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a b s t r a c t 

Real-world settings are necessary to improve the ecologi- 

cal validity of neuroscience research, and electroencephalog- 

raphy (EEG) facilitates mobile electrocortical recordings be- 

cause of its easy portability and high temporal resolution. 

Table tennis is a whole-body, goal-directed sport that re- 

quires constant visuomotor feedback, anticipation, strategic 

decision-making, object interception, and performance mon- 

itoring – making it an interesting testbed for a variety of 

neuroscience studies. Although traditionally plagued by arti- 

fact contamination, recent advances in signal processing and 

hardware approaches, such as the dual-layer approach, have 

allowed high fidelity EEG recordings during whole-body ma- 

neuvers. Here, we present a dual-layer EEG dataset from 25 

healthy human participants playing table tennis with a hu- 

man opponent and a ball machine. Our dataset includes syn- 

chronized, multivariate time series recordings from 120 scalp 

electrodes, 120 noise electrodes, 8 neck electromyography 

electrodes, and inertial measurement units on the partici- 

pant, paddles, and ball machine to record hit events. We also 

include de-identified T1 anatomical MR images and digitized 

electrode locations to create subject-specific head models 

for source localization. In addition, we provide anonymized 

video recordings and Adobe Premiere project files with hit 

events labeled (originally used to mark successful/missed 

hits). Researchers could use the videos to mark their own 

events of interest. We formatted our dataset in the Brain 
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Imaging Data Structure (BIDS) format to facilitate data reuse 

and to adhere to the scientific community’s new organization 

standard. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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g  
pecifications Table 

Subject Neuroscience: General 

Specific subject area Mobile-Brain Body Imaging (MoBI) 

Data format Raw, Processed, Filtered 

Type of data Multivariate time-series data from electroencephalography (EEG), neck 

electromyography (EMG), inertial measurement units (IMU); T1 anatomical MR head 

images, video and Adobe Premiere project files; weight matrices from independent 

component analysis; metadata 

Data collection Twenty-five right-handed healthy participants played table tennis with a human player 

(cooperative or competitive play) and with a ball machine (stationary or moving 

conditions, replicating a rally shot or a serve). Data were acquired using dual-layer EEG 

with BrainVision ActiCap snap sensors and EeonTex LTT-PI-100 conductive fabric, 

data-logged on four BrainVision LiveAmp 64 amplifiers (500 Hz). We used the Cometas 

WaveTrack Inertial System in data-logging mode (20 0 0 Hz), 3T Philips Ingenia Scanner 

for structural T1 MRI, GoPro Hero 7 video (30–240 fps), itSeez3D software and 

Structure Sensor from Occipital Inc. for electrode locations. 

Data source location Institution: University of Florida 

City/Town/Region: Gainesville, FL 

Country: United States 

Data accessibility Repository name: OpenNeuro 

Data identification number: ds004505 

Direct URL to data: https://openneuro.org/datasets/ds004505/ [1] 

Related research article A. Studnicki, R.D. Seidler, D.P. Ferris, A Table Tennis Serve versus Rally Hit Elicits 

Differential Hemispheric Electrocortical Power Fluctuations, Journal of 

Neurophysiology. 2023. 130(6):14 4 4–1456. 10.1152/jn.0 0 091.2023 . 

. Value of the Data 

• These data are useful because understanding the neural correlates of natural movement is

important and these data advance the field of mobile brain imaging during a whole-body

sporting task. 

• This multi-modal dataset can benefit researchers interested in sensorimotor integration,

real-world object interception, performance monitoring, source-localized electrocortical

connectivity, human-machine interaction, sports neurophysiology, and improving tech-

niques for removing EEG artifacts during mobile tasks. 

• We formatted the dataset in the Brain Imaging Data Structure (BIDS) format to enable

data reuse and interpretation. 

• We processed and selected participants that contained more than five source-localized

brain components, which ensures that our data was high quality. 

• The subject-specific T1 anatomical MR head images and digitized electrode locations allow

researchers to improve dipole source localization techniques. 

• The video data provides an opportunity to explore other events of interest. 

. Data Description 

Our dataset contains high-density, dual-layer electroencephalography (EEG), neck electromyo-

raphy (EMG), inertial measurement unit (IMU) acceleration, T1 structural MR images, and video

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://openneuro.org/datasets/ds004505/
https://doi.org/10.1152/jn.00091.2023
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Fig. 1. Organization of the BIDS dataset on OpenNeuro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data for 25 healthy, cognitively-intact participants playing real-world table tennis. Participants

played 60 min of table tennis (in total) with a ball machine and a human player (i.e., the re-

searcher, A.S.), with an additional 10 min of standing baseline. All data files are separated for

each participant and follow the Brain Imaging Data Structure (BIDS) format [4] ( Fig. 1 ). A high-

level overview of the dataset can be found in the dataset_description.json file. 

2.1. Metadata 

The participant.tsv and participant.json files hold the metadata information. In the partic-

ipants.tsv file are the participant’s age, sex, head circumference size, and answers to a nine-

question survey to gauge the participant’s table tennis and racquet sport experience level. Ac-

companying the TSV file is the participants.json file that describes each column in detail. 

2.2. Raw data 

The sourcedata folder contains the raw subject data, separated by subject into different fold-

ers. For example, “sub-01” corresponds to “Subject 1”. Within each subject folder inside the

sourcedata folder are “.eeg”, “.vhdr”, and “.vmrk” files that come from the original BrainVision

amplifier recordings. The “.eeg” files contain the raw EEG data. The “.vhdr” files contain the

recording parameters and other meta information (sampling rate, channel resolution, amplifier

battery levels, number of data points, etc.). The “.vmrk” files contain the raw event data. Four

individual amplifiers were used to record the data (left/right hemisphere and scalp/noise layer of

electrodes), and each file is labeled accordingly. An “_Impedance.txt” file contains the impedance
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alues at the start of the experiment. The “_chanlocs.txt” file contain the digitized electrode loca-

ions from the get_chanlocs function in EEGLAB [5] . Electrode locations are in millimeters units

nd the fiducials (nasion and left/right preauricular points) are found at the bottom rows of the

le. Multiple “_Cometas_##.txt” files correspond to the raw data from the inertial measurement

nits. Different participants had a different subset of sensors, and the “_Cometas_KEY.txt” file

utlines which sensors correspond to which data stream. The rising edge of the square wave

rom the Cometas “sync” data stream and the “M 1” events from the BrainVision amplifier can

e used to align the data. 

The sourcedata folder also contains a directory titled “Merged”. Inside the “Merged” folder,

he data are separated again by individual subject folders. Within the individual subject fold-

rs, the data from all the sensors have been synchronized and merged into a single sub-

ect’s dataset (i.e., the “.fdt” and “.set” files) and high-pass filtered at 1 Hz. The “.fdt” and

.set” files can be read using EEGLAB. After loading the data, a field in the data structure

EEG.etc.ImportEvents.sensor_ch) explains what each of the inertial measurement units were for

hat particular subject. The subject paddle corresponds to “sub”, “res” is the researcher paddle,

mach” is the ball machine, “net” is the net, “table_BM” is the table on the side opposite the

ubject, “table_sub” is the table on the same side of the subject, “head” is on the subject’s fore-

ead, and “torso” is within the backpack. 

.3. Processed data 

Processed data are found in subject folders (sub-01, sub-02, …) outside of the sourcedata

irectory. The subfolders within each subject folder are “anat”, “eeg”, and “video”. The “anat”

ubfolder contains the T1 structural MR scans. The “eeg” subfolder contains all the electrophys-

ological data. The “video” subfolder, present for participants who agreed to release them, hold

ideos of individual trials. Video data is missing from sub-01 to sub-05, sub-08, sub-18, and

ub-22. 

Within the “eeg” subfolder of the subject’s processed data are time series recordings saved

s EEGLAB “.set” and “.fdt” files. Using EEGLAB, both of the “.set” and “.fdt” files can be loaded.

fter loading, the time series data is in the EEG structure “data” field. Each row corresponds

o one of the scalp channels (120 rows), noise channels (120 rows), neck electromyography (8

ows), 3-axis accelerometer channels that were built-in each LiveAmp 64 amplifier (12 rows),

nd Cometas IMU channels. The name, data type, and units of each data are found in the _chan-

els.tsv file. The “_electrodes.tsv” file shows the digitized electrode location of the scalp channels

n millimeters. The “_events.tsv” and “_events.json” contain the synchronization pulse events (“M

”) and the hit events from the participant, human player, and ball machine. The timing of “M 1”

vents from the EEG line up with the rising edge of the square wave pulse from the IMU chan-

el labeled “SyncPulse(uV)”. The timings of the hit events line up with peaks in the acceleration

f the inertial measurement units. 

More information on events can be found in the EEG structure from the “.set” and “.fdt”

les in EEG.event. The “EEG.event.condlabel” field specifies the trial type (cooperative, compet-

tive, stationary_hit, stationary_serve, moving_hit, moving_serve, and standing_baseline). Each

cometas_checked” type of event corresponds to the hit event (timing comes from peaks

n the IMU acceleration) that was double-checked with the video data. Other event fields

nclude performance (1 = in bounds, 2 = error/out of bounds, 3 = error/in the net, 4 = other)

nd bounces (2Bounces_Human = human player serve and participant return of serve,

Bounce_Human = rally hit from the human player and participant, Serve_Human = partici-

ant serve, 2Bounces_BM = hits with the ball machine that simulate a return of serve with

wo bounces, and 1Bounce_BM = hits with the ball machine that simulate a rally hit with

ne bounce). Segmented datasets were concatenated together from each trial type, and the

event.video” field specifies which GoPro video was associated with that trial. The GoProFrame

vent field corresponds to the hit’s timestamp from the video data in the Adobe project file. 
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The “etc.” field in the EEG structure contains the weight and sphering matrices that resulted

from adaptive mixture independent component analysis (AMICA) [6] . The “etc.” field also con-

tains dipole modeling information that was estimated with DIPFIT3.3 in “EEG.etc.dipfit”. These

dipoles were fitted with subject-specific head models, and the coorindates of the dipoles were

transformed to MNI space. The components retained in analyses of the brain data (selected with

ICLabel, residual variance, and manual inspection) are specified in “EEG.etc.KeepComponents”

[7,8] . 

Within the “anat” subfolder of the subject’s processed data are de-identified T1 anatomical

head images. The “_T1w.nii” files were de-identified with FieldTrip functions to remove the par-

ticipant’s face [9] . These files were used to create subject-specific head models for dipole source

localization. 

Within the “video” subfolder of the subject’s processed data are videos from all the trials. The

timing of hit events were manually labeled in Adobe Premiere Pro software. The Adobe project

file can be loaded with Premiere Pro software and the relative timing between hit events may be

exported. Chapter markers indicate the time when the participant hit the ball. Flash Cue points

mark when the human player hit the ball. Comment markers labeled the time of the first hits

(i.e., serves) in the human player trials. 

3. Experimental Design, Materials and Methods 

3.1. Participants 

Thirty-seven healthy, cognitively-intact participants were recruited to participate in our study

(ages 23.5 + /- 6.7 years, mean + /- SD; 13 females). We only present here the data from twenty-

five participants who yielded more than five brain source-localized components according to

ICLabel and manual inspection. All participants self-identified as right-hand dominant, had nor-

mal or corrected-to-normal vision, and were free from any musculoskeletal or neurological in-

juries. Participants had a wide range of table tennis and racquet sport experience. The University

of Florida Institutional Review Board approved our protocol, and all participants gave written in-

formed consent. 

3.2. Materials and equipment 

The experiment took place in an indoor lab on the University of Florida campus. The table

was a Joola, 15 mm thick. We provided participants with the same wooden paddles, which we

put an inertial measurement unit on the bottom of the handle and secured with self-adherent

tape. The ball machine was a Robo-Pong 2040 + Ping Pong Robot (Newgy Industries). 

3.3. Dual-layer EEG system 

The EEG data was recorded from a custom-made dual-layer EEG system [10] that consisted

of 120 scalp electrodes and 120 noise electrodes (BrainVision ActiCAP snap sensors). Scalp elec-

trodes were mechanically joined and electrically isolated from inverted noise electrodes ( Fig. 2 ).

Wires from individual scalp and noise pairs of electrodes were secured using tape so that both

cables experienced similar motion artifacts. Conductive fabric (EeonTex elastic piezoresistive fab-

ric, LTT-PI-100) stretched over the noise layer of electrodes and acted as an artificial skin circuit.

We re-purposed eight of the original 128 scalp electrodes to measure neck electromyography

from the left/right and upper/lower sternocleidomastoid and trapezius muscles. The channels

we repurposed were at the back of the head (TP9, P9, PO9, O9, O10, PO10, P10, and TP10).

Four BrainVision LiveAmp 64 amplifiers data-logged and recorded data at 500 Hz. Each LiveAmp



6 A. Studnicki and D.P. Ferris / Data in Brief 52 (2024) 110024 

Fig. 2. Dual-Layer EEG and backpack to hold the BrainVision LiveAmp 64 amplifiers. Figure adopted from a previous 

article [2] . 
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ecorded data from one hemisphere in one layer of electrodes. The online reference (CPz) and

nline ground (Fpz) were kept separate for the scalp and noise layers to keep them electrically

solated. BrainVision provided us with cables to share the ground and reference between hemi-

pheres from each layer. We shortened the stock BrainVision ribbon cables to 14 cm and housed

he amplifiers in 3D-printed cases inside a small backpack (35 × 25 × 11 cm) ( Fig. 2 ). We ad-

usted the straps of the backpack so that it rested on the upper back of each participant. In total,

he dual-layer EEG system weighed 2.7 kg (6 lbs). 

.4. Inertial measurement units and video 

Inertial measurement units (Cometas WaveTrack Inertial System, 20 0 0 Hz) and video (GoPro

ero 7, range of 30–240 frames per second) were used to record timing of hit events. We placed

he inertial measurement units (IMUs) on the handles of the two wooden paddles and the ball

achine for all participants. We also placed IMUs on a subset of the participant’s foreheads,

ower back underneath the backpack, inside the backpack, underneath both sides of the table,

nd on the net to measure peaks in acceleration for timing of events. We placed the IMU on the

articipant’s forehead since head motion is thought to be a common source of noise in EEG data

11 , 12] . The IMUs on the participant’s lower back and inside the backpack allowed us to check

he time synchronization between the EEG and IMUs since we could compare the acceleration

o the EEG amplifier’s built-in accelerometer. Each IMU sensor’s memory logged the IMU data

nd was offloaded after the experiment. The video data was used in post processing to filter out

ny mislabeled events and to derive other events of interest. 

.5. Data Synchronization Approach 

For the processed data and the data in the “Merged” folder inside the sourcedata folder, we

ynchronized the data that came from different recording systems. The BrainVision EEG system

nd Cometas IMU system were synchronized with pulses from an Arduino timer module every

ve seconds. An analog pulse was sent to a Cometas EMG sensor at the same time as a TTL pulse

as sent to the BrainVision EEG system [13] . The Cometas EMG sensor was a purpose-built sen-

or for synchronizing the Cometas system to external devices. The GoPro video data was not

ynchronized to the other two systems in real time. Rather, we manually tagged timing of hit

vents in Adobe Premiere Pro software using markers. We exported the hit timing relative to the

rst hit event and then aligned these GoPro hits to the resultant acceleration of the paddle IMU

ata using a cross-correlation. Any hit events from the IMUs that were outside of the 200 ms

rom the video markers were filtered out as mislabeled events (e.g., if the participant acciden-
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tally hit the table with their paddle). The video data also allowed us to mark other parameters

of the event, such as whether the ball was in-bounds or out-of-bounds. 

3.6. Participant prep 

After consenting, we prepared the participants for the experiment. We measured the distance

between preauricular points and between the nasion and inion to place the Cz electrode accord-

ing to the 10–20 system. We gelled the scalp layer of electrodes with Abralyt gel and ensured

that impedance values were below 20 kOhms. We put adhesive washers on the repurposed neck

electromyography electrodes, prepared the skin with alcohol and light abrasion, and gelled the

neck electrodes like the scalp. Next, we digitized the electrode locations with itSeez3D software

and a Structure Sensor (Occipital Inc.) attached to an iPad. Then, we put a small amount of Su-

perVisc gel on the tops of each of the noise electrodes. Two people stretched the conductive

fabric over the noise layer of electrodes, taking care not to smear the gel and bridge the elec-

trodes. The noise layer of electrodes were also kept below 20 kOhms. We put the amplifiers in

the backpack, connected EEG electrodes to the amplifiers, and adjusted the backpack so it rested

on the participant’s upper back. We also used a chest strap to better distribute the backpack’s

weight. 

3.7. Experimental protocol 

Participants played table tennis with a human player and a ball machine ( Fig. 3 ). We aimed to

collect around 70 min of total data, excluding breaks, which included 10 min of standing base-

line and 60 min of table tennis play. We separated trials into four 15-minute blocks of play. In a

single block, participants played a continuous 7.5 min with a human player (either cooperatively

or competitively) and also played three back-to-back 2.5 min trials with a ball machine. 

For the ball machine trials, we used a feed rate of approximately one ball every two seconds

(0.5 Hz) on the slowest speed setting. The ball machine trials alternated between stationary and

moving conditions. In the stationary condition, the rate of oscillation was set to 0, the ball’s tra-

jectory was predictable (always landing in the middle of the table), and the participant did not
Fig. 3. Organization of trials with a human player and ball machine. Figure adopted from a previous article [3] . 
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ave to move their feet to intercept the ball. In the moving condition, we put the rate of oscil-

ation on the machine’s slowest setting, and the ball machine fed balls towards all directions on

he table. The mechanism for feed rate and oscillation were decoupled, so the feed rate stayed

t a constant 0.5 Hz while the landing positions varied in the moving condition. Half of the ball

achine trials replicated a rally hit (1 bounce) and the other half replicated a serve (2 bounces).

he angle and speed of the feed were adjusted so that the ball landed halfway between the net

nd the end of the table that the participant was standing on. The order of trials across and

ithin blocks was randomized. 

For the human player trials, the researcher hitting with participants was experienced enough

o scale their play to match the level of each participant. In the cooperative trials, participants

ere instructed to keep as many balls in play with the human player as possible. In the compet-

tive trials, participants were instructed to try winning a 21-point game (switching serves every

 points) against the human player. In all of the trials, we encouraged participants to stay as

elaxed as possible and avoid clenching their jaws. We did not give participants specific targets

o hit nor did we instruct them to hit any particular type of shot. Breaks were given between

locks and between trials, as needed. 

On a different day and time, participants came in to get a T1 anatomical MR head scan. All

etal was removed from the participant, and they were scanned with a 3T Philips Ingenia Scan-

er (32-channel head coil), magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE)

equence. Eight of the twenty-five participants were scanned with 7.00 ms repetition time (TR),

.17 ms echo time (TE), 8-degree flip angle, 240 mm x 240 mm x 176 mm field of view, and

 mm3 recon voxel size. The remaining participants were scanned with 11.13 ms repetition time

TR), 5.10 ms echo time (TE), 8-degree flip angle, 256 mm x 240 mm x 179.9 mm field of view,

nd 0.67 × 0.67 × 0.70 mm3 recon voxel size. 

We followed up the study with an email survey to gauge the participant’s table tennis and

acquet sport experience. 

.8. Data processing 

For the processed data, we used custom MATLAB (R2020A), EEGLAB (v2021.0) [5] , and

PM/CAT12 (CAT12.8) functions. The data were 1 Hz high-pass filtered to remove drift. The indi-

idual datasets from each LiveAmp 64 amplifier and from the Cometas IMUs were merged using

he sync pulses from the Arduino. We marked hit events when the first derivative of the resul-

ant acceleration of the IMUs exceeded 0.75 gravity. We visually inspected and manually sep-

rated trials into individual EEG datasets by looking for continuous blocks of hit events. Then,

e used Cleanline to remove 60 Hz line noise [14] . We downsampled each dataset to 250 Hz,

ejected bad channels (any channel more than three standard deviations in voltage from the me-

ian of the other channels), averaged re-referenced the data with full rank, and interpolated the

ejected channels with spherical interpolation. iCanClean removed motion and muscle artifacts

rom the scalp data [15] . We used a two-second sliding window, an r2 threshold of 0.85 for the

calp x noise iCanClean, and an r2 threshold of 0.40 for the scalp × neck EMG iCanClean. Then,

e rejected time windows using the clean_artifacts function with a standard deviation threshold

f 30 and a window criterion of 0.3. 

We ran adaptive mixture independent component analysis (AMICA) on just the scalp data

o separate it into maximally independent sources of activity [6] . We first used principal com-

onent analysis (PCA) to ensure rank by reducing the principal components by the maximum

umber of rejected/interpolated scalp channels across trials for each participant. Then, we ap-

lied the weight matrix to the data before time window rejection. 

Subject-specific, custom head models were created with the FieldTrip-SimBio pipeline (finite

lement method) [9] . The participant’s T1 anatomical head images were segmented into five

issue layers using CAT12.8 (tissue conductivity values: skin 430, skull 10, cerebrospinal fluid

790, gray matter 330, and white matter 140 mS/m) [16] . Digitized electrode locations were

ound by manually selecting electrode locations on the 3D head scan .obj file with EEGLAB
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get_chanlocs function. We specified an inward shift of 10 mm to account for the dual-layer

height of electrodes (default for one layer is 5 mm). We aligned the head model from the seg-

mented T1 scan with the electrode locations using fiducials (nasion and left/right preauricular

points). We meshed the tissues into hexahedrons, and computed the source model, transfer ma-

trix, and leadfield matrix. We source-localized and fit each independent component to an equiv-

alent dipole model with DIPFIT3.3. The dipole locations were converted to MNI space. 

Limitations 

For someone pursuing a similar table tennis experiment, I recommend a few improvements

to the methods and approach. First, I would use motion capture to track the kinematics of the

participant’s body and arm. The information on body and arm kinematics would give timing in-

formation on phases of the stroke and quality or type of hit. Secondly, I recommend recording

electromyography from the participant’s arm to record movement onset for a table tennis hit.

The electroencephalography could then be response-locked to movement onset. Lastly, I recom-

mend using Lab Streaming Layer to record all of these multi-modal data streams. Lab Streaming

Layer simplifies the process for synchronizing multi-modal data streams – handling data merg-

ing, and providing access to view the data streams in near real-time. 
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