It can be ascribed to
the incoherent interface assumption adopted in the strain phase equilibrium theory (c.f. Section
2.3). In contrast, the coherent strain energy contribution associated with the domain walls has been
fully included in the phase-field simulations. We can also draw an analogy of strain phase
separation or strain spinodal to the coherent versus incoherent spinodal decomposition in chemical
equilibria of binary solid solution with a miscibility gap. At a given temperature, the coherency

strain energy tends to suppress phase separation.
3.2.2 aia2/Mc polydomain

As a second example, we study the polydomain in the ai1a2/axc phase-coexisting region, which is
equivalent to the ajas/aic region by symmetry argument. The calculated domain wall orientation
for the aiaz/axc polydomain of biaxially strained Koo9NaoiNbOs3 is (141)yc with & = 0.27,
independent of the misfit strain states on segment CD in Figure 2b. The corresponding domain
wall inclination angles are £ = 15° and w = 45°. Similar explanation applies to understanding the
indifference of the domain wall orientation with respect to the misfit strain as discussed in 3.2.1.
To test the analytical prediction, we obtain the polydomain structures consisting of aj aj and
ajct domain variants by performing 3D phase-field simulations of Ko9Nao.NbOs thin films
under a series of anisotropic misfit strains along the segment CD. The results are summarized in
Figure 4. As shown in the polydomain structure for £ = 0.0% and &7}, = 1.0% (Figure 4a), the
domain wall inclination angles are measured to be & ~ 15° and y ~ 45°, corresponding to a domain
wall plane (1/1),c plane with 4 ~ 0.27, which agrees perfectly well with the analytical predictions.
Further, the angle ¢ was measured to be 15~20° for K.Nai.:NbO3 (x = 0.90 ~ 0.95) thin films on

NSO (8), which agrees reasonably well with our theoretical and simulation results. The simulation



results also show the independence of the domain wall angle with respect to the misfit strain states
for the polydomain structures, as shown in Figure 4b. However, one caveat is the restriction
imposed by the in-plane periodic boundary conditions used in the simulations which might
artificially cause the invariant domain wall plane. This issue can be avoided by considering double-

bundle domain structures which is detailed in Section 3.3.4.
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Figure 4 Phase-field simulations of aia2/Mc polydomain of Ko.9Nao.1NbOs3 thin films at 7= 300K.
(a) The simulated domain structures at equilibrium with biaxial isotropic misfit strain €% = 0.0%
and €53, = 1.0%. The arrows indicate the spontaneous polarization directions in each domain
variant. The box on the right illustrates polarization directions of the two domain variants af a3

and aj c* in the pseudocubic coordinate system. (b) Top views of the polydomain structures at



equilibrium subject to different misfit strains. The arrows indicate the polarization directions in
each domain variant. (¢) The volume fraction of a; ¢c* as a function of the misfit strain component

exx while keeping €7}, = 1.0%.

Notably, the strain states of the a1a>-phase and axc-phase for the a1a2/Mc polydomain are different
while the strain states of the aic-phase and axc-phase are equivalent by symmetry. As a result, the
domain wall for the aiar/axc polydomain is generally impermissible walls and cannot be
determined from the geometric method based on the mechanical compatibility condition(7).
Notably, under certain conditions the domain wall of the aia2/Mc polydomain becomes
permissible, i.e., when the two domain variants share the equivalent monoclinic deformation. In
terms of the spontaneous polarization, this condition corresponds to the ratio |P»|/|P1| of the aiaz-
phase is identical to the ratio |P2|/|P3| of the axc-phase (or |P1|/|P3| of the aic-phase). Moreover, the
angle & of the aia2/Mc polydomain will be identical to the angle w of the aic/axc polydomain given

that the monoclinic distortions for all the domain variants are identical.

We also estimate the volume fractions of the a1az2- and a2c-phases by using the lever rule similar

to the case in Section 3.2.1. For a given point X along the segment CD, the volume fraction of the

. CX XD
aiaz-phase is calculated as w, 4, = ﬁ and for the axc-phase, wgq,. = ﬁ. Note that wg, 4, +

wg,c = 1. We evaluate w, 4, as a function of the misfit strain component £yy along CD and
compare the results with those from the phase-field simulation in Figure 4c. A reasonably good
agreement is achieved between the analytical predictions and the simulation results. From the
simulated afal /afc*t polydomain patterns displayed in Figure 4b, we also notice that the
polydomain remains stable for three of the five misfit strain conditions while the two endpoints
result in single-domain states. Similar to the case of the aic/axc polydomain, this result also

suggests an overestimation of the two-phase mixture regimes in the strain phase diagrams in Figure



2b due to the neglect of coherency strain energy contribution compared with the phase-field

simulation results.
3.3 Factors influencing domain wall orientation

In this section, we discuss four possible factors that influence the domain wall orientation,
including the misfit strain states, the choice of electrostrictive coefficient, the domain wall density,
and an artificial restriction associated with the in-plane periodical boundary conditions in the

phase-field simulations.
3.3.1 Effect of misfit strains

Although the examples shown above seem to suggest no misfit strain effects on the domain wall
orientation for the two types of polydomain structures considered, this is true only when the misfit
strains vary along the same tie-line so that the individual strain states of the coexisting domains
remain unchanged. In general, there is a strong influence of the misfit strains on the low-energy
domain wall plane for the two polydomain structures considered in this work, as will be shown in

the following.
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Figure 5 The effect of misfit strain on the domain wall orientation of aic/axc polydomain for
Ko.7Nao 3NbOs3 thin films. (a) The domain wall inclination angle y as a function of the biaxial misfit
strain &y = &y}, calculated by the microelasticity theory when using the local strains (blue curve)
and the overall misfit strains (black curve). The black points are measured angle y from phase-
field simulation results. (b) Cross section view of the polarization distribution in the (010),c plane
of the simulated polydomain structure subject to different biaxial misfit strains. The definition of

the domain wall inclination angle y is denoted.

We take the aic/axc polydomain of as an example and determine the domain wall orientation as a

. ) ) . o . . . oom
function of the misfit strain by assuming equibiaxial compressive misfit strains (&x, = &y =

—0.1% ~ — 0.8% ). The calculated domain wall inclination angle y as a function of the
compressive misfit strain is shown in Figure 5a while the angle £ remains unchanged & = 45°. As
a comparison, we also performed corresponding phase-field simulations and measured the domain
wall angles y as shown in Figure 5b. Both the theory and simulation suggest that the domain wall
becomes more slanted with respect to the (110),. direction as the misfit strain becomes more
compressive. The domain wall inclination predicted by the theory tends to be slightly lower than
the phase-field simulation, which may result from the domain wall energy associated with the

domain size effects in the phase-field simulations, which will be discussed in Section 3.3.3.

We also notice a correlation between the ratio of polarization vector components and the domain
wall inclination angle, which can be established analytically as shown below. As the aic/axc
polydomain consists of aic and a>c domains that are equivalent by symmetry, their domain walls
are permissible domain walls whose orientation can be derived from the mechanical compatibility
condition. With a simple algebra we show that the permissible domain wall between the aj c¢* and

a3 ¢t domain variants is (11k)pc with
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where Pi, and Py, are the in-plane and out-of-plane polarization of the a;f ¢*domain (same for the

act domain). The domain wall inclination angle v is related to k by y = tan’!(k). Therefore, the

L . : P . .
more monoclinic distortion of the lattice (measured by %), the more tilted of the domain wall (y).
ip

Similar trends have also been suggested in the theoretical study of monoclinic relaxor-ferroelectric

bulk crystals(28).

Notice that in some previous works, the strain states of coexisting domains are assumed to be the

same as the overall misfit strains. In this sense, we have gy, = 7 and €5, = €]}, fora = afc*

and aj c*. This assumption might not affect the domain wall plane when it has a fixed orientation
as for the polydomain of tetragonal polydomain (e.g., 90° domain walls of a/c domains of PbTi0O3),
but it will significantly influence the domain wall orientation for the monoclinic phase considered
in this work. This point is demonstrated in the black line in Figure 5a where the overall misfit

strain is used for the minimization of Equation (6).
3.3.2 Effect of electrostrictive coefficients

As suggested by Equation (12), the domain wall orientations of monoclinic polydomains depend
on the value of the electrostrictive coefficients. However, there is a large discrepancy in the choice
for Qs4 of KosNagsNbO; in literature(23,24). Here, we show how the magnitude of Qs can
influence the predicted domain wall orientations for the two polydomain structures. The
analytically predicted and phase-field simulated domain wall inclination angles y and ¢ as a
function of the chemical composition of KNN films are shown in Figure 6a and b, respectively,
for the aic/axc and a1ax/Mc polydomain structures by assuming different values of the QXN. To

exclude the misfit strain effects, we fixed the values of the misfit strains and strains of individual



domain/phase for all the cases as labeled in Figure 6. By comparing with the domain wall
inclination angles measured from experiments (labeled as green points in Figure 6), we find by
using QXNN = 0.029 m*C~? the best agreement is achieved for the aic/axc polydomain while it is
not straightforward to distinguish from the a1a2/Mc polydomain. Nevertheless, the trend that the
angle ¢ decreases with respect to the composition x for the a1a2/Mc polydomain agrees better when
we use QXN = 0.029 m*C~2. In addition, we also estimated QXNN based on the lattice constants
of bulk KNN at varied temperature(50) which gives QXNN = 0.028 m*C~2. Therefore, we

conclude that QXN = 0.029 m*C~2 among others is the most reliable choice and should be

adopted in the future studies of KNN.
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Figure 6 The effect of electrostrictive coefficients on domain wall orientations of the aic/axc and
aia2/Mc polydomain in K,Nai.NbOs thin films with various composition x. (a) The domain wall
inclination angle y as a function of x for the aic/axc polydomain subject to misfit strains &5y =
gyy = —0.7%. (b) The domain wall inclination angle ¢ as a function of x for the a1a2/Mc polytwin
domains subject to misfit strains &5 = 0.0% and &}}, = —0.7%. The insets in (a,b) schematically

show the definition of angles y and £. The local strains of each domain are denoted explicitly. The



angles calculated by the microelasticity theory are plotted in lines while the angles measured from
phase-field simulations are plotted by dots. The angles reported from experiments are labeled by

green dots with error bars.
3.3.3 Effect of domain size

When predicting the domain wall orientation using the analytical strain phase equilibria theory
described in Section 2.4, we do not include the domain wall energy contribution to the
thermodynamics, and thus we ignore the finite size of the domains or the finite thickness of the
films. However, the domain size is directly related to the film thickness as a result of the relaxation
of elastic strain energy, which is self-consistently considered in the phase-field simulations.
Therefore, we construct a series of polydomain structures in the phase-field model with different
numbers of stripes while keeping the same film thickness (i.e., 20 nm) and relax the system to
obtain the polydomain structure at equilibrium and the domain inclination angles y and &, as shown
in Figure 8. We find that, in both cases, the domain walls become more slanted as the domain size
increases, and a larger domain size dependence is seen for the aict/ajc* polydomain. The
domain size dependency suggested another tunability of the domain wall orientation by

modulating the domain wall density of the monoclinic ferroelectric thin films.
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Figure 7 The effect of domain size on the domain wall orientation of the polydomain structures
obtained by phase-field simulations. (a) The domain wall inclination angle y as a function of the
domain wall density measured by the number of stripe patterns for the aj c*/a} ¢* polydomain of

KNbO; thin films with misfit strains £} = £}, = —0.5%. (b) The domain wall inclination angle
¢ as a function of the domain wall density measured by the number of stripe patterns for the
ajay/az c* polydomain of KNbOs thin films with misfit strains 73 = —0.2% and €7}, = 1.0%.
The insets in (a) are the section views along (010),c of the simulated polydomain at equilibrium.
The insets in (b) are the top views of the simulated polydomain at equilibrium. The definitions of

the angles w and ¢ are illustrated. The solid black lines in (a,b) are linear fits of the data points.
3.3.4 Influence of in-plane periodic boundary conditions

In the phase-field simulations of ferroelectric thin films, the in-plane periodic boundary condition
is often assumed. It is compatible with stripe-like polydomain patterns when the domain wall
planes are parallel to the x or y directions but may impose restriction on the domain wall motion
when the domain wall plane tends to rotate along the out-of-plane direction. We demonstrate this
scenario here because, without paying attention to this factor, it may lead to incorrect prediction

of the domain wall behavior.
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Figure 8 The influence of in-plane periodic boundary conditions adopted in the phase-field
simulation on determination of domain wall orientation for the aia2/Mc polydomain. (a,b,c) The
single-bundle and (d,e,f) two-bundle of af a}/ajc* polydomain structures at equilibrium using
different electrostrictive coefficient QXNN of Ko.sNaosNbOs. The misfit strains are kept at €% =

—0.2% and 831,7;, = 1.0% for all the cases.

We take the af a3 /aj c* polydomain for KosNagsNbOs thin films subject to €% = —0.2% and

gyy = 1.0% as an example. From the simulated polydomain structure at equilibrium as the initial

state, we vary the value of QXNN from 0.029 to 0.084 m*C~2 and relax the system. We find that
the domain wall angle remains unchanged while the elastic strain energy of the system increases,
suggesting that the relaxation by the domain wall motion is suppressed. This can be attributed to
the restriction on the domain wall motion imposed by periodic boundary condition. For example,
if the domain wall inclination angle ¢ tends to increase, the junction of the domain walls at the
upper boundary in Figure 8a tend to move left while the junction of the domain walls at the bottom

tends to move right, as indicated by the red circles, which is not conformal. To overcome this



restriction, a simple way is to construct a pair of equivalent polydomain to form the double-bundle
structure so the domain walls at the system boundaries can move consistently as angle £ varies. In
all the calculations shown above, we adopted the double-bundle structure for ajaj/aic*
polydomain to avoid this artifact. For aj ¢/aj c*polydomains, there is no such issue because angle

¢ keeps at £ =45° in all cases due to symmetry requirements.
4. Summary and Perspective

We demonstrate an analytical strain phase equilibria theory for establishing the strain phase
diagrams and predicting the domain wall orientations of two types of polydomain of (001)p.-
oriented monoclinic KNN thin films. We show that the analytical predictions from the strain phase
equilibria theory on the formation of polydomain structures and domain wall orientations are not
only largely consistent with the results from more realistic but much more computationally
expensive three-dimensional phase-field simulations but also in good agreement with existing
experimental measurements. The fact that these agreements have been achieved for KNN thin
films with various compositions and misfit strain states suggest a general applicability and
effectiveness of the analytical strain phase equilibria theory. We expect the demonstrated success
of the theoretical framework can lead to its further extension to understand and predict the strain

phase equilibria and domain walls in emerging ferroelectric materials such as HfO» (58).

Aside from the demonstrated theoretical approach, our work also helps gain fundamental insights
into the domain structure of monoclinic KNN. KNN-based ceramics have been shown excellent
electromechanical properties comparable to that of Pb(Zr1..Ti,)O3 (PZT) and thus been regarded
as a promising lead-free alternative to PZT for piezoelectric applications (59). It remains an open
question whether these excellent functional properties can be retained into thin films. Therefore,

it would be of great interest to further establish the relationship between the domain structure and



the piezoelectric and dielectric properties of KNN-based thin films(22) which will be of both

scientific interest and technological relevance.

We shall point out that, in this work, we only focus on two polydomain structures of the monoclinic
Mc phase where the difference between the polarization vectors of the neighboring domains is
small, i.e., corresponding to the 60° domain walls of the undistorted bulk orthorhombic phase.
There are many other types of polydomain combinations, such as the afc* and afc~ which
corresponds to the 120° domain walls of the bulk orthorhombic counterpart, and possible charged
domain walls where the electrostatic energy may dominate the domain wall orientations. A
comprehensive theoretical investigation of all possible low-energy domain walls of Mc-phase

ferroelectrics will require significant future efforts.
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Table 1. Materials coefficients used for K;i..Na,NbOs (0 < x < 0.5) in the Landau-type model and phase-

field simulations in this work.

Parameters  Units Values (Ref.(38)) Parameters  Units Values (Ref.(24))

2x X 4.29 x 107 X [coth (%) -

-2
@ mCZN coth (322)] + (1 — 2x) x 5.98 1 GPa 230
107 x [coth (iﬁ) — coth (g)]

c* 2x X (—=2.7302 x 108) + (1 —

x11 Ci2 GPa 90
m® N 2x) X (—6.36 x 108)
c* 2x % (1.0861 x 10°) + (1 —
a1 Cys GPa 76
mé N 2x) x (9.66 x 108)
C»6
2x X (3.0448 x 10°) + (1 — 2x X 0.166 + (1 — 2x) X
111 m'? Q11 m?/C?
2x) x (2.81 x 10%) 0.13
N
C-6
2x X (=2.7270 x 10%) + (1 — 2x X (—0.072) + (1 —
112 m'? Q12 m*/C?
2x) x (=1.99 x 10°) 2x) X (—0.047)
N
C»é
2x % (1.5513 x 101%) + (1 — 2x x QKNN + (1 —2x) x
Q123 m'? Qa4 m*/C?
2x) X (4.50 x 10°) 0.052
N
C-8

2x X (24044 x 1019 + (1 —
Q1111 m'4 KNN m*C?  0.029, or 0.052, or 0.0842

2x) x (1.74 x 1019)



2x x (3.7328 X 10%) + (1 — N
1112 m' g 0.64x101
2x) x (5.99 x 10°) m*/C?
N
C-S
2x % (3.3485 x 101%) + (1 — N
Q1122 m' g -0.64x101!
2x) X (2.5 x 1019) m*/C?
N
C-S
2x X (=6.2017 x 101) + (1 — N
1123 m! a4 0.64x101
2x) X (=1.17 x 10%0) mé/C?
N

 Various values are used for the Qs of KosNagsNbQOs in the literature (23,24); Based on our results, it is

more accurate to use 0.029 m*/C? among others.



Table 2. Calculated misfit strains for K.Na;..NbOs epitaxial thin films grown on various substrate materials

x of K\Na,. Substrate Expt. reported  Theoretical predicted
en. £y Eavg
NbO3 materials phases phases
0.9 NdSCO3 0.06% 0.37% 0.21% a1a2/Mc a1a2/Mc*
SmScOs3 -0.16% 0.08% -0.04% aiclaxc aiclaxc
GdScOs3 -0.54% -0.44% -0.49% aiclaxc aiclaxc
0.7°
TbScOs -0.72% -0.66% -0.69% aiclaxc aiclaxc
DyScO; -0.91% -1.04% -0.98% c c
-1.82% -1.82% -1.82%
0.5¢ SrTiO3 aiclaxc aiclaxc
(-0.71%)4 (-0.71%)¢ (-0.71%)

® With stronger anisotropy of the misfit strains as discussed in the text.
® The x ranges from 0.54 ~ 0.77 in Ref. (8); x = 0.7 is used here for convenience.
¢ The composition is Lio.0sKo.47Nao47NbOs in Ref. (10). x = 0.5 is used here for convenience.

4 The relaxed misfit strains calculated using the experiment measured lattice constants of the films.



