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Our understanding of the neural control of human walking has changed significantly over the last twenty years
and mobile brain imaging methods have contributed substantially to current knowledge. High-density electro-
encephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution
of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a prolif-
eration of research on the neural control of locomotion in neurologically intact adults. We provide a narrative
review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings
from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views
on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as
the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital
cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes
with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile

EEG research.

Introduction

Historically, our scientific understanding of human locomotion has
swayed from contrasting perspectives on the importance of the brain for
controlling walking and running. For over a century, scientists have
debated whether peripheral reflexes, spinal neural networks (e.g., cen-
tral pattern generators), or brain and brainstem were the most important
in determining the basic patterns for human locomotion. As technolo-
gies and scientific approaches for studying locomotion have progressed,
experimental data and theoretical constructs have increased our
appreciation that supraspinal commands, spinal oscillators, and pe-
ripheral spinal reflexes all play critical roles in human locomotion
(Fig. 1).

The focus on determining the dominant aspect of tripartite neural
control of locomotion became very active in the 20th century. The
predominant theory in the 17th century was that the striatum was the
dominant means of controlling vertebrate locomotion (Molnar, 2004).
By the 18th and 19th centuries, scientists better recognized that there
was involvement of reflexes and spinal neurons in the control of animal
locomotion (Clarac, 2008). However, it was Sherrington’s pioneering
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research at the beginning of the 20th century that showed that walking
motions occurred predominantly due to a series of reflex chains (Sher-
rington, 1910). He demonstrated that decerebrate cats were able to
perform gait-like stepping movements despite the lack of input from the
brain and offered evidence that peripheral sensory afferents provided
the stimulus for stepping behaviors (Sherrington, 1910). Soon after
Sherrington’s publication, however, Thomas Graham Brown made an
argument that rhythmic activation in spinal networks of neurons, rather
than reflex responses to sensory inputs, provided the main impetus for
locomotor control. Brown deafferented the hind limbs of decerebrate
cats and still observed spontaneous rhythmic bursts of activity in flexor
and extensor muscles (T. Brown, 1911). He proposed that the activity of
mutually inhibitory spinal neurons, made up from flexor and extensor
half-centers, produced the stepping rhythm in limbs. Coming at a time
when Sherrington’s reflex viewpoint held sway in the scientific com-
munity, Brown’s revolutionary hypothesis found little traction. It was
not until the efforts of Lundberg, starting around 1957, that Brown’s
ideas began to swing the pendulum towards the importance of spinal
neural networks in locomotor control (cf. Stuart and Hultborn, 2008). A
host of research in the 1960s, 1970s, and 1980s extended Brown’s ideas,
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Fig. 1. The theories of motor control of human locomotion have swung, much
like a pendulum, between supraspinal centers, spinal neural networks, and
peripheral reflexes as the predominant contributor to the control of gait across
centuries of research. (Figure created using biorender.com)
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placing much of the research focus in locomotor control onto spinal
neural networks (reviewed in Clarac, 2008). Data from invertebrates
demonstrated rhythmic locomotor-like activity from isolated neural
networks in animal preparations (Hughes and Wiersma, 1960; Wilson,
1961). Additional studies on cats yielded more evidence that the spinal
cord in vertebrates could provide a great deal of the control for stepping
in legged locomotion and could even learn to improve its stepping
control (Barbeau and Rossignol, 1987; Forssberg and Grillner, 1973;
Grillner and Wallén, 1985; Grillner and Zangger, 1979; Lovely et al.,
1986). The spinal neural networks capable of generating a rhythmic
muscle activation pattern have been termed central pattern generators
and have been reviewed extensively by many other authors (Duysens
and Van de Crommert, 1998; Grillner et al., 2008; Guertin, 2013).

There were contrasting perspectives, however, on the importance of
the brain to neural control of vertebrate locomotion. Shik and Orlov-
sky’s research on cat locomotion was published in English in the 1960s
and 1970s (Shik et al., 1966, 1968; Shik and Orlovsky, 1976). They were
able to demonstrate that electrical stimulation of neurons in the
midbrain could control locomotion onset and speed directly. This led
credence to the idea that supraspinal centers dictated the terms of
locomotion, leaving spinal pattern generators and reflexes to shape
specific muscle activation patterns. In the last two decades, new elec-
trophysiology techniques have revealed even more involvement of the
brain in the details of walking control (Drew et al., 2004; Knikou, 2012;
Zehr and Stein, 1999). For example, intracortical electrodes reveal that
the motor cortex of decerebrate cats elicits step-related frequency
modulation during walking (Armstrong and Drew, 1984a, 1984b;
Widajewicz et al., 1994). When more complex tasks are performed, such
as stepping over an obstacle or traversing uneven terrain, cortical acti-
vation increases compared to walking on smooth, even surfaces (Drew
etal., 2002; Widajewicz et al., 1994). These findings in cats have focused
more attention on the role of the cortex in vertebrate locomotion.

One common proposal has been that humans and other primates
exhibit “cortical dominance” of walking compared to other mammalian
vertebrates that may be more dependent on spinal oscillators and pe-
ripheral reflexes. This is, perhaps, particularly important in relation to
the control needs associated with bipedalism and the use of the hands
and arms during walking (Fulton and Keller, 1932). Attempts to identify
locomotion central pattern generator circuits in non-human primates
have been less successful than experiments on other vertebrates
(Eidelberg et al., 1981; Fedirchuk et al., 1998; Vilensky and O’Connor,
1997). As such, the relative importance of cortical and other supraspinal
vs. spinal mechanisms in human locomotor control may differ markedly
from those needed in the control of quadrupedal locomotion.
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Studies on humans with neurological deficits have reinforced the
importance of supraspinal centers and cortical mechanisms in control-
ling walking. For example, although patients with injuries to the spinal
cord show some evidence of central pattern generators (Bussel et al.,
1996; Calancie et al., 1994; Dimitrijevic et al., 1998; Ferris et al., 2004;
Kawashima et al., 2008), locomotor training after spinal injury is much
less effective in humans than in non-primate animals (van Hedel and
Dietz, 2010). Humans with lesions to the premotor or sensorimotor
cortex show abnormal gait patterns, particularly when motor adjust-
ments are necessary (Della Sala et al., 2002; Nutt et al., 1993). Studies
examining older individuals and neurological patients have found that
cognitive deficiencies affect gait dynamics, with executive function and
attention being critical aspects of locomotor control (Hausdorff et al.,
2007; Laessoe et al., 2008; Sheridan and Hausdorff, 2007; Woollacott
and Shumway-Cook, 2002; Yogev et al., 2005; Yogev-Seligmann et al.,
2008). All these studies support the idea that everyday real-world
locomotion likely depends critically on cortical involvement for suc-
cessful gait.

A major limitation in the study of human cortical control of loco-
motion has been the inability to directly measure cortical activity during
whole body movement. Unlike animal studies, it is usually unethical to
conduct invasive measurements of cortical neurons in human experi-
ment participants. There are human brain imaging modalities that can
study cortical activity, but they have historically only been feasible
when the human subject is stationary. With recent advancements in
hardware and analysis techniques, it is now possible to study brain ac-
tivity related to whole body movements such as locomotion (Gramann
et al., 2011).

This narrative review intends to provide an update on the current
understanding of brain involvement in the control of human locomotion
for young and neurologically intact individuals. We briefly summarize
advantages and limitations of various brain imaging techniques in
studying the neural control of human locomotion. We then provide an
overview of the recent application of electroencephalography to study
electrocortical activity during human locomotion in neurologically
intact, young adults. The focus is on what new knowledge has been
gained in the last 15 years. The last section provides a prediction of how
the next decade will advance our understanding of the neural control of
locomotion.

Brain imaging approaches for studying human locomotion

Many technologies can provide insight into brain activity related to
the control of human locomotion. These techniques are summarized in
Table 1. The predominant technology for human brain imaging research
has been functional Magnetic Resonance Imaging (fMRI). It is an
imaging modality that measures brain activity by detecting relative
changes in blood oxygenation. fMRI is an indirect measure of brain ac-
tivity that best correlates with local field potentials (Logothetis et al.,
2001). The technique has a spatial resolution within a few millimeters
throughout the entire brain but can only detect changes within a few
seconds due to its dependence on blood flow (B. He and Liu, 2008). The
biggest drawback to using fMRI for studying locomotion is that partic-
ipants lie supine with their head immobilized during data collection.

Researchers have used fMRI to study brain function related to loco-
motion by stabilizing the head during rhythmic motions of the legs.
Mehta et al. designed a pedaling device that was compatible with fMRI to
study brain activation during pedaling (Mehta et al., 2009, 2012).
Pedaling activates some of the same neural substrates as walking due to
its rhythmic motion pattern (Zehr et al., 2007). Participants had bilat-
eral activation of the primary sensorimotor cortices, supplementary
motor area, premotor cortex, and cerebellar vermis during pedaling
relative to rest periods. Brain activation increased in all the areas with
faster pedaling rates (Mehta et al., 2012). The only brain area that
showed decreased activation for passive vs. active pedaling was the
cerebellum. The authors suggested that much of the observed brain
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Table 1
Summary of the brain imaging techniques that are used to study human locomotion.
Brain Imaging Technique What it measures Temporal
Resolution

Spatial Resolution Advantages Disadvantages

Functional Magnetic Resonance Imaging
(fMRI)

Relative changes in
blood oxygenation by hemodynamic
response)
Positron Emission Tomography (PET) and
Single Photon Emission Computed

Tomography (SPECT)

Blood flow using
injected radioactive
blood tracer

by hemodynamic
response)

Functional Near Infrared Spectroscopy
(fNIRS)

Relative changes in
blood oxygenation by hemodynamic
response)
Magnetoencephalography (MEG) Magnetic fields Millisecond range
produced by the
brain
Electroencephalography (EEG)

Electrical potentials Millisecond range

Second range (limited

Second range (limited

Second range (limited

Millimeter range Excellent spatial

resolution

Participants must lie supine with
the head immobilized
Millimeter range Can perform real
locomotion with
excellent spatial
resolution

Allows real locomotion

Low temporal resolution only
allows insight into brain activity
patterns over long durations

Centimeter range,
restricted to areas
near the scalp
Millimeter range

Limited spatial and temporal
resolutions

Must be seated and limit
movement (may be overcome by
optically pumped
magnetometers)

Poor signal-to-noise ratio
(overcome with hardware and
processing advances)

Limited spatial resolution
(overcome with MRI co-
registration)

Excellent temporal and
spatial resolution

Allows real
locomotion, excellent
temporal resolution

Centimeter range,
improved with MRI
co-registration

activity during pedaling may be driven by sensory signals from the
moving limbs. Other research groups have also developed
MRI-compatible devices to study brain activation with rhythmic lower
limb movements by supine, stationary participants (Hollnagel et al.,
2011; Jaeger et al., 2014; Toyomura et al., 2018). Findings from these
studies provide qualitatively similar results with the cycling study of
Mehta et al. (2012), and all are limited by the lack of vertical body
posture, head and torso movement, balance requirements, and move-
ment variability.

Motor imagery is a more common approach to study control of
human locomotion using fMRI. In this paradigm, participants lay down
in the scanner and imagine they are walking or running (Hamacher
et al., 2015; Jahn, Deutschlander, Stephan, Kalla, Hiifner, et al., 2008;
Jahn, Deutschlander, Stephan, Kalla, Wiesmann, et al., 2008; Jahn et al.,
2004; la Fougere et al., 2010; Sacco et al., 2006; Stolbkov et al., 2019).
Results from these studies have demonstrated that a large number of
brain areas show increased activity during imagined locomotion, and
that many of the areas show increasing activation with greater loco-
motor speed. Specifically, there is prominent activation in fusiform and
parahippocampal gyri along with activation in the inferior frontal gyri,
supplementary motor area, medial and inferior temporal gyri, occipital
lobe, and cerebellum. During imagined running, the greatest increase in
brain activity with respect to rest occurred in the cerebellar vermis and
hemispheres.

Other studies have measured brain activity of real locomotion using
molecular imaging techniques, such as positron emission tomography
(PET) and single photon emission computed tomography (SPECT)
(Christensen et al., 2000; Fukuyama et al., 1997; Hanakawa, Fukuyama,
et al., 1999; Hanakawa, Katsumi, et al., 1999; la Fougere et al., 2010;
Malouin et al., 2003; Tashiro et al., 2001). These techniques require
intravenous injection of a radioactive blood tracer that is administered
prior to performing a task. Blood flow then increases to areas of the brain
involved in performing the task, allowing subsequent imaging to iden-
tify areas with increased brain activity across the multiple minutes of
performing the task. They offer high spatial resolution but low temporal
resolution, providing insight into brain activity patterns that happen
over long durations while participants perform real locomotion. Results
from such studies found consistent activity in primary and supplemen-
tary motor areas, basal ganglia, visual cortex, brainstem, and cere-
bellum. In a direct comparison of imagined locomotion obtained with
fMRI and real locomotion obtained with PET, La Fougere et al. (2010)
found that while there were many areas of overlapping brain activity
between the two tasks, imagined locomotion appeared to be more

dependent on supplementary motor cortex and basal ganglia and real
locomotion appeared to be more dependent on the primary motor
cortex.

Given the results discussed above from fMRI studies of cyclic
pedaling and imagined locomotion, it is interesting to contrast PET/
SPECT results from real locomotion with PET/SPECT results from
pedaling and imagined pedaling. Christensen et al. (2000) showed that
active pedaling revealed increased activation in primary and supple-
mentary motor areas, and parts of the cerebellum. However, passive
pedaling did not elicit those responses and was found to have cortical
activity similar to a resting state. Resembling the findings comparing
PET real locomotion data with imagined fMRI data, Christensen et al.
(2000) found that imagined pedaling had greater activation of the
supplementary motor areas compared to rest.

A portable method for studying changes in brain activity during real
locomotion is functional near infrared spectroscopy (fNIRS). Some-
times called optical tomography/imaging, fNIRS is an indirect, optical
neuroimaging tool that measures the hemodynamic changes that occur
when areas of the brain use oxygen for metabolism. The technique in-
volves shining light into the scalp and measuring the spectra of the light
that is reflected. Differences in light spectra correlate with changes in
oxygenated and deoxygenated hemoglobin at specific areas across the
cortical surfaces (Leff et al., 2011). The mechanism for fNIRS is similar
to fMRI as both detect changes in the blood-oxygenation level dependent
(BOLD) signal. However, it has a lower spatial resolution than fMRI and
is limited to imaging brain areas that are near the scalp. Because the
motor regions of the human cortex are near the scalp, fNIRS is suitable
for studying the cortical response during complex motor activities.
Another advantage is that fNIRS is portable and relatively robust to
motion artifacts, which allows the brain to be imaged during whole body
movement.

The number of studies on human locomotion using fNIRS technology
have been steadily increasing since the start of the 21st century (Bishnoi
et al., 2021; Hamacher et al., 2015; Pelicioni et al., 2019; Vitorio et al.,
2017). Because of the limited spatial resolution and depth range of
fNIRS, comparison between results from fNIRS studies on human loco-
motion with fMRI or PET/SPECT study results examining brain areas
involved in the neural control of human locomotion should be done with
reservations. However, fNIRS studies have supported the involvement of
prefrontal cortex, premotor and primary motor cortex, supplementary
motor cortex, and somatosensory cortex in human walking (Harada
et al., 2009; Holtzer et al., 2011; Koenraadt et al., 2014; Kurz et al.,
2012; Meester et al., 2014; Metzger et al., 2017; Miyai et al., 2001;
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Suzuki et al., 2004, 2008). These studies suggest that prefrontal, sup-
plementary motor, primary motor, and premotor cortices have signifi-
cantly greater activation at faster walking speeds, but there is some
discrepancy in the studies. The contradictory results may be reflective of
differences in quantifying oxygenated hemoglobin, deoxygenated he-
moglobin, or total hemoglobin metrics as well as varied data processing
approaches (Herold et al., 2017; Menant et al., 2020; Vitorio et al.,
2017). As described in Menant et al. (2020), measuring changes in
oxygenated hemoglobin concentrations represents the direct meta-
bolism of the neural tissues and offers a higher signal-to-noise ratio than
deoxygenated hemoglobin, but it is more susceptible to systemic con-
tributions unrelated to the task. It is useful to also provide a measure of
change in deoxygenated hemoglobin concentration, which correlates
closely with the BOLD signal, and total hemoglobin, particularly since
populations such as older adults and neurological patients have pa-
thologies that can affect hemodynamics. Other fNIRS studies suggest
increased levels of difficulty or complexity of walking are associated
with increased recruitment of prefrontal cortex (Holtzer et al., 2011;
Koenraadt et al., 2014; Kurz et al., 2012), but there is also discrepancy in
these findings that may be related to the neurological status of the
participants (e.g., age, disorders) or conditions of the task (e.g., walking
speed, treadmill vs. overground). For a more comprehensive overview of
fNIRS-based investigations into the cortical involvement in locomotion
please refer to Herold et al. (2017) and Leff et al. (2011).

In addition to its limited spatial resolution and depth range, {NIRS
has other disadvantages that limit its usefulness to study human loco-
motion. As it relies on blood flow and changes in oxygenation levels,
systemic changes in cardiac output affect its metrics (Haeussinger et al.,
2014; Kirilina et al., 2012). During activities where heart rate and blood
pressure are changing across time, brain activity can be difficult to
interpret. Fortunately, the addition of reference channels,
short-separation channels, and sophisticated data analyses techniques
mitigates these limitations (Herold et al., 2017; Leff et al., 2011; Menant
et al., 2020). fNIRS also has a low temporal resolution, with changes in
blood flow to regions of the brain occurring over several seconds or more
(Leff et al., 2011). The hemodynamic response does not occur on a time
scale that can capture the within-stride neural dynamics of gait. Lastly,
fNIRS does not allow exploration of common electrical connections
between the cortex and the muscles (e.g., corticomuscular coherence)
which could limit the interpretability of the role of cortical involvement
in locomotion.

One brain imaging modality that has high temporal resolution is
magnetoencephalography (MEG). MEG measures magnetic fields
produced by the brain (Hari and Puce, 2017; Vrba and Robinson, 2001).
A person sits with their head inside the helmet-shaped device which
contains sensors that measure changes in magnetic fields. Participants
must stay as motionless as possible to avoid motion artifacts (Hari and
Puce, 2017) and like fMRI, the mass and size of the imaging technology
prevents normal human locomotion. However, a major advantage of
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MEG over fMRI for brain imaging is a much greater temporal resolution
(milliseconds vs. seconds). So far, it has only been possible to measure
imagined locomotion using MEG, however, the recent development of
wearable MEG sensors, optically pumped magnetometers, may permit
mobile MEG brain imaging during human locomotion (Tierney et al.,
2019). Seymour et al. (2021) demonstrated that this tool can be used in
mobile settings, although it has not yet been applied to human loco-
motion. This possibility holds considerable promise for better spatial
and temporal resolution of brain activity during human walking and
should be seriously considered by investigators considering mobile brain
imaging technology for clinical and research purposes.

Another approach to mobile brain imaging with relatively high
temporal resolution is electroencephalography (EEG). EEG is the
recording of electrical potentials generated by the brain using electrodes
placed on the scalp (Fig. 2). EEG is a promising tool for mobile brain
imaging because it is non-invasive, lightweight, and portable. It directly
measures cortical activity compared to other indirect measures, such as
the measure of blood flow that reflects neuronal metabolic processes
(fNIRS and fMRI). It also provides a very high temporal resolution of
brain activity, suitable to measure intra-stride brain involvement in real
locomotion. However, a major limitation of utilizing EEG during whole
body movement is the very poor signal-to-noise ratio. The amplitude of
the recorded electrocortical signals is very small and they are often
obscured by large motion and muscle artifacts generated during whole
body movement, such as walking (Castermans et al., 2014; Gwin et al.,
2010; Kline et al., 2015; Oliveira et al., 2016; Snyder et al., 2015;
Symeonidou et al., 2018). With advancements in hardware and signal
processing approaches to mitigate artifacts, EEG has become an
increasingly popular modality to study cortical brain involvement in real
human locomotion. While fNIRs, fMRI, SPECT, PET, and MEG provided
some insight into brain involvement in human locomotion, EEG is the
only modality thus far that has allowed intra-stride resolution insight
into electrocortical dynamics of real human locomotion. The following
sections take a deeper dive into EEG as a brain imaging tool to investi-
gate human walking in young, neurologically intact populations. We
provide an overview of the initial attempts to investigate human loco-
motion, highlighting the limitations of early works. We then discuss
recent advances which have allowed for improved fidelity and rigor of
EEG to study human locomotion. The focus is on highlighting the
common consensus findings that improve our understanding of human
brain involvement in locomotor control in neurologically intact in-
dividuals. Finally, we propose some potential next steps in mobile brain
imaging research with EEG.

EEG Sensor
> Skull

Brain |,/

Fig. 2. Scalp electroencephalography (EEG) is a non-invasive method used to record electrical activity in the brain. This activity is captured via electrodes placed on
the scalp, which detect tiny (10-100 pV) electrical charges resulting from the activity of pools of neurons. Neurons communicate with each other through electrical
impulses and chemical signals, creating electrical activity that EEG can measure. While the potential of a single neuron is undetectable with scalp EEG, a large
population of neurons with synchronized activity can produce far field potentials that propagate to the scalp. (Figure created by Seongmi Song using biorender.com).
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The neuroimaging of human locomotion with
electroencephalography

Electroencephalography explained

Scalp EEG measures electrical activity from cortical structures
beneath the skull (Fig. 2). Neurons communicate through synapses and
oscillations in electrical currents, propagating information about com-
mands, sensation, and computation. When a neuronal action potential
fires, it creates a postsynaptic potential across the synapse (Teplan,
2002). Although the potential of a single neuron is undetectable with
EEG, the summation of a large population of neurons is strong enough to
produce far field potentials that propagate to the scalp from parallel
aligned neurons. The EEG signal comes primarily from post-synaptic
currents (~80% of EEG signal) and action potentials (~20% of the
EEG signal) (Thio and Grill, 2023). Activity of pyramidal neurons in the
cortex dominate the signals recorded at the scalp for EEG (Hari and
Puce, 2017; Teplan, 2002). These cells are oriented perpendicular to the
cortical surface and generate electrical currents which are either toward
or away from the scalp (Hari and Puce, 2017). The summation of activity
due to this stable orientation allows this activity to be detectable
through EEG, while nonpyramidal cells in deeper structures contribute
less to the measurable signals (Hari and Puce, 2017). Although these
deeper neurons might also be working synchronously, it is challenging
to observe this through EEG recordings. The folds of the cortex alter the
orientation of the neurons relative to the scalp and influence whether
the potentials reach the scalp (Scherg et al., 2019). Recent research
suggests that under ideal, stationary conditions it may be possible to
record EEG sources from basal ganglia and cerebellum (Andersen et al.,
2020; Samuelsson et al., 2020; Seeber et al., 2019; Tzvi et al., 2022), but
there is little evidence yet that this resolution is realistic for mobile EEG.

Changes in EEG signals are often quantified in terms of synchroni-
zation and desynchronization (Pfurtscheller and Lopes da Silva, 1999).
Synchronization refers to instances when a neuronal population pro-
duces more congruent timing of postsynaptic potentials relative to a
baseline state, or when there is an increase in the number of neurons that
are contributing to the congruent timing of postsynaptic potentials
relative to a baseline state. Desynchronization refers to instances when
a neuronal population produces less congruent timing of postsynaptic
potentials relative to a baseline state, or when there is a decrease in the
number of neurons that are contributing to the congruent timing of
postsynaptic potentials relative to a baseline state. There are two critical
aspects of those definitions. First, there is not a direct correlation from
the synchronization/desynchronization axis to more/less brain activity
as it is often presumed in fMRI and fNIRS studies (Hermes et al., 2017;
Hipp and Siegel, 2015; Winterer et al., 2007). Desynchronization in EEG
can come from contributing neurons that are more independent in the
firing timing, or it can come from having fewer contributing neurons at
the same level of congruent firing timing. Attempts at identifying a
universal transfer function between EEG spectral power and BOLD
signal power have not been successful.

The frequency of EEG signal power has long been an indicator of
different brain states when humans are at rest (Teplan, 2002). The five
typical frequency bands of EEG are: delta (<3.5 Hz), theta (4-7.5 Hz),
alpha (8-13 Hz), beta (14-30 [or 40] Hz), and gamma (>30 [or 40]
Hz) (Hari and Puce, 2017). Scalp EEG electrodes located over the
sensorimotor cortex have identified a strong central alpha signal (and
sometimes lower frequency beta signal) that is designated the “mu
rhythm” (Gastaut, 1952). Different frequency bands are thought to be
correlated with certain behavioral mental states in human participants.
For example, wakeful relaxation evokes alpha activity emanating from
the occipital cortex, which becomes very prominent with eyes closed
(Adrian and Matthews, 1934; Berger, 1929; Jasper, 1936; Smith, 1938).
Planning and executing an upper limb motor task results in desynch-
ronization in the mu rhythm over the sensorimotor cortex, presumably
because the neurons involved are actively computing neural commands
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for the movement. Hence, it has often been assumed that desynchroni-
zation in a cortical area of interest is related to increased computation
and involvement relative to the comparison state (Pfurtscheller, 1992).
There is evidence that all the frequency bands are likely to convey
meaningful information about the control of walking (Gwin et al., 2011;
Nakagome et al., 2020; Presacco et al., 2011; Seeber et al., 2014, 2015;
Sipp et al., 2013; Wagner et al., 2016).

Brain activity can also be analyzed as event-related potentials that
are time-locked to a stimulus (Luck, 2014). An evoked potential is a
fluctuation in voltage that was caused by an external or internal stimulus
(Bickford, 1987; Nunez and Srinivasan, 2006; Teplan, 2002).
Event-related potentials are extracted by averaging epochs of EEG that
are time-locked to an event (Gevins and Rémond, 1987; Teplan, 2002).
Any spontaneous fluctuations unrelated to the event are averaged out,
leaving only the activity which is consistently associated with the pro-
cessing of the stimulus (Teplan, 2002). Event-related spectral per-
turbations are, similarly, an averaging of epochs of EEG data that are
time-locked to an event but have been Fourier transformed to reveal
the power spectral density of the signal (Makeig, 1993). EEG walking
data are often displayed in event-related spectral perturbation graphs
which typically cover a gait cycle, from one heel strike to the next, and
present the changes in spectral power at frequencies of interest (Fig. 3).
Spectral power is often illustrated by a gradient of colors. In Fig. 3, green
represents no change, red represents an increase in power, or synchro-
nization, and blue represents a decrease in power, or desynchronization.

In the processing of EEG data, it is important to select an appropriate
baseline to isolate the oscillations of interest (Makeig et al., 2004; Onton
et al., 2006). For example, when comparing walking to standing we can
see a general reduction in spectral power (Severens et al., 2012). Irre-
spective of this overall change, there are modulations in postsynaptic
potential that will occur throughout a gait cycle. To properly interpret
synchronization and desynchronization that occur during a gait cycle,
we must therefore isolate these changes by selecting an appropriate
baseline. Choosing a baseline state for comparison influences conclu-
sions about whether there is an increase or decrease in synchronization
or desynchronization. Different scientific questions require different
baseline comparisons. For example, examining how electrocortical ac-
tivity changes across walking speeds in a specific set of individuals
would require a different baseline comparison than examining whether
there is more synchronization or desynchronization in a given brain area
during walking for a neurologically intact group of participants
compared to a group of participants with neurological deficits. This is
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Fig. 3. Example of an event-related spectral perturbation graph, representing
the changes in spectral power in different frequency bands over time. While
examining walking, gait events are often represented on the x-axis. In this case,
the graph covers one gait cycle starting at right heel strike (RHS) followed by
left toe off (LTO), left heel strike (LHS), right toe off (RTO), and ends with the
second RHS. Green represents no change in spectral power, red represents an
increase in power (i.e. greater synchronization), and blue represents a decrease
in power (i.e. greater desynchronization). Note that this graph does not
represent biological data but simulated activity from a neural mass model
(Richer et al., 2020).
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because the baseline state of the neurologically intact group could be
different than the group with neurological deficits, thus we need to
isolate brain activity that is involved in walking from the differing
baseline states caused by health status. Most of the time, EEG changes in
synchronization/desynchronization within a given experiment are good
local indications of brain involvement but may not reflect a universal
standard of brain involvement for the task and condition.

Advances in EEG hardware and processing

In recent years, there has been substantial development of EEG
hardware and data processing algorithms (Gramann et al., 2011; Makeig
et al., 2009). Miniaturization of amplifiers, active electrodes, and active
shielding techniques have all reduced noise corruption on mobile sys-
tems (Niso et al., 2023). Mobile and high-density systems, involving 128
or more electrodes, now offer the opportunity to collect high-quality
data during movement. It is helpful to have reference signals such as
electrooculography, eye-gaze tracking, electrocardiogram, electromyo-
gram, and motion sensors (Hari and Puce, 2017). For instance, one
recent improvement is the development and validation of a
dual-electrode EEG system which allows the user to better isolate

Neuroscience and Biobehavioral Reviews 162 (2024) 105718

electrocortical activity from motion artifact (Nordin et al., 2018). The
adapted system contains an inverted secondary layer of electrodes
which are mechanically coupled but electrically isolated from the scalp
sensors. They are covered by a conductive fabric to create an artificial
skin. While the scalp electrodes record electrocortical activity, physio-
logical signals, and motion artifact, the secondary electrodes only record
motion artifact. The common motion artifact in both scalp and noise
channels allows a more efficient cleaning of scalp channels. Similarly,
experimenters can rely on electromyography electrodes placed on the
neck to record reference muscle activity signals and help isolate the
muscle artifact from electrocortical signals (Bradford et al., 2016; Nor-
din et al., 2019, 2020).

Data processing algorithms for electrophysiological source separa-
tion has greatly improved in recent years (B. He et al., 2018). One
method frequently used to isolate artifacts from electrocortical activity
is blind source separation (Fig. 4). The potentials that are recorded at
the scalp originate from various sources in the brain and often overlap.
Each electrode will therefore record a mixture of several different
sources. Blind source separation separates these mixed signals into
components (sources), like the way we can detect an individual voice in
a crowd full of talking people. Independent component analysis
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Fig. 4. This figure presents a high-level example of EEG preprocessing steps. Scalp EEG measures a mixture of many electrical potentials generated within or near the
body in addition to the brain signals of interest. Recording EEG during whole body motion, such as locomotion, can increase or add non-brain signal sources such as
cable sway and movement-related sensor noise. As an initial step, many EEG researchers start by filtering and denoising their data. There is a large body of literature
on different approaches for denoising raw EEG data, and while there is no consensus on the best approach, careful consideration should be taken when cleaning and
interpreting EEG in mobile scenarios. To further improve the interpretability of the recorded signals, brain source activity can be disentangled from the scalp EEG
using approaches like independent component analysis (ICA). If using high-density scalp EEG, inverse source reconstruction can be performed to approximate the
three-dimensional locations of active brain sources within the brain volume with about 1 cm accuracy. (Figure created by Seongmi Song using biorender.com).
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(ICA), the most common method (Hari and Puce, 2017), separates the
signal into components that are independent from each other (Delorme
and Makeig, 2004; Hyvéarinen and Oja, 2000; Jung et al., 2000; Makeig
et al., 1996). ICA is useful because it can isolate non-brain sources, such
as muscles, eyes, and heart, which can later be removed through pro-
cessing (Fig. 4) (G. D. Brown et al., 2001; Hari and Puce, 2017; Vigario,
1997; Vigario et al., 2000). It can also distinguish between various brain
signals, evoked responses, and brain rhythms (Hari and Puce, 2017).
Although many blind source separation methods are available, adaptive
mixture independent component analysis (AMICA) (Palmer et al.,
2012) has been shown to be one of the most efficient algorithms
(Delorme et al., 2012). Processing algorithms such as PowPowCAT can
help with classification of these independent components (Thammasan
and Miyakoshi, 2020).

Other approaches have been used to remove muscle artifact, such as
canonical correlation analysis (De Clercq et al., 2006; Gao, Zheng,
et al.,, 2010; Vergult et al., 2007), empirical mode decomposition
(Mijovic et al., 2010), and wavelet transforms (Aminghafari et al.,
2006; Estrada et al., 2011; Gao, Sultan, et al., 2010; Indiradevi et al.,
2008; Iyer and Zouridakis, 2007; Krishnaveni et al., 2006). Safieddine
et al. (2012) compared four methods for elimination of muscle artifact
(ICA, canonical correlation analysis, empirical mode decomposition,
and the wavelet transform). They show that performance of these
methods depends on the amplitude of muscle contamination. Head
phantom experiments can help validate the use of these methods for
specific types of data sets. For example, canonical correlation analysis
was shown to help isolate simulated brain signals from neck muscle
activity during walking head movements (Richer et al., 2020). A recent
extension of canonical correlation analysis for EEG artifact removal is
the iCanClean algorithm (Gonsisko et al., 2023), which can be used
both with dual electrode and single electrode EEG systems.

Artifact Subspace Reconstruction is one useful method to remove
motion artifacts. Its effectiveness has been demonstrated in multiple
experiments (Artoni et al., 2017; Chang et al., 2018; Luu, Brantley,
Nakagome, et al., 2017; Luu, Nakagome, et al., 2017; Mullen et al.,
2013; Nordin et al., 2020; Peterson and Ferris, 2018). It uses an
approach based on Principal Component Analysis to interpolate high
variance components that exceed a predetermined threshold relative to
a clean EEG dataset (Chang et al., 2018; Mullen et al., 2013). The artifact
detection threshold must be carefully selected because aggressive cutoffs
can remove brain activity along with artifacts (Artoni et al., 2017; Chang
et al., 2018; Richer et al., 2020).

There is not a single data cleaning approach that is ideal for all data
conditions and experiments. The relative ratios and magnitudes of
muscle, eye, brain, and motion artifact, and the temporal nature of the
signal components (e.g., rhythmic, discrete), influence the success of
different data pre-processing methods (Safieddine et al., 2012). Under
relatively low levels of motion and muscle artifact, it has been argued
that minimal to zero pre-processing is actually best for large data sets
(Delorme, 2023). Our experience is that large amounts of muscle and
motion artifact require aggressive methods to remove artifacts, as
demonstrated by electrical head phantom validation studies (Nordin
et al., 2018, 2019; Oliveira et al., 2016; Peterson and Ferris, 2019a;
Richer et al., 2020). As a result, a combination of approaches is often
used to reduce artifacts and isolate brain signals in scalp EEG during
walking and running.

When using a greater number of channels, EEG allows us to perform
source localization to estimate the location of the active brain sources
(Fig. 4). It is important to note the challenges and assumptions involved
in source-based analysis. When we estimate the location of cortical
sources, we face the forward problem and the inverse problem. The
forward problem is to find the scalp potentials that are produced by
sources in the brain (Hallez et al., 2007; B. He et al., 2018; Michel and
He, 2012, 2019). These electrical currents propagate through various
tissues (scalp, skull, cerebrospinal fluid, brain), and these tissues have
varying levels of conductivity that attenuate the current to different
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extents. Thus, we model the head geometry to help solve the forward
problem. The current ideal method is to use individual MRI to precisely
model the shape of the head and the thickness of tissues.

The inverse problem refers to the challenge of determining the
location of the brain sources that generate an EEG measurement (B. He
et al., 2011; Michel and He, 2019; He et al., 2018; Michel and He, 2012;
Grech et al., 2008). A solution can be found if a priori assumptions about
the sources are included, such as neurophysiological, biophysical, and
anatomic knowledge about the sources, electrical activity, conductive
tissues, and distribution of the neuronal activity (Michel and He, 2019).
There are various methods that can be used to solve the inverse problem.
There is not one best way yet to solve it, but multiple studies suggest that
state of the art methods result in a spatial resolution of about 1 cm for
identifying brain sources from scalp EEG (Acar et al., 2008; Akalin Acar
and Makeig, 2013; B. He et al., 2011; Seeber et al., 2019).

It is possible to increase EEG’s spatial accuracy by increasing the
number of electrodes on the scalp. In source-level analysis, the number
of dipoles we can find is limited by the number of electrodes, therefore a
higher-density setup will allow a better estimation of locations and
strengths of electrocortical activity (B. He et al., 2011). To correctly
identify sources, it is also important to know the exact location of
electrodes in relation to the person’s head. These positions can be
applied to simplified head model templates or co-registered to an indi-
vidualized structural MRI scan to position the sensors in relation to each
person’s brain anatomy (Hari and Puce, 2017). A recent study compared
the different localization methods and suggested that using MRI scans,
when possible, will lead to more accurate source localization (Liu et al.,
2023).

Initial investigations of electrocortical activity during locomotor patterns

Because of its sensitivity to artifacts, initial attempts to use EEG to
probe the involvement of cortical structures in human locomotion used
models of locomotion, rather than actual locomotion. Raethjen et al.
(2008) found that rhythmic EEG was directly related to rhythmic foot
movements during seated postures. Wieser et al. (2010) studied partic-
ipants on a tilt table performing rhythmic leg motions. They found that
EEG amplitude in cortical motor areas was modulated throughout the
movement cycle. The authors of both studies propose that these fluc-
tuations in electrocortical activity may be present during locomotion.

Pedaling/cycling has also been used to model locomotion brain dy-
namics (Jain et al., 2013; Schneider et al., 2013). Like walking, it is a
cyclical locomotor activity, but it does not require balance or
open-ended interlimb coordination. Pedaling/cycling also generates less
motion artifact than walking, which can be beneficial. Modulations in
electrocortical signals across the pedaling cycle over sensorimotor (Jain
et al., 2013) and motor (Schneider et al., 2013) cortical regions of the
legs were correlated to muscle activity of the legs (Schneider et al.,
2013). Peak-to-peak amplitude of the EEG waveform was greater in
passive compared to active pedaling at a matched speed (Jain et al.,
2013). A similarity in electrocortical fluctuations in active and passive
pedaling suggests that much of the EEG waveform is dedicated to pro-
cessing of sensory information (Jain et al., 2013). The decrease in
amplitude during active pedaling could be explained by a gating of
sensory input by corticospinal motor output (Jain et al., 2013). There
are, however, differences in electrocortical oscillations of walking and
cycling (Storzer et al., 2016).

Due to general acceptance of event-related potential studies on
human cognition using EEG, initial attempts at electrocortical re-
cordings during walking focused on recording event-related potentials
like the P300 during human locomotion. The P300 is named after a
positive waveform 300 ms following a stimulus. It is an event-related
potential that can be elicited with visual or auditory discriminations
tasks, such as an oddball task. The use of EEG to recover electrocortical
dynamics during actual locomotion was first validated by having par-
ticipants walk and run while performing tasks that elicited a P300 (De
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Sanctis et al., 2012; Debener et al., 2012; Gramann et al., 2010; Kerick
et al., 2009). These studies showed that it was possible to extract a
normal P300 signal relative to the discrimination task during human
locomotion. Advances in EEG hardware and processing have since made
it possible to investigate more complex electrocortical dynamics asso-
ciated with actual locomotion. Please refer to Table 2 for a summary of
the experiments discussed in this review.

Spectral fluctuations of electrocortical activity during walking

Imaging electrocortical activity in the brain during human walking
can provide an indication of which brain areas show synchronization to
the gait cycle. The millisecond precision of EEG allows us to observe
fluctuations in electrocortical activity throughout the gait cycle rather
than averaging over many steps. It wasn’t until about the mid-1980s that
scientists began speculating in writing that the motor cortex would be
involved in the control of locomotion (Armstrong, 1986), but even then,
their perspective was “we are almost entirely ignorant as to precisely
how the motor cortex (MC) may intervene in the locomotor process.”
(Armstrong, 1986). As depicted in Fig. 5, the advent of mobile EEG al-
lows us to study human walking and has led to the knowledge that the
motor cortex and many other brain areas appear to be involved in
monitoring or controlling human walking. It is difficult with observa-
tional experimental paradigms to discern the difference between cortical
electrical activity involved in receiving sensory feedback about loco-
motion and cortical electrical activity involved in controlling
locomotion.

During normal walking, there is gait-related electrical activity in
many different brain areas responsible for sensorimotor processing.
Electrocortical power fluctuations occur in the anterior cingulate, pos-
terior parietal, prefrontal, premotor, supplementary motor, occipital,
and/or sensorimotor cortices during human walking (Artoni et al., 2017;
Bradford et al., 2016; Bulea et al., 2015; Cheron et al., 2012; Gwin et al.,
2011; Nordin et al., 2020; Oliveira et al., 2017; Roeder et al., 2018;
Seeber et al., 2014; Severens et al., 2012; Yokoyama et al., 2021; Zhao
et al., 2022). There is even a recent report of gait-related electrocortical
fluctuations in the thalamus and cerebellum (Zhao et al., 2022), but it is
difficult to validate and verify that the identified electrical activity is not
derived from muscle or other brain areas given the deep location of the
thalamus and cerebellum. Many of the areas show a common pattern of
increased synchronization during periods of double support and
increased desynchronization during limb swing. There are differences
across brain regions, but relative to the overall background brain ac-
tivity, the fluctuation pattern appears.

Another common finding across studies is a lateralization of alpha
and beta spectral power fluctuations in motor/sensorimotor cortices
related to the gait cycle (Fig. 6) (Bradford et al., 2016; Cheron et al.,
2012; Gwin et al., 2011; Jacobsen and Ferris, 2023a; Nordin et al., 2020;
Seeber et al., 2014; Severens et al., 2012; Zhao et al., 2022). The motor
and sensorimotor cortex sources typically demonstrate increased
desynchronization during contralateral limb swing and increased syn-
chronization during ipsilateral heel strike and the subsequent double
support period (Bradford et al., 2016; Jacobsen and Ferris, 2023a;
Nordin et al., 2020; Severens et al., 2012; Zhao et al., 2022). The pattern
of alpha and beta desynchronization and synchronization in the senso-
rimotor cortex during the gait cycle could be interpreted in many ways.
Studies on discrete upper limb movements have long revealed sensori-
motor cortex desynchronization prior to movement initiation and syn-
chronization after movement completion in the contralateral
hemisphere (Neuper et al., 2006; Pfurtscheller and Lopes da Silva,
1999). This relationship appears to hold true during rhythmic finger
movements, albeit with additional long-lasting sensorimotor desynch-
ronization relative to rest (Seeber et al., 2016). However, during walking
all four limbs display rhythmic muscle activation patterns with multiple
synergies (Davis and Vaughan, 1993; Ivanenko et al., 2004). There are
no clear on and off phases during walking due to the large number of
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muscles involved in locomotion and their periodic phasing of activity.
Trying to relate synchronization and desynchronization phasing in the
sensorimotor cortex to gait phases based on an assumption of direct
muscle control is inappropriate (Delval et al., 2020).

A more appropriate framework for interpreting sensorimotor syn-
chronization and desynchronization phases during human walking
might be in evoked beta band spectral power fluctuations based on
afferent feedback from gait events (Jensen et al., 2019; Roeder et al.,
2018, 2020). Cutaneous and proprioceptive feedback provides strong
cues about the stepping pattern both at the spinal cord level and in the
brain (Lam and Pearson, 2002; Pearson et al., 1998). The rhythmic
oscillation in sensorimotor cortex electrical activity could be due to
afferent feedback on gait events as well as ongoing oscillations in spinal
circuits related to locomotion. This perspective would be consistent with
measures of human electrocorticography in the motor cortex during
stepping (McCrimmon et al., 2018; Starkweather et al., 2023). Passive
stepping motions induced by a robotic gait orthosis on neurologically
intact human participants show sensorimotor cortex beta fluctuations
that are similar but less pronounced than active stepping within the
orthosis (Wagner et al., 2012). Increases in walking speed attenuate
sensorimotor spectral power fluctuations (Bulea et al., 2015; Lisi and
Morimoto, 2015; Nordin et al., 2020). This finding is consistent with the
idea that the sensorimotor cortex has tonic involvement with locomo-
tion that increases with speed, and afferent feedback about gait cycle
timing (especially the rapid gait events around double support begin-
ning and ending) triggering phasic synchronization and desynchroni-
zation with the gait cycle. Switching from a normal treadmill to a
user-driven treadmill that requires greater horizontal drive produces
overall more desynchronization in sensorimotor cortices, suggesting
that the user-driven treadmill requires a greater tonic drive from the
cortex compared to a motor-driven treadmill (Bulea et al., 2014).
Bradford et al. (2016) examined treadmill walking on the level and at a
15% incline. They reported differences in theta spectral power was
greater for incline walking in the anterior cingulate, sensorimotor, and
posterior parietal clusters. Although the increase was distributed across
the entire gait cycle, it was greater at heel strike and toe off. These re-
sults suggest that theta power increased in response to the greater motor
demands, particularly in periods of transition in the gait cycle (Bradford
et al., 2016). These findings are supported by the work of Luu et al. (Luu,
Brantley, Nakagome, et al., 2017; Luu, Brantley, Zhu, et al., 2017). They
compared level-ground, slope, and stair walking and found consistent
evidence for changes in theta, alpha, and beta spectral power in keeping
with the interpretation described above.

Cortical involvement appears to increase in proportion to the amount
of active stability control required for walking. When walking with
external lateral stabilization, beta spectral power in the premotor cortex
is increased compared to normal walking (Bruijn et al., 2015). This
suggests that beta power is related to gait stability and that walking with
stabilization requires less motor control (Bruijn et al., 2015). Sipp et al.
(2013) investigated cortical contributions to walking stability by asking
participants to walk on a treadmill-mounted balance beam. Compared to
flat walking, beam walking elicited an increase in spectral power in the
theta band in the anterior cingulate, anterior parietal, superior
dorsolateral-prefrontal, and medial sensorimotor cortex, and a decrease
in spectral power in the beta band for both the left and right sensori-
motor cortices (Sipp et al., 2013). Interestingly, before participants fully
lost their balance during beam walking, there was an increase in theta
band in the anterior and posterior cingulate, superior
dorsolateral-prefrontal, anterior parietal, and the left and right senso-
rimotor cortices. The first increase occurred in the left sensorimotor
cortex of right hand and foot dominant individuals during the last
double support phase immediately preceding the loss of balance. These
changes in electrocortical activity show that there are several regions
that are involved in recognizing a loss of balance. This highlights the fact
that much of the cortical contributions to gait are involved in sensory
processing and will occur when we need sensory information to adjust
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Table 2
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Summary of the EEG experiments discussed in the four following sections: Initial investigations of electrocortical activity during locomotor patterns, spectral fluc-
tuations of electrocortical activity during walking, corticocortical and corticomuscular coherence during walking, and invasive EEG.

Reference Task Manipulation/ Number of # EEG sensors EEG Neural features/ Contribution/Major
Condition participants (* Denotes channel metrics analyzed finding
(Age) invasive or Source
sensors) domain
analysis
Initial investigations of electrocortical activity during locomotor patterns
Raethjen et al., Seated, In phase, out of phase, 10 (range 25-38 64 Channel Spectral power, Rhythmic EEG, and thus the
(2008) rhythmic foot unilateral years) corticomuscular cortex, is involved in
movements coherence producing gait like,
rhythmic foot movements.
Wieser et al., Assisted, Rest, assisted, active, 20 (mean 28.6 + 64 Channel Movement-related EEG in motor cortical areas
(2010) rhythmic whole  passive 8.3 years) and source potential, spectral power  (primary motor cortex,
leg movements premotor cortex,
on a tilt table at supplementary motor area,
76% elevation etc.) are modulated
throughout the gait cycle,
with the greatest activation
at changes of direction of
flexion/extension.
Jain et al., Pedaling on a Active, passive 10 (range 22-32 64 Channel Pedaling-related EEG in motor cortical areas
(2013) custom device years) and source potential, spectral fluctuates depending on the
power, source phase of the pedaling cycle.
localization Pedaling-related potentials
have a greater amplitude
during passive than active
pedaling, suggesting much
of the activity is related to
sensory perception.
Schneider Pedaling on a Pedaling at different 8 (meanf:24+2 32 Source Current density EEG in motor cortical areas
et al.,, (2013) cycle ergometer  power outputs years, m: 27 + is dependent on exercise
4 yrs) intensity and suggests the
cortex is involved in
controlling muscular effort
during locomotor-like
activities.
Storzer et al., Cycling and Cycling vs. walking 14 (mean 24.9 + 18 Channel Spectral power, event- There are differences in
(2016) overground 3 years) related spectral EEG of walking and cycling,
walking perturbations but both have activity that
fluctuates with the gait
cycle.
De Sanctis Sitting and Go/no-go cognitive 5 (mean 24.6 + 72 Channel Event-related potentials, Robust ERP waveforms can
et al., (2012) treadmill task 4.8 years) spectral power be recorded during slow
walking and fast walking on a
treadmill. P300 and ERN
were similar across sitting,
slow, and fast walking.
Debener et al., Sitting and Auditory oddball 16 (mean 27.9 14 Channel Event-related potentials Good quality EEG signals
(2012) overground cognitive task years) can be obtained during
walking outdoor walking. Smaller
outdoors P300 amplitude walking
outdoors compared to
sitting indoors.
Gramann et al.,  Treadmill Locomotion speed, 12 (mean 24.2 + 248 Source Spectral power, event- Demonstrated reliable
(2012) standing, visual oddball 3.4 years) related potentials, event- measurement and source
walking, and cognitive task related spectral modeling of brain dynamics
running perturbations during walking at various
speeds.
Kerick et al., Treadmill Walking speed, 5 (range 27-39 32 Channel Event-related potentials, Walking and jogging
(2009) walking and auditory oddball years) spectral power decreased EEG signal
standing cognitive task quality. N1 and P300 were
recoverable while walking
but not during jogging.
Spectral fluctuations of electrocortical activity during walking
Artoni et al., Treadmill 3.5km/h 11 (mean 30 + 4 64 Source Event-related spectral Stronger gait locked
(2017) walking years) perturbations, spectral perturbations in
corticomuscular motor related areas than

connectivity (discussed
in section on
corticocortical and
corticomuscular
coherence during
walking)

non-motor related areas.
ERSPs for the motor-related
areas (premotor cortex,
motor, supplementary
motor, and cingulate areas
of the left and right
hemispheres) exhibited
significant

(continued on next page)
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Table 2 (continued)
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Reference

Task

Manipulation/
Condition

Number of
participants
(Age)

# EEG sensors
(* Denotes
invasive
sensors)

EEG Neural features/
channel metrics analyzed
or Source

domain

analysis

Contribution/Major
finding

Bradford et al.,
(2016)

Bulea et al.,
(2014, 2015)

Gwin et al.,
(2011)

Nordin et al.,
(2020)

Oliveira et al.,
(2017)

Treadmill
walking

Treadmill
walking

Treadmill
walking

Treadmill
walking

Treadmill
walking

Walking on incline
(15% grade)

User-driven vs.
passive treadmill
walking, slow and fast
speed

Speed (standing, 0.8,
1.25,1.9 m/s)

Speed (0.5, 1, 1.5,
2.0 m/s)

Walking with eyes
open and eyes closed

20 (mean 23.1 &
3.9 years)

10 (mean 28.9 +
6.3 years)

8 (range 21-31
years)

9 (mean 27.4 + 4
years)

10 (range 21-36
years)

256

64

248

128 (dual-layer
EEG)

256

10

Source Event-related spectral
perturbations, spectral

power

Source Event-related spectral
perturbations, spectral

power

Source Event-related spectral
perturbations, spectral

power

Source Event-related spectral
perturbations, spectral

power

Source Event-related spectral

perturbations

desynchronization and
synchronization in mu and
beta frequency bands
respectively during single-
and double-foot support
phases.

Increased theta band
spectral power during
incline walking in the
anterior cingulate,
sensorimotor, and posterior
parietal regions. Increase
theta band power
fluctuations at heel strike
and toe off during incline
walking. Suggests that
walking on an incline may
involve supraspinal input.
Spectral power and spectral
fluctuations were
attenuated with gait speed.
User-driven treadmill
produced more
desynchronization in
sensorimotor cortices.
Suggests greater cortical
drive during faster speeds
and simulated overground
walking (user-driven
treadmill).

Significant intra-stride
fluctuations in spectral
power in the anterior
cingulate, posterior
parietal, and sensorimotor
cortex. Results suggest
cortical involvement in
steady-speed human
locomotion.

Synchronous spectral
power fluctuations in the
left and right sensorimotor
cortices corresponding with
the gait cycle. Reduced
durations and frequency
bandwidth of synchronous
power fluctuations at faster
gait speeds. Alpha and beta
band power increased
during contralateral limb
single support and push off.
Reduced sensorimotor beta
and alpha band spectral
power at faster gait speeds.
Results suggest greater
cortical involvement at
faster gait speeds compared
to slow walking.

Increase theta band
desynchronization in the
frontal and premotor
cortices during stance and
greater desynchronization
in theta, alpha, and beta
bands during single-support
in left and right
somatosensory cortex. Data
suggest changes in sensory
inputs for maintenance of
walking when vision is
limited.

(continued on next page)
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Table 2 (continued)

Neuroscience and Biobehavioral Reviews 162 (2024) 105718

Reference

Task

Manipulation/
Condition

Number of
participants
(Age)

# EEG sensors
(* Denotes
invasive
sensors)

EEG
channel
or Source
domain
analysis

Neural features/
metrics analyzed

Contribution/Major
finding

Seeber et al.,
(2014)

Severens et al.,
(2012)

Yokoyama
et al., (2021)

Zhao et al.,
(2022)

Jacobsen and
Ferris
(2023a)

Active walking
and upright
standing in a
robotic gait
orthosis

Treadmill
walking

Treadmill
walking

Treadmill
walking

Treadmill
walking

1.8-2.2 km/h
(adjusted to leg
length)

Slow speeds @ 1.4 Hz
frequency

Normal walking vs.
precision stepping
(0.55m/s)

Self-selected speed

Split belt speeds (2:1
ratio, 1.2 m/s and
0.6 m/s)

10 (mean 25.6 +
3.5 years)

6 (mean 21.6 +
2.3 years)

13 (range 22-30
years)

24 (range 22-31
years)

33 (mean f: 23.19
+ 2.61, m: 24.22
+4.82)

120

62

63

128

128 (dual-layer
EEG)

11

Source

Channel

Source

Source

Source

Event-related spectral
perturbations, gait phase
modulation

Event-related spectral
perturbations, event
related desynchrony

Event-related spectral
perturbations, spectral
power

Event-related spectral
perturbations

Event-related spectral
perturbations, spectral
power

Suppression of upper mu
and beta oscillations in
active walking vs. standing
suggests a movement-
related state change of
cortical excitability. Beta
suppression in central
sensorimotor areas,
consistent with the location
of the lower extremities in
the motor cortex. Low
gamma amplitudes
modulated in relation to the
gait phase, represent the
motion sequence timing
during gait.

Significant mu and beta
band event-related
desynchrony. Significant
mu and beta band ERSPs
were found related to the
step cycle and were also
lateralized depending on
the phase of the step cycle
and topography. Results
suggest it is feasible to
record walking related ERD
and walking related signals
could be used for BCI
applications.

Alpha and beta band power
decreased, and gamma
band power increased in
parieto-occipital and
sensorimotor cortices
during precision stepping
compared to normal
walking. ERSPs were
similar for normal and
precision stepping. Results
suggest higher cortical
involvement and
differential roles of brain
regions during precision
stepping.

Gait cycle-related
synchronization and
desynchronization in alpha,
beta, and gamma bands
strongest in primary
sensorimotor cortex, also
found in premotor cortex,
thalamus, and cerebellum.
Evidence of lateralization
in the primary sensorimotor
cortex (alpha and beta
bands), and in the
cerebellum (beta and
gamma bands).

Multiple cortical regions
near the sensorimotor,
posterior parietal, and
cingulate cortices were
found to have alpha and
beta band spectral power
changes associated with
adaptation to split belt
speeds. Significant
differences in spectral
power across stages of gait
adaptation during the gait
cycle. Results suggest the

(continued on next page)
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Reference

Task

Manipulation/
Condition

Number of
participants
(Age)

# EEG sensors
(* Denotes
invasive
sensors)

EEG Neural features/
channel metrics analyzed
or Source

domain

analysis

Contribution/Major
finding

Wagner et al.,
(2012)

Lisi and
Morimoto,
(2015)

Luu, Brantley,
Nakagome,
et al., (2017)

Luu, Brantley,
Zhu, et al.,
(2017)

Bruijn et al.,
(2015)

Sipp et al.,
(2013)

Peterson an d
Ferris,
(2018)

Robot assisted
walking and
upright
standing

Treadmill
walking

Level-ground,
ramp ascent,
and stair ascent
walking

Level-ground,
ramp ascent,
and stair ascent
walking

Treadmill
walking

Treadmill
walking

Walking or
standing on a
treadmill-
mounted
balance beam

Low walking speed
(1.8-2.2 km/h);
active and passive
walking

Volitional gait speed
changes between 0, 1,

and 2 km/h

Level-ground, ramp,
and stair

Level-ground, ramp,
and stair

Walking normally and

with lateral
stabilization

Walking on and off a

treadmill-mounted
balance beam

Physical and visual

balance perturbations

14 (range 22-28;
24.3 £ 2.7 years)

8 (mean 25 + 2.5
years)

10 (age not
provided)

6 (age not
provided)

10 (mean 31.4 +
6.6 years)

26 (mean 23 + 5
years)

30 (mean 22.5 £
4.8 years)

120

64

60

64

64

256

134

12

Source Spectral power, event-
related spectral

perturbations

Source Event-related spectral

perturbations

Source Spectral power, event-
related spectral

perturbations

Source Event-related spectral

perturbations

Source Spectral power

Source Spectral power

Source Spectral power, event-
related spectral

perturbations

cortex is involved in gait
adaptation and with
practice the new pattern
becomes more automated.
Evidence of differences in
cortical activation between
active and passive robot
assisted gait. Reduced
power in mu and beta
bands over central midline
areas during active walking
could be related to sensory
processing of the lower
limbs. Cortical activity in
the premotor cortex in the
lower gamma band, which
tended to decrease during
active walking, may be
related to movement
planning and or
sensorimotor processing.
Mu and beta rhythms
suppressed during gait
speed changes, suggesting
the parietal cortex could be
involved in motor planning
and visuomotor
transformations during gait
adjustments.

Changes in spectral power
in the posterior parietal
cortex and sensorimotor
cortex were associated with
the level of motor task
demands.

Modulations in posterior
parietal cortex shifted to
higher frequency bands
when ascending stairs and
ramps. Low gamma
modulations in
sensorimotor area observed
in level-ground walking
shifted to lower frequency
bands while ascending
stairs and ramps. Suggests
that varying walking
terrains have distinct
neural signatures.
Increased beta power in the
left premotor area during
stabilized walking suggests
a reduced demand to
stabilize gait.

Several areas are involved
in recognizing a loss of
balance, as seen with
increased theta band
activity before the loss of
balance. The first area to
show an increase was the
sensorimotor cortex, during
the last double support
phase before stepping off
the beam.

Similar time-frequency
electrocortical pattern
when facing the two types
of perturbations, but the
pattern was stronger in
occipito-parietal areas
during visual perturbations

(continued on next page)



N. Richer et al. Neuroscience and Biobehavioral Reviews 162 (2024) 105718

Table 2 (continued)

Reference Task Manipulation/ Number of # EEG sensors EEG Neural features/ Contribution/Major
Condition participants (* Denotes channel metrics analyzed finding
(Age) invasive or Source
sensors) domain
analysis

and stronger in motor areas

during physical
perturbations.
An et al., Treadmill Trip perturbation 5 (mean 24.6 + 128 Channel Power spectral density Alpha band
(2019) walking 2.0 years) desynchronization during

trip recovery in the
electrodes over the
sensorimotor and posterior
parietal cortices during
balance recovery suggest
increased cortical activity
in those areas while
recovering walking

balance.
Wagner et al., Treadmill Adaptation to 18 (range 22-35; 108 Source Event-related spectral Two beta band oscillatory
(2016) walking auditory cue pacing 29.1 + 2.7 years) perturbations, event- networks involved in motor
related potentials adjustments during gait: 1)

decrease in mu and beta
band reflecting motor
execution and readiness
related to gait movements;
2) frontal beta band
increase related to
cognitive top-down control
and inhibition.

Malcolm et al., Treadmill Optic flow with and 16 (mean 25.6 + 72 Source Power spectral density Cautious gait was
(2018) walking without continuous 4.5 years) accompanied by spectral
mediolateral power modulations in
perturbations, go/no- frontoparietal clusters,
go task areas that are thought to be

involved in motor planning
and sensory guidance of
movement. Suppression in
alpha/mu and beta rhythms
suggest increased
activation of these regions
when sensory inputs are

unreliable.
Mustile et al., Overground Stepping over 32 (range 19-65; 32 Channel Event-related spectral Changes in frontal theta
(2021) walking expected and 321 +11.6 perturbations and centro-parietal beta
unexpected obstacles years) power before and after

obstacle crossing
demonstrate distinct neural
markers of proactive and
reactive movement control.
Motor plans are updated as
soon as obstacle appears.
Beta rebound after obstacle
crossing reflects the
resetting of the motor

system.
Nordin et al., Treadmill Stepping over 9 (age not 128 (dual-layer Source Event-related spectral Spectral power increases in
(2019) walking and obstacles provided) EEG) perturbations supplementary motor area
running and premotor cortex after

the obstacle appeared, but
before stepping over the
obstacle, suggests these
areas prime locomotor
control to expect changes to
the gait cycle. Spectral
power increase in the
posterior parietal cortex at
asimilar distance to contact
with the obstacle at each
speed suggests its
involvement in planning
foot placement before
stepping over the obstacle.

Salazar-Varas Treadmill 2 km/h; obstacles 3 (range 24-29 32 Channel Average potential, scalp Change of potential
et al., (2015) walking (laser projection, years) distribution precedes participants’
change of color of a reaction to obstacle,
screen) suggesting a change in

(continued on next page)
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Table 2 (continued)

Reference Task Manipulation/ Number of # EEG sensors EEG Neural features/ Contribution/Major
Condition participants (* Denotes channel metrics analyzed finding
(Age) invasive or Source
sensors) domain
analysis

brain activity reflecting the
alertness to the obstacle’s
appearance and the
preparation for a reaction.

Jacobsen et al.,,  Walking on Adaptation to a 2:1 30 (mean 22.8 + 128 (dual-layer Source Adaptation time Electrocortical time
(2023) split-belt treadmill belt speed 2.6 years) EEG) constants for kinematic constants were larger than
treadmill ratio and electrocortical kinematic ones, suggesting
measures that adaptive changes in

brain dynamics were

longer-lasting than the

changes in step timing.
Corticocortical and corticomuscular coherence during walking

Lau et al., Standing and Visual oddball 8 (range 20-31 248 Source Cortical connectivity Stronger connectivity
(2014) walking on a discrimination task years) involving sensorimotor
treadmill clusters in standing than

walking, suggesting a
greater cortical/cognitive
involvement during
standing. Connectivities
involving non-sensorimotor
areas stronger during
walking vs. standing only
when engaged in the
cognitive task.

Petersen & Standing and Physical perturbations 30 (mean 22.5 + 136 Source Cortical and muscular Sensorimotor perturbations
Ferris, walking on a and field-of-view 4.8 years) - 1 connectivity, event- to balance alter cortical
(2019b) treadmill- rotations. subject discarded related spectral networks. Decreased

mounted perturbations occipito-parietal
balance beam connectivity during visual

rotations, increased
connectivity between
supplementary motor and
anterior cingulate areas

during physical
perturbations.
Artoni et al., Treadmill 3.5 km/h 11 (mean 30 + 4 64 Source Corticomuscular Brain-to-muscle
(2017) walking years) connectivity, event- connectivity was stronger
related spectral than muscle-to-brain
perturbations (discussed connectivity. Motor regions
in section on spectral had a stronger influence on
fluctuations of leg muscle activity than
electrocortical activity non-motor regions,
during walking) suggesting supraspinal

involvement in human
locomotion. Connectivity
was strongest for distal
muscles of the swing leg,
suggesting fine cortical
control for ankle
dorsiflexion and foot

placement.
Brantley et al., Overground Level overground 1 (31 years) 64 Channel Corticomuscular EEG-led corticomuscular
(2016) walking and walking followed by coherence coherence during level
stair ascent 8-step stair ascent walking. Coherence

increased between EEG and
vastus lateralis and tibialis
anterior in the delta band
during stair ascent. EMG
led EEG for biceps femoris
and gastrocnemius during
stair ascent.

Jensen et al., Treadmill Visually-guided vs. 16 (mean 23 + 5 2 Channel Corticomuscular, Increased intramuscular,

(2018) walking normal walking years) intramuscular, and intermuscular, and
intermuscular coherence  corticomuscular coherence

(not significant) in ankle
dorsiflexors and plantar
flexors during visually
guided treadmill walking.
Suggests that the motor
cortex and corticospinal
tract are involved in

(continued on next page)
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Table 2 (continued)
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Reference

Task

Manipulation/
Condition

Number of
participants
(Age)

# EEG sensors EEG

(* Denotes channel
invasive
sensors) domain

analysis

or Source

Neural features/
metrics analyzed

Contribution/Major
finding

Jensen et al.,
(2019)

Petersen et al.,
(2012)

Roeder et al.,
(2018)

Winslow et al.,
(2016)

Invasive EEG
Starkweather
et al., (2023)

McCrimmon
et al., (2018)

Aghajan et al.,
(2017)

Treadmill
walking

Treadmill
walking

Treadmill and
overground
walking

Overground
walking and
ramp ascent

Visually cued
arm swing and
stepping task

Treadmill
walking and
isolated limb
movements

Overground
walking

3.6 km/h

Preferred speed,
without active arm
swing

Preferred speed

Self-paced

Intra-operative seated

setup

Walking at slow,
casual, and fast
speeds. Flexion and
extension of the hip
and knee; ankle
dorsiflexion and
plantarflexion;
isolated arm-swing
Slow or fast speed,
linear and circular
paths

11 (mean 24.9 +
2.8 years)

9 (mean 23.4 +
4.1 years)

22 (mean 25.9 +
3.2 years)

1 (31 years)

5 with idiopathic
Parkinson’s
disease (mean
64.5 +10.9
years); 1 with
essential tremor
(47 years)

2 (32 and 38
years)

4 (34, 40, 45, and
63 years)

1 Channel

28 Channel

10 Channel

64 Channel

28* (temporary Channel
electrode strip

over upper limb

primary motor

cortex in deep

brain stimulation

patients)

32* (ECoG grid) Channel

4* (NeuroPace) Channel

Corticomuscular and
intermuscular coherence

Corticomuscular
coherence

Event-related power,

corticomuscular
coherence, intertrial
coherence

Corticomuscular
coherence

Spectral power

Spectral power

Spectral power

visually guided foot
placement during walking.
Significant corticomuscular
and intermuscular
coherence in beta and
gamma bands throughout
the stance phase,
particularly just before
push-off, with EEG activity
leading the EMG activity.
Suggests that motor cortex
contributes to activity in
the ankle plantar flexor and
to forward propulsion.
Coupling between EEG
(24-40 Hz) over the leg
motor area and EMG from
the tibialis anterior before
heel strike suggests that the
motor cortex and
corticospinal tract
contribute directly to the
muscle activity in treadmill
walking.

Cortical power,
corticomuscular coherence,
and intertrial coherence
increased during periods of
double support. Frequency-
band dependent differences
between overground and
treadmill walking,
suggesting different neural
control for the two gait
modalities. EEG response
preceded the EMG
response.

Activity of the motor cortex
led activity in the tibialis
anterior in the low gamma
band in swing phase during
overground walking and in
stance phase during ramp
ascent.

Oscillatory signatures of
stepping were different
than those of the arm
swing. Oscillations in the
hand and arm area of the
motor cortex during
stepping were in lower
frequency ranges (delta,
alpha, theta, beta) than the
gamma band activity seen
during the arm swing.

M1 is involved in high-level
gait motor control,
encoding walking duration
and speed, rather than low-
level patterns of leg muscle
activation or movement
trajectories.

Theta oscillations observed
in rodents were also present
in humans but occurred in
short bouts that were more
prevalent during fast vs.
slow movements.

15



N. Richer et al.

Neuroscience and Biobehavioral Reviews 162 (2024) 105718
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Fig. 5. This figure depicts a mobile-brain body imaging (MOBI) experimental setup for studying locomotion-related brain activity in neurologically intact humans.
High-density scalp EEG is recorded simultaneously with motion capture, electromyography (EMG), and ground reaction forces (GRF). Measurements of the limb
trajectories and muscle activity can help with the interpretation of brain signals and enables analysis such as exploring information flow between brain and muscle.
This type of data collection can be performed in the lab on a treadmill, but wireless and portable sensors have enabled the study of locomotion overground and
outside of the lab in more realistic, complex settings. (Figure created by Seongmi Song using biorender.com).
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Fig. 6. Gait-related spectral perturbation plots from the left and right senso-
rimotor cortex during normal treadmill walking at 1.2 m/s. These plots illus-
trate the lateralization of alpha and beta spectral power fluctuations that are
typically observed in sensorimotor cortices related to the gait cycle. These plots
were created from a split-belt walking study (Jacobsen and Ferris, 2023b). Blue
shows decreases in spectral power that occur with desynchronization and red
shows increases in spectral power that occur with synchronization.
(Figure created by Noelle Jacobsen).

our gait.

Theta synchronization in multiple brain areas is a consistent finding
when experiencing gait perturbations. Peterson and Ferris (2018)
showed that the type of perturbation, visual or physical, altered the
brain areas responding with a robust theta synchronization during

16

walking. With visual perturbations, there was a strong theta synchro-
nization followed by a beta desynchronization in the occipital and
posterior parietal cortices. In contrast, physical perturbations showed
the same spectral power responses in the anterior cingulate and senso-
rimotor cortices. An et al. (2019) used a split-belt treadmill to generate
unpredictable trip perturbations to walking and observed changes in
electrocortical activity in the sensorimotor and posterior parietal
cortices while recovering from a trip compared to standing and walking.
There was a strong synchronization in the theta band for the sensori-
motor cortex and desynchronization in the alpha band for the sensori-
motor and posterior parietal cortices during trip recovery. They also
found that, in the posterior parietal cortex, theta power increased in
walking compared to standing, and that beta power decreased during
walking and trip recovery compared to standing. These findings suggest
that the type of perturbation used to conduct balance training has a
marked effect on what areas of the brain respond for balancing.

Other EEG experiments support the idea that phasic electrocortical
activity during walking may reflect processing of sensory information.
Walking requires the integration of visual, proprioceptive, cutaneous,
and vestibular sensory inputs, which we use to guide our trajectory and
to adjust to unexpected events (Peterka, 2018). The brain monitors this
feedback to adjust our walking. Studies on gait adaptation demonstrate
power fluctuations due to changing sensory cues (Malcolm et al., 2018;
Oliveira et al., 2017; Wagner et al., 2016). Wagner et al. (2016) exam-
ined gait adaptation to changing pacing cue tones and found beta band
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activity modulations in supplementary motor, parietal, and frontal areas
following step pacing cue tempo perturbations. Similarly, Malcolm et al.
(2018) modified optic flow while walking, which yielded modulations in
the supplementary motor area, the anterior cingulate cortex, the inferior
parietal lobule, and the precuneus. Closing the eyes during walking has
also changed spectral power fluctuations in frontal, premotor and so-
matosensory cortices (Oliveira et al., 2017). Theta desynchronization
was reduced in frontal and premotor cortices during stance and theta to
beta desynchronization was increased during single support and right
swing phases in left and right sensorimotor cortices. Altogether, the
results of these studies suggest that when one sensory modality is not
available or inaccurate, sensory reweighting may increase cortical
spectral power fluctuations within the gait cycle related to sensory
processing and integration of the remaining sensory modalities.

A few experiments have looked at brain activity during obstacle
avoidance in human locomotion, and found robust electrocortical sig-
natures (Mustile et al., 2021; Nordin et al., 2019; Salazar-Varas et al.,
2015). Salazar-Varas et al. (2015) found a change in potential before
participants reacted to an obstacle, suggesting alertness to the obstacle’s
appearance and preparation for a reaction. Nordin et al. (2019) found
increases in spectral power for delta, theta, and alpha bands in supple-
mentary motor area, premotor cortex after participants initially saw an
obstacle appear in their path. Later, in the penultimate step before
crossing the obstacle, the posterior parietal cortex also showed increases
in spectral power. They suggested that the supplementary motor area
and premotor cortex prime locomotor control to expect descending
modifications to the gait cycle. In contrast, the posterior parietal cortex
was likely involved in planning foot placement in anticipation of step-
ping over the obstacle (Nordin et al., 2019). Mustile et al. (2021) studied
avoidance of expected and unexpected obstacles during walking. They
found increased frontal theta power when an unexpected obstacle
appeared on the path, which was larger when less time and space was
available to adjust. The authors suggested this was evidence of proactive
control mechanisms in response to unexpected obstacles. They also
observed a greater decrease in beta power in sensorimotor areas when
obstacles were present, demonstrating increased motor readiness during
obstacle avoidance. Participants also had increased parietal beta power
after obstacle crossing, evidence of a reactive phase consisting of
resetting the motor system to its previous state once the obstacle has
been negotiated. These studies suggest multiple cortical areas are
involved with identifying and adapting locomotor control to unexpected
obstacles. These findings do not always agree with theoretical in-
terpretations from local field potentials in non-human animals (Drew
and Marigold, 2015). The main difference in the animal studies is they
have used a limited number of brain areas. Future studies on humans
with mobile EEG in interactive environments would help provide a more
comprehensive view.

Experiments inducing changes in walking pattern indicate major
roles for sensorimotor, posterior parietal, and anterior cingulate cortices
in controlling gait adaptation. In a recent study of split-belt treadmill
adaptation, a common paradigm for studying behavioral metrics in gait
adaptation, Jacobsen and Ferris (2023a) found sensorimotor and pos-
terior parietal cortices had decreased alpha and beta band spectral
power during early adaptation to split-belt treadmill walking. The
spectral power in both areas returned to pre-adaptation levels by the end
of the adaptation training period when gait kinematics had stabilized.
There were also strong increases in anterior cingulate and posterior
cingulate theta band power with the initial gait perturbation of the
split-belt treadmill speed differential. When comparing the adaptation
time constants for kinematics versus the adaptation time constants for
electrocortical measures, the electrocortical time constants were
generally longer (Jacobsen et al., 2023). This suggests that the changes
in brain dynamics were longer-lasting than the changes in stepping
timing. Wagner et al. (2016) used a much shorter duration adjustment in
step frequency and length based on an audio tone, but they also found a
similar reduction in beta band power for the sensorimotor and posterior
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parietal cortices. Overall, these observations about gait adaptation are in
keeping with the previously discussed observations about gait pertur-
bations and stability.

Several studies, although quite informative about the neural control
of balance, are focused on standing balance control and fall outside of
the scope of this review. For example, a series of experiments provide
insight into cortical dynamics during reactive stepping responses (Ghosn
et al., 2020; Solis-Escalante et al., 2019, 2020, 2021; Stokkermans et al.,
2022). We would like to refer readers to these recent review papers that
offer an excellent summary of the cortical activation in balance control:
Huang and Ferris (2023), Payne et al. (2019), Purohit and Bhatt (2022),
Varghese et al. (2017), and Wittenberg et al. (2017).

Corticocortical and corticomuscular coherence during walking

The high temporal resolution of EEG makes it an ideal modality for
studying connectivity during human locomotion. Lau et al. (2014) found
greater effective connectivity between other brain areas and the senso-
rimotor cortex during standing compared to walking. They interpreted
this finding in that standing had greater cortical involvement for control
compared to walking. Peterson and Ferris (2019b) reported that effec-
tive alpha connectivity between parietal and occipital areas decreased
with visual perturbations during walking, and effective theta connec-
tivity between supplementary motor area and sensorimotor, anterior
parietal, anterior cingulate, and right occipital areas increased with
physical perturbations during walking. Both findings are consistent with
theories on sensory re-weighting and error processing.

With inclusion of electromyography measurements, it is possible to
combine EEG metrics and EMG metrics to assess corticomuscular
coherence during walking (Artoni et al., 2017; Brantley et al., 2016;
Jensen et al., 2018, 2019; Petersen et al., 2012; Roeder et al., 2018;
Winslow et al., 2016). Corticomuscular coherence can help provide
insight into flow of motor commands and sensory feedback from the
periphery. Petersen et al. (2012) and Winslow et al. (2016) found
coherence between the primary motor cortex and tibialis anterior muscle
activity in the beta and low gamma bands, as was expected given the
strong link between motor cortex and that muscle during gait (Capaday
et al., 1999). Artoni et al. (2017) examined the link between brain and
muscle including direction of information flow during walking in mul-
tiple participants. Brain-to-muscle connectivity was stronger than
muscle-to-brain connectivity and motor regions had a stronger causal
influence on leg muscle activity than the non-motor regions, demon-
strating the supraspinal involvement in human locomotion. They also
found that connectivity was strongest for distal muscles of the swing leg,
which suggests that cortical control is important for ankle dorsiflexion
and correct foot placement. Roeder et al. (2018) examined cortico-
muscular coherence using bilateral EEG from the sensorimotor cortices
and bilateral EMG from the tibialis anterior. They found increased cor-
ticomuscular coherence during double support at frequencies between
0 and 45 Hz, with EEG signals leading the EMG signals in alpha, beta,
and gamma bands. In 2019, Jensen et al. recorded EEG with one elec-
trode over the leg motor cortex area and muscle activity of the medial
gastrocnemius and soleus muscles and looked at corticomuscular coher-
ence (Jensen et al., 2019). They found coherence in the beta and gamma
frequency bands throughout the stance phase, with EEG activity pre-
ceding EMG activity throughout stance and until push-off. They suggest
that these findings illustrate the motor cortical contribution to plantar
flexor activity in the stance phase of gait and its contribution to forward
propulsion during walking.

Invasive EEG

While the previously reported data were acquired through non-
invasive methods, there are a few experiments that have evaluated
electrocortical locomotor activity using invasive recordings. Stark-
weather et al. (2023) placed temporary electrode strips over the upper
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limb area of the primary motor cortex in deep brain stimulation patients
with Parkinson’s disease and essential tremor and found different
oscillatory signatures between stepping motions and the arm swing. An
experiment by McCrimmon et al. (2018) used electrode grids implanted
in epileptic patients to examine the human leg area of the primary motor
cortex. They provide evidence that the primary motor cortex is involved
in the control of walking. They observed a gamma-band synchronization
at gait initiation which was maintained during the entire walking bout,
indicating that the primary motor cortex is involved not only for gait
initiation but throughout the walking duration. Gamma activity also
changed across the gait cycle at various walking speeds, suggesting that
the primary motor cortex encodes gait speed. Authors note that the
gamma-band activity was related to motor intention and not caused by
sensory feedback. Interestingly, isolated contraction of ankle and hip
muscles did not produce the same electrocortical patterns as walking,
suggesting that the primary motor cortex encodes walking duration and
speed but not muscle activation patterns or movement trajectories
(McCrimmon et al., 2018). It is possible that the primary motor cortex
provides rhythmic input to the spinal central pattern generators during
walking (McCrimmon et al., 2018).

Other experiments have started to use neurostimulator devices that
are implanted for clinical purposes to record intracranial EEG. Similar to
the electrode grids, these devices are resistant to motion artifacts, allow
access to deep brain structures, and offer the possibility to record data
for extended periods of time. They also allow researchers to examine
causal relationships between stimulated brain areas and behavior
(Stangl et al., 2023). Aghajan et al. (2017) looked at theta-band activity
during walking to confirm if theta activity observed in rodents was also
present in humans. Walking was done either in a straight line or a cir-
cular path at both slow and fast speeds. They found that theta power was
significantly higher when participants were in movement compared to
when they were immobile and that these oscillations occurred in short
bouts that were more prevalent during fast movements (Aghajan et al.,
2017). As presented in the overview by Maoz et al. (2023), there are not
many studies that have used neurostimulator devices to examine human
walking yet, but these methods will enable us to gain valuable infor-
mation about the electrocortical contributions to walking in natural
settings.

Next steps in EEG research

The rapid progress in EEG hardware and processing methods that has
occurred over the last decade has led to a plethora of new studies on
mobile EEG. Many of the resulting data collections are available freely
on various platforms. For example, platforms such as OpenNeuro (htt
ps://openneuro.org/) and Nemar (https://nemar.org/) are specific to
brain imaging datasets, while other platforms such as IEEEDataPort
(https://ieee-dataport.org/) and PhysioNet (https://physionet.org/)
offer more general open access datasets. There is therefore a large
number of online datasets that can benefit from further analysis from
other research groups. Analyzing these data with best practice pro-
cessing methods and new research questions will yield an even greater
understanding of the electrocortical contributions to human walking. In
addition, there is a known problem with replication of results in EEG
experiments (Pavlov et al., 2021). EEG data are complex and can be
preprocessed and analyzed in many different ways, which contributes to
this problem. In addition, the complexity and cost of the work can lead
to small sample sizes (Pavlov et al., 2021). The online databases that are
now available offer us the opportunity to overcome these issues by
demonstrating replication of results and ensuring rigor in our data. To
help with the problem with replication of results, researchers also need
to discuss best practices in the field, which will continue to evolve as
new processing methods are developed (Miljevic et al., 2022; Pernet
et al., 2020).

Because of the surge of research in mobile EEG, there has been a
recent proliferation of available commercial EEG hardware (C. He et al.,
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2023; Niso et al., 2023). Niso et al. (2023) report on 48 wireless systems,
and this number will continue to rise in coming years. Systems vary
based on factors such as density and type of electrodes, weight and
portability, ease of setup, cost, battery life, real-time access, and addi-
tional sensors. Care must be taken when selecting an EEG system, to
ensure an adequate signal quality based on the desired application. For
mobile EEG research, high-density wireless systems are preferred (C. He
et al., 2023). On a positive note, a comparison of two research-grade
systems, a mobile system with dry electrodes, and an affordable
low-density mobile system has demonstrated that the variability in
systems is negligible as long as you use a quality system (Melnik et al.,
2017). In addition, there was very little intersession variability, indi-
cating that testing participants only once is sufficient (Melnik et al.,
2017).

Limitations

We have focused the majority of this review on a discussion of the
technical approaches and scientific findings of mobile brain imaging
with high-density EEG to provide new insight into the control of human
locomotion in healthy young adults. There are many other studies
focused on clinical populations that we have not discussed, primarily
due to the complexity of interpreting data from neurologically impaired
individuals. In addition, the effect of aging on the control of human
locomotion was not discussed. Another limitation of the review is the
lack of discussion on higher order cognition studies, such as those
focusing on navigation and social interactions. Those topics have also
become popular due to technical advances in mobile EEG, and the in-
crease in research in those areas is likely to continue. Lastly, there are
very many studies on mobile EEG that analyze their data in sensor space
(i.e., electrode averages) rather than source space (i.e., brain areas), that
we have not discussed. It is hard to have great confidence in which brain
area is contributing most to a sensor level signal (Makeig et al., 2002,
2004).

Conclusions

New hardware and signal processing approaches for mobile EEG
have greatly expanded our appreciation of the involvement of brain
areas in the control of human locomotion. The reasonable spatial reso-
lution and excellent temporal resolution allow source localized elec-
trocortical activity to inform scientists about the tonic and phasic
changes in brain activity that correlate with gait speed, stability, per-
turbations, and adaptation. Perhaps surprisingly, the strong presence of
spectral power fluctuations within the anterior cingulate, posterior pa-
rietal, occipital, and posterior cingulate areas shows robust results to
gait behaviors in addition to the expected presence of spectral power
fluctuations within the sensorimotor cortex. The coming years should
bring a large increase in controlled experiments that directly manipulate
gait parameters and biomechanics to specifically test focused hypothe-
ses on electrocortical activity. We really are just scratching the surface of
understanding brain control of human locomotion at this point, but we
are very optimistic for the future given the advances in mobile brain
imaging technologies.
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