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Abstract

Bayes estimators are well known to provide a means to incorporate prior knowledge that can be
expressed in terms of a single prior distribution. However, when this knowledge is too vague to express
with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an
approach. These estimators minimize the worst-case Bayes risk over a set I' of prior distributions
that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for
parametric models. In this work, we define Gamma-minimax estimators for general models and
propose adversarial meta-learning algorithms to compute them when the set of prior distributions is
constrained by generalized moments. Accompanying convergence guarantees are also provided. We
also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators
from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings,

namely entropy estimation and a prediction problem that arises in biodiversity studies.

1 Introduction

A variety of principles can be used to guide the search for a suitable statistical estimator. Asymptotic
efficiency (Pfanzagl, |1990), minimaxity (Wald, [1945) and Bayes optimality (Berger, [1985) are popular
examples of such principles. Defining the performance criteria underlying these principles requires spec-
ifying a model space, that is, a collection of possible data-generating mechanisms known to contain the
true, underlying distribution.

It is often desirable to incorporate prior information about the true data-generating mechanism into
a statistical procedure. This might be done differently in different statistical paradigms. For frequentist
methods, such as those based on the asymptotic efficiency or minimax principle, the primary way to
incorporate this information is via the definition of the model space. In the Bayesian paradigm, such
information may be represented by further specifying a prior distribution (or prior for short) over the

model space and aiming for an estimator that minimizes the induced Bayes risk. However, in many



cases, there may be several priors that are compatible with the available information, especially in the
context of rich model spaces.

The Gamma-minimax paradigm, proposed by Robbins| (1951, provides a principled means to over-
come the challenge of specifying a single prior distribution. Under this paradigm, a statistician first
specifies a set I' of all priors that are consistent with the available prior information and subsequently
seeks an estimator that minimizes the worst-case Bayes risk over this set of priors. The Gamma-minimax
paradigm may be viewed as a robust version of the Bayesian paradigm that is less sensitive to misspec-
ification of a prior distribution (Vidakovic, 2000). When it is infeasible to specify a prior due to the
complexity of the model space, the Gamma-minimax paradigm may also be viewed as a feasible sub-
stitute for the Bayesian paradigm. The Gamma-minimax paradigm is closely related to Bayes and
minimax paradigms: when the set of priors consists of a single prior, a Gamma-minimax estimator is
Bayes with respect to that prior; when the set I' of priors is the entire set of possible prior distributions,
a Gamma-minimax estimator is also minimax.

Gamma-minimax estimators have been studied in a variety of problems. Some explicit forms of
Gamma-minimax estimators have been obtained. For example, |Olman and Shmundak| (1985) studied
Gamma-minimax estimation of the mean of a normal distribution for the set of symmetric and unimodal
priors on an interval and obtained an explicit form when this interval is sufficiently small. [Eichenauer-
Herrmann (1990) generalized this result to more general parametric models and [Eichenauer-Herrmann
et al. (1994) obtained a further generalization with the requirement of symmetry on the priors dropped.
Chen et al.| (1988]) studied Gamma-minimax estimation for multinomial distributions and the set of
priors with bounded mean. |Chen et al. (1991) studied Gamma-minimax estimation for one-parameter
exponential families and the set of priors that place certain bounds on the first two moments. These
results do not deal with general model spaces, such as semiparametric or nonparametric models, and
general forms of the set of priors that may not directly impose bounds on prior moments of the parameters
of interest. Ome reason for this lack of generality might be that, in the existing literature, Gamma-
minimaxity is defined only for parametric models. However, an issue with parametric models is that they
often fail to contain the true data-generating mechanism, in which case output from the aforementioned
statistical procedures may no longer be interpretable. Another possible reason is that it is typically
intractable to analytically derive Gamma-minimax estimators, even for parametric models.

To overcome this lack of analytical tractability, meta-learning algorithms to compute a minimax or
Gamma-minimax estimator have been proposed. Still, most of these works focus on parametric models.
For example, Nelson (1966|) and [Kempthorne (1987) each proposed an algorithm to compute a minimax
estimator. Bryan et al. (2007) and Schafer and Stark (2009) proposed an algorithm to compute an
approximate confidence region of optimal expected size in the minimax sense. Noubiap and Seidel| (2001))
proposed an iterative algorithm to compute a Gamma-minimax decision for the set of priors constrained
by generalized moment conditions. More recent works explored computing estimators under more general
models. For example, [Luedtke et al.| (2020) introduced an approach, termed Adversarial Monte Carlo
meta-learning (AMC), for constructing minimax estimators. In the special case of prediction problems

with mean-squared error, |[Luedtke et al.| (2021]) studied the invariance properties of the decision problem



and their implications for AMC.

In this paper, we make the following contributions:

1. We define Gamma-minimaxity in general model spaces. A particularly interesting special case

occurs when I' consists of all priors satisfying generalized moment constraints.

Our general definition suggests an approach for leveraging potentially-vague prior information even when
the statistical model is infinite-dimensional. After defining this general notion of I'-minimaxity, we focus
on the special case involving generalized moment constraints mentioned above. Such classes of priors

provide a natural means of representing prior information (Berger, [1990).

2. We propose iterative adversarial meta-learning algorithms that construct Gamma-minimax esti-

mators for a general model space and class of estimators.

To our best knowledge, this is the first algorithm to compute Gamma-minimax estimators under general
models, including infinite-dimensional models. We also show that, for certain problems, there is a unique
Gamma-minimax estimator and our computed estimator converges to this estimator as the number of
iterations increases to infinity.

Like the approach proposed in [Noubiap and Seidel (2001, our proposed iterative algorithm involves
solving a discretized Gamma-minimax optimization problem in each intermediate step. However, we
explicitly describe algorithms to solve these minimax problems, which facilitates the use of our approach
by practitioners. When the space of estimators can be parameterized by a Euclidean space and gradients
are available, we propose to use a gradient-based algorithm or a stochastic variant thereof. When
gradients are unavailable, we propose to instead use fictitious play (Brown, 1951; Robinson, (1951)) to
compute a stochastic estimator, which is a mixture of deterministic estimators belonging to some specified
collection. We also provide a convergence result that is applicable even when this collection has infinite
cardinality. This is in contrast to the results in |Robinson| (1951, which require that each player has only

finitely many possible deterministic strategies.

3. We propose a Markov chain Monte Carlo (MCMC) method to construct the approximating grids

defining the discretized Gamma-minimax problems used in our iterative scheme.

Like the approach proposed in [Noubiap and Seidel (2001), our proposed iterative algorithm relies on
increasingly fine finite grids over the model space. However, since we allow the model space to be high or
even infinite-dimensional, randomly adding points to the grid may lead to unacceptably slow convergence.
To overcome this challenge, we propose to use MCMC to efficiently construct such grids.

Our theoretical results allow for many different choices of classes of estimators. Our final contribution

concerns the introduction of one such class:

4. We introduce a new neural network architecture that can be used to parameterize statistical esti-

mators and argue that this class represents an appealing class to optimize over.

For this final point, we build on existing works in adversarial learning (e.g., |Goodfellow et al., [2014;
Luedtke et al., 2020, 2021)) and extreme learning machines (Huang et al., [2006b). Thanks to the univer-

sal approximation properties of neural networks (e.g., [Hornik| [1991; |Cs4ji, 2001) and extreme learning



machines (Huang et al.| [2006a)), we also show that both of these parameterizations can achieve good
performance for sufficiently large networks. Furthermore, inspired by pre-training (e.g., [Erhan et al.|
2010) and transfer learning (e.g., Torrey and Shavlik, |2009), we recommend leveraging knowledge of
existing estimators as inputs to the network in settings where this is possible. Under such choices of the
space of estimators, we can expect to obtain a useful estimator even if the associated nonconvex-concave
minimax problems prove to be difficult.

This paper is organized as follows. In Section [2| we introduce the framework of Gamma-minimax
estimation and regularity conditions that we assume throughout the paper. In Section |3] we describe
our proposed iterative adversarial meta-learning algorithms. In Section 4] we discuss considerations
when choosing hyperparameters in the algorithms. In Section |5, we demonstrate our method in three
simulation studies. We conclude with a discussion in Section[6] Proof sketches of key results are provided
in the main text, and complete proofs can be found in the Supplemental Material. The code for our
simulations is available on Github (Qiu, [2022)).

2 Problem setup

Let M be a space of data-generating mechanisms that contains the truth, Py, and let p be a metric on
M. Under a data-generating mechanism P € M, let X* € X* denote the random data being generated,
where X is the space of values that the random data takes. Let C denote a known coarsening mechanism
such that the observed data X = C(X*) € X, where X is the space of observed data. In some cases, the
coarsening mechanism will be the identity map, whereas in other settings, such as those in which missing,
censored or truncated data is present, the coarsening mechanism will be nontrivial (e.g., [Birmingham
et al., [2003; |Gill et al., [1997; Heitjan and Rubin| (1991} Heitjan, 1993, [1994). Let D denote the space of
estimators (or decision functions) equipped with a metric 9. Let R: D x M — R denote a risk function
that measures the performance of an estimator under a data-generating mechanism such that smaller
risks are preferable. We suppose throughout that M and D are equipped with the topologies induced
by p and p, respectively.

We now present three examples in which we formulate statistical decision problems in the above form.

Ezample 1 (Point estimation). Suppose that M is a statistical model, which may be parametric, semi-
parametric, or nonparametric (Bickel et al., [1993). The data X* consists of n independently and iden-
tically distributed (iid) random variables O;, i = 1,...,n, following the true distribution Py, € M.
We set C to be the identity function so that X = X*. We wish to estimate an aspect V() € R
of Py. Then, we can consider D to be a set of X — R functions and the mean-squared error risk
R(d, P) = Ep[{d(X) — ¥(P)}?]. Some specific examples of estimands include:

i) Mean: ¥(P) = Ep[O;];
ii) Cumulative distribution function at a point o: ¥(P) = Pp(O; < 0);

iii) Correlation: with O; = (X;,Y;) € R, ¥(P) = Ep[X,Yi] — Ep[Xi]Ep[Yi].



Ezample 2 (Prediction with iid data). Consider the same setup as in Example [1} Let O; = (X;,Y;)
with X; and Y; taking values in R? and R, respectively. Let O,,1 be an independent copy of O;.
We may consider D to be a set of functions X x R — R and the mean-squared error risk R(d, P) =
Ep[{Yni1 — d(X, Xns1)}?].

Ezample 3 (Predicting the expected number of novel categories to be observed in a new sample). Suppose
that M consists of multinomial distributions with an unknown number of categories. Let an iid random
sample of size n be generated from the true multinomial distribution, so that X* is a multiset containing
the number X}, of observations in each category k. Suppose that only categories with nonzero occurrences
are observed, so that X is a left-truncated version of X*. In other words, X is the multiset C(X*) =
{X} : Xi > 0}. Then, we may wish to predict the number of new categories that would be observed if a
new sample of size m were collected. This problem has been extensively studied in the literature, with
applications in microbiome data, species taxonomic surveys, assessment of vocabulary size, among other
areas (e.g., |Shen et al.| |2003; [Bunge et al., 2014; |Orlitsky et al., |2016]). This prediction problem can be
formulated in our framework. For each P € M, let p (k = 1,..., Kp) be the probability of category
k, and ¥(P)(X*) be ijl I(X; = 0)(1 — (1 — pr)™), the expected number of new observed categories
given the current full data X*. We consider D to be a set of X — R functions and set the risk to be the
mean-squared error, that is, R(d, P) = Ep[{d(X) — ¥(P)(X*)}?].

We now define Gamma-minimaxity within our decision theoretic framework. We assume that M is
equipped with the Borel o-field and let IT denote the set of all probability distributions on the measurable
space (M, B). We also assume that, for any d € D and any = € I, P — R(d, P) is w-integrable. The
Bayes risk corresponding to an estimator d and a prior 7 is defined as r : (d, 7) — [ R(d, P) w(dP). Let
I" C II be the set of priors such that all 7 € T' are consistent with the available prior information. An

estimator is called a I'-minimax estimator if it is in the set

argmin sup r(d, 7). (1)
deD wel
In this paper, we consider the case in which I" is characterized by finitely many generalized moment

conditions, that is,
= {w ell: ¥y c Ll(w),/q)k(P)ﬁ(dP) <cp k= 1,...,K}

where each ®; : M — R is a prespecified function that extracts an aspect of a data-generating mech-
anism and ¢, € R is a prespecified constant. Such constraints can represent a variety of forms of prior
information. For example, with ®;, = 0" for some x > 1, I" imposes bounds on prior moments of ¥(P);
with ®(P) = £1(¥(P) € I) for some known interval I, I' imposes bounds on the prior probability of
U(P) lying in I. Similar prior information on aspects of Py other than ¥(FP;) can also be represented. In
addition, since an equality can be equivalently expressed by two inequalities, I' may also impose equality
constraints on prior generalized moments.

We assume that the following conditions hold throughout the rest of the paper.



Condition 1. M is separable.
Condition 2. D is compact.

Condition 3. (i) R : D x M — R is a bounded function and (ii) d — R(d, P) is Lipschitz continuous
with a universal Lipschitz constant L € (0, 00) independent of P € M, that is, there exists an L so that
|R(dy1, P) — R(da, P)| < Lo(dy,dz) for any di,ds2 € D and any P € M.

Condition [I] implies that the model space M can be well approximated by the limit of a sequence of
finite sets, which can be dealt with by algorithms. In Examples (1| and [2] if the metric p on M is chosen
as the supremum norm of the difference in cumulative distribution functions, then a countable dense
subset of M can be the set of all empirical distributions with support contained in a countable dense
subset of X. If we instead assume that X is contained in a Euclidean space and all distributions in M
have a differentiable Lebesgue density, then we may choose the metric to be the supremum norm of the
difference of density functions. A countable dense subset of M is then the set of all kernel densities with
locations being rational points in X and scales being positive rational numbers.

Condition[2]is mainly a convenient condition to ensure that maximums and minimums can be achieved
and is satisfied by many interesting classes of estimators. For example, we may choose D to be a space
of neural networks whose indexing parameters fall in some specified compact set.

Condition 3| is on boundedness and uniform Lipschitz continuity in d of the risk function R. In
Example(l] suppose that all distributions in M are dominated by a measure p and their density functions
are uniformly bounded. If [d(X)?u(dX) is uniformly bounded and ¥ is bounded, then Ep[d(X)?]
is uniformly bounded and hence R is bounded. In addition, it holds that |R(di, P) — R(ds, P)| =
[Ep[(di (X) — do(X))(d1(X) + da(X) = 20(P))]| S Ep[(di(X) — da(X))] S lldr — dall 2 S ldy — dalluz
where < stands for less than or equal to up to a multiplicative constant and || - || p2 and ||-||,,2 denote the
L?(P)- and L?(u)-distance, respectively. Therefore, Condition [3| holds for ¢ being the L?(u)-distance.
Example [2] is similar.

3 Proposed meta-learning algorithms to compute a ['-minimax

estimator

Since both the model space M and the estimator space D may be infinite, it is computationally infeasible
to directly solve the minimax problem defining a I'-minimax estimator. Similarly to [Noubiap and
Seidel| (2001]), our general strategy is to discretize M and thus consider prior distributions with discrete
supports. Once the supports of prior distributions are discrete, the optimization over prior distributions
only involves finitely many parameters, namely the probability masses at support points, and thus is
computationally possible. We will show that, when the grid is sufficiently fine, a solution to the discretized
minimax problem is close to a solution to the original minimax problem.

Our proposed algorithm consists of two main steps. The first step is to discretize the model space
M and consider an approximating grid M, instead of the original complicated model space M. This
discretization is illustrated in Fig [l We will describe M, in more detail in Section In the second



Figure 1: Illustration of grid M, = {P), P2), P3),- ., Py} € M approximating the entire
model space M. Examples of densities of distributions Py (t = 1,...,7) in the grid are
displayed. A prior distribution with support in My is parameterized by the probability mass
at each distribution Py). An example of a prior distribution is displayed as black bars with
their heights being proportional to the probability masses.

step, we consider a set I'y of priors with support contained M, and compute a I'y-minimax estimator.

We will describe two classes of algorithms to solve this discretized minimax problem in Sections and
[3:3] respectively.

3.1 Grid-based approximation of I'-minimax estimators

We first define the discretization of the model space M that we will use. Let {M,}32, be an increasing
sequence of finite subsets of M such that |J,-, M, is dense in M. That is, {M,}?°, is an increasingly
fine grid over M. By Condition [} such an {M,}?°, necessarily exists. Define

I[y:={m €T :mhassupport in My}  and  74p(d,I") := sup r(d, )
mel’
for any d € D and IV C II.

Algorithm [I] describes how the grids M, are used to compute an approximately I'-minimax estimator
in our proposed algorithms. We will show that the approximation error decays to zero as £ grows to
infinity. We note that, under Condition [3| d — rg,p(d,T'¢) is continuous for all £ by Lemma [2| in the
Supplemental Material, and hence dj exists. Here and in the rest of the algorithms in the paper, for any
real-valued function f, when we assign argmin, f(x) or argmax, f(z) to a variable, we arbitrarily pick a

minimizer or maximizer if there are multiple optimizers. In practice, the user may stop the iteration at



some ¢ and use a I',-minimax estimator d; as the output estimator. We discuss the stopping criterion

in more detail at the end of this section.

Algorithm 1 Iteratively approximate a I'-minimax estimator over an increasingly fine grid.
1: for =1,2,... do
2: Construct a grid My C M such that My_1 C My
3: dj < argmin e p sup ., 7(d, 7)

We note that the minimax problem in Line [3] of Algorithm [1]is nontrivial to solve, and therefore we
propose two algorithms that can solve this minimax problem in Sections and

Let d* € D be an accumulation point of the sequence {d;}7°,, which is guaranteed to exist by
Condition We next present a sufficient condition to ensure that d* is I-minimax, so that dj is

approximately I'-minimax for sufficiently large ¢.

Condition 4. We assume that there exists an increasing sequence {€,}7°, of subsets of M such that
1. U;il Q= M;
2. forall ¢ =1,2,... and all d € D, it holds that

711>I£lo Tsup(da Fi|l) = Tsup(da Fé)»

where T'y := {7 € T : 7 has support in €} and Ljj¢ := {m € T': 7 has support in M; [ Q}.

We note that, in contrast to My, Q, may be an infinite set. Since part [2] of Condition ] may be

difficult to verify, we provide a sufficient condition and a discussion of when part [2| fails below.

Condition 5. M is a Hausdorff space. For any d € D, £ = 1,2,... and 7 € Iy with a finite support,

there exists a sequence m; € fil[ such that r(d, m;) — r(d, ) as i — co.

We may expect Condition [5| to hold in many cases, especially when P +— R(d, P) is continuous and
the grid M, contains a variety of distributions that are consistent with prior information represented
by I'. We illustrate by the following two counterexamples. In the first counterexample, P — R(d, P) is
discontinuous: we set R(d, P*) to be zero for a fixed P* € M and R(d, P) to be one for all other P € M.
If we choose the grid My to be dense in M but to never contain P*, then Condition |5|does not hold since
Tsup(d, f‘g) = 1 for sufficiently large ¢ such that P* € Q, but rg,p(d, f“g) = 0 for all 4 and £. This issue can
be resolved by choosing a continuous risk function. In the second counterexample, M, does not contain
distributions that are consistent with prior information. Suppose that I' = {zw € I : [ ®(P)n(dP) = 0}
where ®(P) := Ep[X?]. In other words, it is known that the true data-generating mechanism Py must
be a distribution that is a point mass at zero, and thus I' also only contains a point mass at Py. If
®(P) # 0 for every P € U2, M;, then, even if | J,2, M, is dense in M, fi‘g = () and thus Condition
does not hold. This issue can be resolved by rewriting the problem such that these hard constraints on
M is incorporated into the specification of M rather than T.

We now present the theorem on I'-minimaxity of d*.



Theorem 1 (Validity of grid-based approximation). Under Conditions Eﬂ, d* is I'-minimazx and
Tsup(d;, Te) {iréizr)wsup(d7 ) as {— oo

To prove Theorem |1} we utilize a result in [Pinelis (2016) to establish that re,,(d,I') can be ap-
proximated arbitrarily well by a discrete prior in I' for any d € D. This is a key ingredient in the
proof of Lemma |1|in the Supplemental Material, which states that, for any d € D, rqyp(d, fg) converges
to rsup(d,T"). Then, we show that the sequence {rsup(d;,I'¢)}52, is nondecreasing and upper bounded
by infgep rsup(d, '), which is less than or equal to the I'-maximal Bayes risk 7, (d*,T") of the earlier-
defined accumulation point d* of {d}}7°,. Therefore, rg,p(d},T's) converges to a limit. We finally use
a contradiction argument to prove that this limit is greater than or equal to rg,p(d*,I'), which implies
Theorem [11

We have the following corollary on the uniqueness of the I'-minimax estimator and the convergence

of {d;}3°, for certain problems.

Corollary 1 (Convergence of I'y-minimax estimator). Suppose that D is a convex subset of a vector
space, d — R(d, P) is strictly convex for each P € M, and reup(d,T') is attainable for each d € D in the
sense that, for all d € D, there exists a 7 € T' such that v(d, ) = reup(d,T). Under Conditions [1{4, d*

is the unique I'-minimaz estimator and
dy —»d* as {— oc.

We prove Corollary |1 by establishing that d — 74y (d,I') is strictly convex.

In practice, the user also needs to specify a stopping criterion for Algorithm In [Noubiap and
Seidel (2001, the authors proposed to compute or approximate 7s.p(d;,I') and stop if reup(dy,I") is
sufficiently close to reup(dj,I'¢). However, the procedure to approximate rs,p(d;,I") in that work relies
on the compactness of M, but we do not want to assume this condition because it may restrict the
applicability of the method. Therefore, we propose to use the following alternative criterion: stop if
Tsup(dp, Tog1) — Tsup(dy, T'e) < € for a prespecified tolerance level € > 0. Note that this criterion does not
guarantee that rg,p(d),T'¢) is close to rg,p(d*,T'). For example, if M1\ My is small, it is even possible
that reup (dy, Tot1) — msup(dy, Te) = 0, but dj is far from being I'-minimax. We discuss this issue in more
detail in Section [£1]

We finally remark that rq.,(d,I'¢) may be difficult to evaluate exactly. Since the risk is often an
expectation, we recommend approximating re,,(d,I'y) for any given d via Monte Carlo as follows: first,
estimate risks R(d, P) for all P € M, with a large number of Monte Carlo runs; second, estimate the
corresponding least favorable prior 74, € argmax, cp, 7(d, 7) using the estimated risks; third, estimate
the risks R(d, P) (P € M,) again with independent Monte Carlo runs, and, finally, calculate r(d, 74.¢)
with the estimated risks and the estimated least favorable prior. Using two independent estimates of the
risk can remove the positive bias that would otherwise arise due to using the same data to estimate the

risks and the least favorable prior.



3.2 Computation of an estimator on a grid via (Stochastic) gradient descent

with max-oracle

In this section, we present a method to compute a I'p-minimax estimator, which corresponds to Line
in Algorithm Gradient descent with max-oracle (GDmax) and its stochastic variant (SGDmax).
which were presented in |Lin et al. (2020]), can be used to solve general minimax problems in Euclidean
spaces. To apply these algorithms to find a I'yj-minimax estimator, we need to assume that D can be
parameterized by a subset of a Euclidean space, that is, that for any d € D, there exists a real vector-
valued coefficient 3 in a compact set # C RP such that d may be written as d(3). For example, D may
be a neural network class. More discussions on the parameterization of D can be found in Section [4.2
In this section, in a slight abuse of notation, we define R(8, P) := R(d(8), P), r(8,w) := r(d(8),n) and
Tsup (B, Te) = rsup(d(B),T) for a coefficient 3 € RP| a data-generating mechanism P € M and a prior
m € I'. We assume that g — R(S, P) is differentiable for all P € M, and hence so is 8 — r(8,7) for all
7 € I'. We further assume that the optimal coefficient 37 € argminges; rsup(8,1') in H also minimizes
the same function over R”, so that we may solve the minimax problem over the unbounded space R”

ignoring the specification of H.

3.2.1 Description of GDmax & SGDmax

We now present GDmax and SGDmax in our context of finding a I'y-minimax estimator. If we can
evaluate R(f, P) exactly for all 8 € H and P € My, then the GDmax algorithm (Algorithm [2)) may be
used. Note that Line[3|can be formulated into a linear program, which can always be solved in polynomial
time with an interior point method (e.g.,|Jiang et al.,[2020) and often be solved in polynomial time with

a simplex method (Spielman and Teng, [2004)).

Algorithm 2 Gradient descent with max-oracle (GDmax) to compute a I';-minimax estimator

1: Initialize B(q) € RP. Set learning rate 7 > 0 and max-oracle accuracy ¢ > 0.

2: fort=1,2,...do

3: Maximization: find 7y € I'y such that r(B;—1), 7)) > maxzer, r(Br—1),7) — ¢
4: Gradient descent: ,8(,3) — B(tfl) — UV@T(,B,TF@))‘B;&(FI)

In many cases, it is difficult to evaluate R(8, P) exactly. When R(S, P) is expressed as an expecta-
tion, R(B, P) may instead be approximated using Monte Carlo techniques. With £ being an exogenous
source of randomness according to law =, let R(ﬂ , P, &) be an unbiased approximation of R(S3, P) with
E[||Vs{R(B, P,€) — R(B, P)}||?] < 0® < oo, where || - || denotes the fy-norm in Euclidean spaces. Let
#(B,m, &) == ff%(ﬁ,P, &) n(dP) for m € T'y. In this case, SGDmax (Algorithm may be used to find a
(locally) T'y/-minimax estimator. Note that Algorithmrepresents a generalization of the nested minimax
AMC strategy in |Luedtke et al.| (2020]) to I'y-minimax problems.

3.2.2 Validity of GDmax & SGDmax

We first present two conditions needed for the validity of Algorithms [2] and

10



Algorithm 3 Stochastic gradient descent with max-oracle (SGDmax) to compute a I'y-minimax esti-
mator

—_

- Initialize () € RP. Set learning rate 7 > 0, max-oracle accuracy ¢ > 0 and batch size J.
2: fort=1,2,...do
3: Stochastic maximization: use a stochastic procedure to find 7,y € I'y such that E[r(8;—1), 7(1))] >
maxyer, r(Br—1), ) — ¢, where the expectation is over the randomness in stochastic maximization
(e.g., variants of stochastic gradient ascent).

Generate iid copies &1,...,&; of &.

Stochastic gradient descent: B(;) < By—1) — 77’2'].]:1 Vst (B, 71y, §i) B=B—1)-

g

Condition 6. For each ¢ = 1,2,..., 8 — R(S,P) is Lipschitz continuous with a universal Lipschitz
constant Ly independent of P € M.

Note that Condition [6] differs from Condition [3]in that the former relies on the parameterization of D
in a Euclidean space equipped with the Euclidean norm, while the latter may rely on a different metric
on D such as an L2-distance. In addition, the Lipschitz constant in Condition |§| may depend on /, while

that in Condition [B] must not.

Condition 7. For each £ =1,2,..., VgR(, P) is bounded; 5 +— VgR(S, P) is Lipschitz continuous with

a universal Lipschitz constant Lo independent of P € My.

Under these conditions, using the results in|Lin et al.| (2020)), we can show that, in general, GDmax and
SGDmax can yield an approximation to a local minimum of 5+ 74, (8, T'¢) when the algorithms’ hyper-
parameters are suitably chosen. Before we formally present the theorem, we introduce some definitions
related to locally optimality of a potentially nondifferentiable and nonconvex function. A real-valued
function f is called g-weakly convex if z +— f(z) + (¢/2)||z||? is convex (¢ > 0). The Moreau envelope of
a real-valued function f with parameter ¢ > 0 is f, : @ — min, f(z’) + |2’ — z[|*/(2¢). A point z is an
e-stationary point (e > 0) of a g-weakly convex function f if [|V f1/(2¢)(%)|| < €. Similarly, a random point
x is an e-stationary point (¢ > 0) of a g-weakly convex function f in expectation if E[||V f1/2¢)(2)] < €.
If x is an e-stationary point in expectation, we may conclude that it is an e-stationary point with high
probability by Markov’s inequality. Lemma 3.8 in [Lin et al.| (2020)) shows that an e-stationary point
of f is close to a point 2’ at which f has at least one small subgradient for small €, so that f(z') is
close to a local minimum. In other words, if an algorithm outputs an estimator d= d(B) such that B is
an e-stationary point of 5 — reup (5, ), then we know that rsup(B,Fg) is close to a local minimum of
B = reup(B,Te).

We next present the validity result for Algorithms [2] and

Theorem 2 (Validity of GDmax & SGDmax (Algorithms [2| & [3)). Suppose that Conditions[1-{5 and

|E<IZ hold. Let € > 0 be fived and define A := (Tsup)1/20,)(Beo)) — Mingerp (Tsup)1/(22,)(B), where we
recall that (rsup)1/(21,) i the Moreau envelope of Tsu, with parameter 1/(2L1).

O In Algorithm @, with n = €2/(L1L3) and ( = €2/(24L,), By is an e-stationary point of B
Tsup(B,¢) for t = O(L1LaA/e?), and is thus close to a local minimum of B — Tsup(B8,e).
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O In Algorithm E, with n = €2 /[L1(L3 + 0?)], ¢ = €/(24L1) and J =1, B, is an e-stationary point
of B+ rsup(B,T¢) in expectation for t = O(L1(L3+02)A/e*), and is thus close to a local minimum
of B+ rsup(8,T¢) with high probability.

It may be inconvenient to implement Line |3|in Algorithm [3| because linear program solvers often do
not use stochastic optimization. Therefore, we propose a variant (Algorithm [4)) by replacing this line
with Lines so that ordinary linear program solvers can be directly applied. The following theorem

justifies this variant.

Algorithm 4 Convenient variant of SGDmax (Algorithm |3) to compute a I'p-minimax estimator

1: Initialize B € RP. Set learning rate 7 > 0 and batch sizes J, J'.
2: fort=1,2,...do

3: Generate iid copies &1,...,& 7 of €.
4: Stochastic maximization: 7 ;) < argmax,cp, ijl P(B—1), T, &j)-
5: Generate iid copies of £5/41,...,&y 4y of €.
. . J'+J .
6: Stochastic gradient descent: By < By—1) — gzj:,,ﬂ Vit (B, (1), §i) B=B—1)-

Theorem 3 (Validity of convenient variant of SGDmax (Algorithm [))). Suppose that {¢ — #(B, 7, &) :
B €RP 7 €Ty} is a E-Glivenko-Centelli class (van der Vaart and Wellner, 2000). Then, for any ¢ > 0,
there exists a sufficiently large J' such that

E[r(Bi—1), 7)) = Wmearfr(ﬂ(tq),ﬂ) -
for allt, where the expectation is taken over my and B;—1) is fived. Therefore, with the chosen parameters
in Theorem @, we may choose a sufficiently large J' so that B is an e-stationary point of 8 — Tsup(5,T)
in expectation for t = O(L1(L3 +02)A/e*) and is thus close to a local minimum of B+ Tsup (B, Te) with

high probability.

We prove Theorem [3| by showing that max er, r(B—1), ™) — E[r(B—1), 7(+))] converges to 0 as J' —
oo. The proof is essentially an application of empirical process theory to the study of an M-estimator.

We finally remark that other algorithms similar to GDmax and SGDmax can be applied, for example,
(stochastic) gradient descent ascent with projection (Lin et al.,2020), (stochastic) mirror descent ascent,

or accelerated (stochastic) mirror descent ascent (Huang et al., 2021).

3.3 Computation of an estimator on a grid via fictitious play

The algorithms in Section may be convenient in many cases, but the requirement of parameterization
of the space D of estimators and differentiability of the risk function R with respect to the coefficients S
may be restrictive for certain problems. In this section, we propose an alternative algorithm, fictitious
play, that avoids these requirements. We also present its convergence results.

Brown (1951) introduced fictitious play as a means to find the value of a zero-sum game, that is, the

optimal mixed strategy for both players and their expected gains. [Robinson| (1951) then proved that
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fictitious play can be used to iteratively solve a two-player zero-sum game for a saddle point that is a
pair of mixed strategies where both players have finitely many pure strategies. Our problem of finding
a [-minimax estimator may also be viewed as a two-player zero-sum game where one player chooses a
prior from I' and the other player chooses an estimator from D. If we assume that, for the I'-minimax
problem at hand, the pair of both players’ optimal strategies is a saddle point, which holds in many
minimax problems (e.g., v. Neumann) 1928} Fan, |1953} |Sion, |1958), then fictitious play may also be used
to find a I'-minimax estimator. Since I' may be too rich to allow for feasible implementation of fictitious
play, we propose to use this algorithm to find a I'y/-minimax estimator.

In the fictitious play algorithm in |Robinson| (1951)), the two players take turns to play the best pure
strategy against the mixture of the opponent’s historic pure strategies, and the final output is a pair of
mixtures of the two players’ historic pure strategies. Since this algorithm aims to find minimax mixed
strategies, we consider stochastic estimators. That is, consider the Borel o-field F over D and let IT
denote the set of all probability distributions on the measurable space (D, F). We define D to be the
space of stochastic estimators with each element taking the following form: first draw an estimator from
D according to a distribution @ € IT with an exogenous random mechanism and then use the estimator
to obtain an estimate based on the data. Note that we may write any d € D as d(w) for some @ € II.
We consider estimators in D throughout this section, with the definition of I'-minimaxity extended in
the natural way, so that d = d(w*) € D is [-minimax if Tsup (d",T) = ming 5 rsup(d, I'); we similarly
extend all other definitions from Section [2| We assume that there exists 7; € I'y (£ =1,2,...) such that

r(d, 7)) = sup inf r(d, ) = inf sup r(d, ). (2)
rel, deD deD rely
In other words, (8*, ;) is a saddle point of 7 in D x I',. Under this condition and the further conditions
that D is convex and d — R(d, P) is convex for all P € M, it is possible to use a I-minimax estimator
over the richer class D of stochastic estimators to derive a I'-minimax estimator over the original class
D. Indeed, for any d(w) € D and P € M, by Jensen’s inequality, R(d(w),P) = [ R(d, P) w(dd) >
R(d(w), P) where d(w) := [dw(dd) € D is the average of the stochastic estimator d(w); that is, the
risk of d(w) is never greater than that of d(w). Therefore, we may use the fictitious play algorithm to
compute d(w}) for each ¢ and further apply Algorithm |1 to compute d(ww*). After that, we may take
d(w*) as the final output deterministic estimator.
Algorithm [5| presents the fictitious play algorithm for finding a I'p-minimax estimator in D. Note that
T’y is convex, and hence 7 always lies in I'y throughout the iterations. In practice, we may initialize w as a
point mass at an initial estimator in D. In addition, similarly to Robinson|(1951)), we may replace Line
with dZt) < argmingep r(d, 7y ), that is, minimizing the Bayes risk with the most recently updated prior
rather than with the previous prior.

We next present a convergence result for this algorithm.

Theorem 4 (Validity of fictitious play (Algorithm ) Using Algorithm E, under Conditions E@, it
holds that
r(dl s m) < P(@(@7), ) < r(@wn)Th)
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Algorithm 5 Fictitious play to compute a I';-minimax stochastic estimator

1: Initialize gy € /I and (g € T'y.
2: for t=1,2,... do

3: Ty 4 Argmax,cp, 7«(8(73()571))7 )

4wy Py + 4l

> dIt) < argmingep r(d, m(—1))

6 @ +— Fopony + %5(61};)), where §(d) denotes a point mass at d € D.

for all t and
lim T(E(w(t_l)),ﬂ'gt)) - r(dzt),ﬂ(t_l))} =0.

t—o0

Consequently, the T'y-mazimal risk of E(w(t)) converges to the I'y-minimaz risk, that is,

Tsup(d(@(t—1y), Te) — rsup(a(wz),f‘g) as t— oo.

Robinson| (1951) proved a similar case for two-player zero-sum games where each player has finitely
many pure strategies. In contrast, in our problem, each player may have infinitely many pure strategies.
A natural attempt to prove Theorem [4| would be to consider finite covers of D and I'y, i.e., D = UZ.I:1 D;
and I'y = szl I1;, such that the range of r(d,n) in each D; and II; is small (say less than €), bin
pure strategies into these subsets, and then apply the argument in [Robinson| (1951) to these bins. The
collection of D; and II; may be viewed as finitely many approximated pure strategies to I'; and D up to
accuracy e, respectively. Unfortunately, we found that this approach fails. The problem arises because
Robinson| (1951)) inducted on I and J, and, after each induction step, the corresponding upper bound
becomes twice as large. Unlike the case with finitely many pure strategies that was considered in |Brown
(1951) and |Robinson (1951)), as the desired approximation accuracy e approaches zero, the numbers of
approximated pure strategies, I and J, may diverge to infinity, and so does the number of induction
steps. Therefore, the resulting final upper bound is of order 2/*7/¢ and generally does not converge to
zero as € tends to zero. To overcome this challenge, we instead control the increase in the relevant upper
bound after each induction step more carefully so that the final upper bound converges to zero as €
decreases to zero, despite the fact that I and J may diverge to infinity.

We remark that, because Line[5|of Algorithm [5]typically involves another layer of iteration in addition
to that over t, this algorithm will often be more computationally intensive than are Algorithms
Nevertheless, Algorithm [5| provides an approach to construct I'y»-minimax estimators in cases where
these other algorithms cannot be applied, for example, in settings where the risk is not differentiable in

the parameters indexing the estimator.
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4 Considerations in implementation

4.1 Considerations when constructing the grid over the model space

By Theorem (1} 7gup(d},Ty) 7 mingep rsup(d,I') whenever Conditions hold and the increasing se-
quence {M,}72; is such that | J,=, M is dense in M. Though this guarantee holds for all such sequences
{M}32,, in practice, judiciously choosing this sequence of grids of distributions can lead to faster conver-
gence. In particular, it is desirable that the least favorable prior I'y puts mass on some of the distributions
in My\M,_1 since, if this is not the case, then dj will be the same as d}_;. While we may try to arrange
for this to occur by adding many new points when enlarging My_; to My, it may not be likely that any
of these points will actually modify the least favorable prior unless they are carefully chosen.

To better address this issue, we propose to add grid points using Markov chain Monte Carlo (MCMC).
Our intuition is that, given an estimator d, the maximal Bayes risk is likely to significantly increase if we
add distributions that (i) have a high risk for d, and (ii) are consistent with prior information so that there
exists some prior such that these distributions lie in a high-probability region. We propose to use the
MCMC algorithm to bias the selection of distributions in favor of those with the above characteristics.
Let 7 : M — [0,00) denote a function such that 7(P) > 7(P’) if P is more consistent with prior
information than P’. For example, given a prior mean p of some real-valued summary W(P) of P and
an interval I that contains U(P) with prior probability at least 95%, we may choose 7 : P+ ¢(W¥(P)),
where ¢ is the density of a normal distribution that has mean p and places 95% of its probability mass in
I. We call 7 a pseudo-prior. Then, with the current estimator being d, we wish to select distributions P
for which R(d, P)7(P) is large. We may use the Metropolis-Hastings-Green algorithm (Metropolis et al.,
1953} [Hastings, [1970; |Green, |1995) to draw samples from a density proportional to P — R(d, P)7(P).
We then let M, be equal to the union of My,_; and the set containing all unique distributions in this
sample.

Details of the proposed scheme are provided in Algorithm [6] To use this proposed algorithm, we
rely on it being possible to define a sequence of parametric models {Qg}?il such that M := Ug'ilﬁg
is dense in M —this is possible in many interesting examples (see, e.g., |[Chen| 2007). When combined
with Condition [} this condition enables the definition of an increasing sequence of grids of distributions
{M,}22, such that, for each £, M, C M.

The following theorem on distributional convergence follows from that for Metropolis-Hastings-Green
algorithm (see Section 3.2 and 3.3 of |Green, [1995]).

Theorem 5 (Validity of MCMC algorithm (Algorithm@). Suppose that P — R(d;_,, P)7(P) is bounded
and integrable with respect to some measure p on M and let £ denote the probability law on M whose
density function with respect to p is proportional to this function. Then, in Algorithm @ Py converges

weakly to L ast — oo.

Therefore, if £ corresponds to a continuous distribution with nonzero density over the parameter
space of M, then Theorem implies that |J,—, M, is dense in M, as required by Algorithm

Implementing Algorithm [6] relies on the user making several decisions. These decisions include
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Algorithm 6 MCMC algorithm to construct M,

Require: Previous grid M,_;, current estimator dj_; and number 7" of iterations. We define M_; := (.
An initial estimator dj must be available if ¢ = 1.
1: Initialize Py € M.
2: fort=1,2,...,7T do
3: Propose a distribution P’ € M from Pu_y)
Calculate the MCMC acceptance probability pacceps of P’ for target density P — R(d;_,, P)7(P)
With probability paccept, accept P’ and Py < P’
if P’ is not accepted then
Py + P-)

: My < unique elements of the multiset M,_1 (J{P1), P2),---, P1)}

® >R

the choice of the pseudo-prior 7 and the technique used to approximate the risk R(d, P) to a rea-
sonable accuracy. Fortunately, regardless of the decisions made, Theorem (1| suggests that reu,(dj, Tr) 7
mingep rsup(d, I') for a wide range of sequences {M,}2°,. Indeed, all that theorem requires on this
sequence is that the grid M, become arbitrarily fine as ¢ increases. Though the final decisions made
are not important when ¢ is large, we still comment briefly on the decisions that we have made in our
experiments, First, we have found it effective to approximate R(d, P) via a large number of Monte Carlo
draws. Second, in a variety of settings, we have also identified, via numerical experiments, candidate
pseudo-priors that balance high risk and consistency with prior information (see Sections and for
details).

4.2 Considerations when choosing the space of estimators

It is desirable to consider a rich space D of estimators to obtain an estimator with low maximal Bayes
risk, and thus good general performance. However, to make numerically constructing these estimators
computationally feasible, we usually have to consider a restricted space D of estimators. In the upcoming
theorem, we provide an upper bound on the increment of the maximal Bayes risk induced by making
this restriction. This result shows that, if estimators in D can approximate estimators in D well, then
the resulting excess maximal Bayes risk is small. This result relies on what we call Condition [3, which

is the same as Condition |3| except that each instance of D in that condition is replaced by D.
Theorem 6 (Approximation error of estimator space). Fiz D C D. Let d* be a D-minimaz estimator
in D and d* be a T-minimaz estimator in D, so that Tsup(d*, ') = mingep rsup(d,T") and rsup(d*,I‘) =
ming 5 7sup(d, ). Under Condition E’,

* — Tk < . AT )
Tsup (A%, T) — reup(d*, T') < Ldl/IéfD o(d',d")

In other words, the error in the I'-minimazx estimator due to considering a restricted estimator space D

can be bounded by the approximation error of D to the richer estimator space D.

Proof of Theorem[6. By the definition of d*, for any d' € D, reup(d*,T) — reup(d*,T) < reup(d',T) —
rsup(d~*,1"), and 8o Teup(d*,T) — rsup((i*,l") < infyeplrsup(d,T) — rsup(d*,r)]. By Lemma [2 in the
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Input 1st Hidden 2nd Hidden Ouput
layer layer layer layer

Existing estimator

Figure 2: Example of neural network estimator architecture utilizing an existing estimator.
The arrows from the input nodes to the existing estimator are omitted from this graph.

Supplemental Material, d — 7sup(d,I") is Lipschitz continuous with Lipschitz constant L. Therefore, the
right hand side is upper bounded by L infyep o(d’, cf*) O

Feedforward neural networks (or neural networks for short) are natural options for the space of
estimators because of their universal approximation property (e.g., Hornik| [1991; |Csaji, 2001} Hanin
and Sellke], |2017; [Kidger and Lyons| [2020). However, training commonly used neural networks can be
computationally intensive. Moreover, a space of neural networks is typically nonconvex, and hence it
may be difficult to find a global minimizer of the maximal Bayes risk even if the risk is convex in the
estimator. Therefore, the learned estimator might not perform well.

To help overcome this challenge, we advocate for utilizing available statistical knowledge when de-
signing the space of estimators. We call estimators that take this form statistical knowledge networks.
In particular, if a sensible simple estimator is already available, we propose to use neural networks with
such an estimator as a node connected to the output node. An example of such an architecture is pre-
sented in Fig[2l In this sample architecture, each node is an activation function such as the sigmoid or
the rectified linear unit (ReLU) (Glorot et al., 2011) function applied to an affine transformation of the
vector containing the ancestors of the node. The only exception is the output node, which is again an
affine transformation of its ancestors but uses the identity activation function. When training the neural
network, we may initialize the affine transformation in the output layer to only give weight to the simple
estimator. Under this approach, the space of estimators is a set of perturbations of a sensible simple
estimator. Although we may still face the challenge of nonconvexity and local optimality, we can at least
expect to improve the initial simple estimator.

We note that we might overcome the challenge of nonconvexity and local optimality by using an
extreme learning machine (ELM) (Huang et al.,|2006b) to parameterize the estimator. ELMs are neural
networks for which the weights in hidden nodes are randomly generated and are held fixed, and only the

weights in the output layer are trained. Thus, the space of ELMs with a fixed architecture and fixed
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hidden layer weights is convex. Like traditional neural networks, ELMs have the universal approximation
property (Huang et al., 2006a). In addition, Corollary |1| may be applied to an ELM so that the T'y-
minimax estimator may converge to the I'-minimax estimator. As for traditional neural networks, we
may incorporate knowledge of existing statistical estimators into an ELM.

Next, we present a corollary of Theorem [6] for some special cases of neural networks and ELMs based
on their universal approximation results. We expect similar results to hold for more general architectures
of neural networks and ELMs, for example, with other activation functions, more hidden layers or more
complicated architectures. Indeed, whenever universal approximation results are available over the space
D, Theorem |§| can be immediately applied to obtain an upper bound for the excess maximal Bayes risk

Toup (A%, T') = 7eup(d*, T') due to restriction of the space of estimators.

Corollary 2 (Validity of neural network and ELM). Suppose that X is a compact subset of a Euclidean
space R*. Let D be the collection of all continuous functions defined on X that are square-integrable with
respect to Lebesque measure. Let the metric o on D be the L? distance with respect to Lebesque measure.
Suppose that Condition[3 holds.

1. Suppose that D is a space of estimators parameterized as neural networks with identity activation

for the output layer and ReLU activation for all hidden layers. Then, for any € > 0, it holds that

inf d,T") — inf d,T) <
C}gD Tsup( ,T) dl'Iel”[) Tsup( I) <e
provided that networks in D have a sufficiently large number of hidden layers and a sufficiently

large number of hidden nodes in each hidden layer.

2. Suppose that D is a space of estimators parameterized as ELMs with one hidden layer, identity
activation for the output layer and a bounded nonconstant piecewise continuous R — R activation
function for the hidden layer. Suppose that the values of the hidden weights and hidden biases in
the ELM are independently drawn from a continuous distribution with support R®TL. Then, for

any € >0,

. _ . 't <
P (dlgfprsup(d, I) d;g%rsup(d, )< e) —1

as the number of hidden nodes tends to infinity.

Proof. The result follows from the universal approximation results (Theorem 4.16 in |[Kidger and Lyons
(2020) and Theorem II.1 in [Huang et al| (2006a), respectively) and Theorem [6] O

Under Condition[3] the above result can be generalized to a variety of collections of estimators D; that
are richer than the space D of continuous functions considered in the above lemma. Indeed, if D, is such
that D is dense in Dy, then Lemma [2]in the Supplemental Material shows that the same conclusion will
hold. This shows that the same conclusions of the above theorem hold when the collection of estimators
D is enriched to contain all X — R functions that are square integrable with respect to Lebesgue measure

(e.g., Theorem 1.15 in [Evans and Gariepy, 2015).
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We finally remark that, besides computational intensity when constructing (i.e., learning) a I'-
minimax estimator, another important factor to be considered when choosing D is the computational
intensity to evaluate the learned estimator at the observed dataset. This is another reason for our choos-
ing neural networks or ELMs as the space of estimators. Indeed, existing software packages (e.g., [Paszke
et al., |2019) make it easy to leverage graphics processing units to efficiently evaluate the output of neu-
ral networks for any given input. Therefore, if the existing estimator being used is not too difficult to
compute, then estimators parameterized using similar architectures to that displayed in Figure [2| will be
able to be computed efficiently in practice. This efficiency may be especially important in settings where
the estimator will be applied to many datasets, so that the cost of learning the estimator is amortized

and the main computational expense is evaluating the learned estimator.

5 Simulations and data analyses

5.1 Estimation of the mean

We start by illustrating our proposed method via simulation in a special case of Example [1} namely
for estimating the mean of a distribution. We assume that M consists of all probability distributions
defined on the Borel o-algebra on [0,1] and we observe X = (X1, Xs,...,X,,), where X1,..., X, id
Py € M. Here we take n = 10. The estimand is U(Fy) = [ Py(dz). We use the mean squared
error risk introduced in Example Suppose that we represent the prior information by I' = {mw € II :
J ¥(P)m(dP) = 0.3}, which corresponds to the set of prior distributions in IT that satisfy an equality
constraint on the prior mean of ¥(P).

We apply our method to three spaces of estimators separately. The first space, Diipear, is the set of
affine transformations of the sample mean, that is, Dypear = {d : d(X) = Bo+ 1 Z?zl Xi/n, Bo, 51 € R}.
As shown in Proposition [I] in the Supplemental Material, there is an estimator d* in Dijpear that is
I'-minimax in the space of all estimators that are square-integrable with respect to all P € M, so we
consider this simple space to better compare our computed estimator with that theoretical I'-minimax
estimator. When computing a I'-minimax estimator in Djjpear, we initialize the estimator to be the
sample mean, that is, we let 5 = 0 and £ = 1.

The second space, Dgiy (statistical knowledge network), is a set of neural networks designed based
on statistical knowledge that includes the sample mean as an input. We consider this space to illustrate
our proposal in Section[4.2] More precisely, we use an architecture in Fig [3|that is similar to the deep set
architecture (Zaheer et al., [2017; |Maron et al., |2019), which is a permutation invariant neural network.
We use such an architecture to account for the fact that the sample is iid. In this architecture, the
sample mean node is used as an augmenting node to an ordinary deep set network and is combined with
the output of that ordinary network in the fourth hidden layer to obtain the final output. Note that
Dskn O Diinear- When computing a I'-minimax estimator for this class, we also initialize the network to
be exactly the sample mean, which is a reasonable choice given that the sample mean is known to be
sensible estimator. In this simulation experiment, we choose the dimensionality of nodes in each hidden

layer in Fig 3| as follows: each node in the first, second, third and fourth hidden layer represents a vector
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Input 1st Hidden  2nd Hidden Pooling 3rd Hidden  4th Hidden Ouput
layer layer layer layer layer layer layer

X1

Sample mean

Xs

X3

OO0 0
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Figure 3: Architecture of the permutation invariant neural network estimator of the mean in
Dskn- X;: observation ¢ in the sample; >: the node that sums up all ancestor nodes. In the
first two hidden layers, all inputs nodes are transformed by the same function. The arrows
from the input nodes to the sample mean estimator are omitted from this graph. Each node
in the hidden layers represents a vector.

in R'1%, R5, R'° and R, respectively. We do not use larger architectures because usually the sample mean
is already a good estimator, and we expect to obtain a useful estimator as a small perturbation of this
estimator. We also use the ReLU as the activation function. We did not use ELMs in this and the
following simulations because we found that neural networks perform well.

The third space, Dyy, is a set of neural networks that does not utilize knowledge of the sample mean.
We consider this space to illustrate our method without utilizing existing sensible estimators. These
estimators are also deep set networks with a similar architecture as Dgy, in Fig 3] The main difference
is that the explicit sample mean node and the fourth hidden layer are removed. When computing a I'-
minimax estimator in Dy, we also randomly initialize the network, unlike Djjpear and Dgyy, in order not
to input statistical knowledge. Because the ReLU activation function is used, Dnn O Diinear, and we do
not expect that optimizing over Dy, should not lead to a I'-minimax estimator with worse performance
than those in Dijnear and Dgyy .

To construct the grid M, for this problem, we use a simpler method than Algorithm [6] As indicated
by Lemma in the Supplemental Material, for estimators in Djjpear, Bernoulli distributions tend to have
high risks since all probability weights lie on the boundary of [0, 1]; in addition, a prior 7* for which d*
is Bayes is a Beta prior over Bernoulli distributions. Therefore, we randomly generate 2000 Bernoulli
distributions as grid points in M;. We also include two degenerate distributions in this grid, namely the
distribution that places all of its mass at 0 and that which places all of its mass at 1. When constructing
M, from My_, we still add in more complicated distributions to make the grid dense in the limit: we
first randomly generate 500 discrete distributions with support being those in My_;; then we randomly
generate 10 new support points in [0, 1] and 1000 distributions with support points being the union of

the new support points and the existing support points in My_y.
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Table 1: Coefficients and Bayes risks of estimators of the mean. Unrestricted space: the space
of all estimators that are square-integrable with respect to all P € M.

Estimator space \ Method to obtain d* \ Bo \ 51 \ r(d, ")
Unrestricted space | Theoretical derivation | 0.072 | 0.760 0.012
Diinear Algorithms |1| & 0.072 | 0.763 0.012
Dekn Algorithms [1| & 0.071 | 0.767 0.012

Din Algorithms 1| &
Diinear Algorithms (1] &

— — 0.012
0.072 | 0.760 0.012

When computing the I'-minimax estimator, for each grid M, we compute the I'p-minimax estimator
for all three estimator spaces with Algorithm[d] We set the learning rate n = 0.005, the batch size J = 50
and the number of iterations to be 200 for Iy (¢ > 1). The number of iterations for I'; is larger because,
in our experiments, we saw that a I'y-minimax estimator is already close to a I'-minimax estimator, and
using a large number of iterations in this step can improve the initial estimator substantially. For Diinear
and Dgyy,, the number of iterations for I'; is 2000; the corresponding number for D, is 6000 to account
for the lack of human knowledge input. We also use Algorithm [5| with 10000 iterations to compute a
I'y-minimax estimator for Djjyear for illustration. In this setup, as described in Section we take the
average of the computed I'-minimax stochastic estimator as the final output estimator in Djjpear. We do
not apply Algorithm [5] to Dgy, or Dy, because it is computationally intractable.

We set the stopping criterion in Algorithm [I] as follows. When Algorithm [ is used to compute
I',-minimax estimators, we estimate reup(d;_;,T'¢) and reup(dj_;, Te—1) with 2000 Monte Carlo runs as
described in Section when Algorithm [5| is used, reup(dj_1,T) and reup(dj_1,T¢—1) are computed
exactly because R(d, P) has a closed-form expression for all d € Dijpear and P € M,. We set the
tolerance € to be equal to 0.0001 so that we stop Algorithm [1|if reyp(d)_1,T¢) — rsup(di_;,Te—1) <e.

After computation, we report the Bayes risk of the computed and theoretical I'-minimax estimators
under 7*, the prior such that r(d*, 7*) = inf4ep reup(d,I'). For the estimators in Diinear, we further report
their coefficients. We also report two coefficients of the computed estimator in Dy, as follows. Since
Diinear € Dskn and we initialize the estimator to be the sample mean for Dy, we would expect that the
bias By and the weight of the sample mean 1 in the output layer for the computed I'-minimax estimator
in Dgk, may correspond to those in Dijear. Therefore, we also report these two coefficients 5y and [
for Dy This may not be the case for Dy, because sample mean is not explicit in its parameterization
and all coefficients are randomly initialized, so we do not report any coefficients for Dyy,.

Table [I] presents the computation results. By Theorem [7]in the Supplemental Material, these com-
puted estimators are all approximately I'-minimax since their Bayes risks for n* are all close to that of
a theoretical I'-minimax estimator. The coefficients 5y and ;1 of the computed estimators in Dijpear and
Dskn are also close to a theoretically derived estimator. For the computed estimator in Dgy,, the weight
of the other ancestor node in the output layer (i.e., the node in the 4th hidden layer in Fig 3] is 0.000.
Therefore, our computed I'-minimax estimator in Dy, is also close to a theoretically derived I'-minimax
estimator.

In our experiments, Algorithm [1| converged after computing a I';-minimax estimator except when
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Figure 4: Estimated Bayes risks of the estimator over iterations when computing a I';-minimax
estimator. The lines are the current Bayes risks (y-axis) over iterations (x-axis) (unbiased
estimates with 50 Monte Carlo runs for Algorithm 4} exact values for Algorithm . The
solid lines are the Bayes risks after an update in the estimator to decrease the Bayes risk.
The dashed lines are the Bayes risks after an update in the prior to increase the Bayes risk.
The two horizontal lines are the Bayes risk of the sample mean (dashed) and d* (solid),
respectively, for 7*. For ease of visualization, in subfigures (a) and (b), the Bayes risks are
plotted every 50 iterations; in subfigures (c) and (d), the Bayes risks are plotted every 200
iterations; subfigure (d) contains the part in subfigure (c) after 500 iterations.

using Algorithm [4] for Dijpear. Even in this exceptional case, the computed I';-minimax estimator is still
approximately I'-minimax. We think the algorithm does not stop then in these cases because of Monte
Carlo errors when computing ey, (dj_1,T¢) and reup(d;_;,Te—1).

Fig |4] presents the Bayes risks (or its unbiased estimates) over iterations when computing a I'1-
minimax estimator. In all cases using Algorithm (4] the Bayes risks appear to decrease and converge.
When using Algorithm [5] the upper and lower bounds both converge to the same limit. The limiting

values of the Bayes risks in all cases are close to r(d*, 7*) because I'; can approximate 7* well.

5.2 Prediction of the expected number of new categories

We apply our proposed method to Example |3] In the simulation, we set the true population to be an
infinite population with the same categories and same proportions as the sample studied in
, which consists of 1088 observations in 188 categories. This setting is the same as the
simulation setting in [Shen et al.| (2003). We set the sample size to be n = 100 and the size of the

new sample to be m = 200. In this setting, the expected number of new categories in the new sample
unconditionally on the observed sample, namely ®(Fy) := Ep, [¥(FPy)(X™*)], can be analytically computed

and equals 48.02. We note that this quantity can also be computed via simulation: (i) sample n and

m individuals with replacement from the dataset in Miller and Wiegert (1989), (ii) count the number

of new categories in the second sample, and (iii) repeat steps (i) and (ii) many times and compute the
average.

We consider three sets of prior information:
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Input 1st Hidden 2nd Hidden Ouput
layer layer layer layer

Figure 5: Architecture of the neural network estimator of the expected number of new cat-
egories. Xj: number of categories with k observations; OSW: the estimator proposed in
Orlitsky et al. (2016); SCL: the estimator proposed in [Shen et al. (2003). The arrows from
data (X1,...,X,,) to the OSW and SCL estimators are omitted from this graph.

1. strongly informative: prior mean of ®(P) in [45,50], > 95% prior probability that ®(P) lies in
(40, 55);

2. weakly informative: prior mean of ®(P) in [40,55], > 95% prior probability that ®(P) lies in
[30, 65]; and

3. almost noninformative: prior mean of ®(P) in [35,60], > 95% prior probability that ®(P) lies in
120, 75].

We note that a traditional Bayesian approach would require specifying a prior on M, including the total
number of categories and the proportion of each category, which may be difficult in practice.

We design the architecture of the neural network estimator as in Fig We choose two existing
estimators (referred to as the OSW and SCL estimators, respectively) proposed by |Orlitsky et al.| (2016
and |Shen et al.| (2003) as human knowledge inputs to the architecture. As in Section we use the
ReLU activation function. There are 50 hidden nodes in the first hidden layer. We initialize the neural
network that we train to output the average of these two existing estimators.

We use Algorithm [6]to construct M,. There are 2000 grid points in M, and we add 1000 grid points
each time we enlarge the grid. When generating M, we chose the starting point to be a distribution
Poy with 146 categories and ®(Pg)) = 49.9. We selected the log pseudo-prior as a weighted sum of
two log density functions: (i) a normal distribution with the mean being the midpoint of the interval
constraint on the prior mean of ®(P) and central 95% probability interval being the interval with at
least 95% prior probability, (ii) a negative-binomial distribution of the total number of categories with
success probability 0.995 and 2 failures until the Bernoulli trial is stopped so that the mode and the
variance are approximately 200 and 8 x 10%, respectively. These log-densities are provided weight 30 and

10, respectively. We selected the weights based on the empirical observation that distributions with only
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Table 2: Risks and Bayes risks of estimators. R(d, Pp): risk of the estimator under the true
data-generating mechanism Py. r(d,7*): Bayes risk under prior 7*, the computed prior from
Algorithm (4] in the last and finest grid in the computation.

Strength of prior | Estimator | R(d, Py) | r(d,#*)

strong OoSw 265 300
SCL 146 179

I'-minimax 22 36

weak OSwW 265 252
SCL 146 142

I'-minimax 56 85

almost none OSW 265 220
SCL 146 119

I'-minimax 76 108

a few categories tend to have high risks, but these distributions are relatively inconsistent with prior
information and may well be given almost negligible probability weight in a computed least favorable
prior, thus contributing little to computing a I'-minimax estimator. We chose the aforementioned weights
so that Algorithm [6] can explore a fairly large range of distributions and does not generate too many
distributions with too few categories.

We use Algorithm [ with learning rate n = 0.005 and batch size J = 30 to compute I'p-minimax
estimators. The number of iterations is 4,000 for T'; and 200 for Iy (¢ > 1). The stopping criterion in
Algorithm [l is that the estimated maximal Bayes risk with 2000 Monte Carlo runs does not relatively
increase by more than 2% or absolutely increase by more than 0.0001.

We examine the performance of the OSW estimator, the SCL estimator and our trained I'-minimax
estimator by comparing their risks under our set data-generating mechanism computed with 20000 Monte
Carlo runs. We also compare their Bayes risks under the computed prior from Algorithm [4 using the last
and finest grid in the computation with 20000 Monte Carlo runs. We present the results in Table[2] In this
simulation experiment, our I'-minimax estimator significantly reduces the risk compared to two existing
estimators. The ['-minimax estimator also has the lowest Bayes risk in all cases. Therefore, incorporating
fairly informative prior knowledge into the estimator may lead to a significant improvement in predicting
the number of new categories.

Fig [6] presents the unbiased estimator of Bayes risks over iterations when computing a I'y-minimax
estimator. The Bayes risks appear to have a decreasing trend and to approach a liming value. Over
iterations, the Bayes risks decrease by a considerable amount. The limiting value of the Bayes risks
appears to be slightly higher than the risk of the computed I'-minimax estimator under Py. This might
indicate that P, is not an extreme distribution that yields a high risk.

We also apply the above methods to analyze this dataset studied in Miller and Wiegert| (1989),
which is used as the true population in the simulation. Based on this sample consisting of n = 1088
observations in 188 categories, we use various methods to predict the number of new categories that

would be observed if another m = 2000 observations were to be collected. We train Gamma-minimax
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(a) Strongly informative priors (b) Weakly informative priors (c) Almost noninformative priors
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Figure 6: Estimated Bayes risks of the estimator over iterations when computing a I';-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The two dashed horizontal lines are the risks of the OSW
(upper) and the SCL (lower) estimators, respectively, under Py in the simulation. The solid
horizontal line is the risk of the computed I'-minimax estimator under Py. For clearness of
visualization, the estimated Bayes risks are plotted every 50 iterations.

estimators using exactly the same tuning parameters as those in the above simulation. The predictions of
all methods are presented in Table |3l The I'minimax estimator outputs a similar prediction to the SCL
estimator, especially when the prior is strong. This similarity appears different from our observation in
the simulation, but can be explained by the fact that having more observations (n = 1088 vs n = 100;
m = 2000 vs m = 200) decreases the variance of the number of new observed categories and thus
lowers discrepancies between predictions from these methods. With a decreasing strength of prior, the
I'-minimax estimator predicts an increasing number of new categories. This phenomenon is expected:
with weaker prior information, distributions with many rare categories become more plausible, and thus
the prediction needs to be increased to account for this weakening of prior. Since the SCL estimator
outperforms the OSW estimator in the above simulation where this dataset is the true population, we
expect the SCL estimator to achieve reasonably good performance in this application. Moreover, given
that the I'-minimax estimators outperform the SCL estimator in the above simulation, we expect that
56 represents an improved prediction of the number of new categories as compared to the SCL prediction

of 51 in the case where there is limited prior information available.

5.3 Estimation of the entropy

We also apply our method to estimate the entropy of a multinomial distribution. The data-generating
mechanism is the same as that described in Example [3| and the estimand of interest is the entropy,
that is, U(Py) = fozl —pg log pr. In the simulation, we choose the same true population and the same
sample size n = 100 as in Section We take the same risk function as in Example The true
entropy W (Pp) is 4.57. As a reference, the entropy of the uniform distribution with the same number
of categories—which corresponds to the maximum entropy of multinomial distributions with the same

total number of categories—is 5.24.
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Table 3: Predicted number of new categories (rounded to nearest integer) in a new sample
with size 2000 based on the sample with size 1088 studied in |[Miller and Wiegert (1989). The
strength of prior information in I'-minimax estimators is shown in brackets.

Estimator Predicted
# new
categories
OSW 72
SCL 51
I-minimax (strong) 51
I-minimax (weak) 53
I-minimax (almost none) 56

As in Section [5.2] we consider three sets of prior information:

1. Strongly informative: Prior mean of U(P) in [4.3,4.7], > 95% probability that ¥(P) lies in [4, 5];
2. Weakly informative: Prior mean of W(P) in [4, 5], > 95% probability that ¥(P) lies in [3.5,5.5];
3. Almost noninformative: Prior mean of U(P) in [3.7,5.3], > 95% probability that ¥(P) lies in [3, 6].

The architecture of our neural network estimator is almost identical to that in Section [5.2| except
that the existing estimator being used is the one proposed in |Jiao et al.| (2015]) (referred to as the JVHW
estimator), and we initialize the network to return the JVHW estimator. We use Algorithm@to construct
My and Algorithm [4] to compute a I';-minimax estimator. The tuning parameters in the algorithms are
identical to those used in Section except that, in Algorithm [4] (i) the learning rate is n = 0.001, and
(ii) the number of iterations is 6,000 for I';. We change these tuning parameters because the JVHW
estimator is already minimax in terms of its convergence rate (Jiao et al., |2015), and we may need to
update the estimator in a more cautious manner in Algorithm [4] to obtain any possible improvement.

We compare the risk of the JVHW estimator and our trained I'-minimax estimator under our set
data-generating mechanism computed with 20000 Monte Carlo runs. We also compare their Bayes risk
under the computed prior from Algorithm |4] using the last and finest grid in the computation with
20000 Monte Carlo runs. The results are summarized in Table |4} In this simulation experiment, our
I-minimax estimator reduces the risk by a fair percentage compared with the JVHW estimator with
somewhat informative prior knowledge. With almost noninformative prior knowledge, the risk of our
I-minimax under P is slightly higher than the JVHW estimator, but the Bayes risk is still lower.
The elevated risk under Py in this case is not surprising given that I'-minimax estimators generally do
not achieve optimal performance under every data-generating mechanism, but rather achieve optimal
performance under the least favorable prior that is consistent with available knowledge. According to
these simulation results, we conclude that incorporating weakly or strongly informative prior knowledge
into the estimator may result in some improvement in estimating entropy.

Fig [7] presents the unbiased estimator of Bayes risks over iterations when computing a I'y-minimax
estimator. With somewhat informative prior information present, the Bayes risks appear to fluctuate

without an increasing or decreasing trend at the beginning and decrease after several thousand iterations.
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Table 4: Risks and Bayes risks of estimators. R(d, Pp): risk of the estimator under the true
data-generating mechanism Py. r(d,7*): Bayes risk under prior 7*, the computed prior from
Algorithm (4] in the last and finest grid in the computation.

Strength of prior | Estimator | R(d, Py) | r(d,#*)
strong JVHW 0.041 0.045
I'~minimax 0.033 0.033

weak JVHW 0.041 0.056
I'-minimax 0.040 0.048

almost none JVHW 0.041 0.063
I'-minimax 0.046 0.055

(a) Strongly informative priors (b) Weakly informative priors (c) Almost noninformative priors
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Figure 7: Estimated Bayes risks of the estimator over iterations when computing a I';-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The horizontal lines are the risks of the JVHW (dashed)
and the computed I'-minimax (solid) estimators, respectively, under Py in the simulation. For
clearness of visualization, the estimated Bayes risks are plotted every 100 iterations.

With almost no prior information, the Bayes risks appear to fluctuate with no trend. A reason may be
that the JVHW estimator is already minimax rate optimal @, . The computed I'-minimax
estimators also appear to be somewhat similar to the JVHW estimator: in the output layer of the three
settings with different prior information, the coefficients for the JVHW estimator are 0.96, 0.95 and
0.95, respectively; the coefficients for the previous hidden layer are 0.17, 0.09 and 0.02, respectively; the
intercepts are 0.09, 0.13 and 0.16, respectively.

We further use the above methods to estimate entropy based on the this dataset used as the true
population in the simulation. The tuning parameters of the I'-minimax estimators are exactly the same
as those in the above simulation. The estimates are presented in Table[5] All methods produce almost
identical estimates. Because the sample size is more than ten times the sample size in the simulation
and the JVHW estimator is minimax rate optimal , we expect the JVHW estimator to
have little room for improvement, which explains why the three I'-minimax estimators perform similarly
to the JVHW estimator. In other words, Gamma-minimax estimators appear to maintain, if not to

improve, the performance of the original JVHW estimator. The above simulation and data analysis also
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Table 5: Estimated entropy based on the sample with size 1088 studied in Miller and Wiegert
(1989). The strength of prior information in I'-minimax estimators is shown in brackets.

Estimator \ Estimated entropy
JVHW 4.709
I-minimax (strong) 4.716
I-minimax (weak) 4.708
I'-minimax (almost none) 4.708

suggest that the JVHW estimator might be better than merely minimax rate optimal: it might be close

to minimax optimal in large samples.

6 Discussion

We mainly focus on estimation. Nevertheless, our framework can be immediately applied to prediction
as shown in Example |2l Studying the performance of our algorithms in this setting is an interesting area
for future work.

We propose adversarial meta-learning algorithms to compute a Gamma-minimax estimator with
theoretical guarantees under fairly general settings. These algorithms still leave room for improvement.
As we discussed in Section the stopping criterion we employ does not necessarily indicate that the
maximal Bayes risk is close to the true minimax Bayes risk. In future work, it would be interesting
to derive a better criterion that necessarily does indicate this near optimality. Our algorithms also
require the user to choose increasingly fine approximating grids to the model space. Although we
propose a heuristic algorithm for this procedure that performed well in our experiments, at this point,
we have not provided optimality guarantees for this scheme. It may also be possible to improve our
proposed algorithms to solve intermediate minimax problems in Section by utilizing recent and
ongoing advances from the machine learning literature that can be used to improve the training of
generative adversarial networks.

We do not explicitly consider uncertainty quantification such as confidence intervals or credible in-
tervals under a Gamma-minimax framework. Uncertainty quantification is important in practice since
it provides more information than a point estimator and can be used for decision making. In theory,
our method may be directly applied if such a problem can be formulated into a Gamma-minimax prob-
lem. However, such a formulation remains unclear. The most challenging part is to identify a suitable
risk function that correctly balances the level of uncertainty and the size of the output interval/region.
Though the risk function used in |Schafer and Stark|(2009) appears to provide one possible starting point,
it is not clear how to extend this approach to nonparametric settings.

In conclusion, we propose adversarial meta-learning algorithms to compute a Gamma-minimax esti-
mator under general models that can incorporate prior information in the form of generalized moment
conditions. They can be useful when a parametric model is undesirable, semi-parametric efficiency theory

does not apply, or we wish to utilize prior information to improve estimation.
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Supplementary Material for “Adversarial Meta-Learning of

Gamma-Minimax Estimators That Leverage Prior Knowledge”

S1 Proof of Condition [5 sufficient for part [2 of Condition 4

Let d € D, £ and € > 0 be fixed. By Theorems 2.1 and 3.2 in Winkler| (1988), reup(d, T'¢) < r(d, 7) + ¢/2
for some m € T, with a finite support. Under Condition |5 there exists a sequence m; € fiw such
that, for all sufficiently large i, r(d,m;) > r(d,7) — €/2. For such i, rqp(d,T¢) < 7(d,m;) + €. Since
Toup(d, Te) > Tup(d, Ty10) > r(d, m;), we have that r(d, ;) < reup(d, Tije) < Tsup(d,Te) < 7(d, ;) + € for
all sufficiently large 4, and thus part [2 of Condition [4] holds under Condition

S1.1 Proof of Theorem [1] and Corollary

Lemma 1. If {Q,}7°, is an increasing sequence of subsets of M such that | J,o., & = M, then, for any
d € D, roup(d, T¢) / Tsup(d,T) (€ — 00).

Proof of Lemmal[I. Since I, C f‘gH C T, it holds that r4,p(d, fg) < raup(d, ng) < reup(d,T'), and so
we only need to lower bound 7y (d, T¢). Fix € > 0. By Corollary 5 of Pinelis| (2016)), 7eup(d, T') can be
approximated by r(d, v) arbitrarily well for priors v € T with a finite support; that is, there exists v € T’
with finite support such that r(d,v) > r4p(d,I') — e. For sufficiently large ¢, {2, contains all support
points of v and hence rg,p(d, fg) > r(d,v) > rsup(d,I') — €. The desired result follows. O

Lemma 2. Under Condition @ d — r(d, ) is Lipschitz continuous with Lipschitz constant L; moreover,

d > rsup(d,I") is Lipschitz continuous with Lipschitz constant L for any IT' C T'.

Proof of Lemma[2. By Condition [3] |R(d1, P) — R(d2,P)| < Lg(dy,ds) for any di,d> € D and any
P € M. Then, for any 7 € I and any dy,ds € D,

Ir(dy, ) — (da, )| = ’ / [R(dy, P) — R(ds, P)]x(dP)
< / \R(dy, P) — R(ds, P)| (dP)

S LQ(dl, d2)

This proves that d — r(d, ) is Lipschitz continuous with a universal Lipschitz constant L. We now
prove that d — 7sup(d,I') is Lipschitz continuous with Lipschitz constant L. Let € > 0. For any d; € D,
there exists m; € I such that reyp(di,I) < r(di,m1) + €. Then, for any ds € D,

Tsup (d1,T") — reup(da, I") < 7(dy, m) + € —r(da, m1) < Lo(dy,d2) + €.

Since € is arbitrary, we have that rg,p(d1, ") — reup(de,I”) < Lo(d1, d2). Reversing the role of dy and ds,
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we derive that reup(de, I") — rsup(di, I'") < Lo(d1,d2). Therefore, |reup(di, ') — reup(de, I")| < Lo(d1, d2)
for any dy,ds € D. O]

Proof of Theorem[I. Let € > 0. There exists d’ € D such that
ap(d,T) < inf 7y r .
TSUP(d ,I) < dlgD rsup(d, ) +e
Moreover, there exists my € I'y such that
Tsup(d/, Fz) < T(d/, 7Tg) + €.
Using the fact that dj is I';-minimax and the definition of 74y, it holds that

Tsup(df, Te) < rsup(d',To) < r(d,me) + €
< / < i .
<rgp(d,T) +€ < dllelg Tsup(d, ') + 2€

Since this inequality holds for any € > 0, we have that rep(d;,I'¢) < infiep reup(d,I'). An almost
identical argument shows that the sequence {rs,p(d;,I'¢)}72, is nondecreasing. Therefore, this sequence
converges to some limit R < infgep reup(d,T') < reyp(d*,T).

We next prove that rg,p(d*,I') < R. Let ¢ > 0. Without loss of generality, we may assume that
Mg C Qforall £=1,2,... in Condition |4} (Otherwise, we may instead consider the sequence {Q2;}3°
where Q7 = (., 501, §2¢- Note that Condition {4f also holds for {€2;}2° .) By Lemma (1} there exists
¢y such that re,p(d*, f‘go) > roup(d*,T') —€/3. By Condition there exists 4; such that reup(d*, T, jg,) >
rsup(d*,f’go) — ¢/3. Without loss of generality, suppose that dj — d* (otherwise, take a convergent
subsequence to this accumulation point). This then implies that there exists ia > 41 such that o(d},,d*) <
€/(3L). By Lemma 2| roup(d;,, Tiyje,) = Tsup(d*, T je,) — €/3. Moreover, since I'; o, € Iy, C Ty, it
holds that rsup(df,, T's,) > Tsup(dy,, T jg,)- Therefore, roup(d;,, Ts,) > roup(d*, ') — €. Since the sequence
{reup(d;,T¢)}72, is nondecreasing, it holds that reup(d,T'¢) > reup(d*,T') — € for all £ > iy. Therefore,
liminfy o0 reup(df, T'e) > reup(d*, T'), and hence R > rgup(d*,T).

Combining the results from the preceding two paragraphs, R = infgep reup(d,I’) = reup(d*,T).
Consequently, d* is I'-minimax. Moreover, as {rsup(d;, T'r)}32, increases to R, this sequence also increases
to rsup(d*,T'). This concludes the proof. O

Proof of Corollary[1. We first establish the strict convexity of d — r(d,m) for any m € I. We then
establish the strict convexity of d — reyp(d,I"). We then establish that there is a unique minimizer of
d — rgup(d,I') and show that the desired result follows from Theorem

Let d1,d2 € D and ¢ € (0,1) be arbitrary, then by the convexity of D and the strict convexity of
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d — R(d, P) for each P € M,

r(cdy + (1 — c)dy, 7) = / Rlcds + (1 — ¢)da, P)(dP)

< / {¢R(dy, P) + (1 — ¢)R(ds, P)}m(dP)

=cr(dy, m) + (1 = ¢)r(de, ).

Therefore, d — r(d, 7) is strictly convex for any = € T.
Let dy,dz € D and ¢ € (0,1) be arbitrary. Since rgup(d,I") is attainable for any d € D, there exists
7 € I' such that

Tsup(cdi + (1 — ¢)do,T') = r(cdy + (1 — ¢)da, )
< er(dy, @) 4+ (1 —¢)r(da, 7)
< ergup(d1, T) 4+ (1 — &)rgup(da, T).

Thus, d — rgup(d,I') is strictly convex.

As d — 74up(d,T') is continuous by Condition [3[ and D is compact by Condition [2} d +— reup(d,T')
achieves at least one minimum on D. As d — rg,p(d,T) is strictly convex and D is convex, this function
achieves exactly one minimum on D. By Theorem any accumulation point d* of {d}}7°, is a minimizer

of d — reup(d, T'), and so the sequence has a limit point, which is also the unique I'-minimax estimator. [

S1.2 Proof of Theorem [2]

We prove Theorem [2| by checking that Assumptions 3.1 and 3.6 in |Lin et al.| (2020) are satisfied and
using Theorem E.3 and E.4 in |[Lin et al.| (2020)), respectively. Since Assumption 3.1 is satisfied by our
construction of R, we focus on Assumption 3.6 for the rest of this section.

Let My = {P1, Ps,...,PA} C M. For any 7 € T'y, let ) denote the probability weight of m on Py (A =
1,...,A). For the rest of this section, we also use m to denote the vector (mq,...,m). We also use < to

denote less than equal to up to a universal positive constant that may depend on £. Then, straightforward
calculations imply that Vgr(8,m) = Zf\\zl mAVeR(B, P\) and V.r(8,7) = (R(B,P1), ..., R(B3,Px))".
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For each ¢ =1,2,..., for any ', 32 € H and n!, 72 € Ty, by Conditions@amd

A
> (k= 73) VsR(B, Pl o,

A=1

Hvﬁr )‘5 =81, =l vﬁr(ﬁﬂrﬂﬁ:mm:ﬂ?
A
Z {77)\ VR /BaPA)|B:51 - 7T§ V[}R(ﬁ,P)\)|B:52}

A=1

A
<> k| VaRB. Play, — VaR(B. PYlsp,
A=1

S8t =B + =t — =2
S ||(513771) - (527’”—2)”7

and similarly for V,.r(8, ),
H Vwr(ﬂyﬂ')b:glm:ﬂl - VTI'T(/Baﬂ'”,B:ﬁ?,W:ﬂ?

= [[(Re8" ) = B2, P, R8P = BB P, RS PA) = RO P) |
S 18" = 8% < (8L w) = (8% 3).

This implies that for each ¢, the gradient of (5, 7) (8 € H, m € I'y) is Lipschitz continuous.
For each £ = 1,2, ..., for any 8,32 € H and 7 € 'y, Condition@ implies that

A

[r(B',m) — (B m)| = Zﬂ [R(B", Py) R(52,PA)]|

A
< Yo mIR(E P - RO P S 118 - 1)

Therefore, 5 +— r(3, ) is Lipschitz continuous with a universal Lipschitz constant independent of 7 € T'y.

Finally, it is straightforward to check that (i) 7 — r(8,7) is concave for any 8 € H, and (ii) Iy is
parameterized by a convex subset of a simplex in a Euclidean space, which is a convex and bounded set.
These results show that Assumption 3.6 in [Lin et al.| (2020)) is satisfied for Algorithm [2[ and
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S1.3 Proof of Theorem (3|

Proof of Theorem[3. Let m; o denote a maximizer of m — r(B8(;—1),7). It holds that

0 < 7(Bie—1):T1),0) — 7(Bee—1)> (1))
1<

J/
. 1 .
<5 > (Bu—1): T(t), &) — 7 > (Bu—1) T().0: &)
j=1

j=1

+7(B-1), T(1),0) — T(Br—1) (1))

1
=5 { [F(Bie-1)s7(1), &) — F(B(e-1)s T(1).0,&5)]
j=1

—E [*(Be—1), T(1), €) — F(Be—1)> T(),0,€)] }

J’

% 3 { [7(8,m1,&5) — 7(B8, 72, &5)]

Jj=1

< sup
BERP 7y, ma€Ty

-E [’F(ﬁvﬂ.lyf) - TA(/877T2;€)} }’
Note that the right hand side does not depend on t. Therefore,

0< sup {r(Be=1): 7),0) = Elr(Bie—1), 7)1}
1<

33 b6 -

Jj=1

<E* sup
BERP 71, ma€L,

)

- E[f(ﬁaﬂ—laf) - 72(577(_275)] }

where E* stands for outer expectation. We may apply Corollary 9.27 in [Kosorok| (2008) to F := {£ —
#(8,m,€) : B € RP,m € [y} and show that F—F := {fi—fa : f1, fo € F} 2 {& = 7(B,m1,8) —7(B, 72, €) :
B ERP 7,7 € Ty} is a E-Glivenko-Cantelli class. Therefore,

1 &

/Z{Wﬁﬁﬁfﬂm@]

sup
BERP w1, m2 €y J

—E[7(B,m1,8) — #(B,m2,8)] H}

j=1
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as J' — oo. Here, X* stands for the minimal measurable majorant with respect to = of a (possibly
non-measurable) mapping X (van der Vaart and Wellner, 2000).

By Problem 1 of Section 2.4 in |van der Vaart and Wellner| (2000), there exists a random variable F
such that F' > supscz_ 7 |f(§) — E[f(&')]| Z-almost surely and E[F] < co. Then,

J’

swp |+ 3" {f(&) —ELF(E)} < F

lA
feF-F|J =

=Z-almost surely. By dominated convergence theorem,

E* sup
BERP 71, ma€ly

1 <

7 Z { [f(ﬁﬂrl?gj) - f(ﬁv’fr%fj)}
=1

_E[f‘(ﬁvﬂ—lagj) - f(ﬁv’fr%gj)] }‘ —0

as J' — oo, and so does sup, {r(ﬂ(t_l),ﬂ(tm) — E[r(ﬂ(t_l),w(t))]}. Thus, for any ¢ > 0, there exists a
sufficiently large J' such that E[r(B—1), 7)) > r(Br—=1), T(1),0) — ¢ for all £. O

S1.4 Proof of Theorem /4]

Our proof of Theorem [4] builds on that of [Robinson (1951). Major modifications are needed to allow for
more general definitions that can accommodate for potentially infinite spaces of pure strategies and a
more careful control on a bound on 7(d(w@(;—1)), Wgt)) - r(dzt), T(t—1)) towards the end of the proof.

We first introduce the notion of cumulative Bayes risk functions. Under Algorithm [5] we let Uy :
D — R and Vy : I'y — R be any two continuous functions such that

min Uo(d) = max Vo(r) 3)
and recursively define
Ursr(d) 1= Uyld) + r(d,mf,)), - Ve (m) = Vi(m) + r(dfyy, ) (4)

for d € D and m € I'y. Here, we let wgt) € argmax,cr, V;—1(m) and dJ(rt) € argmingcp Ui—1(d). Note

that the choices of W(Tt)

Ui(d) =t-r(d, ) and Vi(m) =t -r(d(wq)), 7). In general,

and d(y) in Algorithm |5/ corresponds to setting Up = 0 and Vy = 0, in which case

Us(d) = Up(d) +t-r(d, 7)), Vi(m)=Vo(m)+t-r(d(wy),n) (5)
for some 7 € I' and E(W(t)) € D. Later in this section, we will also make use of U; and V; with other

initializations Uy and V.

To make notations concise, we define mingep Uy := mingeps U(d) for any D’ C D, and define
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maxps Uy, ming V; and maxmy Vi (I' C T'y) similarly. We also drop the subscript denoting the set when
the set is the whole space we consider, i.e., D or I';. Note that for any ¢1,t> = 1,2, ..., under the setting
of Algorithm [5| and , it holds that

min Uy, /t; = minr(d, T(t1))
deD

< maxmin7(d,n) = r(d(w;), ;) = min max r(d, 7)
7€l 4eD ) deD mely

< max r(d(w@(y)), m) = max Vi, [to
mely

Therefore, to prove the first result in Theorem[4] it suffices to show that lim sup,_, .. (max V;—min U,) /t <
0.

We next introduce additional definitions related to iterations. We say that m € I'y is eligible in the
interval [t1, o] if there exists ¢ € [t1,t2] such that Vi(7) = max V;; we say that d € D is eligible in the
interval [tq, o] if there exists ¢ € [t1, t2] such that Uz(d) = min U;. We also define eligibility for sets. We
say that II' C T’y is eligible in the interval [ty t5] if there exists m € I’ that is eligible in that interval; we
say that D’ C D is eligible in the interval [t1, t2] if there exists d € D’ that is eligible in the interval [t1, t2].
In addition, for any D' C D, we define maximum variation MV,(D’) := supyep U(d) — infgep U(d)
and MV, (IT') similarly for any II' C T'y. By Condition [3] there exists B € (0,00) such that R € [-B, B].
Note that by Condition [2| and Lemma [2] given an arbitrary desired approximation accuracy € > 0, D
can be covered by finitely many compact subsets with the maximum variation of each subset bounded
by et for all ¢; by Condition [3] since I'y is parameterized by a compact subset of a simplex in a Euclidean
space, 'y can also be covered by finitely many compact subsets with the maximum variation of each
subset bounded by et for all ¢. These covers can be viewed as discrete finite approximations to D and
T'y, respectively.

All of the above definitions are associated with the space of estimators D and the set of priors I'y. We
call {(Uz, Vi) }+ a pair of cumulative Bayes risk functions constructed from the pair (D,T) of the space
of estimators and the set of priors, and will consider pairs of cumulative Bayes risk functions constructed
from other pairs (D’,II') of the space of estimators and the set of priors in the subsequent proof. We
can define the above quantities similarly for such cases.

The following lemma gives an upper bound on the maximum variation of Ug4, and V44 over the
corresponding entire space from which they are constructed after ¢ iterations from s when essentially all

parts of these spaces are eligible in [s, s + t].

Lemma 3. Suppose that {(Us,Vi)}: is a pair of cumulative Bayes risk functions constructed from
(D', 1I1"). Suppose that D' = UiI:1 D; and Il = U;']:1 II; where

sup MV (D;)/t < A, supMV,(II;)/t < A
it

Jit

for A < oco. If all D; and II; are eligible in [s,s + t], then maxp: Usyy — minp Usyy < (2B + A)t and
maxyy Viie — minmr Vi < (2B + A)t.
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Proof of Lemma[3. Without loss of generality, assume that d € (argmaxyeps Usqe) (1 D1.  Since Dy
is eligible in [s,t], there exists ¢ € [s,s + t] such that (argmingep U;)(1D1 # 0. By the recursive
definition of the sequence {U; }; in (), the bound on the risk, and the assumption that sup; , MV,(D;)/t <
A, we have that maxp Usyy = Usyy(d) < Us(d) + B(s +t — ) < minp U; + At + B(s +t — 1) <
minp Uy + (A + B)t. Letting d e argmingcps Usyy, by the bound on the risk, we can derive that
minps Ugyy = Us+t(cf’) > U,g(ci/) — B(s+t—t) > minps Uy — Bt. Combine these two inequalities and we
have that maxps Usyy — minps Ugqy < (2B 4+ A)t. An identical argument applied to the sequence {V;};
shows that maxm Vsqr — ming Viie < (2B + A)t. O

The next lemma builds on the previous lemma and provides an upper bound on max Vs — min Ug,

under the same conditions.
Lemma 4. Under the same setup and conditions as in Lemma E, maxyy Vipe—minp Usyy < (4B+2A)t.

Proof of Lemmal{. Summing the two inequalities in Lemma [3] and rearranging the terms, we have that
maxyy Viiy — minps Ugyy < (4B + 2A)t 4+ mingy Vi — maxpr Ugp¢. It therefore suffices to show that
ming Vsyy < maxpr Ugyy.

Let 7 := s+ t. There exists 7 € I’ and a stochastic strategy d € D’ such that Ur(d) =Up(d) +7-
r(d, ") and V;(7) = Vo(m) + 7 - r(g/, m) for all d € D’ and all = € II'. Therefore, for this choice of 7" and
8/7 using (3)), ming V> < V. (7') = Vo(ﬂ'l)—FT"r‘(a/,ﬂ'/) < maxy Vb—i—T-r(al,w’) = minp, U0+T~r(8/,ﬂ") <
Uo(d)+7-r(d,7") = U.(d) < maxp: U,. O

Proof of Theorem[4. It suffices to show that limsup,_,. (maxV; — minU;)/t < 0 by letting Uy = 0
and Vy = 0, which corresponds to Algorithm Let ¢ > 0. Note that r is Lipschitz continuous by
Lemma [2| and the fact that r(d,n) is an average of bounded risks with weights 7. Furthermore, D
and I'y are both compact. In addition, Uy and V| are both continuous. Therefore, there exist covers
D= Ule D; and Ty = szl II; such that (i) D; and II; are all compact, and (ii) sup, , MV¢(D;)/t < ¢,
sup, , MV (Il;)/t < e. (Note that I and J may depend on e.) For index sets Z C {1,2,...,1} and
J € {1,2,...,J}, define Dz := ;.7 D; and 117 := {J;¢ 7 II;. We show that max V; — min U < Cet for
an absolute constant C' and all sufficiently large ¢ via induction on the sizes of Z and 7.

Let {(U:, Vi) }+ be a pair of cumulative Bayes risk functions constructed from (Dz,I17) where |Z| =
|7 = 1. By (5) and the fact that MV(Dz) < et and MV(I17) < et, we have that

min Uy = min [Up(d) +t - 7(d, m(1))] > Edroo,, [Uo(d)] + - r(d(@w), m() — et
DI dEDI
> mj r(d _
min Uo(d) +1t-r(d(w), m) - et
= max Vo(m) +t - r(d(w), 7)) — €t
well s
> Vo(me) +t- T(E(w(t))7 () — €t

> : 9t — ot
;Ié%};[vo(w)th r(d(wy), )] — 2et Hrlngt 2et

Therefore, maxy,, V3 — minp, U; < 2et.
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Let ¢ > 0 be arbitrary. Suppose that there exists tq such that, for any 7/ C 7 and J’ C J such
that 7/ # Z or J' # J, for any pair of cumulative Bayes risk functions {(Uy, V;)}+ constructed from
(Dz/,117/), it holds that maxy_, Vi — minp,, Uy < €'t for all £ > 5. We next obtain a slightly greater
bound on maxy;; V; — minp, U; for all sufficiently large ¢.

We first prove that if, for a given pair of cumulative Bayes risk functions {(Uy, V;) }+ constructed from
(Dz,117), there exists ' € Z or j' € J such that D, or I,/ is not eligible in an interval [s, s + o], then

max Vi, — min Uiy, < max Vy — min U + €'t. (6)
117 Dz II7 Dz

Suppose that D, is not eligible in [s, s + to], then define U] := Us1+ and V{ := Vyqy — maxp, Vi +
minp, U, for all ¢ > 0. Tt is straightforward to check that {(U}, V/)}i°, satisfies the recursive definition
of a pair of cumulative Bayes risk functions constructed from (Dz\ ;3,11 7). By the induction hypothesis,
maxyy, Vi, —minp,, ., Ui, < €'tg. Therefore, maxyy, Vi, —minp, Usys, = maxy, V)] —minp,, ., Uy, +
maxy, Vs — minp, Us < maxy, Vi — minp, Us + €'tg. Similar argument can be applied if II;» is not
eligible in [s, s + to].

Now we obtain a bound on maxy, V;—minp, U;. Lett > t9, Q := [t/to] > 1and R :=t/t;—Q € [0,1).

There are two cases.
Case 1: There exists so < Q such that D; and II; are eligible in [(sg — 1 + R)to, (so + R)to] for all
i € Z and 5 € J. Take sy to be the largest such integer. Then, repeatedly apply @ to intervals
[(s0 4+ R)to, (50 + 1+ R)to], [(s0 + 1+ R)to, (50 + 2 + R)to), .., [(Q — 1+ R)to, (Q + R)to] = [t — Lo, ] and
we derive that

Hﬁixw - I%izn Uy < max Viso+R)to — I%izn Utso+Ryto + € (2 — s0)to-
By Lemma EI, maxyy, Visg+®)yt, — Minp; Ugsgymyt, < (4B + €)tg. Therefore,

max V; — min Uy < (4B + €)to + € (Q — s0)to < (4B + €)to + €'t.
J a

Case 2: There is no integer sg satisfying the condition in Case 1. Then, repeatedly apply @ to intervals
[tho, (]. + :R)to], [(1 + fR)to, (2 + R)to}, ey [(Q -1+ fR)to, (Q + fR)to] = [t - to, t], we derive that

max V; — minU; < max Vgy, — minUgy, + € Qty.
17 Dz 117 Dz
By the bound on the risk, maxy; Vry, < BRtg and minp, Ug¢, > —BRto. Hence,
max V; — min U, < 2BRtg + €'Qtg < (4B + €)tg + €'t.
HJ Dz

Thus, in both cases, it holds that maxp, Vi — minp, Uy < (4B + €)tg + €'t for t > ty. Let C > 0
be any constant (which may depend on ¢, the approximation error of the covers, that is, the bound on
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MV,/t). The following holds for any sufficiently large ¢,
max V; —minU; < (4B + €)tg + €'t < (1 + O)e't. (7)
II7 Dz

In other words, we show that after increasing the size of either index set by 1, for all sufficiently large t,
we obtain a bound on maxyr, V; — minp, U; that grows by a multiplicative factor of (1+ C) relative to
the original bound.

It takes finitely many, say N, steps to induct from the initial case where the sizes of both index sets
are one to the case of interest with index sets {1,...,I} and {1,...,J}. (Note that N may also depend
on ¢ through its dependence on I and J.) Take C' = 1/N in and we derive that, for all sufficiently
large t,

maxV; —minU; = max V;— min U; < (14 1/N)N - et < 2eet
Mg, 0y Dii,....1}

where e is the base of natural logarithm. Since € is arbitrary, we show that limsup,_,  (maxV; —
minUy)/t < 0. O

S1.5 Derivation of '-minimax estimator of the mean in Section [5.1

In this section, we show that, for the problem of estimating the mean in Section [5.1} one I'-minimax
estimator lies in Djjpear. This is formally presented below.

Proposition 1. Let M consist of all probability distributions defined on the Borel o-algebra on [0,1].
Let X1,..., X, id Py e M and X = (X1, Xo,...,X,,) be the observed data. Let U : P — [zP(dx)
denote the mean parameter and I' = {r € Il : [ W(P)w(dP) = p} be the set of priors that represent
prior information. Let D denote the space of estimators that are square-integrable with respect to all
P e M. Consider the risk in Example |Z, R:(d,P) — Ep[(d(X) —V(P))?]. Define X =31, X;/n and
do: X+ (u++v/nX)/(1++/n). Then dy € Dinear is T-minimaz over D.

We first present a theorem on a criterion of I'-minimaxity.

Theorem 7. Suppose that dg € D is o Bayes estimator for mo € I' and r(do, o) = 7sup(do,T'). Then doy

is a I'-minimax estimator in D.

Proof of Theorem|[7. Clearly rsup(do,I') > infaep rsup(d,T'). Fix d’ € D. Then, rep(d’,T) > r(d',m) >
r(do,m0) = Tsup(do,I'). Since d’ is arbitrary, this shows that infsep reup(d,T') > reup(do,T"). Thus,
Tsup(do, I') = infgep 7sup(d, ') and do is T-minimax. O

We now present a lemma that is used to prove Proposition

Lemma 5. Let a < b and suppose that M denotes the model space that consists of all probability
distributions defined on the Borel o-algebra on [a,b] C R with mean p € [a,b]. Let X denote a generic
random variable generated from some P € M. Then maxpea Varp(X) = Varp-(X) = (b — pu)(p — a),
where P* is defined by P*(X =a) = (b—u)/(b—a) and P*(X =b) = (un—a)/(b—a).
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Proof of Lemma[5. Without loss of generality, we may assume that « = —1 and b = 1. Note that for
any P € M, it holds that Varp(X) = Ep[X?] — Ep[X]? = Ep[X?] — p? < 1 — p?, where the equality
is attained if P(X € {—1,1}) = 1. Therefore, the maximum variance is achieved at the distribution
with the specified mean p and support being {a, b}, that is, at the distribution P* defined in the lemma
statement. Straightforward calculations show that Varp(X) = (b — p)(u — a). O

Proof of Proposition[1. Let M’ := {Bernoulli(d) : § € (0,1)} C M and let my be a prior distribution
over M’ such that the prior distribution on the success probability 6 is Beta(uy/n, (1 — p)y/n). By
Theorem 1.1 in Chapter 4 of |Lehmann and Casella (1998), a Bayes estimator for mg minimizes the risk
under the posterior distribution, whose minimizer over D is the posterior mean dy for our choice of risk.
That is, dy is a Bayes estimator in D for .

We next show that 7(do, 7o) = sup,cp7(do, 7). Let m € T’ be arbitrary. Since Ep[X] = ¥(P) and

Varp(X) = Varp(X;)/n, we can derive that

{“ +vnX 7(dP)

T‘(do,’ﬂ'):/Ep 5 vn —
o {e i)

1 (n—W(P))?
- e e+ S fran

\I/(P)}2

w(dP)

Apply Lemma [f] to Varp(X1) and the display continues as
| (4 - 9(P) }
< —=V(P)(1 - Y(P —_ dP
< [ v - wen + G a feer)

R B . _ =)
= [ e b+ - 2w} P =

This upper bound can be attained by any 7= with support contained in M’, for example, my. Therefore,
Tsup(do, I') = r(do, m). By Theorem 7] dy is I-minimax over D. O
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