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Abstract

Bayes estimators are well known to provide a means to incorporate prior knowledge that can be

expressed in terms of a single prior distribution. However, when this knowledge is too vague to express

with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an

approach. These estimators minimize the worst-case Bayes risk over a set � of prior distributions

that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for

parametric models. In this work, we define Gamma-minimax estimators for general models and

propose adversarial meta-learning algorithms to compute them when the set of prior distributions is

constrained by generalized moments. Accompanying convergence guarantees are also provided. We

also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators

from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings,

namely entropy estimation and a prediction problem that arises in biodiversity studies.

1 Introduction

A variety of principles can be used to guide the search for a suitable statistical estimator. Asymptotic

e�ciency (Pfanzagl, 1990), minimaxity (Wald, 1945) and Bayes optimality (Berger, 1985) are popular

examples of such principles. Defining the performance criteria underlying these principles requires spec-

ifying a model space, that is, a collection of possible data-generating mechanisms known to contain the

true, underlying distribution.

It is often desirable to incorporate prior information about the true data-generating mechanism into

a statistical procedure. This might be done di↵erently in di↵erent statistical paradigms. For frequentist

methods, such as those based on the asymptotic e�ciency or minimax principle, the primary way to

incorporate this information is via the definition of the model space. In the Bayesian paradigm, such

information may be represented by further specifying a prior distribution (or prior for short) over the

model space and aiming for an estimator that minimizes the induced Bayes risk. However, in many
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cases, there may be several priors that are compatible with the available information, especially in the

context of rich model spaces.

The Gamma-minimax paradigm, proposed by Robbins (1951), provides a principled means to over-

come the challenge of specifying a single prior distribution. Under this paradigm, a statistician first

specifies a set � of all priors that are consistent with the available prior information and subsequently

seeks an estimator that minimizes the worst-case Bayes risk over this set of priors. The Gamma-minimax

paradigm may be viewed as a robust version of the Bayesian paradigm that is less sensitive to misspec-

ification of a prior distribution (Vidakovic, 2000). When it is infeasible to specify a prior due to the

complexity of the model space, the Gamma-minimax paradigm may also be viewed as a feasible sub-

stitute for the Bayesian paradigm. The Gamma-minimax paradigm is closely related to Bayes and

minimax paradigms: when the set of priors consists of a single prior, a Gamma-minimax estimator is

Bayes with respect to that prior; when the set � of priors is the entire set of possible prior distributions,

a Gamma-minimax estimator is also minimax.

Gamma-minimax estimators have been studied in a variety of problems. Some explicit forms of

Gamma-minimax estimators have been obtained. For example, Olman and Shmundak (1985) studied

Gamma-minimax estimation of the mean of a normal distribution for the set of symmetric and unimodal

priors on an interval and obtained an explicit form when this interval is su�ciently small. Eichenauer-

Herrmann (1990) generalized this result to more general parametric models and Eichenauer-Herrmann

et al. (1994) obtained a further generalization with the requirement of symmetry on the priors dropped.

Chen et al. (1988) studied Gamma-minimax estimation for multinomial distributions and the set of

priors with bounded mean. Chen et al. (1991) studied Gamma-minimax estimation for one-parameter

exponential families and the set of priors that place certain bounds on the first two moments. These

results do not deal with general model spaces, such as semiparametric or nonparametric models, and

general forms of the set of priors that may not directly impose bounds on prior moments of the parameters

of interest. One reason for this lack of generality might be that, in the existing literature, Gamma-

minimaxity is defined only for parametric models. However, an issue with parametric models is that they

often fail to contain the true data-generating mechanism, in which case output from the aforementioned

statistical procedures may no longer be interpretable. Another possible reason is that it is typically

intractable to analytically derive Gamma-minimax estimators, even for parametric models.

To overcome this lack of analytical tractability, meta-learning algorithms to compute a minimax or

Gamma-minimax estimator have been proposed. Still, most of these works focus on parametric models.

For example, Nelson (1966) and Kempthorne (1987) each proposed an algorithm to compute a minimax

estimator. Bryan et al. (2007) and Schafer and Stark (2009) proposed an algorithm to compute an

approximate confidence region of optimal expected size in the minimax sense. Noubiap and Seidel (2001)

proposed an iterative algorithm to compute a Gamma-minimax decision for the set of priors constrained

by generalized moment conditions. More recent works explored computing estimators under more general

models. For example, Luedtke et al. (2020) introduced an approach, termed Adversarial Monte Carlo

meta-learning (AMC), for constructing minimax estimators. In the special case of prediction problems

with mean-squared error, Luedtke et al. (2021) studied the invariance properties of the decision problem
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and their implications for AMC.

In this paper, we make the following contributions:

1. We define Gamma-minimaxity in general model spaces. A particularly interesting special case

occurs when � consists of all priors satisfying generalized moment constraints.

Our general definition suggests an approach for leveraging potentially-vague prior information even when

the statistical model is infinite-dimensional. After defining this general notion of �-minimaxity, we focus

on the special case involving generalized moment constraints mentioned above. Such classes of priors

provide a natural means of representing prior information (Berger, 1990).

2. We propose iterative adversarial meta-learning algorithms that construct Gamma-minimax esti-

mators for a general model space and class of estimators.

To our best knowledge, this is the first algorithm to compute Gamma-minimax estimators under general

models, including infinite-dimensional models. We also show that, for certain problems, there is a unique

Gamma-minimax estimator and our computed estimator converges to this estimator as the number of

iterations increases to infinity.

Like the approach proposed in Noubiap and Seidel (2001), our proposed iterative algorithm involves

solving a discretized Gamma-minimax optimization problem in each intermediate step. However, we

explicitly describe algorithms to solve these minimax problems, which facilitates the use of our approach

by practitioners. When the space of estimators can be parameterized by a Euclidean space and gradients

are available, we propose to use a gradient-based algorithm or a stochastic variant thereof. When

gradients are unavailable, we propose to instead use fictitious play (Brown, 1951; Robinson, 1951) to

compute a stochastic estimator, which is a mixture of deterministic estimators belonging to some specified

collection. We also provide a convergence result that is applicable even when this collection has infinite

cardinality. This is in contrast to the results in Robinson (1951), which require that each player has only

finitely many possible deterministic strategies.

3. We propose a Markov chain Monte Carlo (MCMC) method to construct the approximating grids

defining the discretized Gamma-minimax problems used in our iterative scheme.

Like the approach proposed in Noubiap and Seidel (2001), our proposed iterative algorithm relies on

increasingly fine finite grids over the model space. However, since we allow the model space to be high or

even infinite-dimensional, randomly adding points to the grid may lead to unacceptably slow convergence.

To overcome this challenge, we propose to use MCMC to e�ciently construct such grids.

Our theoretical results allow for many di↵erent choices of classes of estimators. Our final contribution

concerns the introduction of one such class:

4. We introduce a new neural network architecture that can be used to parameterize statistical esti-

mators and argue that this class represents an appealing class to optimize over.

For this final point, we build on existing works in adversarial learning (e.g., Goodfellow et al., 2014;

Luedtke et al., 2020, 2021) and extreme learning machines (Huang et al., 2006b). Thanks to the univer-

sal approximation properties of neural networks (e.g., Hornik, 1991; Csáji, 2001) and extreme learning
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machines (Huang et al., 2006a), we also show that both of these parameterizations can achieve good

performance for su�ciently large networks. Furthermore, inspired by pre-training (e.g., Erhan et al.,

2010) and transfer learning (e.g., Torrey and Shavlik, 2009), we recommend leveraging knowledge of

existing estimators as inputs to the network in settings where this is possible. Under such choices of the

space of estimators, we can expect to obtain a useful estimator even if the associated nonconvex-concave

minimax problems prove to be di�cult.

This paper is organized as follows. In Section 2, we introduce the framework of Gamma-minimax

estimation and regularity conditions that we assume throughout the paper. In Section 3, we describe

our proposed iterative adversarial meta-learning algorithms. In Section 4, we discuss considerations

when choosing hyperparameters in the algorithms. In Section 5, we demonstrate our method in three

simulation studies. We conclude with a discussion in Section 6. Proof sketches of key results are provided

in the main text, and complete proofs can be found in the Supplemental Material. The code for our

simulations is available on Github (Qiu, 2022).

2 Problem setup

Let M be a space of data-generating mechanisms that contains the truth, P0, and let ⇢ be a metric on

M. Under a data-generating mechanism P 2M, let X⇤
2 X

⇤ denote the random data being generated,

where X ⇤ is the space of values that the random data takes. Let C denote a known coarsening mechanism

such that the observed data X = C(X⇤) 2 X , where X is the space of observed data. In some cases, the

coarsening mechanism will be the identity map, whereas in other settings, such as those in which missing,

censored or truncated data is present, the coarsening mechanism will be nontrivial (e.g., Birmingham

et al., 2003; Gill et al., 1997; Heitjan and Rubin, 1991; Heitjan, 1993, 1994). Let D denote the space of

estimators (or decision functions) equipped with a metric %. Let R : D⇥M! R denote a risk function

that measures the performance of an estimator under a data-generating mechanism such that smaller

risks are preferable. We suppose throughout that M and D are equipped with the topologies induced

by ⇢ and %, respectively.

We now present three examples in which we formulate statistical decision problems in the above form.

Example 1 (Point estimation). Suppose that M is a statistical model, which may be parametric, semi-

parametric, or nonparametric (Bickel et al., 1993). The data X⇤ consists of n independently and iden-

tically distributed (iid) random variables Oi, i = 1, . . . , n, following the true distribution P0 2 M.

We set C to be the identity function so that X = X⇤. We wish to estimate an aspect  (P0) 2 R
of P0. Then, we can consider D to be a set of X ! R functions and the mean-squared error risk

R(d, P ) = EP [{d(X)� (P )}2]. Some specific examples of estimands include:

i) Mean:  (P ) = EP [Oi];

ii) Cumulative distribution function at a point o:  (P ) = PP (Oi  o);

iii) Correlation: with Oi = (Xi, Yi) 2 R2,  (P ) = EP [XiYi]� EP [Xi]EP [Yi].
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Example 2 (Prediction with iid data). Consider the same setup as in Example 1. Let Oi = (Xi, Yi)

with Xi and Yi taking values in Rd and R, respectively. Let On+1 be an independent copy of Oi.

We may consider D to be a set of functions X ⇥ Rd
! R and the mean-squared error risk R(d, P ) =

EP [{Yn+1 � d(X, Xn+1)}2].

Example 3 (Predicting the expected number of novel categories to be observed in a new sample). Suppose

that M consists of multinomial distributions with an unknown number of categories. Let an iid random

sample of size n be generated from the true multinomial distribution, so that X⇤ is a multiset containing

the numberXk of observations in each category k. Suppose that only categories with nonzero occurrences

are observed, so that X is a left-truncated version of X⇤. In other words, X is the multiset C(X⇤) =

{Xk : Xk > 0}. Then, we may wish to predict the number of new categories that would be observed if a

new sample of size m were collected. This problem has been extensively studied in the literature, with

applications in microbiome data, species taxonomic surveys, assessment of vocabulary size, among other

areas (e.g., Shen et al., 2003; Bunge et al., 2014; Orlitsky et al., 2016). This prediction problem can be

formulated in our framework. For each P 2M, let pk (k = 1, . . . ,KP ) be the probability of category

k, and  (P )(X⇤) be
PKP

k=1 I(Xk = 0)(1 � (1 � pk)m), the expected number of new observed categories

given the current full data X⇤. We consider D to be a set of X ! R functions and set the risk to be the

mean-squared error, that is, R(d, P ) = EP [{d(X)� (P )(X⇤)}2].

We now define Gamma-minimaxity within our decision theoretic framework. We assume that M is

equipped with the Borel �-field and let ⇧ denote the set of all probability distributions on the measurable

space (M,B). We also assume that, for any d 2 D and any ⇡ 2 ⇧, P 7! R(d, P ) is ⇡-integrable. The

Bayes risk corresponding to an estimator d and a prior ⇡ is defined as r : (d,⇡) 7!
R
R(d, P )⇡(dP ). Let

� ✓ ⇧ be the set of priors such that all ⇡ 2 � are consistent with the available prior information. An

estimator is called a �-minimax estimator if it is in the set

argmin
d2D

sup
⇡2�

r(d,⇡). (1)

In this paper, we consider the case in which � is characterized by finitely many generalized moment

conditions, that is,

� =

⇢
⇡ 2 ⇧ : �k 2 L

1(⇡),

Z
�k(P )⇡(dP )  ck, k = 1, . . . ,K

�

where each �k : M ! R is a prespecified function that extracts an aspect of a data-generating mech-

anism and ck 2 R is a prespecified constant. Such constraints can represent a variety of forms of prior

information. For example, with �k = ±  for some  � 1, � imposes bounds on prior moments of  (P );

with �k(P ) = ± ( (P ) 2 I) for some known interval I, � imposes bounds on the prior probability of

 (P ) lying in I. Similar prior information on aspects of P0 other than  (P0) can also be represented. In

addition, since an equality can be equivalently expressed by two inequalities, � may also impose equality

constraints on prior generalized moments.

We assume that the following conditions hold throughout the rest of the paper.

5



Condition 1. M is separable.

Condition 2. D is compact.

Condition 3. (i) R : D ⇥M ! R is a bounded function and (ii) d 7! R(d, P ) is Lipschitz continuous

with a universal Lipschitz constant L 2 (0,1) independent of P 2M, that is, there exists an L so that

|R(d1, P )�R(d2, P )|  L%(d1, d2) for any d1, d2 2 D and any P 2M.

Condition 1 implies that the model space M can be well approximated by the limit of a sequence of

finite sets, which can be dealt with by algorithms. In Examples 1 and 2, if the metric ⇢ on M is chosen

as the supremum norm of the di↵erence in cumulative distribution functions, then a countable dense

subset of M can be the set of all empirical distributions with support contained in a countable dense

subset of X . If we instead assume that X is contained in a Euclidean space and all distributions in M

have a di↵erentiable Lebesgue density, then we may choose the metric to be the supremum norm of the

di↵erence of density functions. A countable dense subset of M is then the set of all kernel densities with

locations being rational points in X and scales being positive rational numbers.

Condition 2 is mainly a convenient condition to ensure that maximums and minimums can be achieved

and is satisfied by many interesting classes of estimators. For example, we may choose D to be a space

of neural networks whose indexing parameters fall in some specified compact set.

Condition 3 is on boundedness and uniform Lipschitz continuity in d of the risk function R. In

Example 1, suppose that all distributions in M are dominated by a measure µ and their density functions

are uniformly bounded. If
R
d(X)2µ(dX) is uniformly bounded and  is bounded, then EP [d(X)2]

is uniformly bounded and hence R is bounded. In addition, it holds that |R(d1, P ) � R(d2, P )| =

|EP [(d1(X)� d2(X))(d1(X) + d2(X)� 2 (P ))]| . EP [(d1(X)� d2(X))2] . kd1 � d2kP,2 . kd1 � d2kµ,2

where . stands for less than or equal to up to a multiplicative constant and k ·kP,2 and k ·kµ,2 denote the

L
2(P )- and L

2(µ)-distance, respectively. Therefore, Condition 3 holds for % being the L
2(µ)-distance.

Example 2 is similar.

3 Proposed meta-learning algorithms to compute a �-minimax

estimator

Since both the model space M and the estimator space D may be infinite, it is computationally infeasible

to directly solve the minimax problem (1) defining a �-minimax estimator. Similarly to Noubiap and

Seidel (2001), our general strategy is to discretize M and thus consider prior distributions with discrete

supports. Once the supports of prior distributions are discrete, the optimization over prior distributions

only involves finitely many parameters, namely the probability masses at support points, and thus is

computationally possible. We will show that, when the grid is su�ciently fine, a solution to the discretized

minimax problem is close to a solution to the original minimax problem.

Our proposed algorithm consists of two main steps. The first step is to discretize the model space

M and consider an approximating grid M` instead of the original complicated model space M. This

discretization is illustrated in Fig 1. We will describe M` in more detail in Section 3.1. In the second
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Figure 1: Illustration of grid M` = {P(1), P(2), P(3), . . . , P(T )} ✓M approximating the entire
model space M. Examples of densities of distributions P(t) (t = 1, . . . , T ) in the grid are
displayed. A prior distribution with support in M` is parameterized by the probability mass
at each distribution P(t). An example of a prior distribution is displayed as black bars with
their heights being proportional to the probability masses.

step, we consider a set �` of priors with support contained M` and compute a �`-minimax estimator.

We will describe two classes of algorithms to solve this discretized minimax problem in Sections 3.2 and

3.3, respectively.

3.1 Grid-based approximation of �-minimax estimators

We first define the discretization of the model space M that we will use. Let {M`}
1

`=1 be an increasing

sequence of finite subsets of M such that
S

1

`=1 M` is dense in M. That is, {M`}
1

`=1 is an increasingly

fine grid over M. By Condition 1, such an {M`}
1

`=1 necessarily exists. Define

�` := {⇡ 2 � : ⇡ has support in M`} and rsup(d,�
0) := sup

⇡2�0
r(d,⇡)

for any d 2 D and �0 ✓ ⇧.

Algorithm 1 describes how the grids M` are used to compute an approximately �-minimax estimator

in our proposed algorithms. We will show that the approximation error decays to zero as ` grows to

infinity. We note that, under Condition 3, d 7! rsup(d,�`) is continuous for all ` by Lemma 2 in the

Supplemental Material, and hence d⇤` exists. Here and in the rest of the algorithms in the paper, for any

real-valued function f , when we assign argminx f(x) or argmaxx f(x) to a variable, we arbitrarily pick a

minimizer or maximizer if there are multiple optimizers. In practice, the user may stop the iteration at
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some ` and use a �`-minimax estimator d
⇤

` as the output estimator. We discuss the stopping criterion

in more detail at the end of this section.

Algorithm 1 Iteratively approximate a �-minimax estimator over an increasingly fine grid.

1: for ` = 1, 2, . . . do
2: Construct a grid M` ✓M such that M`�1 ( M`

3: d
⇤

`  argmind2D
sup⇡2�`

r(d,⇡)

We note that the minimax problem in Line 3 of Algorithm 1 is nontrivial to solve, and therefore we

propose two algorithms that can solve this minimax problem in Sections 3.2 and 3.3.

Let d
⇤
2 D be an accumulation point of the sequence {d

⇤

`}
1

`=1, which is guaranteed to exist by

Condition 2. We next present a su�cient condition to ensure that d
⇤ is �-minimax, so that d

⇤

` is

approximately �-minimax for su�ciently large `.

Condition 4. We assume that there exists an increasing sequence {⌦`}
1

`=1 of subsets of M such that

1.
S

1

`=1 ⌦` = M;

2. for all ` = 1, 2, . . . and all d 2 D, it holds that

lim
i!1

rsup(d,�i|`) = rsup(d, �̃`),

where �̃` := {⇡ 2 � : ⇡ has support in ⌦`} and �i|` := {⇡ 2 � : ⇡ has support in Mi
T
⌦`}.

We note that, in contrast to M`, ⌦` may be an infinite set. Since part 2 of Condition 4 may be

di�cult to verify, we provide a su�cient condition and a discussion of when part 2 fails below.

Condition 5. M is a Hausdor↵ space. For any d 2 D, ` = 1, 2, . . . and ⇡ 2 �̃` with a finite support,

there exists a sequence ⇡i 2 �̃i|` such that r(d,⇡i)! r(d,⇡) as i!1.

We may expect Condition 5 to hold in many cases, especially when P 7! R(d, P ) is continuous and

the grid M` contains a variety of distributions that are consistent with prior information represented

by �. We illustrate by the following two counterexamples. In the first counterexample, P 7! R(d, P ) is

discontinuous: we set R(d, P ⇤) to be zero for a fixed P
⇤
2M and R(d, P ) to be one for all other P 2M.

If we choose the grid M` to be dense in M but to never contain P
⇤, then Condition 5 does not hold since

rsup(d, �̃`) = 1 for su�ciently large ` such that P ⇤
2 ⌦` but rsup(d, �̃i|`) = 0 for all i and `. This issue can

be resolved by choosing a continuous risk function. In the second counterexample, M` does not contain

distributions that are consistent with prior information. Suppose that � = {⇡ 2 ⇧ :
R
�(P )⇡(dP ) = 0}

where �(P ) := EP [X2]. In other words, it is known that the true data-generating mechanism P0 must

be a distribution that is a point mass at zero, and thus � also only contains a point mass at P0. If

�(P ) 6= 0 for every P 2 [
1

i=1Mi, then, even if
S

1

`=1 M` is dense in M, �̃i|` = ; and thus Condition 5

does not hold. This issue can be resolved by rewriting the problem such that these hard constraints on

M is incorporated into the specification of M rather than �.

We now present the theorem on �-minimaxity of d⇤.
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Theorem 1 (Validity of grid-based approximation). Under Conditions 1–4, d⇤ is �-minimax and

rsup(d
⇤

` ,�`)% min
d2D

rsup(d,�) as `!1.

To prove Theorem 1, we utilize a result in Pinelis (2016) to establish that rsup(d,�) can be ap-

proximated arbitrarily well by a discrete prior in � for any d 2 D. This is a key ingredient in the

proof of Lemma 1 in the Supplemental Material, which states that, for any d 2 D, rsup(d, �̃`) converges

to rsup(d,�). Then, we show that the sequence {rsup(d⇤` ,�`)}
1

`=1 is nondecreasing and upper bounded

by infd2D rsup(d,�), which is less than or equal to the �-maximal Bayes risk rsup(d⇤,�) of the earlier-

defined accumulation point d
⇤ of {d⇤`}

1

`=1. Therefore, rsup(d⇤` ,�`) converges to a limit. We finally use

a contradiction argument to prove that this limit is greater than or equal to rsup(d⇤,�), which implies

Theorem 1.

We have the following corollary on the uniqueness of the �-minimax estimator and the convergence

of {d⇤`}
1

`=1 for certain problems.

Corollary 1 (Convergence of �`-minimax estimator). Suppose that D is a convex subset of a vector

space, d 7! R(d, P ) is strictly convex for each P 2M, and rsup(d,�) is attainable for each d 2 D in the

sense that, for all d 2 D, there exists a ⇡ 2 � such that r(d,⇡) = rsup(d,�). Under Conditions 1–4, d⇤

is the unique �-minimax estimator and

d
⇤

` ! d
⇤ as `!1.

We prove Corollary 1 by establishing that d 7! rsup(d,�) is strictly convex.

In practice, the user also needs to specify a stopping criterion for Algorithm 1. In Noubiap and

Seidel (2001), the authors proposed to compute or approximate rsup(d⇤` ,�) and stop if rsup(d⇤` ,�) is

su�ciently close to rsup(d⇤` ,�`). However, the procedure to approximate rsup(d⇤` ,�) in that work relies

on the compactness of M, but we do not want to assume this condition because it may restrict the

applicability of the method. Therefore, we propose to use the following alternative criterion: stop if

rsup(d⇤` ,�`+1)� rsup(d⇤` ,�`)  ✏ for a prespecified tolerance level ✏ > 0. Note that this criterion does not

guarantee that rsup(d⇤` ,�`) is close to rsup(d⇤,�). For example, if M`+1 \M` is small, it is even possible

that rsup(d⇤` ,�`+1)� rsup(d⇤` ,�`) = 0, but d⇤` is far from being �-minimax. We discuss this issue in more

detail in Section 4.1.

We finally remark that rsup(d,�`) may be di�cult to evaluate exactly. Since the risk is often an

expectation, we recommend approximating rsup(d,�`) for any given d via Monte Carlo as follows: first,

estimate risks R(d, P ) for all P 2M` with a large number of Monte Carlo runs; second, estimate the

corresponding least favorable prior ⇡d,` 2 argmax⇡2�`
r(d,⇡) using the estimated risks; third, estimate

the risks R(d, P ) (P 2M`) again with independent Monte Carlo runs, and, finally, calculate r(d,⇡d,`)

with the estimated risks and the estimated least favorable prior. Using two independent estimates of the

risk can remove the positive bias that would otherwise arise due to using the same data to estimate the

risks and the least favorable prior.
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3.2 Computation of an estimator on a grid via (Stochastic) gradient descent

with max-oracle

In this section, we present a method to compute a �`-minimax estimator, which corresponds to Line 3

in Algorithm 1. Gradient descent with max-oracle (GDmax) and its stochastic variant (SGDmax).

which were presented in Lin et al. (2020), can be used to solve general minimax problems in Euclidean

spaces. To apply these algorithms to find a �`-minimax estimator, we need to assume that D can be

parameterized by a subset of a Euclidean space, that is, that for any d 2 D, there exists a real vector-

valued coe�cient � in a compact set H ✓ RD such that d may be written as d(�). For example, D may

be a neural network class. More discussions on the parameterization of D can be found in Section 4.2.

In this section, in a slight abuse of notation, we define R(�, P ) := R(d(�), P ), r(�,⇡) := r(d(�),⇡) and

rsup(�,�`) := rsup(d(�),�`) for a coe�cient � 2 RD, a data-generating mechanism P 2M and a prior

⇡ 2 �. We assume that � 7! R(�, P ) is di↵erentiable for all P 2M, and hence so is � 7! r(�,⇡) for all

⇡ 2 �. We further assume that the optimal coe�cient �⇤

` 2 argmin�2H
rsup(�,�`) in H also minimizes

the same function over RD, so that we may solve the minimax problem over the unbounded space RD

ignoring the specification of H.

3.2.1 Description of GDmax & SGDmax

We now present GDmax and SGDmax in our context of finding a �`-minimax estimator. If we can

evaluate R(�, P ) exactly for all � 2 H and P 2M`, then the GDmax algorithm (Algorithm 2) may be

used. Note that Line 3 can be formulated into a linear program, which can always be solved in polynomial

time with an interior point method (e.g., Jiang et al., 2020) and often be solved in polynomial time with

a simplex method (Spielman and Teng, 2004).

Algorithm 2 Gradient descent with max-oracle (GDmax) to compute a �`-minimax estimator

1: Initialize �(0) 2 RD. Set learning rate ⌘ > 0 and max-oracle accuracy ⇣ > 0.
2: for t = 1, 2, . . . do
3: Maximization: find ⇡(t) 2 �` such that r(�(t�1),⇡(t)) � max⇡2�` r(�(t�1),⇡)� ⇣

4: Gradient descent: �(t)  �(t�1) � ⌘r�r(�,⇡(t))|�=�(t�1)

In many cases, it is di�cult to evaluate R(�, P ) exactly. When R(�, P ) is expressed as an expecta-

tion, R(�, P ) may instead be approximated using Monte Carlo techniques. With ⇠ being an exogenous

source of randomness according to law ⌅, let R̂(�, P, ⇠) be an unbiased approximation of R(�, P ) with

E[kr�{R̂(�, P, ⇠) � R(�, P )}k2]  �
2
< 1, where k · k denotes the `2-norm in Euclidean spaces. Let

r̂(�,⇡, ⇠) :=
R
R̂(�, P, ⇠)⇡(dP ) for ⇡ 2 �`. In this case, SGDmax (Algorithm 3) may be used to find a

(locally) �`-minimax estimator. Note that Algorithm 3 represents a generalization of the nested minimax

AMC strategy in Luedtke et al. (2020) to �`-minimax problems.

3.2.2 Validity of GDmax & SGDmax

We first present two conditions needed for the validity of Algorithms 2 and 3.
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Algorithm 3 Stochastic gradient descent with max-oracle (SGDmax) to compute a �`-minimax esti-
mator

1: Initialize �(0) 2 RD. Set learning rate ⌘ > 0, max-oracle accuracy ⇣ > 0 and batch size J .
2: for t = 1, 2, . . . do
3: Stochastic maximization: use a stochastic procedure to find ⇡(t) 2 �` such that E[r(�(t�1),⇡(t))] �

max⇡2�` r(�(t�1),⇡) � ⇣, where the expectation is over the randomness in stochastic maximization
(e.g., variants of stochastic gradient ascent).

4: Generate iid copies ⇠1, . . . , ⇠J of ⇠.
5: Stochastic gradient descent: �(t)  �(t�1) �

⌘
J

PJ
j=1r� r̂(�,⇡(t), ⇠j)|�=�(t�1)

.

Condition 6. For each ` = 1, 2, . . ., � 7! R(�, P ) is Lipschitz continuous with a universal Lipschitz

constant L1 independent of P 2M`.

Note that Condition 6 di↵ers from Condition 3 in that the former relies on the parameterization of D

in a Euclidean space equipped with the Euclidean norm, while the latter may rely on a di↵erent metric

on D such as an L
2-distance. In addition, the Lipschitz constant in Condition 6 may depend on `, while

that in Condition 3 must not.

Condition 7. For each ` = 1, 2, . . ., r�R(�, P ) is bounded; � 7! r�R(�, P ) is Lipschitz continuous with

a universal Lipschitz constant L2 independent of P 2M`.

Under these conditions, using the results in Lin et al. (2020), we can show that, in general, GDmax and

SGDmax can yield an approximation to a local minimum of � 7! rsup(�,�`) when the algorithms’ hyper-

parameters are suitably chosen. Before we formally present the theorem, we introduce some definitions

related to locally optimality of a potentially nondi↵erentiable and nonconvex function. A real-valued

function f is called q-weakly convex if x 7! f(x) + (q/2)kxk2 is convex (q > 0). The Moreau envelope of

a real-valued function f with parameter q > 0 is fq : x 7! minx0 f(x0) + kx0
� xk

2
/(2q). A point x is an

✏-stationary point (✏ � 0) of a q-weakly convex function f if krf1/(2q)(x)k  ✏. Similarly, a random point

x is an ✏-stationary point (✏ � 0) of a q-weakly convex function f in expectation if E[krf1/(2q)(x)k]  ✏.

If x is an ✏-stationary point in expectation, we may conclude that it is an ✏-stationary point with high

probability by Markov’s inequality. Lemma 3.8 in Lin et al. (2020) shows that an ✏-stationary point

of f is close to a point x
0 at which f has at least one small subgradient for small ✏, so that f(x0) is

close to a local minimum. In other words, if an algorithm outputs an estimator d̂ = d(�̂) such that �̂ is

an ✏-stationary point of � 7! rsup(�,�`), then we know that rsup(�̂,�`) is close to a local minimum of

� 7! rsup(�,�`).

We next present the validity result for Algorithms 2 and 3.

Theorem 2 (Validity of GDmax & SGDmax (Algorithms 2 & 3)). Suppose that Conditions 1–3 and

6–7 hold. Let ✏ > 0 be fixed and define � := (rsup)1/(2L1)(�(0)) � min�2RD (rsup)1/(2L1)(�), where we

recall that (rsup)1/(2L1) is the Moreau envelope of rsup with parameter 1/(2L1).

⇤ In Algorithm 2, with ⌘ = ✏
2
/(L1L

2
2) and ⇣ = ✏

2
/(24L1), �(t) is an ✏-stationary point of � 7!

rsup(�,�`) for t = O(L1L2�/✏
4), and is thus close to a local minimum of � 7! rsup(�,�`).
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⇤ In Algorithm 3, with ⌘ = ✏
2
/[L1(L2

2 + �
2)], ⇣ = ✏

2
/(24L1) and J = 1, �(t) is an ✏-stationary point

of � 7! rsup(�,�`) in expectation for t = O(L1(L2
2+�

2)�/✏
4), and is thus close to a local minimum

of � 7! rsup(�,�`) with high probability.

It may be inconvenient to implement Line 3 in Algorithm 3 because linear program solvers often do

not use stochastic optimization. Therefore, we propose a variant (Algorithm 4) by replacing this line

with Lines 3–4 so that ordinary linear program solvers can be directly applied. The following theorem

justifies this variant.

Algorithm 4 Convenient variant of SGDmax (Algorithm 3) to compute a �`-minimax estimator

1: Initialize �(0) 2 RD. Set learning rate ⌘ > 0 and batch sizes J , J 0.
2: for t = 1, 2, . . . do
3: Generate iid copies ⇠1, . . . , ⇠J 0 of ⇠.

4: Stochastic maximization: ⇡(t)  argmax⇡2�`

1
J 0

PJ0

j=1 r̂(�(t�1),⇡, ⇠j).
5: Generate iid copies of ⇠J 0+1, . . . , ⇠J 0+J of ⇠.

6: Stochastic gradient descent: �(t)  �(t�1) �
⌘
J

PJ 0+J
j=J 0+1r� r̂(�,⇡(t), ⇠j)|�=�(t�1)

.

Theorem 3 (Validity of convenient variant of SGDmax (Algorithm 4)). Suppose that {⇠ 7! r̂(�,⇡, ⇠) :

� 2 RD
,⇡ 2 �`} is a ⌅-Glivenko-Centelli class (van der Vaart and Wellner, 2000). Then, for any ⇣ > 0,

there exists a su�ciently large J
0 such that

E[r(�(t�1),⇡(t))] � max
⇡2�`

r(�(t�1),⇡)� ⇣

for all t, where the expectation is taken over ⇡(t) and �(t�1) is fixed. Therefore, with the chosen parameters

in Theorem 2, we may choose a su�ciently large J 0 so that �(t) is an ✏-stationary point of � 7! rsup(�,�`)

in expectation for t = O(L1(L2
2 + �

2)�/✏
4) and is thus close to a local minimum of � 7! rsup(�,�`) with

high probability.

We prove Theorem 3 by showing that max⇡2�` r(�(t�1),⇡)�E[r(�(t�1),⇡(t))] converges to 0 as J 0
!

1. The proof is essentially an application of empirical process theory to the study of an M-estimator.

We finally remark that other algorithms similar to GDmax and SGDmax can be applied, for example,

(stochastic) gradient descent ascent with projection (Lin et al., 2020), (stochastic) mirror descent ascent,

or accelerated (stochastic) mirror descent ascent (Huang et al., 2021).

3.3 Computation of an estimator on a grid via fictitious play

The algorithms in Section 3.2 may be convenient in many cases, but the requirement of parameterization

of the space D of estimators and di↵erentiability of the risk function R with respect to the coe�cients �

may be restrictive for certain problems. In this section, we propose an alternative algorithm, fictitious

play, that avoids these requirements. We also present its convergence results.

Brown (1951) introduced fictitious play as a means to find the value of a zero-sum game, that is, the

optimal mixed strategy for both players and their expected gains. Robinson (1951) then proved that
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fictitious play can be used to iteratively solve a two-player zero-sum game for a saddle point that is a

pair of mixed strategies where both players have finitely many pure strategies. Our problem of finding

a �-minimax estimator may also be viewed as a two-player zero-sum game where one player chooses a

prior from � and the other player chooses an estimator from D. If we assume that, for the �-minimax

problem at hand, the pair of both players’ optimal strategies is a saddle point, which holds in many

minimax problems (e.g., v. Neumann, 1928; Fan, 1953; Sion, 1958), then fictitious play may also be used

to find a �-minimax estimator. Since � may be too rich to allow for feasible implementation of fictitious

play, we propose to use this algorithm to find a �`-minimax estimator.

In the fictitious play algorithm in Robinson (1951), the two players take turns to play the best pure

strategy against the mixture of the opponent’s historic pure strategies, and the final output is a pair of

mixtures of the two players’ historic pure strategies. Since this algorithm aims to find minimax mixed

strategies, we consider stochastic estimators. That is, consider the Borel �-field F over D and let ⇧

denote the set of all probability distributions on the measurable space (D,F). We define D to be the

space of stochastic estimators with each element taking the following form: first draw an estimator from

D according to a distribution $ 2 ⇧ with an exogenous random mechanism and then use the estimator

to obtain an estimate based on the data. Note that we may write any d 2 D as d($) for some $ 2 ⇧.

We consider estimators in D throughout this section, with the definition of �-minimaxity extended in

the natural way, so that d
⇤

= d($⇤) 2 D is �-minimax if rsup(d
⇤

,�) = mind2D
rsup(d,�); we similarly

extend all other definitions from Section 2. We assume that there exists ⇡⇤

` 2 �` (` = 1, 2, . . .) such that

r(d
⇤

,⇡
⇤

` ) = sup
⇡2�`

inf
d2D

r(d,⇡) = inf
d2D

sup
⇡2�`

r(d,⇡). (2)

In other words, (d
⇤

,⇡
⇤

` ) is a saddle point of r in D⇥�`. Under this condition and the further conditions

that D is convex and d 7! R(d, P ) is convex for all P 2M, it is possible to use a �-minimax estimator

over the richer class D of stochastic estimators to derive a �-minimax estimator over the original class

D. Indeed, for any d($) 2 D and P 2 M, by Jensen’s inequality, R(d($), P ) =
R
R(d, P )$(dd) �

R(d($), P ) where d($) :=
R
d$(dd) 2 D is the average of the stochastic estimator d($); that is, the

risk of d($) is never greater than that of d($). Therefore, we may use the fictitious play algorithm to

compute d($⇤

` ) for each ` and further apply Algorithm 1 to compute d($⇤). After that, we may take

d($⇤) as the final output deterministic estimator.

Algorithm 5 presents the fictitious play algorithm for finding a �`-minimax estimator in D. Note that

�` is convex, and hence ⇡ always lies in �` throughout the iterations. In practice, we may initialize $ as a

point mass at an initial estimator in D. In addition, similarly to Robinson (1951), we may replace Line 5

with d
†

(t)  argmind2D
r(d,⇡(t)), that is, minimizing the Bayes risk with the most recently updated prior

rather than with the previous prior.

We next present a convergence result for this algorithm.

Theorem 4 (Validity of fictitious play (Algorithm 5)). Using Algorithm 5, under Conditions 1–3, it

holds that

r(d†(t),⇡(t�1))  r(d($⇤

` ),⇡
⇤

` )  r(d($(t�1)),⇡
†

(t))
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Algorithm 5 Fictitious play to compute a �`-minimax stochastic estimator

1: Initialize $(0) 2 ⇧ and ⇡(0) 2 �`.
2: for t=1,2,. . . do
3: ⇡

†

(t)  argmax⇡2�`
r(d($(t�1)),⇡)

4: ⇡(t)  
t�1
t ⇡(t�1) +

1
t⇡

†

(t)

5: d
†

(t)  argmind2D
r(d,⇡(t�1))

6: $(t)  
t�1
t $(t�1) +

1
t �(d

†

(t)), where �(d) denotes a point mass at d 2 D.

for all t and

lim
t!1

h
r(d($(t�1)),⇡

†

(t))� r(d†(t),⇡(t�1))
i
= 0.

Consequently, the �`-maximal risk of d($(t)) converges to the �`-minimax risk, that is,

rsup(d($(t�1)),�`)! rsup(d($
⇤

` ),�`) as t!1.

Robinson (1951) proved a similar case for two-player zero-sum games where each player has finitely

many pure strategies. In contrast, in our problem, each player may have infinitely many pure strategies.

A natural attempt to prove Theorem 4 would be to consider finite covers of D and �`, i.e., D =
SI

i=1 Di

and �` =
SJ

j=1⇧j , such that the range of r(d,⇡) in each Di and ⇧j is small (say less than ✏), bin

pure strategies into these subsets, and then apply the argument in Robinson (1951) to these bins. The

collection of Di and ⇧j may be viewed as finitely many approximated pure strategies to �` and D up to

accuracy ✏, respectively. Unfortunately, we found that this approach fails. The problem arises because

Robinson (1951) inducted on I and J , and, after each induction step, the corresponding upper bound

becomes twice as large. Unlike the case with finitely many pure strategies that was considered in Brown

(1951) and Robinson (1951), as the desired approximation accuracy ✏ approaches zero, the numbers of

approximated pure strategies, I and J , may diverge to infinity, and so does the number of induction

steps. Therefore, the resulting final upper bound is of order 2I+J
✏ and generally does not converge to

zero as ✏ tends to zero. To overcome this challenge, we instead control the increase in the relevant upper

bound after each induction step more carefully so that the final upper bound converges to zero as ✏

decreases to zero, despite the fact that I and J may diverge to infinity.

We remark that, because Line 5 of Algorithm 5 typically involves another layer of iteration in addition

to that over t, this algorithm will often be more computationally intensive than are Algorithms 2–4.

Nevertheless, Algorithm 5 provides an approach to construct �`-minimax estimators in cases where

these other algorithms cannot be applied, for example, in settings where the risk is not di↵erentiable in

the parameters indexing the estimator.
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4 Considerations in implementation

4.1 Considerations when constructing the grid over the model space

By Theorem 1, rsup(d⇤` ,�`) % mind2D rsup(d,�) whenever Conditions 1–4 hold and the increasing se-

quence {M`}
1

`=1 is such that
S

1

`=1 M` is dense in M. Though this guarantee holds for all such sequences

{M`}
1

`=1, in practice, judiciously choosing this sequence of grids of distributions can lead to faster conver-

gence. In particular, it is desirable that the least favorable prior �` puts mass on some of the distributions

in M`\M`�1 since, if this is not the case, then d
⇤

` will be the same as d⇤`�1. While we may try to arrange

for this to occur by adding many new points when enlarging M`�1 to M`, it may not be likely that any

of these points will actually modify the least favorable prior unless they are carefully chosen.

To better address this issue, we propose to add grid points using Markov chain Monte Carlo (MCMC).

Our intuition is that, given an estimator d, the maximal Bayes risk is likely to significantly increase if we

add distributions that (i) have a high risk for d, and (ii) are consistent with prior information so that there

exists some prior such that these distributions lie in a high-probability region. We propose to use the

MCMC algorithm to bias the selection of distributions in favor of those with the above characteristics.

Let ⌧ : M ! [0,1) denote a function such that ⌧(P ) > ⌧(P 0) if P is more consistent with prior

information than P
0. For example, given a prior mean µ of some real-valued summary  (P ) of P and

an interval I that contains  (P ) with prior probability at least 95%, we may choose ⌧ : P 7! �( (P )),

where � is the density of a normal distribution that has mean µ and places 95% of its probability mass in

I. We call ⌧ a pseudo-prior. Then, with the current estimator being d, we wish to select distributions P

for which R(d, P )⌧(P ) is large. We may use the Metropolis-Hastings-Green algorithm (Metropolis et al.,

1953; Hastings, 1970; Green, 1995) to draw samples from a density proportional to P 7! R(d, P )⌧(P ).

We then let M` be equal to the union of M`�1 and the set containing all unique distributions in this

sample.

Details of the proposed scheme are provided in Algorithm 6. To use this proposed algorithm, we

rely on it being possible to define a sequence of parametric models {⌦̃`}
1

`=1 such that M̃ := [1`=1⌦̃`

is dense in M`—this is possible in many interesting examples (see, e.g., Chen, 2007). When combined

with Condition 1, this condition enables the definition of an increasing sequence of grids of distributions

{M`}
1

`=1 such that, for each `, M` ✓ M̃.

The following theorem on distributional convergence follows from that for Metropolis-Hastings-Green

algorithm (see Section 3.2 and 3.3 of Green, 1995).

Theorem 5 (Validity of MCMC algorithm (Algorithm 6)). Suppose that P 7! R(d⇤`�1, P )⌧(P ) is bounded

and integrable with respect to some measure µ on M̃ and let L denote the probability law on M̃ whose

density function with respect to µ is proportional to this function. Then, in Algorithm 6, P(t) converges

weakly to L as t!1.

Therefore, if L corresponds to a continuous distribution with nonzero density over the parameter

space of M̃, then Theorem 5 implies that
S

1

`=1 M` is dense in M, as required by Algorithm 1.

Implementing Algorithm 6 relies on the user making several decisions. These decisions include
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Algorithm 6 MCMC algorithm to construct M`

Require: Previous grid M`�1, current estimator d⇤`�1 and number T of iterations. We define M�1 := ;.
An initial estimator d⇤0 must be available if ` = 1.

1: Initialize P(0) 2 M̃.
2: for t = 1, 2, . . . , T do
3: Propose a distribution P

0
2 M̃ from P(t�1)

4: Calculate the MCMC acceptance probability paccept of P 0 for target density P 7! R(d⇤`�1, P )⌧(P )
5: With probability paccept, accept P 0 and P(t)  P

0

6: if P
0 is not accepted then

7: P(t)  P(t�1)

8: M`  unique elements of the multiset M`�1
S
{P(1), P(2), . . . , P(T )}

the choice of the pseudo-prior ⌧ and the technique used to approximate the risk R(d, P ) to a rea-

sonable accuracy. Fortunately, regardless of the decisions made, Theorem 1 suggests that rsup(d⇤` ,�`)%

mind2D rsup(d,�) for a wide range of sequences {M`}
1

`=1. Indeed, all that theorem requires on this

sequence is that the grid M` become arbitrarily fine as ` increases. Though the final decisions made

are not important when ` is large, we still comment briefly on the decisions that we have made in our

experiments, First, we have found it e↵ective to approximate R(d, P ) via a large number of Monte Carlo

draws. Second, in a variety of settings, we have also identified, via numerical experiments, candidate

pseudo-priors that balance high risk and consistency with prior information (see Sections 5.2 and 5.3 for

details).

4.2 Considerations when choosing the space of estimators

It is desirable to consider a rich space D̃ of estimators to obtain an estimator with low maximal Bayes

risk, and thus good general performance. However, to make numerically constructing these estimators

computationally feasible, we usually have to consider a restricted space D of estimators. In the upcoming

theorem, we provide an upper bound on the increment of the maximal Bayes risk induced by making

this restriction. This result shows that, if estimators in D can approximate estimators in D̃ well, then

the resulting excess maximal Bayes risk is small. This result relies on what we call Condition 3’, which

is the same as Condition 3 except that each instance of D in that condition is replaced by D̃.

Theorem 6 (Approximation error of estimator space). Fix D ✓ D̃. Let d⇤ be a �-minimax estimator

in D and d̃
⇤ be a �-minimax estimator in D̃, so that rsup(d⇤,�) = mind2D rsup(d,�) and rsup(d̃⇤,�) =

mind2D̃
rsup(d,�). Under Condition 3’,

rsup(d
⇤
,�)� rsup(d̃

⇤
,�)  L inf

d02D

%(d0, d̃⇤).

In other words, the error in the �-minimax estimator due to considering a restricted estimator space D

can be bounded by the approximation error of D to the richer estimator space D̃.

Proof of Theorem 6. By the definition of d⇤, for any d
0
2 D, rsup(d⇤,�) � rsup(d̃⇤,�)  rsup(d0,�) �

rsup(d̃⇤,�), and so rsup(d⇤,�) � rsup(d̃⇤,�)  infd02D[rsup(d0,�) � rsup(d̃⇤,�)]. By Lemma 2 in the
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Figure 2: Example of neural network estimator architecture utilizing an existing estimator.
The arrows from the input nodes to the existing estimator are omitted from this graph.

Supplemental Material, d 7! rsup(d,�) is Lipschitz continuous with Lipschitz constant L. Therefore, the

right hand side is upper bounded by L infd02D %(d0, d̃⇤).

Feedforward neural networks (or neural networks for short) are natural options for the space of

estimators because of their universal approximation property (e.g., Hornik, 1991; Csáji, 2001; Hanin

and Sellke, 2017; Kidger and Lyons, 2020). However, training commonly used neural networks can be

computationally intensive. Moreover, a space of neural networks is typically nonconvex, and hence it

may be di�cult to find a global minimizer of the maximal Bayes risk even if the risk is convex in the

estimator. Therefore, the learned estimator might not perform well.

To help overcome this challenge, we advocate for utilizing available statistical knowledge when de-

signing the space of estimators. We call estimators that take this form statistical knowledge networks.

In particular, if a sensible simple estimator is already available, we propose to use neural networks with

such an estimator as a node connected to the output node. An example of such an architecture is pre-

sented in Fig 2. In this sample architecture, each node is an activation function such as the sigmoid or

the rectified linear unit (ReLU) (Glorot et al., 2011) function applied to an a�ne transformation of the

vector containing the ancestors of the node. The only exception is the output node, which is again an

a�ne transformation of its ancestors but uses the identity activation function. When training the neural

network, we may initialize the a�ne transformation in the output layer to only give weight to the simple

estimator. Under this approach, the space of estimators is a set of perturbations of a sensible simple

estimator. Although we may still face the challenge of nonconvexity and local optimality, we can at least

expect to improve the initial simple estimator.

We note that we might overcome the challenge of nonconvexity and local optimality by using an

extreme learning machine (ELM) (Huang et al., 2006b) to parameterize the estimator. ELMs are neural

networks for which the weights in hidden nodes are randomly generated and are held fixed, and only the

weights in the output layer are trained. Thus, the space of ELMs with a fixed architecture and fixed

17



hidden layer weights is convex. Like traditional neural networks, ELMs have the universal approximation

property (Huang et al., 2006a). In addition, Corollary 1 may be applied to an ELM so that the �`-

minimax estimator may converge to the �-minimax estimator. As for traditional neural networks, we

may incorporate knowledge of existing statistical estimators into an ELM.

Next, we present a corollary of Theorem 6 for some special cases of neural networks and ELMs based

on their universal approximation results. We expect similar results to hold for more general architectures

of neural networks and ELMs, for example, with other activation functions, more hidden layers or more

complicated architectures. Indeed, whenever universal approximation results are available over the space

D̃, Theorem 6 can be immediately applied to obtain an upper bound for the excess maximal Bayes risk

rsup(d⇤,�)� rsup(d̃⇤,�) due to restriction of the space of estimators.

Corollary 2 (Validity of neural network and ELM). Suppose that X is a compact subset of a Euclidean

space R↵. Let D̃ be the collection of all continuous functions defined on X that are square-integrable with

respect to Lebesgue measure. Let the metric % on D̃ be the L
2 distance with respect to Lebesgue measure.

Suppose that Condition 3 holds.

1. Suppose that D is a space of estimators parameterized as neural networks with identity activation

for the output layer and ReLU activation for all hidden layers. Then, for any ✏ > 0, it holds that

inf
d2D

rsup(d,�)� inf
d̃2D̃

rsup(d̃,�)  ✏

provided that networks in D have a su�ciently large number of hidden layers and a su�ciently

large number of hidden nodes in each hidden layer.

2. Suppose that D is a space of estimators parameterized as ELMs with one hidden layer, identity

activation for the output layer and a bounded nonconstant piecewise continuous R! R activation

function for the hidden layer. Suppose that the values of the hidden weights and hidden biases in

the ELM are independently drawn from a continuous distribution with support R↵+1. Then, for

any ✏ > 0,

P
✓
inf
d2D

rsup(d,�)� inf
d̃2D̃

rsup(d̃,�)  ✏

◆
! 1

as the number of hidden nodes tends to infinity.

Proof. The result follows from the universal approximation results (Theorem 4.16 in Kidger and Lyons

(2020) and Theorem II.1 in Huang et al. (2006a), respectively) and Theorem 6.

Under Condition 3, the above result can be generalized to a variety of collections of estimators D1 that

are richer than the space D̃ of continuous functions considered in the above lemma. Indeed, if D1 is such

that D̃ is dense in D1, then Lemma 2 in the Supplemental Material shows that the same conclusion will

hold. This shows that the same conclusions of the above theorem hold when the collection of estimators

D̃ is enriched to contain all X ! R functions that are square integrable with respect to Lebesgue measure

(e.g., Theorem 1.15 in Evans and Gariepy, 2015).
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We finally remark that, besides computational intensity when constructing (i.e., learning) a �-

minimax estimator, another important factor to be considered when choosing D is the computational

intensity to evaluate the learned estimator at the observed dataset. This is another reason for our choos-

ing neural networks or ELMs as the space of estimators. Indeed, existing software packages (e.g., Paszke

et al., 2019) make it easy to leverage graphics processing units to e�ciently evaluate the output of neu-

ral networks for any given input. Therefore, if the existing estimator being used is not too di�cult to

compute, then estimators parameterized using similar architectures to that displayed in Figure 2 will be

able to be computed e�ciently in practice. This e�ciency may be especially important in settings where

the estimator will be applied to many datasets, so that the cost of learning the estimator is amortized

and the main computational expense is evaluating the learned estimator.

5 Simulations and data analyses

5.1 Estimation of the mean

We start by illustrating our proposed method via simulation in a special case of Example 1, namely

for estimating the mean of a distribution. We assume that M consists of all probability distributions

defined on the Borel �-algebra on [0, 1] and we observe X = (X1, X2, . . . , Xn), where X1, . . . , Xn
iid
⇠

P0 2 M. Here we take n = 10. The estimand is  (P0) =
R
xP0(dx). We use the mean squared

error risk introduced in Example 1. Suppose that we represent the prior information by � = {⇡ 2 ⇧ :
R
 (P )⇡(dP ) = 0.3}, which corresponds to the set of prior distributions in ⇧ that satisfy an equality

constraint on the prior mean of  (P ).

We apply our method to three spaces of estimators separately. The first space, Dlinear, is the set of

a�ne transformations of the sample mean, that is, Dlinear = {d : d(X) = �0+�1
Pn

i=1 Xi/n,�0,�1 2 R}.
As shown in Proposition 1 in the Supplemental Material, there is an estimator d

⇤ in Dlinear that is

�-minimax in the space of all estimators that are square-integrable with respect to all P 2 M, so we

consider this simple space to better compare our computed estimator with that theoretical �-minimax

estimator. When computing a �-minimax estimator in Dlinear, we initialize the estimator to be the

sample mean, that is, we let �0 = 0 and �1 = 1.

The second space, Dskn (statistical knowledge network), is a set of neural networks designed based

on statistical knowledge that includes the sample mean as an input. We consider this space to illustrate

our proposal in Section 4.2. More precisely, we use an architecture in Fig 3 that is similar to the deep set

architecture (Zaheer et al., 2017; Maron et al., 2019), which is a permutation invariant neural network.

We use such an architecture to account for the fact that the sample is iid. In this architecture, the

sample mean node is used as an augmenting node to an ordinary deep set network and is combined with

the output of that ordinary network in the fourth hidden layer to obtain the final output. Note that

Dskn � Dlinear. When computing a �-minimax estimator for this class, we also initialize the network to

be exactly the sample mean, which is a reasonable choice given that the sample mean is known to be

sensible estimator. In this simulation experiment, we choose the dimensionality of nodes in each hidden

layer in Fig 3 as follows: each node in the first, second, third and fourth hidden layer represents a vector

19



...
...

...
P

X1

X2

X3

Xn

Sample mean

Input
layer

1st Hidden
layer

2nd Hidden
layer

Pooling
layer

3rd Hidden
layer

4th Hidden
layer

Ouput
layer

Figure 3: Architecture of the permutation invariant neural network estimator of the mean in
Dskn. Xi: observation i in the sample;

P
: the node that sums up all ancestor nodes. In the

first two hidden layers, all inputs nodes are transformed by the same function. The arrows
from the input nodes to the sample mean estimator are omitted from this graph. Each node
in the hidden layers represents a vector.

in R10, R5, R10 and R, respectively. We do not use larger architectures because usually the sample mean

is already a good estimator, and we expect to obtain a useful estimator as a small perturbation of this

estimator. We also use the ReLU as the activation function. We did not use ELMs in this and the

following simulations because we found that neural networks perform well.

The third space, Dnn, is a set of neural networks that does not utilize knowledge of the sample mean.

We consider this space to illustrate our method without utilizing existing sensible estimators. These

estimators are also deep set networks with a similar architecture as Dskn in Fig 3. The main di↵erence

is that the explicit sample mean node and the fourth hidden layer are removed. When computing a �-

minimax estimator in Dnn, we also randomly initialize the network, unlike Dlinear and Dskn, in order not

to input statistical knowledge. Because the ReLU activation function is used, Dnn � Dlinear, and we do

not expect that optimizing over Dnn should not lead to a �-minimax estimator with worse performance

than those in Dlinear and Dskn.

To construct the grid M` for this problem, we use a simpler method than Algorithm 6. As indicated

by Lemma 5 in the Supplemental Material, for estimators in Dlinear, Bernoulli distributions tend to have

high risks since all probability weights lie on the boundary of [0, 1]; in addition, a prior ⇡⇤ for which d
⇤

is Bayes is a Beta prior over Bernoulli distributions. Therefore, we randomly generate 2000 Bernoulli

distributions as grid points in M1. We also include two degenerate distributions in this grid, namely the

distribution that places all of its mass at 0 and that which places all of its mass at 1. When constructing

M` from M`�1, we still add in more complicated distributions to make the grid dense in the limit: we

first randomly generate 500 discrete distributions with support being those in M`�1; then we randomly

generate 10 new support points in [0, 1] and 1000 distributions with support points being the union of

the new support points and the existing support points in M`�1.
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Table 1: Coe�cients and Bayes risks of estimators of the mean. Unrestricted space: the space
of all estimators that are square-integrable with respect to all P 2M.

Estimator space Method to obtain d
⇤

�0 �1 r(d,⇡⇤)

Unrestricted space Theoretical derivation 0.072 0.760 0.012
Dlinear Algorithms 1 & 4 0.072 0.763 0.012
Dskn Algorithms 1 & 4 0.071 0.767 0.012
Dnn Algorithms 1 & 4 — — 0.012
Dlinear Algorithms 1 & 5 0.072 0.760 0.012

When computing the �-minimax estimator, for each grid M`, we compute the �`-minimax estimator

for all three estimator spaces with Algorithm 4. We set the learning rate ⌘ = 0.005, the batch size J = 50

and the number of iterations to be 200 for �` (` > 1). The number of iterations for �1 is larger because,

in our experiments, we saw that a �1-minimax estimator is already close to a �-minimax estimator, and

using a large number of iterations in this step can improve the initial estimator substantially. For Dlinear

and Dskn, the number of iterations for �1 is 2000; the corresponding number for Dnn is 6000 to account

for the lack of human knowledge input. We also use Algorithm 5 with 10000 iterations to compute a

�`-minimax estimator for Dlinear for illustration. In this setup, as described in Section 3.3, we take the

average of the computed �-minimax stochastic estimator as the final output estimator in Dlinear. We do

not apply Algorithm 5 to Dskn or Dnn because it is computationally intractable.

We set the stopping criterion in Algorithm 1 as follows. When Algorithm 4 is used to compute

�`-minimax estimators, we estimate rsup(d⇤`�1,�`) and rsup(d⇤`�1,�`�1) with 2000 Monte Carlo runs as

described in Section 3.1; when Algorithm 5 is used, rsup(d⇤`�1,�`) and rsup(d⇤`�1,�`�1) are computed

exactly because R(d, P ) has a closed-form expression for all d 2 Dlinear and P 2 M`. We set the

tolerance ✏ to be equal to 0.0001 so that we stop Algorithm 1 if rsup(d⇤`�1,�`)� rsup(d⇤`�1,�`�1)  ✏.

After computation, we report the Bayes risk of the computed and theoretical �-minimax estimators

under ⇡⇤, the prior such that r(d⇤,⇡⇤) = infd2D rsup(d,�). For the estimators in Dlinear, we further report

their coe�cients. We also report two coe�cients of the computed estimator in Dskn as follows. Since

Dlinear ✓ Dskn and we initialize the estimator to be the sample mean for Dskn, we would expect that the

bias �0 and the weight of the sample mean �1 in the output layer for the computed �-minimax estimator

in Dskn may correspond to those in Dlinear. Therefore, we also report these two coe�cients �0 and �1

for Dskn. This may not be the case for Dnn because sample mean is not explicit in its parameterization

and all coe�cients are randomly initialized, so we do not report any coe�cients for Dnn.

Table 1 presents the computation results. By Theorem 7 in the Supplemental Material, these com-

puted estimators are all approximately �-minimax since their Bayes risks for ⇡⇤ are all close to that of

a theoretical �-minimax estimator. The coe�cients �0 and �1 of the computed estimators in Dlinear and

Dskn are also close to a theoretically derived estimator. For the computed estimator in Dskn, the weight

of the other ancestor node in the output layer (i.e., the node in the 4th hidden layer in Fig 3) is 0.000.

Therefore, our computed �-minimax estimator in Dskn is also close to a theoretically derived �-minimax

estimator.

In our experiments, Algorithm 1 converged after computing a �1-minimax estimator except when

21



Figure 4: Estimated Bayes risks of the estimator over iterations when computing a �1-minimax
estimator. The lines are the current Bayes risks (y-axis) over iterations (x-axis) (unbiased
estimates with 50 Monte Carlo runs for Algorithm 4; exact values for Algorithm 5). The
solid lines are the Bayes risks after an update in the estimator to decrease the Bayes risk.
The dashed lines are the Bayes risks after an update in the prior to increase the Bayes risk.
The two horizontal lines are the Bayes risk of the sample mean (dashed) and d

⇤ (solid),
respectively, for ⇡

⇤. For ease of visualization, in subfigures (a) and (b), the Bayes risks are
plotted every 50 iterations; in subfigures (c) and (d), the Bayes risks are plotted every 200
iterations; subfigure (d) contains the part in subfigure (c) after 500 iterations.

using Algorithm 4 for Dlinear. Even in this exceptional case, the computed �1-minimax estimator is still

approximately �-minimax. We think the algorithm does not stop then in these cases because of Monte

Carlo errors when computing rsup(d⇤`�1,�`) and rsup(d⇤`�1,�`�1).

Fig 4 presents the Bayes risks (or its unbiased estimates) over iterations when computing a �1-

minimax estimator. In all cases using Algorithm 4, the Bayes risks appear to decrease and converge.

When using Algorithm 5, the upper and lower bounds both converge to the same limit. The limiting

values of the Bayes risks in all cases are close to r(d⇤,⇡⇤) because �1 can approximate ⇡
⇤ well.

5.2 Prediction of the expected number of new categories

We apply our proposed method to Example 3. In the simulation, we set the true population to be an

infinite population with the same categories and same proportions as the sample studied in Miller and

Wiegert (1989), which consists of 1088 observations in 188 categories. This setting is the same as the

simulation setting in Shen et al. (2003). We set the sample size to be n = 100 and the size of the

new sample to be m = 200. In this setting, the expected number of new categories in the new sample

unconditionally on the observed sample, namely �(P0) := EP0 [ (P0)(X⇤)], can be analytically computed

and equals 48.02. We note that this quantity can also be computed via simulation: (i) sample n and

m individuals with replacement from the dataset in Miller and Wiegert (1989), (ii) count the number

of new categories in the second sample, and (iii) repeat steps (i) and (ii) many times and compute the

average.

We consider three sets of prior information:
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Figure 5: Architecture of the neural network estimator of the expected number of new cat-
egories. Xk: number of categories with k observations; OSW: the estimator proposed in
Orlitsky et al. (2016); SCL: the estimator proposed in Shen et al. (2003). The arrows from
data (X1, . . . , Xn) to the OSW and SCL estimators are omitted from this graph.

1. strongly informative: prior mean of �(P ) in [45, 50], � 95% prior probability that �(P ) lies in

[40, 55];

2. weakly informative: prior mean of �(P ) in [40, 55], � 95% prior probability that �(P ) lies in

[30, 65]; and

3. almost noninformative: prior mean of �(P ) in [35, 60], � 95% prior probability that �(P ) lies in

[20, 75].

We note that a traditional Bayesian approach would require specifying a prior on M, including the total

number of categories and the proportion of each category, which may be di�cult in practice.

We design the architecture of the neural network estimator as in Fig 5. We choose two existing

estimators (referred to as the OSW and SCL estimators, respectively) proposed by Orlitsky et al. (2016)

and Shen et al. (2003) as human knowledge inputs to the architecture. As in Section 5.1, we use the

ReLU activation function. There are 50 hidden nodes in the first hidden layer. We initialize the neural

network that we train to output the average of these two existing estimators.

We use Algorithm 6 to construct M`. There are 2000 grid points in M1, and we add 1000 grid points

each time we enlarge the grid. When generating M1, we chose the starting point to be a distribution

P(0) with 146 categories and �(P(0)) = 49.9. We selected the log pseudo-prior as a weighted sum of

two log density functions: (i) a normal distribution with the mean being the midpoint of the interval

constraint on the prior mean of �(P ) and central 95% probability interval being the interval with at

least 95% prior probability, (ii) a negative-binomial distribution of the total number of categories with

success probability 0.995 and 2 failures until the Bernoulli trial is stopped so that the mode and the

variance are approximately 200 and 8⇥104, respectively. These log-densities are provided weight 30 and

10, respectively. We selected the weights based on the empirical observation that distributions with only
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Table 2: Risks and Bayes risks of estimators. R(d, P0): risk of the estimator under the true
data-generating mechanism P0. r(d, ⇡̂⇤): Bayes risk under prior ⇡̂⇤, the computed prior from
Algorithm 4 in the last and finest grid in the computation.

Strength of prior Estimator R(d, P0) r(d, ⇡̂⇤)

strong OSW 265 300
SCL 146 179
�-minimax 22 36

weak OSW 265 252
SCL 146 142
�-minimax 56 85

almost none OSW 265 220
SCL 146 119
�-minimax 76 108

a few categories tend to have high risks, but these distributions are relatively inconsistent with prior

information and may well be given almost negligible probability weight in a computed least favorable

prior, thus contributing little to computing a �-minimax estimator. We chose the aforementioned weights

so that Algorithm 6 can explore a fairly large range of distributions and does not generate too many

distributions with too few categories.

We use Algorithm 4 with learning rate ⌘ = 0.005 and batch size J = 30 to compute �`-minimax

estimators. The number of iterations is 4,000 for �1 and 200 for �` (` > 1). The stopping criterion in

Algorithm 1 is that the estimated maximal Bayes risk with 2000 Monte Carlo runs does not relatively

increase by more than 2% or absolutely increase by more than 0.0001.

We examine the performance of the OSW estimator, the SCL estimator and our trained �-minimax

estimator by comparing their risks under our set data-generating mechanism computed with 20000 Monte

Carlo runs. We also compare their Bayes risks under the computed prior from Algorithm 4 using the last

and finest grid in the computation with 20000 Monte Carlo runs. We present the results in Table 2. In this

simulation experiment, our �-minimax estimator significantly reduces the risk compared to two existing

estimators. The �-minimax estimator also has the lowest Bayes risk in all cases. Therefore, incorporating

fairly informative prior knowledge into the estimator may lead to a significant improvement in predicting

the number of new categories.

Fig 6 presents the unbiased estimator of Bayes risks over iterations when computing a �1-minimax

estimator. The Bayes risks appear to have a decreasing trend and to approach a liming value. Over

iterations, the Bayes risks decrease by a considerable amount. The limiting value of the Bayes risks

appears to be slightly higher than the risk of the computed �-minimax estimator under P0. This might

indicate that P0 is not an extreme distribution that yields a high risk.

We also apply the above methods to analyze this dataset studied in Miller and Wiegert (1989),

which is used as the true population in the simulation. Based on this sample consisting of n = 1088

observations in 188 categories, we use various methods to predict the number of new categories that

would be observed if another m = 2000 observations were to be collected. We train Gamma-minimax
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Figure 6: Estimated Bayes risks of the estimator over iterations when computing a �1-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The two dashed horizontal lines are the risks of the OSW
(upper) and the SCL (lower) estimators, respectively, under P0 in the simulation. The solid
horizontal line is the risk of the computed �-minimax estimator under P0. For clearness of
visualization, the estimated Bayes risks are plotted every 50 iterations.

estimators using exactly the same tuning parameters as those in the above simulation. The predictions of

all methods are presented in Table 3. The �-minimax estimator outputs a similar prediction to the SCL

estimator, especially when the prior is strong. This similarity appears di↵erent from our observation in

the simulation, but can be explained by the fact that having more observations (n = 1088 vs n = 100;

m = 2000 vs m = 200) decreases the variance of the number of new observed categories and thus

lowers discrepancies between predictions from these methods. With a decreasing strength of prior, the

�-minimax estimator predicts an increasing number of new categories. This phenomenon is expected:

with weaker prior information, distributions with many rare categories become more plausible, and thus

the prediction needs to be increased to account for this weakening of prior. Since the SCL estimator

outperforms the OSW estimator in the above simulation where this dataset is the true population, we

expect the SCL estimator to achieve reasonably good performance in this application. Moreover, given

that the �-minimax estimators outperform the SCL estimator in the above simulation, we expect that

56 represents an improved prediction of the number of new categories as compared to the SCL prediction

of 51 in the case where there is limited prior information available.

5.3 Estimation of the entropy

We also apply our method to estimate the entropy of a multinomial distribution. The data-generating

mechanism is the same as that described in Example 3, and the estimand of interest is the entropy,

that is,  (P0) =
PK

k=1�pk log pk. In the simulation, we choose the same true population and the same

sample size n = 100 as in Section 5.2. We take the same risk function as in Example 1. The true

entropy  (P0) is 4.57. As a reference, the entropy of the uniform distribution with the same number

of categories—which corresponds to the maximum entropy of multinomial distributions with the same

total number of categories—is 5.24.
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Table 3: Predicted number of new categories (rounded to nearest integer) in a new sample
with size 2000 based on the sample with size 1088 studied in Miller and Wiegert (1989). The
strength of prior information in �-minimax estimators is shown in brackets.

Estimator Predicted
# new
categories

OSW 72
SCL 51
�-minimax (strong) 51
�-minimax (weak) 53
�-minimax (almost none) 56

As in Section 5.2, we consider three sets of prior information:

1. Strongly informative: Prior mean of  (P ) in [4.3, 4.7], � 95% probability that  (P ) lies in [4, 5];

2. Weakly informative: Prior mean of  (P ) in [4, 5], � 95% probability that  (P ) lies in [3.5, 5.5];

3. Almost noninformative: Prior mean of  (P ) in [3.7, 5.3], � 95% probability that  (P ) lies in [3, 6].

The architecture of our neural network estimator is almost identical to that in Section 5.2 except

that the existing estimator being used is the one proposed in Jiao et al. (2015) (referred to as the JVHW

estimator), and we initialize the network to return the JVHW estimator. We use Algorithm 6 to construct

M` and Algorithm 4 to compute a �`-minimax estimator. The tuning parameters in the algorithms are

identical to those used in Section 5.2 except that, in Algorithm 4, (i) the learning rate is ⌘ = 0.001, and

(ii) the number of iterations is 6,000 for �1. We change these tuning parameters because the JVHW

estimator is already minimax in terms of its convergence rate (Jiao et al., 2015), and we may need to

update the estimator in a more cautious manner in Algorithm 4 to obtain any possible improvement.

We compare the risk of the JVHW estimator and our trained �-minimax estimator under our set

data-generating mechanism computed with 20000 Monte Carlo runs. We also compare their Bayes risk

under the computed prior from Algorithm 4 using the last and finest grid in the computation with

20000 Monte Carlo runs. The results are summarized in Table 4. In this simulation experiment, our

�-minimax estimator reduces the risk by a fair percentage compared with the JVHW estimator with

somewhat informative prior knowledge. With almost noninformative prior knowledge, the risk of our

�-minimax under P0 is slightly higher than the JVHW estimator, but the Bayes risk is still lower.

The elevated risk under P0 in this case is not surprising given that �-minimax estimators generally do

not achieve optimal performance under every data-generating mechanism, but rather achieve optimal

performance under the least favorable prior that is consistent with available knowledge. According to

these simulation results, we conclude that incorporating weakly or strongly informative prior knowledge

into the estimator may result in some improvement in estimating entropy.

Fig 7 presents the unbiased estimator of Bayes risks over iterations when computing a �1-minimax

estimator. With somewhat informative prior information present, the Bayes risks appear to fluctuate

without an increasing or decreasing trend at the beginning and decrease after several thousand iterations.
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Table 4: Risks and Bayes risks of estimators. R(d, P0): risk of the estimator under the true
data-generating mechanism P0. r(d, ⇡̂⇤): Bayes risk under prior ⇡̂⇤, the computed prior from
Algorithm 4 in the last and finest grid in the computation.

Strength of prior Estimator R(d, P0) r(d, ⇡̂⇤)

strong JVHW 0.041 0.045
�-minimax 0.033 0.033

weak JVHW 0.041 0.056
�-minimax 0.040 0.048

almost none JVHW 0.041 0.063
�-minimax 0.046 0.055

Figure 7: Estimated Bayes risks of the estimator over iterations when computing a �1-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The horizontal lines are the risks of the JVHW (dashed)
and the computed �-minimax (solid) estimators, respectively, under P0 in the simulation. For
clearness of visualization, the estimated Bayes risks are plotted every 100 iterations.

With almost no prior information, the Bayes risks appear to fluctuate with no trend. A reason may be

that the JVHW estimator is already minimax rate optimal (Jiao et al., 2015). The computed �-minimax

estimators also appear to be somewhat similar to the JVHW estimator: in the output layer of the three

settings with di↵erent prior information, the coe�cients for the JVHW estimator are 0.96, 0.95 and

0.95, respectively; the coe�cients for the previous hidden layer are 0.17, 0.09 and 0.02, respectively; the

intercepts are 0.09, 0.13 and 0.16, respectively.

We further use the above methods to estimate entropy based on the this dataset used as the true

population in the simulation. The tuning parameters of the �-minimax estimators are exactly the same

as those in the above simulation. The estimates are presented in Table 5. All methods produce almost

identical estimates. Because the sample size is more than ten times the sample size in the simulation

and the JVHW estimator is minimax rate optimal (Jiao et al., 2015), we expect the JVHW estimator to

have little room for improvement, which explains why the three �-minimax estimators perform similarly

to the JVHW estimator. In other words, Gamma-minimax estimators appear to maintain, if not to

improve, the performance of the original JVHW estimator. The above simulation and data analysis also
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Table 5: Estimated entropy based on the sample with size 1088 studied in Miller and Wiegert
(1989). The strength of prior information in �-minimax estimators is shown in brackets.

Estimator Estimated entropy

JVHW 4.709
�-minimax (strong) 4.716
�-minimax (weak) 4.708
�-minimax (almost none) 4.708

suggest that the JVHW estimator might be better than merely minimax rate optimal: it might be close

to minimax optimal in large samples.

6 Discussion

We mainly focus on estimation. Nevertheless, our framework can be immediately applied to prediction

as shown in Example 2. Studying the performance of our algorithms in this setting is an interesting area

for future work.

We propose adversarial meta-learning algorithms to compute a Gamma-minimax estimator with

theoretical guarantees under fairly general settings. These algorithms still leave room for improvement.

As we discussed in Section 3.1, the stopping criterion we employ does not necessarily indicate that the

maximal Bayes risk is close to the true minimax Bayes risk. In future work, it would be interesting

to derive a better criterion that necessarily does indicate this near optimality. Our algorithms also

require the user to choose increasingly fine approximating grids to the model space. Although we

propose a heuristic algorithm for this procedure that performed well in our experiments, at this point,

we have not provided optimality guarantees for this scheme. It may also be possible to improve our

proposed algorithms to solve intermediate minimax problems in Section 3.1 by utilizing recent and

ongoing advances from the machine learning literature that can be used to improve the training of

generative adversarial networks.

We do not explicitly consider uncertainty quantification such as confidence intervals or credible in-

tervals under a Gamma-minimax framework. Uncertainty quantification is important in practice since

it provides more information than a point estimator and can be used for decision making. In theory,

our method may be directly applied if such a problem can be formulated into a Gamma-minimax prob-

lem. However, such a formulation remains unclear. The most challenging part is to identify a suitable

risk function that correctly balances the level of uncertainty and the size of the output interval/region.

Though the risk function used in Schafer and Stark (2009) appears to provide one possible starting point,

it is not clear how to extend this approach to nonparametric settings.

In conclusion, we propose adversarial meta-learning algorithms to compute a Gamma-minimax esti-

mator under general models that can incorporate prior information in the form of generalized moment

conditions. They can be useful when a parametric model is undesirable, semi-parametric e�ciency theory

does not apply, or we wish to utilize prior information to improve estimation.
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Supplementary Material for “Adversarial Meta-Learning of

Gamma-Minimax Estimators That Leverage Prior Knowledge”

S1 Proof of Condition 5 su�cient for part 2 of Condition 4

Let d 2 D, ` and ✏ > 0 be fixed. By Theorems 2.1 and 3.2 in Winkler (1988), rsup(d, �̃`)  r(d,⇡) + ✏/2

for some ⇡ 2 �̃` with a finite support. Under Condition 5, there exists a sequence ⇡i 2 �̃i|` such

that, for all su�ciently large i, r(d,⇡i) � r(d,⇡) � ✏/2. For such i, rsup(d, �̃`)  r(d,⇡i) + ✏. Since

rsup(d, �̃`) � rsup(d, �̃i|`) � r(d,⇡i), we have that r(d,⇡i)  rsup(d, �̃i|`)  rsup(d, �̃`)  r(d,⇡i) + ✏ for

all su�ciently large i, and thus part 2 of Condition 4 holds under Condition 5.

S1.1 Proof of Theorem 1 and Corollary 1

Lemma 1. If {⌦`}
1

`=1 is an increasing sequence of subsets of M such that
S

1

`=1 ⌦` = M, then, for any

d 2 D, rsup(d, �̃`)% rsup(d,�) (`!1).

Proof of Lemma 1. Since �̃` ✓ �̃`+1 ✓ �, it holds that rsup(d, �̃`)  rsup(d, �̃`+1)  rsup(d,�), and so

we only need to lower bound rsup(d, �̃`). Fix ✏ > 0. By Corollary 5 of Pinelis (2016), rsup(d,�) can be

approximated by r(d, ⌫) arbitrarily well for priors ⌫ 2 � with a finite support; that is, there exists ⌫ 2 �

with finite support such that r(d, ⌫) � rsup(d,�) � ✏. For su�ciently large `, ⌦` contains all support

points of ⌫ and hence rsup(d, �̃`) � r(d, ⌫) � rsup(d,�)� ✏. The desired result follows.

Lemma 2. Under Condition 3, d 7! r(d,⇡) is Lipschitz continuous with Lipschitz constant L; moreover,

d 7! rsup(d,�0) is Lipschitz continuous with Lipschitz constant L for any �0 ✓ �.

Proof of Lemma 2. By Condition 3, |R(d1, P ) � R(d2, P )|  L%(d1, d2) for any d1, d2 2 D and any

P 2M. Then, for any ⇡ 2 � and any d1, d2 2 D,

|r(d1,⇡)� r(d2,⇡)| =

����
Z
[R(d1, P )�R(d2, P )]⇡(dP )

����



Z
|R(d1, P )�R(d2, P )|⇡(dP )

 L%(d1, d2).

This proves that d 7! r(d,⇡) is Lipschitz continuous with a universal Lipschitz constant L. We now

prove that d 7! rsup(d,�) is Lipschitz continuous with Lipschitz constant L. Let ✏ > 0. For any d1 2 D,

there exists ⇡1 2 �0 such that rsup(d1,�0)  r(d1,⇡1) + ✏. Then, for any d2 2 D,

rsup(d1,�
0)� rsup(d2,�

0)  r(d1,⇡1) + ✏� r(d2,⇡1)  L%(d1, d2) + ✏.

Since ✏ is arbitrary, we have that rsup(d1,�0)� rsup(d2,�0)  L%(d1, d2). Reversing the role of d1 and d2,
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we derive that rsup(d2,�0)� rsup(d1,�0)  L%(d1, d2). Therefore, |rsup(d1,�0)� rsup(d2,�0)|  L%(d1, d2)

for any d1, d2 2 D.

Proof of Theorem 1. Let ✏ > 0. There exists d0 2 D such that

rsup(d
0
,�)  inf

d2D

rsup(d,�) + ✏.

Moreover, there exists ⇡` 2 �` such that

rsup(d
0
,�`)  r(d0,⇡`) + ✏.

Using the fact that d⇤` is �`-minimax and the definition of rsup, it holds that

rsup(d
⇤

` ,�`)  rsup(d
0
,�`)  r(d0,⇡`) + ✏

 rsup(d
0
,�) + ✏  inf

d2D

rsup(d,�) + 2✏.

Since this inequality holds for any ✏ > 0, we have that rsup(d⇤` ,�`)  infd2D rsup(d,�). An almost

identical argument shows that the sequence {rsup(d⇤` ,�`)}
1

`=1 is nondecreasing. Therefore, this sequence

converges to some limit R  infd2D rsup(d,�)  rsup(d⇤,�).

We next prove that rsup(d⇤,�)  R. Let ✏ > 0. Without loss of generality, we may assume that

M` ✓ ⌦` for all ` = 1, 2, . . . in Condition 4. (Otherwise, we may instead consider the sequence {⌦˜̀}
1

˜̀=1

where ⌦˜̀ =
T

`0:⌦`0◆M`
⌦`0 . Note that Condition 4 also holds for {⌦˜̀}

1

˜̀=1
.) By Lemma 1, there exists

`0 such that rsup(d⇤, �̃`0) � rsup(d⇤,�)� ✏/3. By Condition 4, there exists i1 such that rsup(d⇤,�i1|`0) �

rsup(d⇤, �̃`0) � ✏/3. Without loss of generality, suppose that d
⇤

` ! d
⇤ (otherwise, take a convergent

subsequence to this accumulation point). This then implies that there exists i2 > i1 such that %(d⇤i2 , d
⇤) 

✏/(3L). By Lemma 2, rsup(d⇤i2 ,�i1|`0) � rsup(d⇤,�i1|`0) � ✏/3. Moreover, since �i1|`0 ✓ �i1 ✓ �i2 , it

holds that rsup(d⇤i2 ,�i2) � rsup(d⇤i2 ,�i1|`0). Therefore, rsup(d
⇤

i2 ,�i2) � rsup(d⇤,�)� ✏. Since the sequence

{rsup(d⇤` ,�`)}
1

`=1 is nondecreasing, it holds that rsup(d⇤` ,�`) � rsup(d⇤,�) � ✏ for all ` � i2. Therefore,

lim inf`!1 rsup(d⇤` ,�`) � rsup(d⇤,�), and hence R � rsup(d⇤,�).

Combining the results from the preceding two paragraphs, R = infd2D rsup(d,�) = rsup(d⇤,�).

Consequently, d⇤ is �-minimax. Moreover, as {rsup(d⇤` ,�`)}
1

`=1 increases toR, this sequence also increases

to rsup(d⇤,�). This concludes the proof.

Proof of Corollary 1. We first establish the strict convexity of d 7! r(d,⇡) for any ⇡ 2 �. We then

establish the strict convexity of d 7! rsup(d,�). We then establish that there is a unique minimizer of

d 7! rsup(d,�) and show that the desired result follows from Theorem 1.

Let d1, d2 2 D and c 2 (0, 1) be arbitrary, then by the convexity of D and the strict convexity of
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d 7! R(d, P ) for each P 2M,

r(cd1 + (1� c)d2,⇡) =

Z
R(cd1 + (1� c)d2, P )⇡(dP )

<

Z
{cR(d1, P ) + (1� c)R(d2, P )}⇡(dP )

= cr(d1,⇡) + (1� c)r(d2,⇡).

Therefore, d 7! r(d,⇡) is strictly convex for any ⇡ 2 �.

Let d1, d2 2 D and c 2 (0, 1) be arbitrary. Since rsup(d,�) is attainable for any d 2 D, there exists

⇡̃ 2 � such that

rsup(cd1 + (1� c)d2,�) = r(cd1 + (1� c)d2, ⇡̃)

< cr(d1, ⇡̃) + (1� c)r(d2, ⇡̃)

 crsup(d1,�) + (1� c)rsup(d2,�).

Thus, d 7! rsup(d,�) is strictly convex.

As d 7! rsup(d,�) is continuous by Condition 3 and D is compact by Condition 2, d 7! rsup(d,�)

achieves at least one minimum on D. As d 7! rsup(d,�) is strictly convex and D is convex, this function

achieves exactly one minimum on D. By Theorem 1, any accumulation point d⇤ of {d⇤`}
1

`=1 is a minimizer

of d 7! rsup(d,�), and so the sequence has a limit point, which is also the unique �-minimax estimator.

S1.2 Proof of Theorem 2

We prove Theorem 2 by checking that Assumptions 3.1 and 3.6 in Lin et al. (2020) are satisfied and

using Theorem E.3 and E.4 in Lin et al. (2020), respectively. Since Assumption 3.1 is satisfied by our

construction of R̂, we focus on Assumption 3.6 for the rest of this section.

LetM` = {P1, P2, . . . , P⇤} ✓M. For any ⇡ 2 �`, let ⇡� denote the probability weight of ⇡ on P� (� =

1, . . . ,⇤). For the rest of this section, we also use ⇡ to denote the vector (⇡1, . . . ,⇡⇤). We also use . to

denote less than equal to up to a universal positive constant that may depend on `. Then, straightforward

calculations imply that r�r(�,⇡) =
P⇤

�=1 ⇡�r�R(�, P�) and r⇡r(�,⇡) = (R(�, P1), . . . , R(�, P⇤))>.
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For each ` = 1, 2, . . ., for any �
1
,�

2
2 H and ⇡

1
,⇡

2
2 �`, by Conditions 6 and 7,

���r�r(�,⇡)|�=�1,⇡=⇡1 � r�r(�,⇡)|�=�2,⇡=⇡2

���

=

�����

⇤X

�=1

n
⇡
1
� r�R(�, P�)|�=�1

� ⇡
2
� r�R(�, P�)|�=�2

o�����



⇤X

�=1

⇡
1
�

���r�R(�, P�)|�=�1
� r�R(�, P�)|�=�2

���+

�����

⇤X

�=1

(⇡1
� � ⇡

2
�) r�R(�, P�)|�=�2

�����

. k�1
� �

2
k+ k⇡1

� ⇡
2
k

. k(�1
,⇡

1)� (�2
,⇡

2)k,

and similarly for r⇡r(�,⇡),

���r⇡r(�,⇡)|�=�1,⇡=⇡1 � r⇡r(�,⇡)|�=�2,⇡=⇡2

���

=
���
�
R(�1

, P1)�R(�2
, P1), R(�1

, P2)�R(�2
, P2), . . . , R(�1

, P⇤)�R(�2
, P⇤)

�>���

. k�1
� �

2
k  k(�1

,⇡
1)� (�2

,⇡
2)k.

This implies that for each `, the gradient of r(�,⇡) (� 2 H, ⇡ 2 �`) is Lipschitz continuous.

For each ` = 1, 2, . . ., for any �
1
,�

2
2 H and ⇡ 2 �`, Condition 6 implies that

��r(�1
,⇡)� r(�2

,⇡)
�� =

�����

⇤X

�=1

⇡�

⇥
R(�1

, P�)�R(�2
, P�)

⇤
�����



⇤X

�=1

⇡�

��R(�1
, P�)�R(�2

, P�)
�� . k�1

� �
2
k.

Therefore, � 7! r(�,⇡) is Lipschitz continuous with a universal Lipschitz constant independent of ⇡ 2 �`.

Finally, it is straightforward to check that (i) ⇡ 7! r(�,⇡) is concave for any � 2 H, and (ii) �` is

parameterized by a convex subset of a simplex in a Euclidean space, which is a convex and bounded set.

These results show that Assumption 3.6 in Lin et al. (2020) is satisfied for Algorithm 2 and 3.
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S1.3 Proof of Theorem 3

Proof of Theorem 3. Let ⇡(t),0 denote a maximizer of ⇡ 7! r(�(t�1),⇡). It holds that

0  r(�(t�1),⇡(t),0)� r(�(t�1),⇡(t))


1

J 0

J 0X

j=1

r̂(�(t�1),⇡(t), ⇠j)�
1

J 0

J 0X

j=1

r̂(�(t�1),⇡(t),0, ⇠j)

+ r(�(t�1),⇡(t),0)� r(�(t�1),⇡(t))

=
1

J 0

J 0X

j=1

(
⇥
r̂(�(t�1),⇡(t), ⇠j)� r̂(�(t�1),⇡(t),0, ⇠j)

⇤

� E
⇥
r̂(�(t�1),⇡(t), ⇠)� r̂(�(t�1),⇡(t),0, ⇠)

⇤
)

 sup
�2RD,⇡1,⇡22�`

�����
1

J 0

J 0X

j=1

(
[r̂(�,⇡1, ⇠j)� r̂(�,⇡2, ⇠j)]

� E [r̂(�,⇡1, ⇠)� r̂(�,⇡2, ⇠)]

)�����.

Note that the right hand side does not depend on t. Therefore,

0  sup
t

�
r(�(t�1),⇡(t),0)� E[r(�(t�1),⇡(t))]

 

 E⇤ sup
�2RD,⇡1,⇡22�`

�����
1

J 0

J 0X

j=1

(
[r̂(�,⇡1, ⇠j)� r̂(�,⇡2, ⇠j)]

� E [r̂(�,⇡1, ⇠)� r̂(�,⇡2, ⇠)]

)�����,

where E⇤ stands for outer expectation. We may apply Corollary 9.27 in Kosorok (2008) to F := {⇠ 7!

r̂(�,⇡, ⇠) : � 2 RD
,⇡ 2 �`} and show that F�F := {f1�f2 : f1, f2 2 F} ◆ {⇠ 7! r̂(�,⇡1, ⇠)�r̂(�,⇡2, ⇠) :

� 2 RD
,⇡1,⇡2 2 �`} is a ⌅-Glivenko-Cantelli class. Therefore,

(
sup

�2RD,⇡1,⇡22�`

�����
1

J 0

J 0X

j=1

(
[r̂(�,⇡1, ⇠j)� r̂(�,⇡2, ⇠j)]

� E [r̂(�,⇡1, ⇠)� r̂(�,⇡2, ⇠)]

)�����

)⇤



8
<

: sup
f2F�F

������
1

J 0

J 0X

j=1

{f(⇠j)� E[f(⇠)]}

������

9
=

;

⇤

a.s.
! 0,
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as J
0
! 1. Here, X⇤ stands for the minimal measurable majorant with respect to ⌅ of a (possibly

non-measurable) mapping X (van der Vaart and Wellner, 2000).

By Problem 1 of Section 2.4 in van der Vaart and Wellner (2000), there exists a random variable F

such that F � supf2F�F
|f(⇠)� E[f(⇠0)]| ⌅-almost surely and E[F ] <1. Then,

sup
f2F�F

������
1

J 0

J 0X

j=1

{f(⇠j)� E[f(⇠j)]}

������
 F

⌅-almost surely. By dominated convergence theorem,

E⇤ sup
�2RD,⇡1,⇡22�`

�����
1

J 0

J 0X

j=1

(
[r̂(�,⇡1, ⇠j)� r̂(�,⇡2, ⇠j)]

� E [r̂(�,⇡1, ⇠j)� r̂(�,⇡2, ⇠j)]

)�����! 0

as J
0
! 1, and so does supt

�
r(�(t�1),⇡(t),0)� E[r(�(t�1),⇡(t))]

 
. Thus, for any ⇣ > 0, there exists a

su�ciently large J
0 such that E[r(�(t�1),⇡(t))] � r(�(t�1),⇡(t),0)� ⇣ for all t.

S1.4 Proof of Theorem 4

Our proof of Theorem 4 builds on that of Robinson (1951). Major modifications are needed to allow for

more general definitions that can accommodate for potentially infinite spaces of pure strategies and a

more careful control on a bound on r(d($(t�1)),⇡
†

(t))� r(d†(t),⇡(t�1)) towards the end of the proof.

We first introduce the notion of cumulative Bayes risk functions. Under Algorithm 5, we let U0 :

D ! R and V0 : �` ! R be any two continuous functions such that

min
d2D

U0(d) = max
⇡2�`

V0(⇡) (3)

and recursively define

Ut+1(d) := Ut(d) + r(d,⇡†

(t)), Vt+1(⇡) := Vt(⇡) + r(d†(t),⇡) (4)

for d 2 D and ⇡ 2 �`. Here, we let ⇡
†

(t) 2 argmax⇡2�`
Vt�1(⇡) and d

†

(t) 2 argmind2D
Ut�1(d). Note

that the choices of ⇡†

(t) and d(t) in Algorithm 5 corresponds to setting U0 ⌘ 0 and V0 ⌘ 0, in which case

Ut(d) = t · r(d,⇡(t)) and Vt(⇡) = t · r(d($(t)),⇡). In general,

Ut(d) = U0(d) + t · r(d,⇡(t)), Vt(⇡) = V0(⇡) + t · r(d($(t)),⇡) (5)

for some ⇡(t) 2 � and d($(t)) 2 D. Later in this section, we will also make use of Ut and Vt with other

initializations U0 and V0.

To make notations concise, we define mind2D0 Ut := mind2D0 Ut(d) for any D
0
✓ D, and define
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maxD0 Ut, min⇧0 Vt and max⇧0 Vt (⇧0
✓ �`) similarly. We also drop the subscript denoting the set when

the set is the whole space we consider, i.e., D or �`. Note that for any t1, t2 = 1, 2, . . ., under the setting

of Algorithm 5 and (2), it holds that

minUt1/t1 = min
d2D

r(d,⇡(t1))

 max
⇡2�`

min
d2D

r(d,⇡) = r(d($⇤

` ),⇡
⇤

` ) = min
d2D

max
⇡2�`

r(d,⇡)

 max
⇡2�`

r(d($(t2)),⇡) = maxVt2/t2

Therefore, to prove the first result in Theorem 4, it su�ces to show that lim supt!1
(maxVt�minUt)/t 

0.

We next introduce additional definitions related to iterations. We say that ⇡ 2 �` is eligible in the

interval [t1, t2] if there exists t 2 [t1, t2] such that Vt(⇡) = maxVt; we say that d 2 D is eligible in the

interval [t1, t2] if there exists t 2 [t1, t2] such that Ut(d) = minUt. We also define eligibility for sets. We

say that ⇧0
✓ �` is eligible in the interval [t1, t2] if there exists ⇡ 2 ⇧0 that is eligible in that interval; we

say that D0
✓ D is eligible in the interval [t1, t2] if there exists d 2 D

0 that is eligible in the interval [t1, t2].

In addition, for any D
0
✓ D, we define maximum variation MVt(D0) := supd2D0 Ut(d) � infd2D0 Ut(d)

and MVt(⇧0) similarly for any ⇧0
⇢ �`. By Condition 3, there exists B 2 (0,1) such that R 2 [�B,B].

Note that by Condition 2 and Lemma 2, given an arbitrary desired approximation accuracy ✏ > 0, D

can be covered by finitely many compact subsets with the maximum variation of each subset bounded

by ✏t for all t; by Condition 3, since �` is parameterized by a compact subset of a simplex in a Euclidean

space, �` can also be covered by finitely many compact subsets with the maximum variation of each

subset bounded by ✏t for all t. These covers can be viewed as discrete finite approximations to D and

�`, respectively.

All of the above definitions are associated with the space of estimators D and the set of priors �`. We

call {(Ut, Vt)}t a pair of cumulative Bayes risk functions constructed from the pair (D,�`) of the space

of estimators and the set of priors, and will consider pairs of cumulative Bayes risk functions constructed

from other pairs (D0
,⇧0) of the space of estimators and the set of priors in the subsequent proof. We

can define the above quantities similarly for such cases.

The following lemma gives an upper bound on the maximum variation of Us+t and Vs+t over the

corresponding entire space from which they are constructed after t iterations from s when essentially all

parts of these spaces are eligible in [s, s+ t].

Lemma 3. Suppose that {(Ut, Vt)}t is a pair of cumulative Bayes risk functions constructed from

(D0
,⇧0). Suppose that D0 =

SI
i=1 Di and ⇧0 =

SJ
j=1⇧j where

sup
i,t

MVt(Di)/t  A, sup
j,t

MVt(⇧j)/t  A

for A < 1. If all Di and ⇧j are eligible in [s, s + t], then maxD0 Us+t � minD0 Us+t  (2B + A)t and

max⇧0 Vs+t �min⇧0 Vs+t  (2B +A)t.
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Proof of Lemma 3. Without loss of generality, assume that d̃ 2 (argmaxd2D0 Us+t)
T
D1. Since D1

is eligible in [s, t], there exists t̃ 2 [s, s + t] such that (argmind2D0 Ut̃)
T

D1 6= ;. By the recursive

definition of the sequence {Ut}t in (4), the bound on the risk, and the assumption that supi,t MVt(Di)/t 

A, we have that maxD0 Us+t = Us+t(d̃)  Ut̃(d̃) + B(s + t � t̃)  minD0 Ut̃ + At + B(s + t � t̃) 

minD0 Ut̃ + (A + B)t. Letting d̃
0
2 argmind2D0 Us+t, by the bound on the risk, we can derive that

minD0 Us+t = Us+t(d̃0) � Ut̃(d̃
0)�B(s+ t� t̃) � minD0 Ut̃ �Bt. Combine these two inequalities and we

have that maxD0 Us+t �minD0 Us+t  (2B + A)t. An identical argument applied to the sequence {Vt}t

shows that max⇧0 Vs+t �min⇧0 Vs+t  (2B +A)t.

The next lemma builds on the previous lemma and provides an upper bound on maxVs+t�minUs+t

under the same conditions.

Lemma 4. Under the same setup and conditions as in Lemma 3, max⇧0 Vs+t�minD0 Us+t  (4B+2A)t.

Proof of Lemma 4. Summing the two inequalities in Lemma 3 and rearranging the terms, we have that

max⇧0 Vs+t � minD0 Us+t  (4B + 2A)t + min⇧0 Vs+t � maxD0 Us+t. It therefore su�ces to show that

min⇧0 Vs+t  maxD0 Us+t.

Let ⌧ := s+ t. There exists ⇡0
2 ⇧0 and a stochastic strategy d

0

2 D
0 such that U⌧ (d) = U0(d) + ⌧ ·

r(d,⇡0) and V⌧ (⇡) = V0(⇡) + ⌧ · r(d
0

,⇡) for all d 2 D
0 and all ⇡ 2 ⇧0. Therefore, for this choice of ⇡0 and

d
0

, using (3), min⇧0 V⌧  V⌧ (⇡0) = V0(⇡0)+⌧ ·r(d
0

,⇡
0)  max⇧0 V0+⌧ ·r(d

0

,⇡
0) = minD0 U0+⌧ ·r(d

0

,⇡
0) 

U0(d
0

) + ⌧ · r(d
0

,⇡
0) = U⌧ (d

0

)  maxD0 U⌧ .

Proof of Theorem 4. It su�ces to show that lim supt!1
(maxVt � minUt)/t  0 by letting U0 ⌘ 0

and V0 ⌘ 0, which corresponds to Algorithm 5. Let ✏ > 0. Note that r is Lipschitz continuous by

Lemma 2 and the fact that r(d,⇡) is an average of bounded risks with weights ⇡. Furthermore, D

and �` are both compact. In addition, U0 and V0 are both continuous. Therefore, there exist covers

D =
SI

i=1 Di and �` =
SJ

j=1⇧j such that (i) Di and ⇧j are all compact, and (ii) supi,t MVt(Di)/t  ✏,

supj,t MVt(⇧j)/t  ✏. (Note that I and J may depend on ✏.) For index sets I ✓ {1, 2, . . . , I} and

J ✓ {1, 2, . . . , J}, define DI :=
S

i2I
Di and ⇧J :=

S
j2J

⇧j . We show that maxVt �minUt  C✏t for

an absolute constant C and all su�ciently large t via induction on the sizes of I and J .

Let {(Ut, Vt)}t be a pair of cumulative Bayes risk functions constructed from (DI ,⇧J ) where |I| =

|J | = 1. By (5) and the fact that MVt(DI)  ✏t and MVt(⇧J )  ✏t, we have that

min
DI

Ut = min
d2DI

[U0(d) + t · r(d,⇡(t))] � Ed⇠$(t)
[U0(d)] + t · r(d($(t)),⇡(t))� ✏t

� min
d2DI

U0(d) + t · r(d($(t)),⇡(t))� ✏t

= max
⇡2⇧J

V0(⇡) + t · r(d($(t)),⇡(t))� ✏t

� V0(⇡(t)) + t · r(d($(t)),⇡(t))� ✏t

� max
⇡2⇧J

[V0(⇡) + t · r(d($(t)),⇡)]� 2✏t = max
⇧J

Vt � 2✏t.

Therefore, max⇧J Vt �minDI Ut  2✏t.
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Let ✏
0
> 0 be arbitrary. Suppose that there exists t0 such that, for any I

0
✓ I and J

0
✓ J such

that I
0
6= I or J

0
6= J , for any pair of cumulative Bayes risk functions {(Ut, Vt)}t constructed from

(DI0 ,⇧J 0), it holds that max⇧J 0 Vt � minDI0 Ut  ✏
0
t for all t � t0. We next obtain a slightly greater

bound on max⇧J Vt �minDI Ut for all su�ciently large t.

We first prove that if, for a given pair of cumulative Bayes risk functions {(Ut, Vt)}t constructed from

(DI ,⇧J ), there exists i0 2 I or j0 2 J such that Di0 or ⇧j0 is not eligible in an interval [s, s+ t0], then

max
⇧J

Vs+t0 �min
DI

Us+t0  max
⇧J

Vs �min
DI

Us + ✏
0
t0. (6)

Suppose that Di0 is not eligible in [s, s + t0], then define U
0

t := Us+t and V
0

t := Vs+t �max⇧J Vs +

minDI Us for all t � 0. It is straightforward to check that {(U 0

t , V
0

t )}
t0
t=0 satisfies the recursive definition

of a pair of cumulative Bayes risk functions constructed from (DI\{i0},⇧J ). By the induction hypothesis,

max⇧J V
0

t0�minDI\{i0} U
0

t0  ✏
0
t0. Therefore, max⇧J Vs+t0�minDI Us+t0 = max⇧J V

0

t0�minDI\{i0} U
0

t0+

max⇧J Vs � minDI Us  max⇧J Vs � minDI Us + ✏
0
t0. Similar argument can be applied if ⇧j0 is not

eligible in [s, s+ t0].

Now we obtain a bound on max⇧J Vt�minDI Ut. Let t > t0, Q := bt/t0c � 1 and R := t/t0�Q 2 [0, 1).

There are two cases.

Case 1: There exists s0  Q such that Di and ⇧j are eligible in [(s0 � 1 + R)t0, (s0 + R)t0] for all

i 2 I and j 2 J . Take s0 to be the largest such integer. Then, repeatedly apply (6) to intervals

[(s0 +R)t0, (s0 + 1+R)t0], [(s0 + 1+R)t0, (s0 + 2+R)t0], . . . , [(Q� 1 +R)t0, (Q+R)t0] = [t� t0, t] and

we derive that

max
⇧J

Vt �min
DI

Ut  max
⇧J

V(s0+R)t0 �min
DI

U(s0+R)t0 + ✏
0(Q� s0)t0.

By Lemma 4, max⇧J V(s0+R)t0 �minDI U(s0+R)t0  (4B + ✏)t0. Therefore,

max
⇧J

Vt �min
DI

Ut  (4B + ✏)t0 + ✏
0(Q� s0)t0  (4B + ✏)t0 + ✏

0
t.

Case 2: There is no integer s0 satisfying the condition in Case 1. Then, repeatedly apply (6) to intervals

[Rt0, (1 + R)t0], [(1 + R)t0, (2 + R)t0], . . . , [(Q� 1 + R)t0, (Q+ R)t0] = [t� t0, t], we derive that

max
⇧J

Vt �min
DI

Ut  max
⇧J

VRt0 �min
DI

URt0 + ✏
0Qt0.

By the bound on the risk, max⇧J VRt0  BRt0 and minDI URt0 � �BRt0. Hence,

max
⇧J

Vt �min
DI

Ut  2BRt0 + ✏
0Qt0  (4B + ✏)t0 + ✏

0
t.

Thus, in both cases, it holds that max⇧J Vt � minDI Ut  (4B + ✏)t0 + ✏
0
t for t > t0. Let C > 0

be any constant (which may depend on ✏, the approximation error of the covers, that is, the bound on
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MVt/t). The following holds for any su�ciently large t,

max
⇧J

Vt �min
DI

Ut  (4B + ✏)t0 + ✏
0
t  (1 + C)✏0t. (7)

In other words, we show that after increasing the size of either index set by 1, for all su�ciently large t,

we obtain a bound on max⇧J Vt �minDI Ut that grows by a multiplicative factor of (1 + C) relative to

the original bound.

It takes finitely many, say N , steps to induct from the initial case where the sizes of both index sets

are one to the case of interest with index sets {1, . . . , I} and {1, . . . , J}. (Note that N may also depend

on ✏ through its dependence on I and J .) Take C = 1/N in (7) and we derive that, for all su�ciently

large t,

maxVt �minUt = max
⇧{1,...,J}

Vt � min
D{1,...,I}

Ut  (1 + 1/N)N · 2✏t  2e✏t

where e is the base of natural logarithm. Since ✏ is arbitrary, we show that lim supt!1
(maxVt �

minUt)/t  0.

S1.5 Derivation of �-minimax estimator of the mean in Section 5.1

In this section, we show that, for the problem of estimating the mean in Section 5.1, one �-minimax

estimator lies in Dlinear. This is formally presented below.

Proposition 1. Let M consist of all probability distributions defined on the Borel �-algebra on [0, 1].

Let X1, . . . , Xn
iid
⇠ P0 2 M and X = (X1, X2, . . . , Xn) be the observed data. Let  : P 7!

R
xP (dx)

denote the mean parameter and � = {⇡ 2 ⇧ :
R
 (P )⇡(dP ) = µ} be the set of priors that represent

prior information. Let D denote the space of estimators that are square-integrable with respect to all

P 2M. Consider the risk in Example 1, R : (d, P ) 7! EP [(d(X)� (P ))2]. Define X̄ =
Pn

i=1 Xi/n and

d0 : X 7! (µ+
p
nX̄)/(1 +

p
n). Then d0 2 Dlinear is �-minimax over D.

We first present a theorem on a criterion of �-minimaxity.

Theorem 7. Suppose that d0 2 D is a Bayes estimator for ⇡0 2 � and r(d0,⇡0) = rsup(d0,�). Then d0

is a �-minimax estimator in D.

Proof of Theorem 7. Clearly rsup(d0,�) � infd2D rsup(d,�). Fix d
0
2 D. Then, rsup(d0,�) � r(d0,⇡0) �

r(d0,⇡0) = rsup(d0,�). Since d
0 is arbitrary, this shows that infd2D rsup(d,�) � rsup(d0,�). Thus,

rsup(d0,�) = infd2D rsup(d,�) and d0 is �-minimax.

We now present a lemma that is used to prove Proposition 1.

Lemma 5. Let a < b and suppose that M denotes the model space that consists of all probability

distributions defined on the Borel �-algebra on [a, b] ✓ R with mean µ 2 [a, b]. Let X denote a generic

random variable generated from some P 2M. Then maxP2M VarP (X) = VarP⇤(X) = (b � µ)(µ � a),

where P
⇤ is defined by P

⇤(X = a) = (b� µ)/(b� a) and P
⇤(X = b) = (µ� a)/(b� a).
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Proof of Lemma 5. Without loss of generality, we may assume that a = �1 and b = 1. Note that for

any P 2M, it holds that VarP (X) = EP [X2] � EP [X]2 = EP [X2] � µ
2
 1 � µ

2, where the equality

is attained if P (X 2 {�1, 1}) = 1. Therefore, the maximum variance is achieved at the distribution

with the specified mean µ and support being {a, b}, that is, at the distribution P
⇤ defined in the lemma

statement. Straightforward calculations show that VarP⇤(X) = (b� µ)(µ� a).

Proof of Proposition 1. Let M
0 := {Bernoulli(✓) : ✓ 2 (0, 1)} ✓ M and let ⇡0 be a prior distribution

over M
0 such that the prior distribution on the success probability ✓ is Beta(µ

p
n, (1 � µ)

p
n). By

Theorem 1.1 in Chapter 4 of Lehmann and Casella (1998), a Bayes estimator for ⇡0 minimizes the risk

under the posterior distribution, whose minimizer over D is the posterior mean d0 for our choice of risk.

That is, d0 is a Bayes estimator in D for ⇡0.

We next show that r(d0,⇡0) = sup⇡2� r(d0,⇡). Let ⇡ 2 � be arbitrary. Since EP [X̄] =  (P ) and

VarP (X̄) = VarP (X1)/n, we can derive that

r(d0,⇡) =

Z
EP

"⇢
µ+
p
nX̄

1 +
p
n
� (P )

�2
#
⇡(dP )

=

Z
EP

"⇢ p
n

1 +
p
n

�
X̄ � (P )

�
+

µ� (P )

1 +
p
n

�2
#
⇡(dP )

=

Z ⇢
1

(1 +
p
n)2

VarP (X1) +
(µ� (P ))2

(1 +
p
n)2

�
⇡(dP )

Apply Lemma 5 to VarP (X1) and the display continues as



Z ⇢
1

(1 +
p
n)2

 (P )(1� (P )) +
(µ� (P ))2

(1 +
p
n)2

�
⇡(dP )

=

Z
1

(1 +
p
n)2

�
µ
2 + (1� 2µ) (P )

 
⇡(dP ) =

µ(1� µ)

(1 +
p
n)2

.

This upper bound can be attained by any ⇡ with support contained in M
0, for example, ⇡0. Therefore,

rsup(d0,�) = r(d0,⇡0). By Theorem 7, d0 is �-minimax over D.
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