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A B S T R A C T   

Our understanding of the neural control of human walking has changed significantly over the last twenty years 
and mobile brain imaging methods have contributed substantially to current knowledge. High-density electro
encephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution 
of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a prolif
eration of research on the neural control of locomotion in neurologically intact adults. We provide a narrative 
review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings 
from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views 
on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as 
the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital 
cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes 
with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile 
EEG research.   

Introduction 

Historically, our scientific understanding of human locomotion has 
swayed from contrasting perspectives on the importance of the brain for 
controlling walking and running. For over a century, scientists have 
debated whether peripheral reflexes, spinal neural networks (e.g., cen
tral pattern generators), or brain and brainstem were the most important 
in determining the basic patterns for human locomotion. As technolo
gies and scientific approaches for studying locomotion have progressed, 
experimental data and theoretical constructs have increased our 
appreciation that supraspinal commands, spinal oscillators, and pe
ripheral spinal reflexes all play critical roles in human locomotion 
(Fig. 1). 

The focus on determining the dominant aspect of tripartite neural 
control of locomotion became very active in the 20th century. The 
predominant theory in the 17th century was that the striatum was the 
dominant means of controlling vertebrate locomotion (Molnár, 2004). 
By the 18th and 19th centuries, scientists better recognized that there 
was involvement of reflexes and spinal neurons in the control of animal 
locomotion (Clarac, 2008). However, it was Sherrington’s pioneering 

research at the beginning of the 20th century that showed that walking 
motions occurred predominantly due to a series of reflex chains (Sher
rington, 1910). He demonstrated that decerebrate cats were able to 
perform gait-like stepping movements despite the lack of input from the 
brain and offered evidence that peripheral sensory afferents provided 
the stimulus for stepping behaviors (Sherrington, 1910). Soon after 
Sherrington’s publication, however, Thomas Graham Brown made an 
argument that rhythmic activation in spinal networks of neurons, rather 
than reflex responses to sensory inputs, provided the main impetus for 
locomotor control. Brown deafferented the hind limbs of decerebrate 
cats and still observed spontaneous rhythmic bursts of activity in flexor 
and extensor muscles (T. Brown, 1911). He proposed that the activity of 
mutually inhibitory spinal neurons, made up from flexor and extensor 
half-centers, produced the stepping rhythm in limbs. Coming at a time 
when Sherrington’s reflex viewpoint held sway in the scientific com
munity, Brown’s revolutionary hypothesis found little traction. It was 
not until the efforts of Lundberg, starting around 1957, that Brown’s 
ideas began to swing the pendulum towards the importance of spinal 
neural networks in locomotor control (cf. Stuart and Hultborn, 2008). A 
host of research in the 1960s, 1970s, and 1980s extended Brown’s ideas, 
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placing much of the research focus in locomotor control onto spinal 
neural networks (reviewed in Clarac, 2008). Data from invertebrates 
demonstrated rhythmic locomotor-like activity from isolated neural 
networks in animal preparations (Hughes and Wiersma, 1960; Wilson, 
1961). Additional studies on cats yielded more evidence that the spinal 
cord in vertebrates could provide a great deal of the control for stepping 
in legged locomotion and could even learn to improve its stepping 
control (Barbeau and Rossignol, 1987; Forssberg and Grillner, 1973; 
Grillner and Wallén, 1985; Grillner and Zangger, 1979; Lovely et al., 
1986). The spinal neural networks capable of generating a rhythmic 
muscle activation pattern have been termed central pattern generators 
and have been reviewed extensively by many other authors (Duysens 
and Van de Crommert, 1998; Grillner et al., 2008; Guertin, 2013). 

There were contrasting perspectives, however, on the importance of 
the brain to neural control of vertebrate locomotion. Shik and Orlov
sky’s research on cat locomotion was published in English in the 1960s 
and 1970s (Shik et al., 1966, 1968; Shik and Orlovsky, 1976). They were 
able to demonstrate that electrical stimulation of neurons in the 
midbrain could control locomotion onset and speed directly. This led 
credence to the idea that supraspinal centers dictated the terms of 
locomotion, leaving spinal pattern generators and reflexes to shape 
specific muscle activation patterns. In the last two decades, new elec
trophysiology techniques have revealed even more involvement of the 
brain in the details of walking control (Drew et al., 2004; Knikou, 2012; 
Zehr and Stein, 1999). For example, intracortical electrodes reveal that 
the motor cortex of decerebrate cats elicits step-related frequency 
modulation during walking (Armstrong and Drew, 1984a, 1984b; 
Widajewicz et al., 1994). When more complex tasks are performed, such 
as stepping over an obstacle or traversing uneven terrain, cortical acti
vation increases compared to walking on smooth, even surfaces (Drew 
et al., 2002; Widajewicz et al., 1994). These findings in cats have focused 
more attention on the role of the cortex in vertebrate locomotion. 

One common proposal has been that humans and other primates 
exhibit “cortical dominance” of walking compared to other mammalian 
vertebrates that may be more dependent on spinal oscillators and pe
ripheral reflexes. This is, perhaps, particularly important in relation to 
the control needs associated with bipedalism and the use of the hands 
and arms during walking (Fulton and Keller, 1932). Attempts to identify 
locomotion central pattern generator circuits in non-human primates 
have been less successful than experiments on other vertebrates 
(Eidelberg et al., 1981; Fedirchuk et al., 1998; Vilensky and O’Connor, 
1997). As such, the relative importance of cortical and other supraspinal 
vs. spinal mechanisms in human locomotor control may differ markedly 
from those needed in the control of quadrupedal locomotion. 

Studies on humans with neurological deficits have reinforced the 
importance of supraspinal centers and cortical mechanisms in control
ling walking. For example, although patients with injuries to the spinal 
cord show some evidence of central pattern generators (Bussel et al., 
1996; Calancie et al., 1994; Dimitrijevic et al., 1998; Ferris et al., 2004; 
Kawashima et al., 2008), locomotor training after spinal injury is much 
less effective in humans than in non-primate animals (van Hedel and 
Dietz, 2010). Humans with lesions to the premotor or sensorimotor 
cortex show abnormal gait patterns, particularly when motor adjust
ments are necessary (Della Sala et al., 2002; Nutt et al., 1993). Studies 
examining older individuals and neurological patients have found that 
cognitive deficiencies affect gait dynamics, with executive function and 
attention being critical aspects of locomotor control (Hausdorff et al., 
2007; Laessoe et al., 2008; Sheridan and Hausdorff, 2007; Woollacott 
and Shumway-Cook, 2002; Yogev et al., 2005; Yogev-Seligmann et al., 
2008). All these studies support the idea that everyday real-world 
locomotion likely depends critically on cortical involvement for suc
cessful gait. 

A major limitation in the study of human cortical control of loco
motion has been the inability to directly measure cortical activity during 
whole body movement. Unlike animal studies, it is usually unethical to 
conduct invasive measurements of cortical neurons in human experi
ment participants. There are human brain imaging modalities that can 
study cortical activity, but they have historically only been feasible 
when the human subject is stationary. With recent advancements in 
hardware and analysis techniques, it is now possible to study brain ac
tivity related to whole body movements such as locomotion (Gramann 
et al., 2011). 

This narrative review intends to provide an update on the current 
understanding of brain involvement in the control of human locomotion 
for young and neurologically intact individuals. We briefly summarize 
advantages and limitations of various brain imaging techniques in 
studying the neural control of human locomotion. We then provide an 
overview of the recent application of electroencephalography to study 
electrocortical activity during human locomotion in neurologically 
intact, young adults. The focus is on what new knowledge has been 
gained in the last 15 years. The last section provides a prediction of how 
the next decade will advance our understanding of the neural control of 
locomotion. 

Brain imaging approaches for studying human locomotion 

Many technologies can provide insight into brain activity related to 
the control of human locomotion. These techniques are summarized in  
Table 1. The predominant technology for human brain imaging research 
has been functional Magnetic Resonance Imaging (fMRI). It is an 
imaging modality that measures brain activity by detecting relative 
changes in blood oxygenation. fMRI is an indirect measure of brain ac
tivity that best correlates with local field potentials (Logothetis et al., 
2001). The technique has a spatial resolution within a few millimeters 
throughout the entire brain but can only detect changes within a few 
seconds due to its dependence on blood flow (B. He and Liu, 2008). The 
biggest drawback to using fMRI for studying locomotion is that partic
ipants lie supine with their head immobilized during data collection. 

Researchers have used fMRI to study brain function related to loco
motion by stabilizing the head during rhythmic motions of the legs. 
Mehta et al. designed a pedaling device that was compatible with fMRI to 
study brain activation during pedaling (Mehta et al., 2009, 2012). 
Pedaling activates some of the same neural substrates as walking due to 
its rhythmic motion pattern (Zehr et al., 2007). Participants had bilat
eral activation of the primary sensorimotor cortices, supplementary 
motor area, premotor cortex, and cerebellar vermis during pedaling 
relative to rest periods. Brain activation increased in all the areas with 
faster pedaling rates (Mehta et al., 2012). The only brain area that 
showed decreased activation for passive vs. active pedaling was the 
cerebellum. The authors suggested that much of the observed brain 

Fig. 1. The theories of motor control of human locomotion have swung, much 
like a pendulum, between supraspinal centers, spinal neural networks, and 
peripheral reflexes as the predominant contributor to the control of gait across 
centuries of research. (Figure created using biorender.com) 
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activity during pedaling may be driven by sensory signals from the 
moving limbs. Other research groups have also developed 
MRI-compatible devices to study brain activation with rhythmic lower 
limb movements by supine, stationary participants (Hollnagel et al., 
2011; Jaeger et al., 2014; Toyomura et al., 2018). Findings from these 
studies provide qualitatively similar results with the cycling study of 
Mehta et al. (2012), and all are limited by the lack of vertical body 
posture, head and torso movement, balance requirements, and move
ment variability. 

Motor imagery is a more common approach to study control of 
human locomotion using fMRI. In this paradigm, participants lay down 
in the scanner and imagine they are walking or running (Hamacher 
et al., 2015; Jahn, Deutschländer, Stephan, Kalla, Hüfner, et al., 2008; 
Jahn, Deutschländer, Stephan, Kalla, Wiesmann, et al., 2008; Jahn et al., 
2004; la Fougère et al., 2010; Sacco et al., 2006; Stolbkov et al., 2019). 
Results from these studies have demonstrated that a large number of 
brain areas show increased activity during imagined locomotion, and 
that many of the areas show increasing activation with greater loco
motor speed. Specifically, there is prominent activation in fusiform and 
parahippocampal gyri along with activation in the inferior frontal gyri, 
supplementary motor area, medial and inferior temporal gyri, occipital 
lobe, and cerebellum. During imagined running, the greatest increase in 
brain activity with respect to rest occurred in the cerebellar vermis and 
hemispheres. 

Other studies have measured brain activity of real locomotion using 
molecular imaging techniques, such as positron emission tomography 
(PET) and single photon emission computed tomography (SPECT) 
(Christensen et al., 2000; Fukuyama et al., 1997; Hanakawa, Fukuyama, 
et al., 1999; Hanakawa, Katsumi, et al., 1999; la Fougère et al., 2010; 
Malouin et al., 2003; Tashiro et al., 2001). These techniques require 
intravenous injection of a radioactive blood tracer that is administered 
prior to performing a task. Blood flow then increases to areas of the brain 
involved in performing the task, allowing subsequent imaging to iden
tify areas with increased brain activity across the multiple minutes of 
performing the task. They offer high spatial resolution but low temporal 
resolution, providing insight into brain activity patterns that happen 
over long durations while participants perform real locomotion. Results 
from such studies found consistent activity in primary and supplemen
tary motor areas, basal ganglia, visual cortex, brainstem, and cere
bellum. In a direct comparison of imagined locomotion obtained with 
fMRI and real locomotion obtained with PET, La Fougère et al. (2010) 
found that while there were many areas of overlapping brain activity 
between the two tasks, imagined locomotion appeared to be more 

dependent on supplementary motor cortex and basal ganglia and real 
locomotion appeared to be more dependent on the primary motor 
cortex. 

Given the results discussed above from fMRI studies of cyclic 
pedaling and imagined locomotion, it is interesting to contrast PET/ 
SPECT results from real locomotion with PET/SPECT results from 
pedaling and imagined pedaling. Christensen et al. (2000) showed that 
active pedaling revealed increased activation in primary and supple
mentary motor areas, and parts of the cerebellum. However, passive 
pedaling did not elicit those responses and was found to have cortical 
activity similar to a resting state. Resembling the findings comparing 
PET real locomotion data with imagined fMRI data, Christensen et al. 
(2000) found that imagined pedaling had greater activation of the 
supplementary motor areas compared to rest. 

A portable method for studying changes in brain activity during real 
locomotion is functional near infrared spectroscopy (fNIRS). Some
times called optical tomography/imaging, fNIRS is an indirect, optical 
neuroimaging tool that measures the hemodynamic changes that occur 
when areas of the brain use oxygen for metabolism. The technique in
volves shining light into the scalp and measuring the spectra of the light 
that is reflected. Differences in light spectra correlate with changes in 
oxygenated and deoxygenated hemoglobin at specific areas across the 
cortical surfaces (Leff et al., 2011). The mechanism for fNIRS is similar 
to fMRI as both detect changes in the blood-oxygenation level dependent 
(BOLD) signal. However, it has a lower spatial resolution than fMRI and 
is limited to imaging brain areas that are near the scalp. Because the 
motor regions of the human cortex are near the scalp, fNIRS is suitable 
for studying the cortical response during complex motor activities. 
Another advantage is that fNIRS is portable and relatively robust to 
motion artifacts, which allows the brain to be imaged during whole body 
movement. 

The number of studies on human locomotion using fNIRS technology 
have been steadily increasing since the start of the 21st century (Bishnoi 
et al., 2021; Hamacher et al., 2015; Pelicioni et al., 2019; Vitorio et al., 
2017). Because of the limited spatial resolution and depth range of 
fNIRS, comparison between results from fNIRS studies on human loco
motion with fMRI or PET/SPECT study results examining brain areas 
involved in the neural control of human locomotion should be done with 
reservations. However, fNIRS studies have supported the involvement of 
prefrontal cortex, premotor and primary motor cortex, supplementary 
motor cortex, and somatosensory cortex in human walking (Harada 
et al., 2009; Holtzer et al., 2011; Koenraadt et al., 2014; Kurz et al., 
2012; Meester et al., 2014; Metzger et al., 2017; Miyai et al., 2001; 

Table 1 
Summary of the brain imaging techniques that are used to study human locomotion.  

Brain Imaging Technique What it measures Temporal 
Resolution 

Spatial Resolution Advantages Disadvantages 

Functional Magnetic Resonance Imaging 
(fMRI) 

Relative changes in 
blood oxygenation 

Second range (limited 
by hemodynamic 
response) 

Millimeter range Excellent spatial 
resolution 

Participants must lie supine with 
the head immobilized 

Positron Emission Tomography (PET) and 
Single Photon Emission Computed 
Tomography (SPECT) 

Blood flow using 
injected radioactive 
blood tracer 

Second range (limited 
by hemodynamic 
response) 

Millimeter range Can perform real 
locomotion with 
excellent spatial 
resolution 

Low temporal resolution only 
allows insight into brain activity 
patterns over long durations 

Functional Near Infrared Spectroscopy 
(fNIRS) 

Relative changes in 
blood oxygenation 

Second range (limited 
by hemodynamic 
response) 

Centimeter range, 
restricted to areas 
near the scalp 

Allows real locomotion Limited spatial and temporal 
resolutions 

Magnetoencephalography (MEG) Magnetic fields 
produced by the 
brain 

Millisecond range Millimeter range Excellent temporal and 
spatial resolution 

Must be seated and limit 
movement (may be overcome by 
optically pumped 
magnetometers) 

Electroencephalography (EEG) Electrical potentials Millisecond range Centimeter range, 
improved with MRI 
co-registration 

Allows real 
locomotion, excellent 
temporal resolution 

Poor signal-to-noise ratio 
(overcome with hardware and 
processing advances) 
Limited spatial resolution 
(overcome with MRI co- 
registration)  
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Suzuki et al., 2004, 2008). These studies suggest that prefrontal, sup
plementary motor, primary motor, and premotor cortices have signifi
cantly greater activation at faster walking speeds, but there is some 
discrepancy in the studies. The contradictory results may be reflective of 
differences in quantifying oxygenated hemoglobin, deoxygenated he
moglobin, or total hemoglobin metrics as well as varied data processing 
approaches (Herold et al., 2017; Menant et al., 2020; Vitorio et al., 
2017). As described in Menant et al. (2020), measuring changes in 
oxygenated hemoglobin concentrations represents the direct meta
bolism of the neural tissues and offers a higher signal-to-noise ratio than 
deoxygenated hemoglobin, but it is more susceptible to systemic con
tributions unrelated to the task. It is useful to also provide a measure of 
change in deoxygenated hemoglobin concentration, which correlates 
closely with the BOLD signal, and total hemoglobin, particularly since 
populations such as older adults and neurological patients have pa
thologies that can affect hemodynamics. Other fNIRS studies suggest 
increased levels of difficulty or complexity of walking are associated 
with increased recruitment of prefrontal cortex (Holtzer et al., 2011; 
Koenraadt et al., 2014; Kurz et al., 2012), but there is also discrepancy in 
these findings that may be related to the neurological status of the 
participants (e.g., age, disorders) or conditions of the task (e.g., walking 
speed, treadmill vs. overground). For a more comprehensive overview of 
fNIRS-based investigations into the cortical involvement in locomotion 
please refer to Herold et al. (2017) and Leff et al. (2011). 

In addition to its limited spatial resolution and depth range, fNIRS 
has other disadvantages that limit its usefulness to study human loco
motion. As it relies on blood flow and changes in oxygenation levels, 
systemic changes in cardiac output affect its metrics (Haeussinger et al., 
2014; Kirilina et al., 2012). During activities where heart rate and blood 
pressure are changing across time, brain activity can be difficult to 
interpret. Fortunately, the addition of reference channels, 
short-separation channels, and sophisticated data analyses techniques 
mitigates these limitations (Herold et al., 2017; Leff et al., 2011; Menant 
et al., 2020). fNIRS also has a low temporal resolution, with changes in 
blood flow to regions of the brain occurring over several seconds or more 
(Leff et al., 2011). The hemodynamic response does not occur on a time 
scale that can capture the within-stride neural dynamics of gait. Lastly, 
fNIRS does not allow exploration of common electrical connections 
between the cortex and the muscles (e.g., corticomuscular coherence) 
which could limit the interpretability of the role of cortical involvement 
in locomotion. 

One brain imaging modality that has high temporal resolution is 
magnetoencephalography (MEG). MEG measures magnetic fields 
produced by the brain (Hari and Puce, 2017; Vrba and Robinson, 2001). 
A person sits with their head inside the helmet-shaped device which 
contains sensors that measure changes in magnetic fields. Participants 
must stay as motionless as possible to avoid motion artifacts (Hari and 
Puce, 2017) and like fMRI, the mass and size of the imaging technology 
prevents normal human locomotion. However, a major advantage of 

MEG over fMRI for brain imaging is a much greater temporal resolution 
(milliseconds vs. seconds). So far, it has only been possible to measure 
imagined locomotion using MEG, however, the recent development of 
wearable MEG sensors, optically pumped magnetometers, may permit 
mobile MEG brain imaging during human locomotion (Tierney et al., 
2019). Seymour et al. (2021) demonstrated that this tool can be used in 
mobile settings, although it has not yet been applied to human loco
motion. This possibility holds considerable promise for better spatial 
and temporal resolution of brain activity during human walking and 
should be seriously considered by investigators considering mobile brain 
imaging technology for clinical and research purposes. 

Another approach to mobile brain imaging with relatively high 
temporal resolution is electroencephalography (EEG). EEG is the 
recording of electrical potentials generated by the brain using electrodes 
placed on the scalp (Fig. 2). EEG is a promising tool for mobile brain 
imaging because it is non-invasive, lightweight, and portable. It directly 
measures cortical activity compared to other indirect measures, such as 
the measure of blood flow that reflects neuronal metabolic processes 
(fNIRS and fMRI). It also provides a very high temporal resolution of 
brain activity, suitable to measure intra-stride brain involvement in real 
locomotion. However, a major limitation of utilizing EEG during whole 
body movement is the very poor signal-to-noise ratio. The amplitude of 
the recorded electrocortical signals is very small and they are often 
obscured by large motion and muscle artifacts generated during whole 
body movement, such as walking (Castermans et al., 2014; Gwin et al., 
2010; Kline et al., 2015; Oliveira et al., 2016; Snyder et al., 2015; 
Symeonidou et al., 2018). With advancements in hardware and signal 
processing approaches to mitigate artifacts, EEG has become an 
increasingly popular modality to study cortical brain involvement in real 
human locomotion. While fNIRs, fMRI, SPECT, PET, and MEG provided 
some insight into brain involvement in human locomotion, EEG is the 
only modality thus far that has allowed intra-stride resolution insight 
into electrocortical dynamics of real human locomotion. The following 
sections take a deeper dive into EEG as a brain imaging tool to investi
gate human walking in young, neurologically intact populations. We 
provide an overview of the initial attempts to investigate human loco
motion, highlighting the limitations of early works. We then discuss 
recent advances which have allowed for improved fidelity and rigor of 
EEG to study human locomotion. The focus is on highlighting the 
common consensus findings that improve our understanding of human 
brain involvement in locomotor control in neurologically intact in
dividuals. Finally, we propose some potential next steps in mobile brain 
imaging research with EEG. 

Fig. 2. Scalp electroencephalography (EEG) is a non-invasive method used to record electrical activity in the brain. This activity is captured via electrodes placed on 
the scalp, which detect tiny (10–100 µV) electrical charges resulting from the activity of pools of neurons. Neurons communicate with each other through electrical 
impulses and chemical signals, creating electrical activity that EEG can measure. While the potential of a single neuron is undetectable with scalp EEG, a large 
population of neurons with synchronized activity can produce far field potentials that propagate to the scalp. (Figure created by Seongmi Song using biorender.com). 
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The neuroimaging of human locomotion with 
electroencephalography 

Electroencephalography explained 

Scalp EEG measures electrical activity from cortical structures 
beneath the skull (Fig. 2). Neurons communicate through synapses and 
oscillations in electrical currents, propagating information about com
mands, sensation, and computation. When a neuronal action potential 
fires, it creates a postsynaptic potential across the synapse (Teplan, 
2002). Although the potential of a single neuron is undetectable with 
EEG, the summation of a large population of neurons is strong enough to 
produce far field potentials that propagate to the scalp from parallel 
aligned neurons. The EEG signal comes primarily from post-synaptic 
currents (~80% of EEG signal) and action potentials (~20% of the 
EEG signal) (Thio and Grill, 2023). Activity of pyramidal neurons in the 
cortex dominate the signals recorded at the scalp for EEG (Hari and 
Puce, 2017; Teplan, 2002). These cells are oriented perpendicular to the 
cortical surface and generate electrical currents which are either toward 
or away from the scalp (Hari and Puce, 2017). The summation of activity 
due to this stable orientation allows this activity to be detectable 
through EEG, while nonpyramidal cells in deeper structures contribute 
less to the measurable signals (Hari and Puce, 2017). Although these 
deeper neurons might also be working synchronously, it is challenging 
to observe this through EEG recordings. The folds of the cortex alter the 
orientation of the neurons relative to the scalp and influence whether 
the potentials reach the scalp (Scherg et al., 2019). Recent research 
suggests that under ideal, stationary conditions it may be possible to 
record EEG sources from basal ganglia and cerebellum (Andersen et al., 
2020; Samuelsson et al., 2020; Seeber et al., 2019; Tzvi et al., 2022), but 
there is little evidence yet that this resolution is realistic for mobile EEG. 

Changes in EEG signals are often quantified in terms of synchroni
zation and desynchronization (Pfurtscheller and Lopes da Silva, 1999). 
Synchronization refers to instances when a neuronal population pro
duces more congruent timing of postsynaptic potentials relative to a 
baseline state, or when there is an increase in the number of neurons that 
are contributing to the congruent timing of postsynaptic potentials 
relative to a baseline state. Desynchronization refers to instances when 
a neuronal population produces less congruent timing of postsynaptic 
potentials relative to a baseline state, or when there is a decrease in the 
number of neurons that are contributing to the congruent timing of 
postsynaptic potentials relative to a baseline state. There are two critical 
aspects of those definitions. First, there is not a direct correlation from 
the synchronization/desynchronization axis to more/less brain activity 
as it is often presumed in fMRI and fNIRS studies (Hermes et al., 2017; 
Hipp and Siegel, 2015; Winterer et al., 2007). Desynchronization in EEG 
can come from contributing neurons that are more independent in the 
firing timing, or it can come from having fewer contributing neurons at 
the same level of congruent firing timing. Attempts at identifying a 
universal transfer function between EEG spectral power and BOLD 
signal power have not been successful. 

The frequency of EEG signal power has long been an indicator of 
different brain states when humans are at rest (Teplan, 2002). The five 
typical frequency bands of EEG are: delta (<3.5 Hz), theta (4–7.5 Hz), 
alpha (8–13 Hz), beta (14–30 [or 40] Hz), and gamma (>30 [or 40] 
Hz) (Hari and Puce, 2017). Scalp EEG electrodes located over the 
sensorimotor cortex have identified a strong central alpha signal (and 
sometimes lower frequency beta signal) that is designated the “mu 
rhythm” (Gastaut, 1952). Different frequency bands are thought to be 
correlated with certain behavioral mental states in human participants. 
For example, wakeful relaxation evokes alpha activity emanating from 
the occipital cortex, which becomes very prominent with eyes closed 
(Adrian and Matthews, 1934; Berger, 1929; Jasper, 1936; Smith, 1938). 
Planning and executing an upper limb motor task results in desynch
ronization in the mu rhythm over the sensorimotor cortex, presumably 
because the neurons involved are actively computing neural commands 

for the movement. Hence, it has often been assumed that desynchroni
zation in a cortical area of interest is related to increased computation 
and involvement relative to the comparison state (Pfurtscheller, 1992). 
There is evidence that all the frequency bands are likely to convey 
meaningful information about the control of walking (Gwin et al., 2011; 
Nakagome et al., 2020; Presacco et al., 2011; Seeber et al., 2014, 2015; 
Sipp et al., 2013; Wagner et al., 2016). 

Brain activity can also be analyzed as event-related potentials that 
are time-locked to a stimulus (Luck, 2014). An evoked potential is a 
fluctuation in voltage that was caused by an external or internal stimulus 
(Bickford, 1987; Nunez and Srinivasan, 2006; Teplan, 2002). 
Event-related potentials are extracted by averaging epochs of EEG that 
are time-locked to an event (Gevins and Rémond, 1987; Teplan, 2002). 
Any spontaneous fluctuations unrelated to the event are averaged out, 
leaving only the activity which is consistently associated with the pro
cessing of the stimulus (Teplan, 2002). Event-related spectral per
turbations are, similarly, an averaging of epochs of EEG data that are 
time-locked to an event but have been Fourier transformed to reveal 
the power spectral density of the signal (Makeig, 1993). EEG walking 
data are often displayed in event-related spectral perturbation graphs 
which typically cover a gait cycle, from one heel strike to the next, and 
present the changes in spectral power at frequencies of interest (Fig. 3). 
Spectral power is often illustrated by a gradient of colors. In Fig. 3, green 
represents no change, red represents an increase in power, or synchro
nization, and blue represents a decrease in power, or desynchronization. 

In the processing of EEG data, it is important to select an appropriate 
baseline to isolate the oscillations of interest (Makeig et al., 2004; Onton 
et al., 2006). For example, when comparing walking to standing we can 
see a general reduction in spectral power (Severens et al., 2012). Irre
spective of this overall change, there are modulations in postsynaptic 
potential that will occur throughout a gait cycle. To properly interpret 
synchronization and desynchronization that occur during a gait cycle, 
we must therefore isolate these changes by selecting an appropriate 
baseline. Choosing a baseline state for comparison influences conclu
sions about whether there is an increase or decrease in synchronization 
or desynchronization. Different scientific questions require different 
baseline comparisons. For example, examining how electrocortical ac
tivity changes across walking speeds in a specific set of individuals 
would require a different baseline comparison than examining whether 
there is more synchronization or desynchronization in a given brain area 
during walking for a neurologically intact group of participants 
compared to a group of participants with neurological deficits. This is 

Fig. 3. Example of an event-related spectral perturbation graph, representing 
the changes in spectral power in different frequency bands over time. While 
examining walking, gait events are often represented on the x-axis. In this case, 
the graph covers one gait cycle starting at right heel strike (RHS) followed by 
left toe off (LTO), left heel strike (LHS), right toe off (RTO), and ends with the 
second RHS. Green represents no change in spectral power, red represents an 
increase in power (i.e. greater synchronization), and blue represents a decrease 
in power (i.e. greater desynchronization). Note that this graph does not 
represent biological data but simulated activity from a neural mass model 
(Richer et al., 2020). 
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because the baseline state of the neurologically intact group could be 
different than the group with neurological deficits, thus we need to 
isolate brain activity that is involved in walking from the differing 
baseline states caused by health status. Most of the time, EEG changes in 
synchronization/desynchronization within a given experiment are good 
local indications of brain involvement but may not reflect a universal 
standard of brain involvement for the task and condition. 

Advances in EEG hardware and processing 

In recent years, there has been substantial development of EEG 
hardware and data processing algorithms (Gramann et al., 2011; Makeig 
et al., 2009). Miniaturization of amplifiers, active electrodes, and active 
shielding techniques have all reduced noise corruption on mobile sys
tems (Niso et al., 2023). Mobile and high-density systems, involving 128 
or more electrodes, now offer the opportunity to collect high-quality 
data during movement. It is helpful to have reference signals such as 
electrooculography, eye-gaze tracking, electrocardiogram, electromyo
gram, and motion sensors (Hari and Puce, 2017). For instance, one 
recent improvement is the development and validation of a 
dual-electrode EEG system which allows the user to better isolate 

electrocortical activity from motion artifact (Nordin et al., 2018). The 
adapted system contains an inverted secondary layer of electrodes 
which are mechanically coupled but electrically isolated from the scalp 
sensors. They are covered by a conductive fabric to create an artificial 
skin. While the scalp electrodes record electrocortical activity, physio
logical signals, and motion artifact, the secondary electrodes only record 
motion artifact. The common motion artifact in both scalp and noise 
channels allows a more efficient cleaning of scalp channels. Similarly, 
experimenters can rely on electromyography electrodes placed on the 
neck to record reference muscle activity signals and help isolate the 
muscle artifact from electrocortical signals (Bradford et al., 2016; Nor
din et al., 2019, 2020). 

Data processing algorithms for electrophysiological source separa
tion has greatly improved in recent years (B. He et al., 2018). One 
method frequently used to isolate artifacts from electrocortical activity 
is blind source separation (Fig. 4). The potentials that are recorded at 
the scalp originate from various sources in the brain and often overlap. 
Each electrode will therefore record a mixture of several different 
sources. Blind source separation separates these mixed signals into 
components (sources), like the way we can detect an individual voice in 
a crowd full of talking people. Independent component analysis 

Fig. 4. This figure presents a high-level example of EEG preprocessing steps. Scalp EEG measures a mixture of many electrical potentials generated within or near the 
body in addition to the brain signals of interest. Recording EEG during whole body motion, such as locomotion, can increase or add non-brain signal sources such as 
cable sway and movement-related sensor noise. As an initial step, many EEG researchers start by filtering and denoising their data. There is a large body of literature 
on different approaches for denoising raw EEG data, and while there is no consensus on the best approach, careful consideration should be taken when cleaning and 
interpreting EEG in mobile scenarios. To further improve the interpretability of the recorded signals, brain source activity can be disentangled from the scalp EEG 
using approaches like independent component analysis (ICA). If using high-density scalp EEG, inverse source reconstruction can be performed to approximate the 
three-dimensional locations of active brain sources within the brain volume with about 1 cm accuracy. (Figure created by Seongmi Song using biorender.com). 
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(ICA), the most common method (Hari and Puce, 2017), separates the 
signal into components that are independent from each other (Delorme 
and Makeig, 2004; Hyvärinen and Oja, 2000; Jung et al., 2000; Makeig 
et al., 1996). ICA is useful because it can isolate non-brain sources, such 
as muscles, eyes, and heart, which can later be removed through pro
cessing (Fig. 4) (G. D. Brown et al., 2001; Hari and Puce, 2017; Vigário, 
1997; Vigário et al., 2000). It can also distinguish between various brain 
signals, evoked responses, and brain rhythms (Hari and Puce, 2017). 
Although many blind source separation methods are available, adaptive 
mixture independent component analysis (AMICA) (Palmer et al., 
2012) has been shown to be one of the most efficient algorithms 
(Delorme et al., 2012). Processing algorithms such as PowPowCAT can 
help with classification of these independent components (Thammasan 
and Miyakoshi, 2020). 

Other approaches have been used to remove muscle artifact, such as 
canonical correlation analysis (De Clercq et al., 2006; Gao, Zheng, 
et al., 2010; Vergult et al., 2007), empirical mode decomposition 
(Mijović et al., 2010), and wavelet transforms (Aminghafari et al., 
2006; Estrada et al., 2011; Gao, Sultan, et al., 2010; Indiradevi et al., 
2008; Iyer and Zouridakis, 2007; Krishnaveni et al., 2006). Safieddine 
et al. (2012) compared four methods for elimination of muscle artifact 
(ICA, canonical correlation analysis, empirical mode decomposition, 
and the wavelet transform). They show that performance of these 
methods depends on the amplitude of muscle contamination. Head 
phantom experiments can help validate the use of these methods for 
specific types of data sets. For example, canonical correlation analysis 
was shown to help isolate simulated brain signals from neck muscle 
activity during walking head movements (Richer et al., 2020). A recent 
extension of canonical correlation analysis for EEG artifact removal is 
the iCanClean algorithm (Gonsisko et al., 2023), which can be used 
both with dual electrode and single electrode EEG systems. 

Artifact Subspace Reconstruction is one useful method to remove 
motion artifacts. Its effectiveness has been demonstrated in multiple 
experiments (Artoni et al., 2017; Chang et al., 2018; Luu, Brantley, 
Nakagome, et al., 2017; Luu, Nakagome, et al., 2017; Mullen et al., 
2013; Nordin et al., 2020; Peterson and Ferris, 2018). It uses an 
approach based on Principal Component Analysis to interpolate high 
variance components that exceed a predetermined threshold relative to 
a clean EEG dataset (Chang et al., 2018; Mullen et al., 2013). The artifact 
detection threshold must be carefully selected because aggressive cutoffs 
can remove brain activity along with artifacts (Artoni et al., 2017; Chang 
et al., 2018; Richer et al., 2020). 

There is not a single data cleaning approach that is ideal for all data 
conditions and experiments. The relative ratios and magnitudes of 
muscle, eye, brain, and motion artifact, and the temporal nature of the 
signal components (e.g., rhythmic, discrete), influence the success of 
different data pre-processing methods (Safieddine et al., 2012). Under 
relatively low levels of motion and muscle artifact, it has been argued 
that minimal to zero pre-processing is actually best for large data sets 
(Delorme, 2023). Our experience is that large amounts of muscle and 
motion artifact require aggressive methods to remove artifacts, as 
demonstrated by electrical head phantom validation studies (Nordin 
et al., 2018, 2019; Oliveira et al., 2016; Peterson and Ferris, 2019a; 
Richer et al., 2020). As a result, a combination of approaches is often 
used to reduce artifacts and isolate brain signals in scalp EEG during 
walking and running. 

When using a greater number of channels, EEG allows us to perform 
source localization to estimate the location of the active brain sources 
(Fig. 4). It is important to note the challenges and assumptions involved 
in source-based analysis. When we estimate the location of cortical 
sources, we face the forward problem and the inverse problem. The 
forward problem is to find the scalp potentials that are produced by 
sources in the brain (Hallez et al., 2007; B. He et al., 2018; Michel and 
He, 2012, 2019). These electrical currents propagate through various 
tissues (scalp, skull, cerebrospinal fluid, brain), and these tissues have 
varying levels of conductivity that attenuate the current to different 

extents. Thus, we model the head geometry to help solve the forward 
problem. The current ideal method is to use individual MRI to precisely 
model the shape of the head and the thickness of tissues. 

The inverse problem refers to the challenge of determining the 
location of the brain sources that generate an EEG measurement (B. He 
et al., 2011; Michel and He, 2019; He et al., 2018; Michel and He, 2012; 
Grech et al., 2008). A solution can be found if a priori assumptions about 
the sources are included, such as neurophysiological, biophysical, and 
anatomic knowledge about the sources, electrical activity, conductive 
tissues, and distribution of the neuronal activity (Michel and He, 2019). 
There are various methods that can be used to solve the inverse problem. 
There is not one best way yet to solve it, but multiple studies suggest that 
state of the art methods result in a spatial resolution of about 1 cm for 
identifying brain sources from scalp EEG (Acar et al., 2008; Akalin Acar 
and Makeig, 2013; B. He et al., 2011; Seeber et al., 2019). 

It is possible to increase EEG’s spatial accuracy by increasing the 
number of electrodes on the scalp. In source-level analysis, the number 
of dipoles we can find is limited by the number of electrodes, therefore a 
higher-density setup will allow a better estimation of locations and 
strengths of electrocortical activity (B. He et al., 2011). To correctly 
identify sources, it is also important to know the exact location of 
electrodes in relation to the person’s head. These positions can be 
applied to simplified head model templates or co-registered to an indi
vidualized structural MRI scan to position the sensors in relation to each 
person’s brain anatomy (Hari and Puce, 2017). A recent study compared 
the different localization methods and suggested that using MRI scans, 
when possible, will lead to more accurate source localization (Liu et al., 
2023). 

Initial investigations of electrocortical activity during locomotor patterns 

Because of its sensitivity to artifacts, initial attempts to use EEG to 
probe the involvement of cortical structures in human locomotion used 
models of locomotion, rather than actual locomotion. Raethjen et al. 
(2008) found that rhythmic EEG was directly related to rhythmic foot 
movements during seated postures. Wieser et al. (2010) studied partic
ipants on a tilt table performing rhythmic leg motions. They found that 
EEG amplitude in cortical motor areas was modulated throughout the 
movement cycle. The authors of both studies propose that these fluc
tuations in electrocortical activity may be present during locomotion. 

Pedaling/cycling has also been used to model locomotion brain dy
namics (Jain et al., 2013; Schneider et al., 2013). Like walking, it is a 
cyclical locomotor activity, but it does not require balance or 
open-ended interlimb coordination. Pedaling/cycling also generates less 
motion artifact than walking, which can be beneficial. Modulations in 
electrocortical signals across the pedaling cycle over sensorimotor (Jain 
et al., 2013) and motor (Schneider et al., 2013) cortical regions of the 
legs were correlated to muscle activity of the legs (Schneider et al., 
2013). Peak-to-peak amplitude of the EEG waveform was greater in 
passive compared to active pedaling at a matched speed (Jain et al., 
2013). A similarity in electrocortical fluctuations in active and passive 
pedaling suggests that much of the EEG waveform is dedicated to pro
cessing of sensory information (Jain et al., 2013). The decrease in 
amplitude during active pedaling could be explained by a gating of 
sensory input by corticospinal motor output (Jain et al., 2013). There 
are, however, differences in electrocortical oscillations of walking and 
cycling (Storzer et al., 2016). 

Due to general acceptance of event-related potential studies on 
human cognition using EEG, initial attempts at electrocortical re
cordings during walking focused on recording event-related potentials 
like the P300 during human locomotion. The P300 is named after a 
positive waveform 300 ms following a stimulus. It is an event-related 
potential that can be elicited with visual or auditory discriminations 
tasks, such as an oddball task. The use of EEG to recover electrocortical 
dynamics during actual locomotion was first validated by having par
ticipants walk and run while performing tasks that elicited a P300 (De 
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Sanctis et al., 2012; Debener et al., 2012; Gramann et al., 2010; Kerick 
et al., 2009). These studies showed that it was possible to extract a 
normal P300 signal relative to the discrimination task during human 
locomotion. Advances in EEG hardware and processing have since made 
it possible to investigate more complex electrocortical dynamics asso
ciated with actual locomotion. Please refer to Table 2 for a summary of 
the experiments discussed in this review. 

Spectral fluctuations of electrocortical activity during walking 

Imaging electrocortical activity in the brain during human walking 
can provide an indication of which brain areas show synchronization to 
the gait cycle. The millisecond precision of EEG allows us to observe 
fluctuations in electrocortical activity throughout the gait cycle rather 
than averaging over many steps. It wasn’t until about the mid-1980s that 
scientists began speculating in writing that the motor cortex would be 
involved in the control of locomotion (Armstrong, 1986), but even then, 
their perspective was “we are almost entirely ignorant as to precisely 
how the motor cortex (MC) may intervene in the locomotor process.” 
(Armstrong, 1986). As depicted in Fig. 5, the advent of mobile EEG al
lows us to study human walking and has led to the knowledge that the 
motor cortex and many other brain areas appear to be involved in 
monitoring or controlling human walking. It is difficult with observa
tional experimental paradigms to discern the difference between cortical 
electrical activity involved in receiving sensory feedback about loco
motion and cortical electrical activity involved in controlling 
locomotion. 

During normal walking, there is gait-related electrical activity in 
many different brain areas responsible for sensorimotor processing. 
Electrocortical power fluctuations occur in the anterior cingulate, pos
terior parietal, prefrontal, premotor, supplementary motor, occipital, 
and/or sensorimotor cortices during human walking (Artoni et al., 2017; 
Bradford et al., 2016; Bulea et al., 2015; Cheron et al., 2012; Gwin et al., 
2011; Nordin et al., 2020; Oliveira et al., 2017; Roeder et al., 2018; 
Seeber et al., 2014; Severens et al., 2012; Yokoyama et al., 2021; Zhao 
et al., 2022). There is even a recent report of gait-related electrocortical 
fluctuations in the thalamus and cerebellum (Zhao et al., 2022), but it is 
difficult to validate and verify that the identified electrical activity is not 
derived from muscle or other brain areas given the deep location of the 
thalamus and cerebellum. Many of the areas show a common pattern of 
increased synchronization during periods of double support and 
increased desynchronization during limb swing. There are differences 
across brain regions, but relative to the overall background brain ac
tivity, the fluctuation pattern appears. 

Another common finding across studies is a lateralization of alpha 
and beta spectral power fluctuations in motor/sensorimotor cortices 
related to the gait cycle (Fig. 6) (Bradford et al., 2016; Cheron et al., 
2012; Gwin et al., 2011; Jacobsen and Ferris, 2023a; Nordin et al., 2020; 
Seeber et al., 2014; Severens et al., 2012; Zhao et al., 2022). The motor 
and sensorimotor cortex sources typically demonstrate increased 
desynchronization during contralateral limb swing and increased syn
chronization during ipsilateral heel strike and the subsequent double 
support period (Bradford et al., 2016; Jacobsen and Ferris, 2023a; 
Nordin et al., 2020; Severens et al., 2012; Zhao et al., 2022). The pattern 
of alpha and beta desynchronization and synchronization in the senso
rimotor cortex during the gait cycle could be interpreted in many ways. 
Studies on discrete upper limb movements have long revealed sensori
motor cortex desynchronization prior to movement initiation and syn
chronization after movement completion in the contralateral 
hemisphere (Neuper et al., 2006; Pfurtscheller and Lopes da Silva, 
1999). This relationship appears to hold true during rhythmic finger 
movements, albeit with additional long-lasting sensorimotor desynch
ronization relative to rest (Seeber et al., 2016). However, during walking 
all four limbs display rhythmic muscle activation patterns with multiple 
synergies (Davis and Vaughan, 1993; Ivanenko et al., 2004). There are 
no clear on and off phases during walking due to the large number of 

muscles involved in locomotion and their periodic phasing of activity. 
Trying to relate synchronization and desynchronization phasing in the 
sensorimotor cortex to gait phases based on an assumption of direct 
muscle control is inappropriate (Delval et al., 2020). 

A more appropriate framework for interpreting sensorimotor syn
chronization and desynchronization phases during human walking 
might be in evoked beta band spectral power fluctuations based on 
afferent feedback from gait events (Jensen et al., 2019; Roeder et al., 
2018, 2020). Cutaneous and proprioceptive feedback provides strong 
cues about the stepping pattern both at the spinal cord level and in the 
brain (Lam and Pearson, 2002; Pearson et al., 1998). The rhythmic 
oscillation in sensorimotor cortex electrical activity could be due to 
afferent feedback on gait events as well as ongoing oscillations in spinal 
circuits related to locomotion. This perspective would be consistent with 
measures of human electrocorticography in the motor cortex during 
stepping (McCrimmon et al., 2018; Starkweather et al., 2023). Passive 
stepping motions induced by a robotic gait orthosis on neurologically 
intact human participants show sensorimotor cortex beta fluctuations 
that are similar but less pronounced than active stepping within the 
orthosis (Wagner et al., 2012). Increases in walking speed attenuate 
sensorimotor spectral power fluctuations (Bulea et al., 2015; Lisi and 
Morimoto, 2015; Nordin et al., 2020). This finding is consistent with the 
idea that the sensorimotor cortex has tonic involvement with locomo
tion that increases with speed, and afferent feedback about gait cycle 
timing (especially the rapid gait events around double support begin
ning and ending) triggering phasic synchronization and desynchroni
zation with the gait cycle. Switching from a normal treadmill to a 
user-driven treadmill that requires greater horizontal drive produces 
overall more desynchronization in sensorimotor cortices, suggesting 
that the user-driven treadmill requires a greater tonic drive from the 
cortex compared to a motor-driven treadmill (Bulea et al., 2014). 
Bradford et al. (2016) examined treadmill walking on the level and at a 
15% incline. They reported differences in theta spectral power was 
greater for incline walking in the anterior cingulate, sensorimotor, and 
posterior parietal clusters. Although the increase was distributed across 
the entire gait cycle, it was greater at heel strike and toe off. These re
sults suggest that theta power increased in response to the greater motor 
demands, particularly in periods of transition in the gait cycle (Bradford 
et al., 2016). These findings are supported by the work of Luu et al. (Luu, 
Brantley, Nakagome, et al., 2017; Luu, Brantley, Zhu, et al., 2017). They 
compared level-ground, slope, and stair walking and found consistent 
evidence for changes in theta, alpha, and beta spectral power in keeping 
with the interpretation described above. 

Cortical involvement appears to increase in proportion to the amount 
of active stability control required for walking. When walking with 
external lateral stabilization, beta spectral power in the premotor cortex 
is increased compared to normal walking (Bruijn et al., 2015). This 
suggests that beta power is related to gait stability and that walking with 
stabilization requires less motor control (Bruijn et al., 2015). Sipp et al. 
(2013) investigated cortical contributions to walking stability by asking 
participants to walk on a treadmill-mounted balance beam. Compared to 
flat walking, beam walking elicited an increase in spectral power in the 
theta band in the anterior cingulate, anterior parietal, superior 
dorsolateral-prefrontal, and medial sensorimotor cortex, and a decrease 
in spectral power in the beta band for both the left and right sensori
motor cortices (Sipp et al., 2013). Interestingly, before participants fully 
lost their balance during beam walking, there was an increase in theta 
band in the anterior and posterior cingulate, superior 
dorsolateral-prefrontal, anterior parietal, and the left and right senso
rimotor cortices. The first increase occurred in the left sensorimotor 
cortex of right hand and foot dominant individuals during the last 
double support phase immediately preceding the loss of balance. These 
changes in electrocortical activity show that there are several regions 
that are involved in recognizing a loss of balance. This highlights the fact 
that much of the cortical contributions to gait are involved in sensory 
processing and will occur when we need sensory information to adjust 
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Table 2 
Summary of the EEG experiments discussed in the four following sections: Initial investigations of electrocortical activity during locomotor patterns, spectral fluc
tuations of electrocortical activity during walking, corticocortical and corticomuscular coherence during walking, and invasive EEG.  

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

Initial investigations of electrocortical activity during locomotor patterns 
Raethjen et al., 

(2008) 
Seated, 
rhythmic foot 
movements 

In phase, out of phase, 
unilateral 

10 (range 25–38 
years) 

64 Channel Spectral power, 
corticomuscular 
coherence 

Rhythmic EEG, and thus the 
cortex, is involved in 
producing gait like, 
rhythmic foot movements. 

Wieser et al., 
(2010) 

Assisted, 
rhythmic whole 
leg movements 
on a tilt table at 
76% elevation 

Rest, assisted, active, 
passive 

20 (mean 28.6 ±
8.3 years) 

64 Channel 
and source 

Movement-related 
potential, spectral power 

EEG in motor cortical areas 
(primary motor cortex, 
premotor cortex, 
supplementary motor area, 
etc.) are modulated 
throughout the gait cycle, 
with the greatest activation 
at changes of direction of 
flexion/extension. 

Jain et al., 
(2013) 

Pedaling on a 
custom device 

Active, passive 10 (range 22–32 
years) 

64 Channel 
and source 

Pedaling-related 
potential, spectral 
power, source 
localization 

EEG in motor cortical areas 
fluctuates depending on the 
phase of the pedaling cycle. 
Pedaling-related potentials 
have a greater amplitude 
during passive than active 
pedaling, suggesting much 
of the activity is related to 
sensory perception. 

Schneider 
et al., (2013) 

Pedaling on a 
cycle ergometer 

Pedaling at different 
power outputs 

8 (mean f: 24 ± 2 
years, m: 27 ±
4 yrs) 

32 Source Current density EEG in motor cortical areas 
is dependent on exercise 
intensity and suggests the 
cortex is involved in 
controlling muscular effort 
during locomotor-like 
activities. 

Storzer et al., 
(2016) 

Cycling and 
overground 
walking 

Cycling vs. walking 14 (mean 24.9 ±
3 years) 

18 Channel Spectral power, event- 
related spectral 
perturbations 

There are differences in 
EEG of walking and cycling, 
but both have activity that 
fluctuates with the gait 
cycle. 

De Sanctis 
et al., (2012) 

Sitting and 
treadmill 
walking 

Go/no-go cognitive 
task 

5 (mean 24.6 ±
4.8 years) 

72 Channel Event-related potentials, 
spectral power 

Robust ERP waveforms can 
be recorded during slow 
and fast walking on a 
treadmill. P300 and ERN 
were similar across sitting, 
slow, and fast walking. 

Debener et al., 
(2012) 

Sitting and 
overground 
walking 
outdoors 

Auditory oddball 
cognitive task 

16 (mean 27.9 
years) 

14 Channel Event-related potentials Good quality EEG signals 
can be obtained during 
outdoor walking. Smaller 
P300 amplitude walking 
outdoors compared to 
sitting indoors. 

Gramann et al., 
(2012) 

Treadmill 
standing, 
walking, and 
running 

Locomotion speed, 
visual oddball 
cognitive task 

12 (mean 24.2 ±
3.4 years) 

248 Source Spectral power, event- 
related potentials, event- 
related spectral 
perturbations 

Demonstrated reliable 
measurement and source 
modeling of brain dynamics 
during walking at various 
speeds. 

Kerick et al., 
(2009) 

Treadmill 
walking and 
standing 

Walking speed, 
auditory oddball 
cognitive task 

5 (range 27–39 
years) 

32 Channel Event-related potentials, 
spectral power 

Walking and jogging 
decreased EEG signal 
quality. N1 and P300 were 
recoverable while walking 
but not during jogging. 

Spectral fluctuations of electrocortical activity during walking 
Artoni et al., 

(2017) 
Treadmill 
walking 

3.5 km/h 11 (mean 30 ± 4 
years) 

64 Source Event-related spectral 
perturbations, 
corticomuscular 
connectivity (discussed 
in section on 
corticocortical and 
corticomuscular 
coherence during 
walking) 

Stronger gait locked 
spectral perturbations in 
motor related areas than 
non-motor related areas. 
ERSPs for the motor-related 
areas (premotor cortex, 
motor, supplementary 
motor, and cingulate areas 
of the left and right 
hemispheres) exhibited 
significant 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

desynchronization and 
synchronization in mu and 
beta frequency bands 
respectively during single- 
and double-foot support 
phases. 

Bradford et al., 
(2016) 

Treadmill 
walking 

Walking on incline 
(15% grade) 

20 (mean 23.1 ±
3.9 years) 

256 Source Event-related spectral 
perturbations, spectral 
power 

Increased theta band 
spectral power during 
incline walking in the 
anterior cingulate, 
sensorimotor, and posterior 
parietal regions. Increase 
theta band power 
fluctuations at heel strike 
and toe off during incline 
walking. Suggests that 
walking on an incline may 
involve supraspinal input. 

Bulea et al., 
(2014, 2015) 

Treadmill 
walking 

User-driven vs. 
passive treadmill 
walking, slow and fast 
speed 

10 (mean 28.9 ±
6.3 years) 

64 Source Event-related spectral 
perturbations, spectral 
power 

Spectral power and spectral 
fluctuations were 
attenuated with gait speed. 
User-driven treadmill 
produced more 
desynchronization in 
sensorimotor cortices. 
Suggests greater cortical 
drive during faster speeds 
and simulated overground 
walking (user-driven 
treadmill). 

Gwin et al., 
(2011) 

Treadmill 
walking 

Speed (standing, 0.8, 
1.25, 1.9 m/s) 

8 (range 21–31 
years) 

248 Source Event-related spectral 
perturbations, spectral 
power 

Significant intra-stride 
fluctuations in spectral 
power in the anterior 
cingulate, posterior 
parietal, and sensorimotor 
cortex. Results suggest 
cortical involvement in 
steady-speed human 
locomotion. 

Nordin et al., 
(2020) 

Treadmill 
walking 

Speed (0.5, 1, 1.5, 
2.0 m/s) 

9 (mean 27.4 ± 4 
years) 

128 (dual-layer 
EEG) 

Source Event-related spectral 
perturbations, spectral 
power 

Synchronous spectral 
power fluctuations in the 
left and right sensorimotor 
cortices corresponding with 
the gait cycle. Reduced 
durations and frequency 
bandwidth of synchronous 
power fluctuations at faster 
gait speeds. Alpha and beta 
band power increased 
during contralateral limb 
single support and push off. 
Reduced sensorimotor beta 
and alpha band spectral 
power at faster gait speeds. 
Results suggest greater 
cortical involvement at 
faster gait speeds compared 
to slow walking. 

Oliveira et al., 
(2017) 

Treadmill 
walking 

Walking with eyes 
open and eyes closed 

10 (range 21–36 
years) 

256 Source Event-related spectral 
perturbations 

Increase theta band 
desynchronization in the 
frontal and premotor 
cortices during stance and 
greater desynchronization 
in theta, alpha, and beta 
bands during single-support 
in left and right 
somatosensory cortex. Data 
suggest changes in sensory 
inputs for maintenance of 
walking when vision is 
limited. 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

Seeber et al., 
(2014) 

Active walking 
and upright 
standing in a 
robotic gait 
orthosis 

1.8–2.2 km/h 
(adjusted to leg 
length) 

10 (mean 25.6 ±
3.5 years) 

120 Source Event-related spectral 
perturbations, gait phase 
modulation 

Suppression of upper mu 
and beta oscillations in 
active walking vs. standing 
suggests a movement- 
related state change of 
cortical excitability. Beta 
suppression in central 
sensorimotor areas, 
consistent with the location 
of the lower extremities in 
the motor cortex. Low 
gamma amplitudes 
modulated in relation to the 
gait phase, represent the 
motion sequence timing 
during gait. 

Severens et al., 
(2012) 

Treadmill 
walking 

Slow speeds @ 1.4 Hz 
frequency 

6 (mean 21.6 ±
2.3 years) 

62 Channel Event-related spectral 
perturbations, event 
related desynchrony 

Significant mu and beta 
band event-related 
desynchrony. Significant 
mu and beta band ERSPs 
were found related to the 
step cycle and were also 
lateralized depending on 
the phase of the step cycle 
and topography. Results 
suggest it is feasible to 
record walking related ERD 
and walking related signals 
could be used for BCI 
applications. 

Yokoyama 
et al., (2021) 

Treadmill 
walking 

Normal walking vs. 
precision stepping 
(0.55 m/s) 

13 (range 22–30 
years) 

63 Source Event-related spectral 
perturbations, spectral 
power 

Alpha and beta band power 
decreased, and gamma 
band power increased in 
parieto-occipital and 
sensorimotor cortices 
during precision stepping 
compared to normal 
walking. ERSPs were 
similar for normal and 
precision stepping. Results 
suggest higher cortical 
involvement and 
differential roles of brain 
regions during precision 
stepping. 

Zhao et al., 
(2022) 

Treadmill 
walking 

Self-selected speed 24 (range 22–31 
years) 

128 Source Event-related spectral 
perturbations 

Gait cycle-related 
synchronization and 
desynchronization in alpha, 
beta, and gamma bands 
strongest in primary 
sensorimotor cortex, also 
found in premotor cortex, 
thalamus, and cerebellum. 
Evidence of lateralization 
in the primary sensorimotor 
cortex (alpha and beta 
bands), and in the 
cerebellum (beta and 
gamma bands). 

Jacobsen and 
Ferris 
(2023a) 

Treadmill 
walking 

Split belt speeds (2:1 
ratio, 1.2 m/s and 
0.6 m/s) 

33 (mean f: 23.19 
± 2.61, m: 24.22 
± 4.82) 

128 (dual-layer 
EEG) 

Source Event-related spectral 
perturbations, spectral 
power 

Multiple cortical regions 
near the sensorimotor, 
posterior parietal, and 
cingulate cortices were 
found to have alpha and 
beta band spectral power 
changes associated with 
adaptation to split belt 
speeds. Significant 
differences in spectral 
power across stages of gait 
adaptation during the gait 
cycle. Results suggest the 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

cortex is involved in gait 
adaptation and with 
practice the new pattern 
becomes more automated. 

Wagner et al., 
(2012) 

Robot assisted 
walking and 
upright 
standing 

Low walking speed 
(1.8–2.2 km/h); 
active and passive 
walking 

14 (range 22–28; 
24.3 ± 2.7 years) 

120 Source Spectral power, event- 
related spectral 
perturbations 

Evidence of differences in 
cortical activation between 
active and passive robot 
assisted gait. Reduced 
power in mu and beta 
bands over central midline 
areas during active walking 
could be related to sensory 
processing of the lower 
limbs. Cortical activity in 
the premotor cortex in the 
lower gamma band, which 
tended to decrease during 
active walking, may be 
related to movement 
planning and or 
sensorimotor processing. 

Lisi and 
Morimoto, 
(2015) 

Treadmill 
walking 

Volitional gait speed 
changes between 0, 1, 
and 2 km/h 

8 (mean 25 ± 2.5 
years) 

64 Source Event-related spectral 
perturbations 

Mu and beta rhythms 
suppressed during gait 
speed changes, suggesting 
the parietal cortex could be 
involved in motor planning 
and visuomotor 
transformations during gait 
adjustments. 

Luu, Brantley, 
Nakagome, 
et al., (2017) 

Level-ground, 
ramp ascent, 
and stair ascent 
walking 

Level-ground, ramp, 
and stair 

10 (age not 
provided) 

60 Source Spectral power, event- 
related spectral 
perturbations 

Changes in spectral power 
in the posterior parietal 
cortex and sensorimotor 
cortex were associated with 
the level of motor task 
demands. 

Luu, Brantley, 
Zhu, et al., 
(2017) 

Level-ground, 
ramp ascent, 
and stair ascent 
walking 

Level-ground, ramp, 
and stair 

6 (age not 
provided) 

64 Source Event-related spectral 
perturbations 

Modulations in posterior 
parietal cortex shifted to 
higher frequency bands 
when ascending stairs and 
ramps. Low gamma 
modulations in 
sensorimotor area observed 
in level-ground walking 
shifted to lower frequency 
bands while ascending 
stairs and ramps. Suggests 
that varying walking 
terrains have distinct 
neural signatures. 

Bruijn et al., 
(2015) 

Treadmill 
walking 

Walking normally and 
with lateral 
stabilization 

10 (mean 31.4 ±
6.6 years) 

64 Source Spectral power Increased beta power in the 
left premotor area during 
stabilized walking suggests 
a reduced demand to 
stabilize gait. 

Sipp et al., 
(2013) 

Treadmill 
walking 

Walking on and off a 
treadmill-mounted 
balance beam 

26 (mean 23 ± 5 
years) 

256 Source Spectral power Several areas are involved 
in recognizing a loss of 
balance, as seen with 
increased theta band 
activity before the loss of 
balance. The first area to 
show an increase was the 
sensorimotor cortex, during 
the last double support 
phase before stepping off 
the beam. 

Peterson and 
Ferris, 
(2018) 

Walking or 
standing on a 
treadmill- 
mounted 
balance beam 

Physical and visual 
balance perturbations 

30 (mean 22.5 ±
4.8 years) 

134 Source Spectral power, event- 
related spectral 
perturbations 

Similar time-frequency 
electrocortical pattern 
when facing the two types 
of perturbations, but the 
pattern was stronger in 
occipito-parietal areas 
during visual perturbations 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

and stronger in motor areas 
during physical 
perturbations. 

An et al., 
(2019) 

Treadmill 
walking 

Trip perturbation 5 (mean 24.6 ±
2.0 years) 

128 Channel Power spectral density Alpha band 
desynchronization during 
trip recovery in the 
electrodes over the 
sensorimotor and posterior 
parietal cortices during 
balance recovery suggest 
increased cortical activity 
in those areas while 
recovering walking 
balance. 

Wagner et al., 
(2016) 

Treadmill 
walking 

Adaptation to 
auditory cue pacing 

18 (range 22–35; 
29.1 ± 2.7 years) 

108 Source Event-related spectral 
perturbations, event- 
related potentials 

Two beta band oscillatory 
networks involved in motor 
adjustments during gait: 1) 
decrease in mu and beta 
band reflecting motor 
execution and readiness 
related to gait movements; 
2) frontal beta band 
increase related to 
cognitive top-down control 
and inhibition. 

Malcolm et al., 
(2018) 

Treadmill 
walking 

Optic flow with and 
without continuous 
mediolateral 
perturbations, go/no- 
go task 

16 (mean 25.6 ±
4.5 years) 

72 Source Power spectral density Cautious gait was 
accompanied by spectral 
power modulations in 
frontoparietal clusters, 
areas that are thought to be 
involved in motor planning 
and sensory guidance of 
movement. Suppression in 
alpha/mu and beta rhythms 
suggest increased 
activation of these regions 
when sensory inputs are 
unreliable. 

Mustile et al., 
(2021) 

Overground 
walking 

Stepping over 
expected and 
unexpected obstacles 

32 (range 19–65; 
32.1 ± 11.6 
years) 

32 Channel Event-related spectral 
perturbations 

Changes in frontal theta 
and centro-parietal beta 
power before and after 
obstacle crossing 
demonstrate distinct neural 
markers of proactive and 
reactive movement control. 
Motor plans are updated as 
soon as obstacle appears. 
Beta rebound after obstacle 
crossing reflects the 
resetting of the motor 
system. 

Nordin et al., 
(2019) 

Treadmill 
walking and 
running 

Stepping over 
obstacles 

9 (age not 
provided) 

128 (dual-layer 
EEG) 

Source Event-related spectral 
perturbations 

Spectral power increases in 
supplementary motor area 
and premotor cortex after 
the obstacle appeared, but 
before stepping over the 
obstacle, suggests these 
areas prime locomotor 
control to expect changes to 
the gait cycle. Spectral 
power increase in the 
posterior parietal cortex at 
a similar distance to contact 
with the obstacle at each 
speed suggests its 
involvement in planning 
foot placement before 
stepping over the obstacle. 

Salazar-Varas 
et al., (2015) 

Treadmill 
walking 

2 km/h; obstacles 
(laser projection, 
change of color of a 
screen) 

3 (range 24–29 
years) 

32 Channel Average potential, scalp 
distribution 

Change of potential 
precedes participants’ 
reaction to obstacle, 
suggesting a change in 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

brain activity reflecting the 
alertness to the obstacle’s 
appearance and the 
preparation for a reaction. 

Jacobsen et al., 
(2023) 

Walking on 
split-belt 
treadmill 

Adaptation to a 2:1 
treadmill belt speed 
ratio 

30 (mean 22.8 ±
2.6 years) 

128 (dual-layer 
EEG) 

Source Adaptation time 
constants for kinematic 
and electrocortical 
measures 

Electrocortical time 
constants were larger than 
kinematic ones, suggesting 
that adaptive changes in 
brain dynamics were 
longer-lasting than the 
changes in step timing. 

Corticocortical and corticomuscular coherence during walking 
Lau et al., 

(2014) 
Standing and 
walking on a 
treadmill 

Visual oddball 
discrimination task 

8 (range 20–31 
years) 

248 Source Cortical connectivity Stronger connectivity 
involving sensorimotor 
clusters in standing than 
walking, suggesting a 
greater cortical/cognitive 
involvement during 
standing. Connectivities 
involving non-sensorimotor 
areas stronger during 
walking vs. standing only 
when engaged in the 
cognitive task. 

Petersen & 
Ferris, 
(2019b) 

Standing and 
walking on a 
treadmill- 
mounted 
balance beam 

Physical perturbations 
and field-of-view 
rotations. 

30 (mean 22.5 ±
4.8 years) - 1 
subject discarded 

136 Source Cortical and muscular 
connectivity, event- 
related spectral 
perturbations 

Sensorimotor perturbations 
to balance alter cortical 
networks. Decreased 
occipito-parietal 
connectivity during visual 
rotations, increased 
connectivity between 
supplementary motor and 
anterior cingulate areas 
during physical 
perturbations. 

Artoni et al., 
(2017) 

Treadmill 
walking 

3.5 km/h 11 (mean 30 ± 4 
years) 

64 Source Corticomuscular 
connectivity, event- 
related spectral 
perturbations (discussed 
in section on spectral 
fluctuations of 
electrocortical activity 
during walking) 

Brain-to-muscle 
connectivity was stronger 
than muscle-to-brain 
connectivity. Motor regions 
had a stronger influence on 
leg muscle activity than 
non-motor regions, 
suggesting supraspinal 
involvement in human 
locomotion. Connectivity 
was strongest for distal 
muscles of the swing leg, 
suggesting fine cortical 
control for ankle 
dorsiflexion and foot 
placement. 

Brantley et al., 
(2016) 

Overground 
walking and 
stair ascent 

Level overground 
walking followed by 
8-step stair ascent 

1 (31 years) 64 Channel Corticomuscular 
coherence 

EEG-led corticomuscular 
coherence during level 
walking. Coherence 
increased between EEG and 
vastus lateralis and tibialis 
anterior in the delta band 
during stair ascent. EMG 
led EEG for biceps femoris 
and gastrocnemius during 
stair ascent. 

Jensen et al., 
(2018) 

Treadmill 
walking 

Visually-guided vs. 
normal walking 

16 (mean 23 ± 5 
years) 

2 Channel Corticomuscular, 
intramuscular, and 
intermuscular coherence 

Increased intramuscular, 
intermuscular, and 
corticomuscular coherence 
(not significant) in ankle 
dorsiflexors and plantar 
flexors during visually 
guided treadmill walking. 
Suggests that the motor 
cortex and corticospinal 
tract are involved in 

(continued on next page) 
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Table 2 (continued ) 

Reference Task Manipulation/ 
Condition 

Number of 
participants 
(Age) 

# EEG sensors 
(* Denotes 
invasive 
sensors) 

EEG 
channel 
or Source 
domain 
analysis 

Neural features/ 
metrics analyzed 

Contribution/Major 
finding 

visually guided foot 
placement during walking. 

Jensen et al., 
(2019) 

Treadmill 
walking 

3.6 km/h 11 (mean 24.9 ±
2.8 years) 

1 Channel Corticomuscular and 
intermuscular coherence 

Significant corticomuscular 
and intermuscular 
coherence in beta and 
gamma bands throughout 
the stance phase, 
particularly just before 
push-off, with EEG activity 
leading the EMG activity. 
Suggests that motor cortex 
contributes to activity in 
the ankle plantar flexor and 
to forward propulsion. 

Petersen et al., 
(2012) 

Treadmill 
walking 

Preferred speed, 
without active arm 
swing 

9 (mean 23.4 ±
4.1 years) 

28 Channel Corticomuscular 
coherence 

Coupling between EEG 
(24–40 Hz) over the leg 
motor area and EMG from 
the tibialis anterior before 
heel strike suggests that the 
motor cortex and 
corticospinal tract 
contribute directly to the 
muscle activity in treadmill 
walking. 

Roeder et al., 
(2018) 

Treadmill and 
overground 
walking 

Preferred speed 22 (mean 25.9 ±
3.2 years) 

10 Channel Event-related power, 
corticomuscular 
coherence, intertrial 
coherence 

Cortical power, 
corticomuscular coherence, 
and intertrial coherence 
increased during periods of 
double support. Frequency- 
band dependent differences 
between overground and 
treadmill walking, 
suggesting different neural 
control for the two gait 
modalities. EEG response 
preceded the EMG 
response. 

Winslow et al., 
(2016) 

Overground 
walking and 
ramp ascent 

Self-paced 1 (31 years) 64 Channel Corticomuscular 
coherence 

Activity of the motor cortex 
led activity in the tibialis 
anterior in the low gamma 
band in swing phase during 
overground walking and in 
stance phase during ramp 
ascent. 

Invasive EEG 
Starkweather 

et al., (2023) 
Visually cued 
arm swing and 
stepping task 

Intra-operative seated 
setup 

5 with idiopathic 
Parkinson’s 
disease (mean 
64.5 ± 10.9 
years); 1 with 
essential tremor 
(47 years) 

28* (temporary 
electrode strip 
over upper limb 
primary motor 
cortex in deep 
brain stimulation 
patients) 

Channel Spectral power Oscillatory signatures of 
stepping were different 
than those of the arm 
swing. Oscillations in the 
hand and arm area of the 
motor cortex during 
stepping were in lower 
frequency ranges (delta, 
alpha, theta, beta) than the 
gamma band activity seen 
during the arm swing. 

McCrimmon 
et al., (2018) 

Treadmill 
walking and 
isolated limb 
movements 

Walking at slow, 
casual, and fast 
speeds. Flexion and 
extension of the hip 
and knee; ankle 
dorsiflexion and 
plantarflexion; 
isolated arm-swing 

2 (32 and 38 
years) 

32* (ECoG grid) Channel Spectral power M1 is involved in high-level 
gait motor control, 
encoding walking duration 
and speed, rather than low- 
level patterns of leg muscle 
activation or movement 
trajectories. 

Aghajan et al., 
(2017) 

Overground 
walking 

Slow or fast speed, 
linear and circular 
paths 

4 (34, 40, 45, and 
63 years) 

4* (NeuroPace) Channel Spectral power Theta oscillations observed 
in rodents were also present 
in humans but occurred in 
short bouts that were more 
prevalent during fast vs. 
slow movements.  
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our gait. 
Theta synchronization in multiple brain areas is a consistent finding 

when experiencing gait perturbations. Peterson and Ferris (2018) 
showed that the type of perturbation, visual or physical, altered the 
brain areas responding with a robust theta synchronization during 

walking. With visual perturbations, there was a strong theta synchro
nization followed by a beta desynchronization in the occipital and 
posterior parietal cortices. In contrast, physical perturbations showed 
the same spectral power responses in the anterior cingulate and senso
rimotor cortices. An et al. (2019) used a split-belt treadmill to generate 
unpredictable trip perturbations to walking and observed changes in 
electrocortical activity in the sensorimotor and posterior parietal 
cortices while recovering from a trip compared to standing and walking. 
There was a strong synchronization in the theta band for the sensori
motor cortex and desynchronization in the alpha band for the sensori
motor and posterior parietal cortices during trip recovery. They also 
found that, in the posterior parietal cortex, theta power increased in 
walking compared to standing, and that beta power decreased during 
walking and trip recovery compared to standing. These findings suggest 
that the type of perturbation used to conduct balance training has a 
marked effect on what areas of the brain respond for balancing. 

Other EEG experiments support the idea that phasic electrocortical 
activity during walking may reflect processing of sensory information. 
Walking requires the integration of visual, proprioceptive, cutaneous, 
and vestibular sensory inputs, which we use to guide our trajectory and 
to adjust to unexpected events (Peterka, 2018). The brain monitors this 
feedback to adjust our walking. Studies on gait adaptation demonstrate 
power fluctuations due to changing sensory cues (Malcolm et al., 2018; 
Oliveira et al., 2017; Wagner et al., 2016). Wagner et al. (2016) exam
ined gait adaptation to changing pacing cue tones and found beta band 

Fig. 5. This figure depicts a mobile-brain body imaging (MOBI) experimental setup for studying locomotion-related brain activity in neurologically intact humans. 
High-density scalp EEG is recorded simultaneously with motion capture, electromyography (EMG), and ground reaction forces (GRF). Measurements of the limb 
trajectories and muscle activity can help with the interpretation of brain signals and enables analysis such as exploring information flow between brain and muscle. 
This type of data collection can be performed in the lab on a treadmill, but wireless and portable sensors have enabled the study of locomotion overground and 
outside of the lab in more realistic, complex settings. (Figure created by Seongmi Song using biorender.com). 

Fig. 6. Gait-related spectral perturbation plots from the left and right senso
rimotor cortex during normal treadmill walking at 1.2 m/s. These plots illus
trate the lateralization of alpha and beta spectral power fluctuations that are 
typically observed in sensorimotor cortices related to the gait cycle. These plots 
were created from a split-belt walking study (Jacobsen and Ferris, 2023b). Blue 
shows decreases in spectral power that occur with desynchronization and red 
shows increases in spectral power that occur with synchronization. 
(Figure created by Noelle Jacobsen). 
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activity modulations in supplementary motor, parietal, and frontal areas 
following step pacing cue tempo perturbations. Similarly, Malcolm et al. 
(2018) modified optic flow while walking, which yielded modulations in 
the supplementary motor area, the anterior cingulate cortex, the inferior 
parietal lobule, and the precuneus. Closing the eyes during walking has 
also changed spectral power fluctuations in frontal, premotor and so
matosensory cortices (Oliveira et al., 2017). Theta desynchronization 
was reduced in frontal and premotor cortices during stance and theta to 
beta desynchronization was increased during single support and right 
swing phases in left and right sensorimotor cortices. Altogether, the 
results of these studies suggest that when one sensory modality is not 
available or inaccurate, sensory reweighting may increase cortical 
spectral power fluctuations within the gait cycle related to sensory 
processing and integration of the remaining sensory modalities. 

A few experiments have looked at brain activity during obstacle 
avoidance in human locomotion, and found robust electrocortical sig
natures (Mustile et al., 2021; Nordin et al., 2019; Salazar-Varas et al., 
2015). Salazar-Varas et al. (2015) found a change in potential before 
participants reacted to an obstacle, suggesting alertness to the obstacle’s 
appearance and preparation for a reaction. Nordin et al. (2019) found 
increases in spectral power for delta, theta, and alpha bands in supple
mentary motor area, premotor cortex after participants initially saw an 
obstacle appear in their path. Later, in the penultimate step before 
crossing the obstacle, the posterior parietal cortex also showed increases 
in spectral power. They suggested that the supplementary motor area 
and premotor cortex prime locomotor control to expect descending 
modifications to the gait cycle. In contrast, the posterior parietal cortex 
was likely involved in planning foot placement in anticipation of step
ping over the obstacle (Nordin et al., 2019). Mustile et al. (2021) studied 
avoidance of expected and unexpected obstacles during walking. They 
found increased frontal theta power when an unexpected obstacle 
appeared on the path, which was larger when less time and space was 
available to adjust. The authors suggested this was evidence of proactive 
control mechanisms in response to unexpected obstacles. They also 
observed a greater decrease in beta power in sensorimotor areas when 
obstacles were present, demonstrating increased motor readiness during 
obstacle avoidance. Participants also had increased parietal beta power 
after obstacle crossing, evidence of a reactive phase consisting of 
resetting the motor system to its previous state once the obstacle has 
been negotiated. These studies suggest multiple cortical areas are 
involved with identifying and adapting locomotor control to unexpected 
obstacles. These findings do not always agree with theoretical in
terpretations from local field potentials in non-human animals (Drew 
and Marigold, 2015). The main difference in the animal studies is they 
have used a limited number of brain areas. Future studies on humans 
with mobile EEG in interactive environments would help provide a more 
comprehensive view. 

Experiments inducing changes in walking pattern indicate major 
roles for sensorimotor, posterior parietal, and anterior cingulate cortices 
in controlling gait adaptation. In a recent study of split-belt treadmill 
adaptation, a common paradigm for studying behavioral metrics in gait 
adaptation, Jacobsen and Ferris (2023a) found sensorimotor and pos
terior parietal cortices had decreased alpha and beta band spectral 
power during early adaptation to split-belt treadmill walking. The 
spectral power in both areas returned to pre-adaptation levels by the end 
of the adaptation training period when gait kinematics had stabilized. 
There were also strong increases in anterior cingulate and posterior 
cingulate theta band power with the initial gait perturbation of the 
split-belt treadmill speed differential. When comparing the adaptation 
time constants for kinematics versus the adaptation time constants for 
electrocortical measures, the electrocortical time constants were 
generally longer (Jacobsen et al., 2023). This suggests that the changes 
in brain dynamics were longer-lasting than the changes in stepping 
timing. Wagner et al. (2016) used a much shorter duration adjustment in 
step frequency and length based on an audio tone, but they also found a 
similar reduction in beta band power for the sensorimotor and posterior 

parietal cortices. Overall, these observations about gait adaptation are in 
keeping with the previously discussed observations about gait pertur
bations and stability. 

Several studies, although quite informative about the neural control 
of balance, are focused on standing balance control and fall outside of 
the scope of this review. For example, a series of experiments provide 
insight into cortical dynamics during reactive stepping responses (Ghosn 
et al., 2020; Solis-Escalante et al., 2019, 2020, 2021; Stokkermans et al., 
2022). We would like to refer readers to these recent review papers that 
offer an excellent summary of the cortical activation in balance control: 
Huang and Ferris (2023), Payne et al. (2019), Purohit and Bhatt (2022), 
Varghese et al. (2017), and Wittenberg et al. (2017). 

Corticocortical and corticomuscular coherence during walking 

The high temporal resolution of EEG makes it an ideal modality for 
studying connectivity during human locomotion. Lau et al. (2014) found 
greater effective connectivity between other brain areas and the senso
rimotor cortex during standing compared to walking. They interpreted 
this finding in that standing had greater cortical involvement for control 
compared to walking. Peterson and Ferris (2019b) reported that effec
tive alpha connectivity between parietal and occipital areas decreased 
with visual perturbations during walking, and effective theta connec
tivity between supplementary motor area and sensorimotor, anterior 
parietal, anterior cingulate, and right occipital areas increased with 
physical perturbations during walking. Both findings are consistent with 
theories on sensory re-weighting and error processing. 

With inclusion of electromyography measurements, it is possible to 
combine EEG metrics and EMG metrics to assess corticomuscular 
coherence during walking (Artoni et al., 2017; Brantley et al., 2016; 
Jensen et al., 2018, 2019; Petersen et al., 2012; Roeder et al., 2018; 
Winslow et al., 2016). Corticomuscular coherence can help provide 
insight into flow of motor commands and sensory feedback from the 
periphery. Petersen et al. (2012) and Winslow et al. (2016) found 
coherence between the primary motor cortex and tibialis anterior muscle 
activity in the beta and low gamma bands, as was expected given the 
strong link between motor cortex and that muscle during gait (Capaday 
et al., 1999). Artoni et al. (2017) examined the link between brain and 
muscle including direction of information flow during walking in mul
tiple participants. Brain-to-muscle connectivity was stronger than 
muscle-to-brain connectivity and motor regions had a stronger causal 
influence on leg muscle activity than the non-motor regions, demon
strating the supraspinal involvement in human locomotion. They also 
found that connectivity was strongest for distal muscles of the swing leg, 
which suggests that cortical control is important for ankle dorsiflexion 
and correct foot placement. Roeder et al. (2018) examined cortico
muscular coherence using bilateral EEG from the sensorimotor cortices 
and bilateral EMG from the tibialis anterior. They found increased cor
ticomuscular coherence during double support at frequencies between 
0 and 45 Hz, with EEG signals leading the EMG signals in alpha, beta, 
and gamma bands. In 2019, Jensen et al. recorded EEG with one elec
trode over the leg motor cortex area and muscle activity of the medial 
gastrocnemius and soleus muscles and looked at corticomuscular coher
ence (Jensen et al., 2019). They found coherence in the beta and gamma 
frequency bands throughout the stance phase, with EEG activity pre
ceding EMG activity throughout stance and until push-off. They suggest 
that these findings illustrate the motor cortical contribution to plantar 
flexor activity in the stance phase of gait and its contribution to forward 
propulsion during walking. 

Invasive EEG 

While the previously reported data were acquired through non- 
invasive methods, there are a few experiments that have evaluated 
electrocortical locomotor activity using invasive recordings. Stark
weather et al. (2023) placed temporary electrode strips over the upper 
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limb area of the primary motor cortex in deep brain stimulation patients 
with Parkinson’s disease and essential tremor and found different 
oscillatory signatures between stepping motions and the arm swing. An 
experiment by McCrimmon et al. (2018) used electrode grids implanted 
in epileptic patients to examine the human leg area of the primary motor 
cortex. They provide evidence that the primary motor cortex is involved 
in the control of walking. They observed a gamma-band synchronization 
at gait initiation which was maintained during the entire walking bout, 
indicating that the primary motor cortex is involved not only for gait 
initiation but throughout the walking duration. Gamma activity also 
changed across the gait cycle at various walking speeds, suggesting that 
the primary motor cortex encodes gait speed. Authors note that the 
gamma-band activity was related to motor intention and not caused by 
sensory feedback. Interestingly, isolated contraction of ankle and hip 
muscles did not produce the same electrocortical patterns as walking, 
suggesting that the primary motor cortex encodes walking duration and 
speed but not muscle activation patterns or movement trajectories 
(McCrimmon et al., 2018). It is possible that the primary motor cortex 
provides rhythmic input to the spinal central pattern generators during 
walking (McCrimmon et al., 2018). 

Other experiments have started to use neurostimulator devices that 
are implanted for clinical purposes to record intracranial EEG. Similar to 
the electrode grids, these devices are resistant to motion artifacts, allow 
access to deep brain structures, and offer the possibility to record data 
for extended periods of time. They also allow researchers to examine 
causal relationships between stimulated brain areas and behavior 
(Stangl et al., 2023). Aghajan et al. (2017) looked at theta-band activity 
during walking to confirm if theta activity observed in rodents was also 
present in humans. Walking was done either in a straight line or a cir
cular path at both slow and fast speeds. They found that theta power was 
significantly higher when participants were in movement compared to 
when they were immobile and that these oscillations occurred in short 
bouts that were more prevalent during fast movements (Aghajan et al., 
2017). As presented in the overview by Maoz et al. (2023), there are not 
many studies that have used neurostimulator devices to examine human 
walking yet, but these methods will enable us to gain valuable infor
mation about the electrocortical contributions to walking in natural 
settings. 

Next steps in EEG research 

The rapid progress in EEG hardware and processing methods that has 
occurred over the last decade has led to a plethora of new studies on 
mobile EEG. Many of the resulting data collections are available freely 
on various platforms. For example, platforms such as OpenNeuro (htt 
ps://openneuro.org/) and Nemar (https://nemar.org/) are specific to 
brain imaging datasets, while other platforms such as IEEEDataPort 
(https://ieee-dataport.org/) and PhysioNet (https://physionet.org/) 
offer more general open access datasets. There is therefore a large 
number of online datasets that can benefit from further analysis from 
other research groups. Analyzing these data with best practice pro
cessing methods and new research questions will yield an even greater 
understanding of the electrocortical contributions to human walking. In 
addition, there is a known problem with replication of results in EEG 
experiments (Pavlov et al., 2021). EEG data are complex and can be 
preprocessed and analyzed in many different ways, which contributes to 
this problem. In addition, the complexity and cost of the work can lead 
to small sample sizes (Pavlov et al., 2021). The online databases that are 
now available offer us the opportunity to overcome these issues by 
demonstrating replication of results and ensuring rigor in our data. To 
help with the problem with replication of results, researchers also need 
to discuss best practices in the field, which will continue to evolve as 
new processing methods are developed (Miljevic et al., 2022; Pernet 
et al., 2020). 

Because of the surge of research in mobile EEG, there has been a 
recent proliferation of available commercial EEG hardware (C. He et al., 

2023; Niso et al., 2023). Niso et al. (2023) report on 48 wireless systems, 
and this number will continue to rise in coming years. Systems vary 
based on factors such as density and type of electrodes, weight and 
portability, ease of setup, cost, battery life, real-time access, and addi
tional sensors. Care must be taken when selecting an EEG system, to 
ensure an adequate signal quality based on the desired application. For 
mobile EEG research, high-density wireless systems are preferred (C. He 
et al., 2023). On a positive note, a comparison of two research-grade 
systems, a mobile system with dry electrodes, and an affordable 
low-density mobile system has demonstrated that the variability in 
systems is negligible as long as you use a quality system (Melnik et al., 
2017). In addition, there was very little intersession variability, indi
cating that testing participants only once is sufficient (Melnik et al., 
2017). 

Limitations 

We have focused the majority of this review on a discussion of the 
technical approaches and scientific findings of mobile brain imaging 
with high-density EEG to provide new insight into the control of human 
locomotion in healthy young adults. There are many other studies 
focused on clinical populations that we have not discussed, primarily 
due to the complexity of interpreting data from neurologically impaired 
individuals. In addition, the effect of aging on the control of human 
locomotion was not discussed. Another limitation of the review is the 
lack of discussion on higher order cognition studies, such as those 
focusing on navigation and social interactions. Those topics have also 
become popular due to technical advances in mobile EEG, and the in
crease in research in those areas is likely to continue. Lastly, there are 
very many studies on mobile EEG that analyze their data in sensor space 
(i.e., electrode averages) rather than source space (i.e., brain areas), that 
we have not discussed. It is hard to have great confidence in which brain 
area is contributing most to a sensor level signal (Makeig et al., 2002, 
2004). 

Conclusions 

New hardware and signal processing approaches for mobile EEG 
have greatly expanded our appreciation of the involvement of brain 
areas in the control of human locomotion. The reasonable spatial reso
lution and excellent temporal resolution allow source localized elec
trocortical activity to inform scientists about the tonic and phasic 
changes in brain activity that correlate with gait speed, stability, per
turbations, and adaptation. Perhaps surprisingly, the strong presence of 
spectral power fluctuations within the anterior cingulate, posterior pa
rietal, occipital, and posterior cingulate areas shows robust results to 
gait behaviors in addition to the expected presence of spectral power 
fluctuations within the sensorimotor cortex. The coming years should 
bring a large increase in controlled experiments that directly manipulate 
gait parameters and biomechanics to specifically test focused hypothe
ses on electrocortical activity. We really are just scratching the surface of 
understanding brain control of human locomotion at this point, but we 
are very optimistic for the future given the advances in mobile brain 
imaging technologies. 
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Gevins, A.S., Rémond, A., 1987. Handbook of electroencephalography and clinical 
neurophysiology, Methods of analysis of brain electrical and magnetic signals. 
Elsevier. 

Ghosn, N.J., Palmer, J.A., Borich, M.R., Ting, L.H., Payne, A.M., 2020. Cortical Beta 
Oscillatory Activity Evoked during Reactive Balance Recovery Scales with 
Perturbation Difficulty and Individual Balance Ability. Brain Sci. 10 (11), 1–18. 
https://doi.org/10.3390/BRAINSCI10110860. 

Gonsisko, C.B., Ferris, D.P., Downey, R.J., 2023. iCanClean Improves Independent 
Component Analysis of Mobile Brain Imaging with EEG. Sensors 23 (2). https://doi. 
org/10.3390/s23020928. 

Gramann, K., Gwin, J.T., Bigdely-Shamlo, N., Ferris, D.P., Makeig, S., 2010. Visual 
evoked responses during standing and walking. Front. Hum. Neurosci. 4, 1–12. 
https://doi.org/10.3389/fnhum.2010.00202. 

Gramann, K., Gwin, J.T., Ferris, D.P., Oie, K., Jung, T.-P., Lin, C.-T., Liao, L.-D., 
Makeig, S., 2011. Cognition in action: imaging brain/body dynamics in mobile 
humans. Rev. Neurosci. 22 (6), 593–608. https://doi.org/10.1515/RNS.2011.047. 

Grillner, S., Wallén, P., 1985. Central Pattern Generators for Locomotion, with Special 
Reference to Vertebrates. Annu. Rev. Neurosci. 8, 233–261. 

Grillner, S., Zangger, P., 1979. On the central generation of locomotion in the low spinal 
cat. Exp. Brain Res. 34 (2), 241–261. https://doi.org/10.1007/BF00235671. 

Grillner, S., Wallén, P., Saitoh, K., Kozlov, A., Robertson, B., 2008. Neural bases of goal- 
directed locomotion in vertebrates–an overview. Brain Res. Rev. 57 (1), 2–12. 
https://doi.org/10.1016/j.brainresrev.2007.06.027. 

Guertin, P.A., 2013. Central Pattern Generator for Locomotion: Anatomical, 
Physiological, and Pathophysiological Considerations. Front. Neurol. 3, 183. https:// 
doi.org/10.3389/fneur.2012.00183. 

Gwin, J.T., Gramann, K., Makeig, S., Ferris, D.P., 2010. Removal of Movement Artifact 
From High-Density EEG Recorded During Walking and Running. J. Neurophysiol. 
103 (6), 3526–3534. https://doi.org/10.1152/jn.00105.2010. 

Gwin, J.T., Gramann, K., Makeig, S., Ferris, D.P., 2011. Electrocortical activity is coupled 
to gait cycle phase during treadmill walking. NeuroImage 54 (2), 1289–1296. 
https://doi.org/10.1016/j.neuroimage.2010.08.066. 

Haeussinger, F.B., Dresler, T., Heinzel, S., Schecklmann, M., Fallgatter, A.J., Ehlis, A.C., 
2014. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired 
by extra-cranial confounds: An easy-to-use filter method. NeuroImage 95, 69–79. 
https://doi.org/10.1016/J.NEUROIMAGE.2014.02.035. 

Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A., D’asseler, Y., 
Camilleri, K.P., Fabri, S.G., Huffel, S., Van, Lemahieu, I., 2007. Rev. Solving Forw. 
Probl. EEG Source Anal. https://doi.org/10.1186/1743-0003-4-46. 

Hamacher, D., Herold, F., Wiegel, P., Hamacher, D., Schega, L., 2015. Brain activity 
during walking: A systematic review. Neurosci. Biobehav. Rev. 57, 310–327. https:// 
doi.org/10.1016/J.NEUBIOREV.2015.08.002. 

Hanakawa, T., Fukuyama, H., Katsumi, Y., Honda, M., Shibasaki, H., 1999. Enhanc. 
Lateral Premotor Act. Paradox-.-. Gait Park. ’S. Dis. 

Hanakawa, T., Katsumi, Y., Fukuyama, H., Honda, M., Hayashi, T., Kimura, J., 
Shibasaki, H., 1999. Mechanisms underlying gait disturbance in Parkinson’s 
diseaseA single photon emission computed tomography study. Brain 122 (7), 
1271–1282. https://doi.org/10.1093/BRAIN/122.7.1271. 

Harada, T., Miyai, I., Suzuki, M., Kubota, K., 2009. Gait capacity affects cortical 
activation patterns related to speed control in the elderly. Exp. Brain Res. 193 (3), 
445–454. https://doi.org/10.1007/S00221-008-1643-Y/FIGURES/5. 

Hari, R., Puce, A., 2017. MEG-EEG Primer. Oxford University Press. 
Hausdorff, J.M., Lowenthal, J., Herman, T., Gruendlinger, L., Peretz, C., Giladi, N., 2007. 

Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. 
Eur. J. Neurosci. 26 (8), 2369–2375. https://doi.org/10.1111/j.1460- 
9568.2007.05810.x. 

He, B., Liu, Z., 2008. Multimodal Functional Neuroimaging: Integrating Functional MRI 
and EEG/MEG. IEEE Rev. Biomed. Eng. 1, 23–40. https://doi.org/10.1109/ 
RBME.2008.2008233. 

He, B., Yang, L., Wilke, C., Yuan, H., 2011. Electrophysiological imaging of brain activity 
and connectivity-challenges and opportunities. IEEE Trans. Biomed. Eng. 58 (7), 
1918–1931. https://doi.org/10.1109/TBME.2011.2139210. 

He, B., Sohrabpour, A., Brown, E., Liu, Z., 2018. Electrophysiological Source Imaging: A 
Noninvasive Window to Brain Dynamics. Annu. Rev. Biomed. Eng. 20, 171–196. 
https://doi.org/10.1146/annurev-bioeng-062117-120853. 

He, C., Chen, Y.Y., Phang, C.R., Stevenson, C., Chen, I.P., Jung, T.P., Ko, L.W., 2023. 
Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems 
Review. IEEE J. Biomed. Health Inform. 27 (8), 3830–3843. https://doi.org/ 
10.1109/JBHI.2023.3239053. 

van Hedel, H.J., Dietz, V., 2010. Rehabilitation of locomotion after spinal cord injury. 
Restor. Neurol. Neurosci. 28, 119–130. https://doi.org/10.3233/RNN-2010-0508. 

Hermes, D., Nguyen, M., Winawer, J., 2017. Neuronal synchrony and the relation 
between the blood-oxygen-level dependent response and the local field potential. 
PLOS Biol. 15 (7), e2001461 https://doi.org/10.1371/JOURNAL.PBIO.2001461. 

Herold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., Schega, L., 2017. 
Functional near-infrared spectroscopy in movement science: a systematic review on 
cortical activity in postural and walking tasks. Neurophotonics 4 (4), 041403. 
https://doi.org/10.1117/1.NPH.4.4.041403. 

Hipp, J.F., Siegel, M., 2015. BOLD fMRI correlation reflects frequency-specific neuronal 
correlation. Curr. Biol. 25 (10), 1368–1374. https://doi.org/10.1016/j. 
cub.2015.03.049. 

Hollnagel, C., Brügger, M., Vallery, H., Wolf, P., Dietz, V., Kollias, S., Riener, R., 2011. 
Brain activity during stepping: a novel MRI-compatible device. J. Neurosci. Methods 
201 (1), 124–130. https://doi.org/10.1016/J.JNEUMETH.2011.07.022. 

Holtzer, R., Mahoney, J.R., Izzetoglu, M., Izzetoglu, K., Onaral, B., Verghese, J., 2011. 
fNIRS study of walking and walking while talking in young and old individuals. 
J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 66A (8), 879–887. https://doi.org/10.1093/ 
gerona/glr068. 

Huang, H.J., Ferris, D.P., 2023. Non-invasive brain imaging to advance the 
understanding of human balance. e100505–e100505 Curr. Opin. Biomed. Eng. 28. 
https://doi.org/10.1016/j.cobme.2023.100505. 

Hughes, G.M., Wiersma, C.A.G., 1960. The Co-ordination of Swimmeret Movements in 
the Crayfish, Procambarus clarkii (Girard). J. Exp. Biol. 37 (4), 657–670. https://doi. 
org/10.1242/jeb.37.4.657. 

Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and 
applications. Neural Netw. 13, 411–430. https://doi.org/10.7819/rbgn. 
v19i63.1905. 

Indiradevi, K.P., Elias, E., Sathidevi, P.S., Dinesh Nayak, S., Radhakrishnan, K., 2008. 
A multi-level wavelet approach for automatic detection of epileptic spikes in the 
electroencephalogram. Comput. Biol. Med. 38 (7), 805–816. https://doi.org/ 
10.1016/J.COMPBIOMED.2008.04.010. 

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2004. Five basic muscle activation patterns 
account for muscle activity during human locomotion. J. Physiol. 556 (Pt 1), 
267–282. https://doi.org/10.1113/JPHYSIOL.2003.057174. 

Iyer, D., Zouridakis, G., 2007. Single-trial evoked potential estimation: comparison 
between independent component analysis and wavelet denoising. Clin. 
Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 118 (3), 495–504. https://doi. 
org/10.1016/J.CLINPH.2006.10.024. 

Jacobsen, N.A., Ferris, D.P., 2023a. Electrocortical activity correlated with locomotor 
adaptation during split-belt treadmill walking. J. Physiol. 601 (17), 3921–3944. 
https://doi.org/10.1113/JP284505. 

Jacobsen, N.A., Ferris, D.P., 2023b. OpenNeuro [Dataset. Mob. EEG Split-Belt. Walk. 
Study. https://doi.org/10.18112/openneuro.ds004475.v1.0.0. 

Jacobsen, N.A., Prieschl, J.C., Ferris, D.P., 2023. Timescales of the posterior parietal 
cortex during locomotor adaptation. Int. IEEE/EMBS Conf. Neural Eng., NER, 2023- 
April. https://doi.org/10.1109/NER52421.2023.10123818. 

Jaeger, L., Marchal-Crespo, L., Wolf, P., Riener, R., Michels, L., Kollias, S., 2014. Brain 
activation associated with active and passive lower limb stepping. Front. Hum. 
Neurosci. 8, 828. https://doi.org/10.3389/fnhum.2014.00828. 

Jahn, K., Deutschländer, A., Stephan, T., Strupp, M., Wiesmann, M., Brandt, T., 2004. 
Brain activation patterns during imagined stance and locomotion in functional 
magnetic resonance imaging. NeuroImage 22 (4), 1722–1731. https://doi.org/ 
10.1016/J.NEUROIMAGE.2004.05.017. 

Jahn, K., Deutschländer, A., Stephan, T., Kalla, R., Wiesmann, M., Strupp, M., Brandt, T., 
2008. Imaging human supraspinal locomotor centers in brainstem and cerebellum. 
NeuroImage 39 (2), 786–792. https://doi.org/10.1016/J. 
NEUROIMAGE.2007.09.047. 

Jahn, K., Deutschländer, A., Stephan, T., Kalla, R., Hüfner, K., Wagner, J., Strupp, M., 
Brandt, T., 2008. Supraspinal locomotor control in quadrupeds and humans. Prog. 
Brain Res. 171, 353–362. https://doi.org/10.1016/S0079-6123(08)00652-3. 

Jain, S., Gourab, K., Schindler-Ivens, S., Schmit, B.D., 2013. EEG during pedaling: 
Evidence for cortical control of locomotor tasks. Clin. Neurophysiol. 124 (2), 
379–390. https://doi.org/10.1016/j.clinph.2012.08.021. 

Jasper, H.H., 1936. Cortical excitatory state and variability in human brain rhythms. 
Science 83 (2150), 259–260. https://doi.org/10.1126/SCIENCE.83.2150.259/ 
ASSET/D7710AC2-6FFF-4739-8DD1-7E7E1CA1ADCB/ASSETS/ 
SCIENCE.83.2150.259.FP.PNG. 

Jensen, P., Jensen, N.J., Terkildsen, C.U., Choi, J.T., Nielsen, J.B., Geertsen, S.S., 2018. 
Increased central common drive to ankle plantar flexor and dorsiflexor muscles 
during visually guided gait. Physiol. Rep. 6 (3), 1–11. https://doi.org/10.14814/ 
phy2.13598. 

Jensen, P., Frisk, R., Spedden, M.E., Geertsen, S.S., Bouyer, L.J., Halliday, D.M., 
Nielsen, J.B., 2019. Using Corticomuscular and Intermuscular Coherence to Assess 
Cortical Contribution to Ankle Plantar Flexor Activity During Gait. J. Mot. Behav. 51 
(6), 668–680. https://doi.org/10.1080/00222895.2018.1563762. 

Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., 
Sejnowski, T.J., 2000. Removing electroencephalographic artifacts by blind source 
separation. Psychophysiology 37 (2), 163–178. https://doi.org/10.1111/1469- 
8986.3720163. 

Kawashima, N., Nakazawa, K., Akai, M., 2008. Characteristics of the locomotor-like 
muscle activity during orthotic gait in paraplegic persons. Neurol. Res. 30 (1), 
36–45. https://doi.org/10.1179/016164107×235482. 

Kerick, S.E., Oie, K.S., McDowell, K., 2009. Assessment of EEG signal quality in motion 
environments. Army Res. Lab. (Issue June) 〈https://apps.dtic.mil/sti/citations/AD 
A506020〉. 

Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Brühl, R., Ittermann, B., 
Jacobs, A.M., Tachtsidis, I., 2012. The physiological origin of task-evoked systemic 
artefacts in functional near infrared spectroscopy. NeuroImage 61 (1), 70–81. 
https://doi.org/10.1016/J.NEUROIMAGE.2012.02.074. 

Kline, J.E., Huang, H.J., Snyder, K.L., Ferris, D.P., 2015. Isolating gait-related movement 
artifacts in electroencephalography during human walking. J. Neural Eng. 12 (4) 
https://doi.org/10.1088/1741-2560/12/4/046022. 

N. Richer et al.                                                                                                                                                                                                                                  

https://doi.org/10.1177/155005941004100111
https://doi.org/10.1109/LSP.2009.2037773
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref54
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref54
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref55
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref55
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref55
https://doi.org/10.3390/BRAINSCI10110860
https://doi.org/10.3390/s23020928
https://doi.org/10.3390/s23020928
https://doi.org/10.3389/fnhum.2010.00202
https://doi.org/10.1515/RNS.2011.047
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref60
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref60
https://doi.org/10.1007/BF00235671
https://doi.org/10.1016/j.brainresrev.2007.06.027
https://doi.org/10.3389/fneur.2012.00183
https://doi.org/10.3389/fneur.2012.00183
https://doi.org/10.1152/jn.00105.2010
https://doi.org/10.1016/j.neuroimage.2010.08.066
https://doi.org/10.1016/J.NEUROIMAGE.2014.02.035
https://doi.org/10.1186/1743-0003-4-46
https://doi.org/10.1016/J.NEUBIOREV.2015.08.002
https://doi.org/10.1016/J.NEUBIOREV.2015.08.002
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref69
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref69
https://doi.org/10.1093/BRAIN/122.7.1271
https://doi.org/10.1007/S00221-008-1643-Y/FIGURES/5
http://refhub.elsevier.com/S0149-7634(24)00187-8/sbref72
https://doi.org/10.1111/j.1460-9568.2007.05810.x
https://doi.org/10.1111/j.1460-9568.2007.05810.x
https://doi.org/10.1109/RBME.2008.2008233
https://doi.org/10.1109/RBME.2008.2008233
https://doi.org/10.1109/TBME.2011.2139210
https://doi.org/10.1146/annurev-bioeng-062117-120853
https://doi.org/10.1109/JBHI.2023.3239053
https://doi.org/10.1109/JBHI.2023.3239053
https://doi.org/10.3233/RNN-2010-0508
https://doi.org/10.1371/JOURNAL.PBIO.2001461
https://doi.org/10.1117/1.NPH.4.4.041403
https://doi.org/10.1016/j.cub.2015.03.049
https://doi.org/10.1016/j.cub.2015.03.049
https://doi.org/10.1016/J.JNEUMETH.2011.07.022
https://doi.org/10.1093/gerona/glr068
https://doi.org/10.1093/gerona/glr068
https://doi.org/10.1016/j.cobme.2023.100505
https://doi.org/10.1242/jeb.37.4.657
https://doi.org/10.1242/jeb.37.4.657
https://doi.org/10.7819/rbgn.v19i63.1905
https://doi.org/10.7819/rbgn.v19i63.1905
https://doi.org/10.1016/J.COMPBIOMED.2008.04.010
https://doi.org/10.1016/J.COMPBIOMED.2008.04.010
https://doi.org/10.1113/JPHYSIOL.2003.057174
https://doi.org/10.1016/J.CLINPH.2006.10.024
https://doi.org/10.1016/J.CLINPH.2006.10.024
https://doi.org/10.1113/JP284505
https://doi.org/10.18112/openneuro.ds004475.v1.0.0
https://doi.org/10.1109/NER52421.2023.10123818
https://doi.org/10.3389/fnhum.2014.00828
https://doi.org/10.1016/J.NEUROIMAGE.2004.05.017
https://doi.org/10.1016/J.NEUROIMAGE.2004.05.017
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.047
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.047
https://doi.org/10.1016/S0079-6123(08)00652-3
https://doi.org/10.1016/j.clinph.2012.08.021
https://doi.org/10.1126/SCIENCE.83.2150.259/ASSET/D7710AC2-6FFF-4739-8DD1-7E7E1CA1ADCB/ASSETS/SCIENCE.83.2150.259.FP.PNG
https://doi.org/10.1126/SCIENCE.83.2150.259/ASSET/D7710AC2-6FFF-4739-8DD1-7E7E1CA1ADCB/ASSETS/SCIENCE.83.2150.259.FP.PNG
https://doi.org/10.1126/SCIENCE.83.2150.259/ASSET/D7710AC2-6FFF-4739-8DD1-7E7E1CA1ADCB/ASSETS/SCIENCE.83.2150.259.FP.PNG
https://doi.org/10.14814/phy2.13598
https://doi.org/10.14814/phy2.13598
https://doi.org/10.1080/00222895.2018.1563762
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1179/016164107&times;235482
https://apps.dtic.mil/sti/citations/ADA506020
https://apps.dtic.mil/sti/citations/ADA506020
https://doi.org/10.1016/J.NEUROIMAGE.2012.02.074
https://doi.org/10.1088/1741-2560/12/4/046022


Neuroscience and Biobehavioral Reviews 162 (2024) 105718

21

Knikou, M., 2012. Plasticity of corticospinal neural control after locomotor training in 
human spinal cord injury. Neural Plast. 2012, 254948 https://doi.org/10.1155/ 
2012/254948. 

Koenraadt, K.L.M., Roelofsen, E.G.J., Duysens, J., Keijsers, N.L.W., 2014. Cortical control 
of normal gait and precision stepping: an fNIRS study. NeuroImage 85 Pt 1, 415–422. 
https://doi.org/10.1016/J.NEUROIMAGE.2013.04.070. 

Krishnaveni, V., Jayaraman, S., Anitha, L., Ramadoss, K., 2006. Removal of ocular 
artifacts from EEG using adaptive thresholding of wavelet coefficients. J. Neural Eng. 
3 (4), 338–346. https://doi.org/10.1088/1741-2560/3/4/011. 

Kurz, M.J., Wilson, T.W., Arpin, D.J., 2012. Stride-time variability and sensorimotor 
cortical activation during walking. NeuroImage 59 (2), 1602–1607. https://doi.org/ 
10.1016/J.NEUROIMAGE.2011.08.084. 

Laessoe, U., Hoeck, H.C., Simonsen, O., Voigt, M., 2008. Residual attentional capacity 
amongst young and elderly during dual and triple task walking. Hum. Mov. Sci. 27 
(3), 496–512. https://doi.org/10.1016/j.humov.2007.12.001. 

Lam, T., Pearson, K.G., 2002. The role of proprioceptive feedback in the regulation and 
adaptation of locomotor activity. Adv. Exp. Med. Biol. 508, 343–355. https://doi. 
org/10.1007/978-1-4615-0713-0_40. 

Lau, T.M., Gwin, J.T., Ferris, D.P., 2014. Walking reduces sensorimotor network 
connectivity compared to standing. J. Neuroeng. Rehabil. 11 (1), 1–10. https://doi. 
org/10.1186/1743-0003-11-14. 

Leff, D.R., Orihuela-Espina, F., Elwell, C.E., Athanasiou, T., Delpy, D.T., Darzi, A.W., 
Yang, G.-Z., 2011. Assessment of the cerebral cortex during motor task behaviours in 
adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. 
NeuroImage 54 (4), 2922–2936. https://doi.org/10.1016/j. 
neuroimage.2010.10.058. 

Lisi, G., Morimoto, J., 2015. EEG single-trial detection of gait speed changes during 
treadmill walk. PLoS ONE 10 (5), 1–28. https://doi.org/10.1371/journal. 
pone.0125479. 

Liu, C., Downey, R.J., Mu, Y., Richer, N., Hwang, J., Shah, V.A., Sato, S.D., Clark, D.J., 
Hass, C.J., Manini, T.M., Seidler, R.D., Ferris, D.P., 2023. Comparison of EEG Source 
Localization Using Simplified and Anatomically Accurate Head Models in Younger 
and Older Adults. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 2591–2602. https://doi. 
org/10.1109/TNSRE.2023.3281356. 

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001. 
Neurophysiological investigation of the basis of the fMRI signal. Nature 412 (6843), 
150–157. https://doi.org/10.1038/35084005. 

Lovely, R.G., Gregor, R.J., Roy, R.R., Edgerton, V.R., 1986. Effects of training on the 
recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92 (2), 
421–435. https://doi.org/10.1016/0014-4886(86)90094-4. 

Luck, S.J., 2014. An Introduction to the Event-Related Potential Technique (Second Edi). The 
MIT Press. 

Luu, T.P., Brantley, J.A., Zhu, F., Contreras-Vidal, J.L., 2017. Electrocortical amplitude 
modulations of human level-ground, slope, and stair walking. Proc. Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc., EMBS 1913–1916. https://doi.org/10.1109/ 
EMBC.2017.8037222. 

Luu, T.P., Nakagome, S., He, Y., Contreras-Vidal, J.L., 2017. Real-time EEG-based brain- 
computer interface to a virtual avatar enhances cortical involvement in human 
treadmill walking. Sci. Rep. 7 (1), 1–12. https://doi.org/10.1038/s41598-017- 
09187-0. 

Luu, T.P., Brantley, J.A., Nakagome, S., Zhu, F., Contreras-Vidal, J.L., 2017. 
Electrocortical correlates of human level-ground, slope, and stair walking. PLoS ONE 
12 (11), 1–15. https://doi.org/10.1371/journal.pone.0188500. 

Makeig, S., 1993. Auditory event-related dynamics of the EEG spectrum and effects of 
exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86 (4), 283–293. https:// 
doi.org/10.1016/0013-4694(93)90110-H. 

Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J., 1996. Independent Component 
Analysis of Electroencephalographic Data. In: Touretzky, D., Mozer, M., 
Hasselmo, M. (Eds.), Advances in Neural Information Processing Systems, Vol. 8. 
MIT Press. 

Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., 
Sejnowski, T.J., 2002. Dynamic brain sources of visual evoked responses. Sci. (N. Y., 
N. Y. ) 295 (5555), 690–694. https://doi.org/10.1126/SCIENCE.1066168. 

Makeig, S., Debener, S., Onton, J., Delorme, A., 2004. Mining event-related brain 
dynamics. Trends Cogn. Sci. 8 (5), 204–210. https://doi.org/10.1016/j. 
tics.2004.03.008. 

Makeig, S., Gramann, K., Jung, T.-P., Sejnowski, T.J., Poizner, H., 2009. Linking brain, 
mind and behavior. Int. J. Psychophysiol.: Off. J. Int. Organ. Psychophysiol. 73 (2), 
95–100. https://doi.org/10.1016/J.IJPSYCHO.2008.11.008. 

Malcolm, B.R., Foxe, J.J., Butler, J.S., Molholm, S., De Sanctis, P., 2018. Cognitive load 
reduces the effects of optic flow on gait and electrocortical dynamics during 
treadmill walking. J. Neurophysiol. 120, 2246–2259. https://doi.org/10.1152/ 
jn.00079.2018.-During. 

Malouin, F., Richards, C.L., Jackson, P.L., Dumas, F., Doyon, J., 2003. Brain activations 
during motor imagery of locomotor-related tasks: a PET study. Hum. Brain Mapp. 19 
(1), 47–62. https://doi.org/10.1002/HBM.10103. 

Maoz, S.L., Stangl, M., Topalovic, U., Suthana, N., 2023. Future iEEG: What Are Promises 
Chall. Mob. iEEG Rec. ? 891–906. https://doi.org/10.1007/978-3-031-20910-9_53. 

McCrimmon, C.M., Wang, P.T., Heydari, P., Nguyen, A., Shaw, S.J., Gong, H., Chui, L.A., 
Liu, C.Y., Nenadic, Z., Do, A.H., 2018. Electrocorticographic encoding of human gait 
in the leg primary motor cortex. Cereb. Cortex 28 (8), 2752–2762. https://doi.org/ 
10.1093/cercor/bhx155. 

Meester, D., Al-Yahya, E., Dawes, H., Martin-Fagg, P., Piñon, C., 2014. Associations 
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