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ABSTRACT. The well-known Shahidi’s conjecture says that tempered
L-packets have generic members. As a natural generalization of Shahidi’s
conjecture to non-tempered local Arthur packets, Jiang’s conjecture char-
acterizes the relation between the structure of local Arthur parameters
and the upper bound of wavefront sets of representations in local Arthur
packets. One of the main ingredients in Jiang’s conjecture is the Barbasch-
Vogan duality. In this paper, first we briefly survey the recent progress on
Jiang’s conjecture, then towards the general case of Jiang’s conjecture, we
explicitly describe the fibers of the Barbasch-Vogan duality for classical
groups.

1. INTRODUCTION

Let F' be a non-Archimedean local field. Let G,, = Spg,,, SO2p+1,50%,
be quasi-split classical groups, where « is a square class in F', and let G,, =
G, (F). Here, we identify a square class with the corresponding quadratic
character of the Weil group W via the local class field theory. Their Lang-
lands dual groups are

G (C) = S02,41(C), Spy,, (C), SO2, (C).
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Let LG, be the L-group of G,,,

Ly G, (C) when G, = Sp,,,, SO2p41,
" 1802,(C) x W when G,, = SOS,,.

In his fundamental work [2], Arthur introduced the local Arthur packets which
are finite sets of representations of G,,, parameterized by local Arthur param-
eters. Local Arthur parameters are defined as a direct sum of irreducible
representations

¥ : Wr x SLy(C) x SLy(C) — LG,

(11) w = @sz & S’H’Li X Sn,ia
=1

satisfying the following conditions:

(1) ¢;(Wp) is bounded and consists of semi-simple elements, and dim(¢;) =
ki;

(2) the restrictions of ¥ to the two copies of SLy(C) are analytic, S is
the k-dimensional irreducible representation of SLo(C), and

" 2n +1 h n= ,
Z klmlnl = N = Nn = nt whett G Sp2n @
p 2n when G,, = SO2y,+1, 5053,

Assuming the Ramanujan conjecture, Arthur ([2]) showed that these local
Arthur packets characterize the local components of square-integrable auto-
morphic representations. For 1 <i <r, let a; = k;m;, b; = n;. Let

BW) = [b(1117b327 ) bgr]
be a partition of N, where without loss of generality, we assume that b; >
by > -+ > b,. A local Arthur parameter 1) is called tempered or generic if for
all 1 <4 <r, b =1. Given a local Arthur parameter ¢ as in (1.1), the local
Arthur packet is denoted by ﬁ¢. An irreducible admissible representation m
of G,, is called of Arthur type if it lies in a local Arthur packet.

Given an irreducible representation 7 of GG,,, one important invariant is a
set n(m) which is defined to be all the F-rational nilpotent orbits O in the Lie
algebra g,, of G, such that the coefficient co(7) in the Harish-Chandra-Howe
local expansion of the character ©(m) of 7 is nonzero (see [9] and [21]). Let
n™ () be the subset of n(mw) consisting of maximal nilpotent orbits, under
the dominant order of nilpotent orbits. Let n(w) and n™(7) be the sets of
corresponding nilpotent orbits over F. Then n™(r) is called the wavefront
set of m. Note that nilpotent orbits O of G,, are parametrized by data (p, q),
where p is partition of 2n (or 2n+1 when G,, = SOg,,4+1) and g is certain non-
degenerate quadratic form ([26, Section 1.6]). Let p(m) be the set of partitions
corresponding to n(w). Under the dominant order of partitions, let p" () be
the maximal elements in p(7). Then p™ () can be identified exactly with the
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set n'" (), except for very even orbits of even special orthogonal groups in
which case it could be one-to-two (for those very even partitions, see §2.1), is
also called the wavefront set of 7.

For tempered L-packets, Shahidi has the following conjecture in general.

CONJECTURE 1.1 (Shahidi’s conjecture). For any quasi-split reductive
group G, tempered L-packets have generic members.

Conjecture 1.1 can be enhanced as follows.

CONJECTURE 1.2 (Enhanced Shahidi’s conjecture). For any quasi-split
reductive group G, local Arthur packets are tempered if and only if they have
generic members.

Jiang’s conjecture is a natural generalization of Shahidi’s conjectures
above from tempered local Arthur packets to non-tempered ones, on the char-
acterization of the set p”*(m) for 7 in local Arthur packets. Note that for a
generic representation , the set p”* () contains only regular nilpotent orbits.
The global version of this conjecture can be found in [14, Conjecture 4.2].

One of the main ingredients in Jiang’s conjecture is the Barbasch-Vogan
duality map dpy, from nilpotent orbits in G(C) to those in G(C), see Defi-
nition 2.5 for details in the cases of G = G,,. Note that nilpotent orbits in
G(C) are naturally identified with those in G(F) (see [23, 3, 20]).

CONJECTURE 1.3 (Jiang’s conjecture). Given any local Arthur parameter
Y of Gp, as in (1.1), the followings hold.

1. For any 7 € ﬁw, any partition p in p"(7) has the property that

p < dpv(p(¥)).
2. There exists 7 € L, such that dpv(p(¥)) € p™ (7).

There has been many recent progress towards Conjecture 1.3. In [19], the
first named author and the third named author studied Jiang’s conjecture
adapting the matching method of endoscopic transfer in [22] and the work of
[15, 17, 12, 13] to construct a particular element in each local Arthur packet.
We obtain results assuming a conjecture as follows.

Let 6 be the standard outer automorphism of G(N) = GL(N): g +— tg~!
and let §(N) = Int(J) o0 : g — JO(g)J ', where

0 1
== -1
J=J(N)=
(71)N7 1 0

Let 7y, be the representation of GLy(F') corresponding to ¢y, via local Lang-
lands correspondence, which is unitary and self-dual, and let 7, be its canon-

ical extension to the bitorsor (/}VLN(F) = GLy(F) x 6(N).
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Taking the character expansion for the representation 7, of the bitorsor

GLy(F) at
(1.2) 0. % 6(N) € GLy(F),

(see [4], also see [16, Theorem 3.2] and [25, Theorems 4.20, 4.23]), where

= Sén

IN, when Gn = SOQn+1,
L,
1 ,  when G, = Sp,,,
sg. = 1,
I,
, when G,, = SO3,,
_In

we can define the sets n™(7,) and p™(7y) similarly. Note that when G,, =
SO2p41, 505, the connected component of the stabilizer of e in GLy (F)is
én(F ) and n™(7y,) consists of F-rational nilpotent orbits in the Lie algebra of
G, (F). When G,, = Sp,,,, the connected component of the stabilizer of 0,
in (ign+1(F) is G, (F) x SO and n™(7y) consists of F-rational nilpotent
orbits in the Lie algebra of G, (F). Then we have the following conjecture
regarding the set p™(7y).

CONJECTURE 1.4. For any p € p™(7y),

)< {{(pw)*)@n}, when Gy, = SO2,11, 503,
=7 (@) ).}, when Gy = Spy,,

where (p(z/;)*)@n is the Gn-collapse of the partition p(1))* (transpose of p(v)),

which, is the largest Gy, -partition smaller than or equal to p(¥)*, (p(¥)*)~ is
decreasing the smallest part of p(v)* by 1 and ((p(1))*) ™ )a, is the Gy,-collapse

of (p(¥)*) ™
We also believe that the following stronger conjecture holds.

CONJECTURE 1.5.

pm(%w> _ {{(p(q/})*)én}, U/hen Gn = SOQn+1, SOS‘n,
{((B(d})*)i)(;n}z when Gp, = Spy,,

Conjectures 1.4 and 1.5 are inspired by the result of Konno in [16, The-
orem 4.1], where certain cases of these conjectures are confirmed. For more
comments on Conjectures 1.4 and 1.5, please see [19, Remark 1.4]. The main
results in [19] towards Jiang’s conjecture 1.3 can be summarized in the fol-
lowing theorem.
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THEOREM 1.6 ([19, Theorem 1.9]). Let ¢ be a local Arthur parameter as
in (1.1), with p(y) = [b7*,b52,...,b0%] and by > by > -+ > b.. Assume that

Conjecture 1.4 is true. Then we have the followings.
1. Conjecture 1.8 Part (1) is partially valid, i.e., for any partition p >

dpy (p(¥)) and any 7 € ﬁ¢, p ¢ pm(m).
2. Conjecture 1.2 is true.
3. Let

b a b a ar
p = |12 12 ]

and ny = L&%(LJ Then Conjecture 1.3 Part (2) holds for the
following cases.

(a) When G,, = Spy,,, and

(1.3) ([py: 2> (210)] )sp,, = (755 057 Dsp, -

In particular, if
(i) ar =b. =1 and b; are all even for 1 <i<r-—1,
(ii) or, b; are all odd,
then (1.3) holds and thus Conjecture 1.8 Part (2) is valid.
(b) When G,, =SOgap41, and

(14) ([817]217 (2710 + 1)]*)Sozn+1 = ([bcllla ceey bgr}—i_)sozwrl'

In particular, if
(i) b1 is even and ax = 1, and b; are all odd for 2 <i<r,
(ii) or, b; are all even,
then (1.4) holds and thus Conjecture 1.3 Part (2) is valid.
(¢) When G,, = SO3,,, and

(1.5) [p,:p,, (200 = 1),1]5%2 = (b7, ..., 07" ]")s0,,.-

If all b; are of the same parity, then (1.5) holds and thus Con-
jecture 1.3 Part (2) is valid. Here given any partition q of SOy,
¢>©2 is the SOq,-expansion of q, which is the smallest special
SOs,, -partition bigger than or equal to q.

Conjecture 1.4 plays an important role in all parts of Theorem 1.6, in
the matching process of endoscopic transfer as in [22]. In Conjecture 1.3
Part (1), what is missing is that for any partition p which is not related to

dpy(p(¥)) and any 7 € ﬁw, p ¢ p™(m). Unfortunately, our current method
can not rule out these partitions, due to the expectation that wavefront sets
of representations may not be singleton (see the example provided in [24]).
For more discussion on Conjectures 1.3, 1.4, and Theorem 1.6, we refer to [19,
Remark 1.10] and the discussions afterwards.



6 BAIYING LIU, CHI-HENG LO AND FREYDOON SHAHIDI

As another approach towards Jiang ’s conjecture, joint with Hazeltine
([11]), we proved the following very interesting reduction on Part (1) of Con-
jecture 1.3, by an inductive process on the L-data for the Aubert-Zelevinsky
dual of representations in local Arthur packets.

THEOREM 1.7 ([11, Theorem 1.6]). The following statements are equiva-
lent.

1. Part (1) of Conjecture 1.3 holds for any local Arthur parameter.
2. Part (1) of Conjecture 1.3 holds for any anti-tempered local Arthur
parameter, i.e., the dual of a tempered local Arthur parameter.

We remark that recent work of Ciubotaru-Mason-Brown-Okada ([6, 7, 8])
and Waldspurger ([27]), combining the closure relation result of [10], imply
that Jiang’s conjecture 1.3 holds for any local Arthur parameter ¥ of Sp,,, (F')
or split SOg,41(F) which is trivial on Wg. For more discussion, see [11,
Section 7).

As we can see above, one of the main ingredients in Jiang’s conjecture 1.3
is the Barbasch-Vogan duality. Towards the general case of Jiang’s conjecture,
in this paper, we explicitly describe the fibers of the Barbasch-Vogan duality
for classical groups in §3 as follows.

THEOREM 1.8 (Theorem 3.4). Let (X, X') € {(B,C),(C,B),(D,D)} and
p be a partition of type X' in the image of the Barbasch-Vogan duality. Write

dpv(p) =:p=[p",....07""], and define a subset I C {1,...,7} type by type
as follows. (We set pry1 =0 and my41 =1.)

(i) When X = B,
. Pi+1=Pi—2 OT Pit2=pPi—2,
I:= {1 <:<r ’ pi is odd, and m7+25;} m;p; is odd.} :

(ii) When X =C,

I::{lgigr

Pit1=Pi—2 0T Piy2=pi—2,
pi is even, and miJrZ;;} mj(p;+1) is even.

(iii) When X = D,

I::{lgigr

Pi+1=Pi—2 OT piy2=pi—2,
pi s odd, and mr‘rZ;_% mjp; is even.

For any subset J C I, we define P, from p by reducing the multiplicity of p;
and p; — 2 by 1 and increasing the multiplicity of p; — 1 by 2 for each j € J.
Then the following map is a bijection of partially ordered sets

2',2) — (dgy(p),>)
Jr—p,

where (21, >) is the power set of I with the partial ordering defined by J, > Jo
if J1 C Js.
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The result in this paper facilitates the understanding of the structure of
the local Arthur packets and is expected to play an important role towards the
general case of Jiang’s conjecture and many other problems related to local
Arthur packets. As an example, in [18], the first and second named authors
have applied the description of fibers of Barbasch-Vogan duality to prove the
weak local Arthur packets conjecture proposed by Ciubotaru-Mason-Brown-
Okada ([7, Conjecture 3.1.2]).

The following is the structure of this paper. In §2, we give some prelim-
inaries on partitions and nilpotent orbits of G,,(C) and the Barbasch-Vogan
duality. In §3, we describe the fibers of the Barbasch-Vogan duality and prove
our main result (Theorem 1.8).

2. PRELIMINARIES

In this section, we give some preliminaries on partitions and nilpotent
orbits of G,,(C) and the Barbasch-Vogan duality.

2.1. Partitions and nilpotent orbits of G, (C). In this subsection, we recall
the basic notation for partitions and the correspondence between nilpotent
orbits of g,,(C) and partitions, following [5].

First, we denote the set of partitions of n by P(n). We express a partition
p € P(n) in one of the following forms:

(i) p = [p1,...,pn], such that p;’s are non-increasing non-negative integers
and vazl pi = n. We denote the the length of p by I(p) = {1 <i <
N | p; > 0}].

(ii) p=[p*,...,pN'], such that p;’s are decreasing non-negatives integers

and Zfil rip; = n. We assume r; > 0 unless specified.

Also, we denote [p| =n if p € P(n).

Next, we recall the definitions for partitions of type B, C' and D.

DEFINITION 2.1. For e € {£1}, we define

Pe(n) =A{[pi*,....0¥] € P(n) | r; is even for all p; with (—1)P* = €}.
Then we say

1. p € P(n) is of type B if n is odd and p € Pi(n).

2. p € P(n) is of type C if n is even and p € P_1(n).

3. p € P(n) is of type D if n is even and p € Pi(n).
We denote Px(n) the set of partitions of n of type X.

Denote the set of nilpotent orbits of SO2,41(C), Sp,, (C) and SO4,(C)
by Ng(2n + 1), No(2n) and Np(2n) respectively. Also, we denote

Np = JNB@n+1), No =] Ne@n), Np = | Np(2n).

n>0 n>0 n>0
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For (X,N) € {(B,2n+1),(C,2n), (D, 2n)}, there is a surjection

Nx(N) — PX(]V)7
@) Do

The fiber of p = [pi™*,...,p/*"] € Px(NN) under this map is a singleton, which
we denote by {O)}, except when p is “very even”; i.e., p is of type D and p;’s
are all even. When p is very even, the fiber consists of two nilpotent orbits,
which we denote by (9; and Oél .

The surjection O — Py carries the closure ordering on Ny (N ) to the
dominance ordering on Px (N) in the sense that O > O" if and only if p,, >
Poy- Note that when p is very even, (9{) and (9{,1 are not comparable.

2.2. Barbasch-Vogan duality. In this subsection, following [23, 20, 3, 1], we
introduce several operations on the set of partitions, and then use them to
describe the definition of the Barbasch-Vogan duality on the level of partitions
and nilpotent orbits.
First, we need the following operations to construct or decompose parti-
tions.
DEFINITION 2.2. Suppose p € P(n1) and q € P(ns).
(i) Write p = [p}*,...,pN'] and ¢ = [pT*,...,p}}'], where we allow r; = 0
or s; =0. Then we define
pUg= [P, pR TN € P(ng + na).
(ii) Write p = [p1,...,pn], we define

BJr = [pl + 17]727 o 7pN] € P(nl + 1);
p- =1Ip1,..-.pn—1,pn — 1] € P(ny — 1).
The following notation is useful in the computation.

DEFINITION 2.3. For p = [p1,...,pn] € P(n) and b € Z, we define

P, = [p1,-- ., pi]

where i = max{l < j < N | p; > b}. We define P, similarly for e € {=,<
, <, >} so that p = P, Upo, =p , Up_, Up_,, et

We recall the definition of transpose (or conjugation) of partitions.

DEFINITION 2.4. Forp = [p1,...,pn]| € P(n), we define p* = [p],...,p/] €
P(n) by

pi =i | pj =i}
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It is easy to see that for any two partitions p, ¢ of n, (pU ¢)* = p* + ¢*.

Next, we recall the definition of collapse. Let n be a positive integer and
let X = B ifnis odd and X € {C, D} if n is even. For any p € P(n), there
exists a unique maximal partition p,. € P(n) of type X such that Py <P
We denote Py the X -collapse of p.

The following lemma, which is a special case of [1, Lemma 3.1], gives an
inductive way to compute collapse. Note that P, is always superior than
(B<w)+ in the notation there. Following the notation in [1], we often omit
the parentheses between the superscript and subscript. For example, we shall
write 13>LD+B** instead of (((((p.,)p)")r)7)"

LEMMA 2.1. Let x be a positive integer and p be a partition. Then for
X € {B,C, D}, the X-collapse (if defined) of p is given by the following table.

l(p_ ) even lp_ ) odd

lp_,| even p_,| odd lp_,| even lp_,| odd

] - + - +
Pp | PuypHPern | Pow DHP<, B |Psy BHP<. b | PownYPeup

. - + - +
BC' B>I,C|_|BSI,C B>m cuﬂgm e} B>I,C|_|BS$,C B>m Cuggr e}

. - + - +
Pp- B>m,D|—|BSz,D P, DHBSJ/’ D | Pse BUBS:L’ B B>IJ3|—|BS%B

Finally, we recall the definition of Barbasch-Vogan duality maps for par-
titions of type X.

DEFINITION 2.5. (i) Forp € Pp(2n+1), we define dpv(p) :==p~ ",
which is in Pc(2n).
(ii) For p € Pc(2n), we define dpy (p) := p* ,*, which is in Pp(2n + 1).
(iii) For p € Pp(2n), we define dpy (p) := p* ,, which is in Pp(2n).

The Barbasch-Vogan duality map can be extended to the level of nilpotent
orbits. If p € Pp(2n) is very even, then define

Ay (O1) (95 if n is even,

BV (’)é[ if n is odd.
Otherwise, define dpv(Op) = Ouyy(p)- See [5, Corollary 6.3.5]. Also see
Proposition 3.7 (a) below for the well-definedness, i.e., dpy(p) is very even
only if p is also very even. A nilpotent orbit or a partition is special if it is
in the image of the Barbasch-Vogan duality map. Sometimes, to make things
more clear, we may use dpy,(x,x/) to denote the Barbasch-Vogan duality map
sending partitions of type X to partitions of type X'.
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3. FIBERS OF THE BARBASCH-VOGAN DUALITY

Let (X,X') € {(B,C),(C,B),(D,D)}. In this section, we study the
structure of the sets of partitions

dgy (p) :=={p € Px | dsv(p) = p},

for a special partition p € Px/. We give a explicit description of dg%/(g) in
Theorem 3.4 and relate it with

dpy (0') :={0 € Nx | dpv(0) = O}

for any special O’ € Ny in Proposition 3.7.

For convenience, we introduce the following notation. Recall that when
we write a partition p as [p1, ..., pr], we require that p; is non-increasing. Set
p: = 0 for any ¢ > r throughout this section.

DEFINITION 3.1. Let n be a positive integer and p = [p1,...,pr],q =
[q1, - .-, qs] be two arbitrary partitions in P(n).

1. If p # q, we define x(p,q) to be the unique index such that p; = ¢;
for1<i<x and py # qo. If p = q, then we set z(p,q) = l(p) + 1.
Occasionally, we write x = x(p,&) if there is no confugi(;n. B

2. We say p = q if paip,q) = q$(p,;),7This gives a total order on P(n).

First, we study the relation between two partitions p = [p1,...,p;],q =
[q1,...,qs] such that dpy(p) = dpv(g). Assuming p = ¢ and denote x =

x(p, q) for short, in the following lemma, we show that Psp 1 U [p — 2] and
45, 4 are closely related. Moreover, we construct partition gﬂ > q (resp.
Bb < p) in the same fiber of Barbasch-Vogan duality map, which is “closer”
to p (resp. ¢), in the sense that if p # g, then

2(p,¢*) > z(p,q), (", q) > =(p. q).

LEMMA 3.1. Suppose p = [p1,...,p:],q4 = [q1,-..,4qs] are two partitions
in Px(n) where X € {B,C, D} such that

(i) p=qandp#q.
(i) dv(p) = dBv(q)-

We denote x = x(p,q) for short and define
y:=min({l1 <i<r|p <p,—1}U{r+1}).

Then the followings hold. (We set po =0 = qg for o> 1 and § > s.)
(a) py = ps — 2, which is odd if X € {B,D} and even if X = C.
(b) @z =pa =1, - =p: forx <2<y, qy =py + 1, and g1 < py.



FIBERS OF BARBASCH-VOGAN DUALITY 11

(¢) Consider partitions
#

g = [pl,...7py,qy+1,-~-7q3] 2@’
P

= [qlv"'7qy7py+17"'»pr] <

(s~

The partitions gn and Bb are of type X, and

dpv(p) = dBV(Bb) =dpv(¢") = dpv(q).

PrOOF. We prove the lemma for type B,C and D separately. In the
computation of collapse of partitions below, we frequently apply Lemma 2.1,
while sometimes the detail is omitted in the argument.

Type B: For a partition p of type B, its Barbasch-Vogan dual is given
by

*

dBV(E) = Eic .

Since taking transpose of partitions is a bijection, Assumption (ii) is equivalent
to

(3.6) B_C = g_c.

First, we deal with the case that |B>p1| is even. By Lemma 2.1, we may
replace p and g with p <p. and ¢ <p, respectively, and assume p, = p;. After
the replacement, (3.6) still holds, and p and q are still of type B. Note that
p1 > 1 by Assumption (i). a B

Since ¢~ , contains at most  — 1 copies of pq, in order that (3.6) holds,
p1 and x must be both odd and the multiplicity of p; in p must be exactly x.
Then we may write ;

p=1[p1 (p1 = 1)Uy ).
Note that p, < p1 —1 by the definition of y, and hence [py,...,p,] = Pepy
Since p is of type B and p; — 1 is even, y — x + 1, the multiplicity of p; — 1
in p, must be even. Under these parity conditions, we have
Q_C = [pfila (pl - 1)y—a:] U [p/y5p;+17 .- ']’

where()gp;§py+1§p1—land0§p;+1 <py < p1 — 1. Now we write

a=1[pi (=DM ua_,

for some non-negative integer /. Since |g| is odd, we have |g<p171| > 1 and
hence

=P =DM ule, )
Applying Lemma 2.1 again,

o=k =DM U, )
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Note that (g<p171)_ > (g<p171)_c, and hence any piece of (g@rl)_c is
smaller than p; — 1. Therefore, comparing the multiplicity of p; — 1 in both
sides of (3.6), we must have 2/ =y —x + 1 and p; = p, +1 = p; — 1. This
verifies both Parts (a) and (b).

For Part (c), note that [g,41,...,¢s] = ¢ _,- We have

(@) o=t (1 = D" U [P = 2,qy41, -, 467,
= [ (o1 = D) U~ 1] U, )
i (1 — 1)V " U [pr — 1] U 4., 1) ¢

= gic.
Similarly, since [py,Dy+1,...,Pr] = Pep o WO have
P o= (pf, (e = YU (Pep,—2) e

= (Lp%? (pl - 1)y7a:727p1 - 2])0 U (ng1_2)+7c
=i (o = DY U ([ = YU [Py, ),
= [pilvilﬂ (p1— 1)y—7;+1] U ([py+17 s 7p7‘]>_c
= ([p;f_la (pl - 1)y7:v+1] U [py+17 v 7p7"])7C
— (P

This completes the proof of the case that |]3>p“| is even.

Next, we deal with the case that ‘B>p | is odd. Denote p := P, and
q:= qep s which are of type D. Lemma 2.1 implies o

(3.7 P =4
Rewrite
p=I[p1,Pev1,---], 4= [P}

where p,4+1 < p1, and denote
by =UE" zp)s Le = U@ )zp)

for short. Note that (3.7) implies that £, = .

If py is even, then ¢, < x and ¢, > =, where ¢, > z only if py41 < pi1.
Thus ¢, = ¢, implies that p,11 < p; must hold, but then one of p and q is
not of type D, a contradiction. Therefore, p; must be odd. Then Eq <z-1
and ¢, > x —1, where £, = x — 1 only if p,+1 < p; and  —1 is odd. Thus we
may rewrite

B =[] (o~ DV U oy,
i=i L - )Mo,
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Note that since [g| is even, |§<p171| > 1, and hence

P =l Lt - DM U@, )

Therefore,

§+7C =[pm+ 1’pT72a (pr— 1)U [p;;vp;+1a R

§+7 = [Pl + 17p:f72= (pl - 1)2l] - (?j<p ,1)_07
whereO<p <py+1<p1—1andpy+1<py<p1—1 As p is of type D,
y — x is odd. Therefore, comparing the multlphclty of p; — 1 in both sides of
(3.7), we must have 2l =y —x + 1 and pj, = p, = p1 — 1. This verifies both
Parts (a) and (b).

For Part (c), we consider
7= () <p. =7, (01 = U Dy gy, -4

=1, (e — D" -2l

and
D= (0)<p, =07 (01 = DY U Dy
: Sh+— gt \+—
Then by Lemma 2.1, it suffices to show that (¢*) c=4 pand (p)T =
p+_c. Indeed,
@) o=+ 1L (=) ) T U — UG, ) )
=[P+ 1007 (= DU - U@, )

Similarly, since [py, Dy+1,---,Pr] = §<p172, we have

§+7C - ([pl + 17pT717 (pl - 1)y—x—1])—c U (E§P172)+_C
= [Pl + 1,]9915727 (pl - 1)y_w} U ([Pl - 1] U [perlv s apr}_)c
= [p1+ Loy 2o U (g oe))
= ([pl + 1ap31l:_27p:[1!_£+1] U [py-{-la o 7p7"])7c
— (-
This completes the proof of the lemma for type B.
Type C: For a partition p of type C, its Barbasch-Vogan dual is given
by
dpy(p) = P+B

Thus Assumption (ii) is equivalent to

(3.8) B+B = QJFB
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For simplicity, for a partition p, we denote

_ Jp, iflplisodd,
o p, if [p| is even.

Then Lemma 2.1 in this case can be rephrased as

_ {<v>z>o Uleg,)to  1Hllb.,) o, | s 0dd

Yo (E>$)o U (Egz)o if Z(E>I) + |E>I\ is even.
First, we deal with the case that l(g>pw) + |B>p1| is odd. In this case,
P, is non-empty, and (pT)>p.) +(1)>p, | is even. Then we may replace
p and g with p <p. and ¢ <ps respectively, and assume p; = p,. After the

replacement, (3.8) becomes

(3.9) Po =4y
and p and q are still of type C.
Since q,, contains at most  —1 copies of p1, in order that (3.9) holds, we

must have py is even, x is odd and p,4+1 < p1. Therefore, we may write

b= [p7, (p1 — 1)y_m_1] U [py7 D
Note that y —x — 1 is even since p is of type C'. These parity conditions give

Py =[5 (0 = 1)V U [P Py,
where 0 < p; <py+1<p—1,and p;,+1 < py < p1 — 1. On the other hand,
write
a=1[pi (m-D"ua_,
Then we have
4o =77 (=DM U e, )
Comparing the multiplicity of p; — 1 in both sides of (3.9), we obtain 2] =
y—x+1and p, = p, +1 = p; — 1. This verifies both Parts (a) and (b) in
this case.
For Part (c), ¢* and p” are of the form

el Y L VI IR I

’ = [p‘f717 (pl - 1)y—z+1] U [py+1? e 7p7‘]7

after the replacement. It suffices to show that (gﬁ)o =g, and )
Indeed,

(ST

o~ Po

(@), = (pfs (=), Ul — 21U 1, )
=t (= 1) U pr — 1] U (4., 1o

:go'
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Similarly,

po = (f, (1 = )Y )7 U ([pr = 2] U [y, - 0e]) T
= [pi ™ (= 1) U [ = U ([pyss - p0]),
= (Ip7 ™ (o1 = D)) g U [Py, 20]),
=),
This completes the proof of the case that I(p_ ) + \p \ is odd.

Next, we deal with the case that l( ) + \p \ 15 even. If p.,, isnon-

empty, then I((pT)>p,) +|(pT)>p, | is odd and hence we may replace pand ¢
with P, and q, respectively and assume p; = p,. After the replacement,

(3.8) stﬂl holds, and p, q are still of type C.
Write

p =, pet1s-- 1 a =[P ey,
where p,4+1 < p1 and ¢, < p1. Let
by = l((ﬂ+o)2p1)a by = l((g+o)2p1)~

Note that (3.8) implies £, = .

If py is odd, then ¢, < x and ¢, > x, where £, = x only if p,11 < p1.
Thus ¢, = ¢, implies that p,41 < p1, but then one of p, ¢ is not of type C, a
contradiction. Therefore, p; must be even. Then ¢, <z —1and b >x—1,
where ¢, = x — 1 only if py41 < p; and z — 1 is odd. Thus we may rewrite

b= [pfa(pl - 1)y7x71} [pya"'va]a
_ 21
=i - D" ue_, .
Therefore,
pt,=[pi+ 1,072 (0 — DY U D Py - s
o=+ Lpi (- )P U, )

WhereO<py<py+1<p1—1andpy+1 <py <p1—1. Aspis of type C,
y1 — x1 — 1 is even, and hence comparlng the multiplicity of p; — 1 in both
sides of (3.8) gives 2/ =y —x + 1 and pj, = p, +1 = p; — 1. This verifies both
Parts (a) and (b).

For Part (c), it suffices to show (gﬁﬁo =q",and (E’)*O =p* . Indeed,

(gﬁ)+o = ([pl + 17p916717 (p1 — 1)y—x—1])—0 U ([pl - 2] l_lg<p171)+o
= [pl + 17p916727 (pl - 1)y_w} U [pl - 1] U (gpl—l)O

= g-‘ro.
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Similarly,

(o1 + Lpi Y (o = D))" U (o = 2] U [Py, o) T,
1+ 1,072, (01 = DY U [pr = YU [Py, -0,
([pr + 1,072 (o1 = DY) o U ([pys1s- - 20]),
_ (Bb)-l-o.
This completes the proof of the lemma for type C.

Type D: For a partition p of type D, its Barbasch-Vogan dual is given
by

Py =

dpv(p) =9, =p"" "
where the last equality holds if p is of type D (see [1, Lemma 3.3]). Thus
Assumption (ii) is equivalent to
(3.10) p+*c = f*c.

First, we deal with the case that |}2>p | is odd. In this case, both P,
and p <p, Are non-empty, and hence |(pt7)sp,| is even. Then if we denote
p= p;p and q := [ which are of type B, then (3.10) becomes

(3.11) P =1 o

Therefore, Parts (a) and (b) in this case follow from Parts (a) and (b) for type
B, which are already established above. Moreover, if we define ¢* := (") <p,

and p® := (p’)<,,, then Part (c) holds if (g])*c =q pand ()", =D o
which are also verified in Part (c) for type B. This completes the proof of
this case.

Next, we deal with the case that |]3>px| is even. If p.,, is non-empty,
then |(p™~)>p,| is odd, and hence we may replace p and ¢ with P, and
qe,. respectively and assume p; = p,. After the replacement, (3‘10) still
holds, and p, ¢ are still of type D. Then Parts (a), (b) and (c¢) are already
verified in the second case of the proof of type B, where (3.7) holds. This
completes the proof of the lemma. ]

In the following example, we denote gﬁ = gﬁ (p,q) and p* = Bb (p,q) to keep
track of the pair (p,q) where p = ¢.

EXAMPLE 3.2. Let p = [72,52,3%,12], a special partition of type D. Con-
sider the following partitions in dg%/(p):

p1=[7%,5,4%,2%.1], pp = [7,6°,5,3,2%,1], p3 = [7,6%,4°,3,1%,
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pa = ¢ (p1,p2) = [7°,5%,3,2°, 1],

ps == ¢ (p1,ps) = [7°,5,4°,3,17),

pe = ¢*(p2.p3) = [7,62,5,3%,17,

pr = (pa,ps) = [1%,5%,3%,1%) = ¢*(ps, po) = ¢*(pa, po),
ps =1 (p1p2) = [7,6%,4%,2%,1) = p’(p1, ps) = P’ (p2. ps)-

Indeed, dgy,(p) = {p1,...,ps}. We visualize the dominance ordering in the
following picture.
b7
Pa Ds Ds
P P2 ps
ps

In the above example, there exists a unique maximal/minimal element in
dg%, (p). This is not a coincidence as shown in the following corollary.

COROLLARY 3.3. Let (X,X') € {(B,C),(C,B),(D,D)} and take a p €
Px: such that dé%/(g) is non-empty. Here dpy = dpy,x,x7). Then the
followings hold.

(a) For arbitrary py,ps € dgy,(p), there exist ¢, q* € dgi,(p) such that

¢ >p, ¢ <pi
fori=1,2.

(b) The set dpy (p) has a unique mazimal element and a unique minimal
element under the dominance order. Moreover, the unique mazimal

element is exactly dpy,x/ x)(p).
PRrROOF. For Part (a), we apply induction on

t(p1, p2) := max(l(py),1(p2)) + 1 — x(p1, p2) > 0.
Note that ¢ = 0 if and only if p; = pa, where the conclusion trivially holds.
Suppose that ¢(pi,p2) = k > 0 and that the conclusion is verified for
every pair (p1/,p2’) € dpy,(p) X dpy-(p) with ¢(p1/, p2’) < k. We may assume
p1 = p2 so that pi” and po* is defined in Lemma 3.1(c). Then by the definition
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of p1” and po! there, we have strict inequality
Dy P2

z(p1,p2*) > 2(p1, p2), 2(p1”, p2) > 2(p1, p2),
and
max(I(p1), l(pz2)) = max(I(p1”),1(p2)) = max(l(py),1(p2?)).

Therefore, we have
t(p1, p2*) < t(p1,p2), t(p1”,pa) < t(p1,p2)-
Thus by the induction hypothesis, there exist QT and f such that

q" >p, ¢t <p’ <pi,
" zpf2pe g <pe
This completes the proof of Part (a).
For Part (b), the uniqueness of the maximal and minimal element follows
from Part (a). For the second part, we recall that for any partition p of type
X

(i) dBV,(X7X’)(B) = dBV,(X7X') o dBV,(XQX) © dBM(X,X’)(B): and
(i) dpv,x',x) o dpv,x,x"(p) > p-
See [3, Proposition A2, Corollary A3]. Let p € dgy,(p). By (i),

p= dBV,(X,X')(B) = dBV,(X,X’)odBV,(X’,X)OdBV,(X7X’)(B) = dBV,(X7X’)(dBV,(X’,X))(E))7
and hence dpy,(x/ x)(p) is in dgy,(p). By (ii),

dpv(p) = dpv,(x,x) © dpv,(x,x)(p) > .
This completes the proof of the corollary. 0

Next, given a partition p € Px, where X € {B,C, D}, we describe the
necessary and sufficient conditions on ¢ such that p > ¢ and dpv (p) = dpv(q)
in the following two lemmas.

LEMMA 3.2. Let X € {B,C, D}. Supposep = [p1,...,0r],q = [q1,.--,qs] €
Px(n) satisfy that p > q and dv(p) = dpy(q). Then there exists a sequence
of pair of positive integers {(z;, ;) Y%, where
(a) 1<a; <y <r+1,
(b) Py; =Pgs41 +1="---=py,_1+1=p,, +2, where we set p,4+1 =0,
(c) the sequence (pzy,---,Dxz. ) 1S strictly decreasing,

such that q can be obtained from p by replacing {pz,,py, }yi=1 in p with {p,, —

17pyi + 1}?:1'
PRrOOF. Note that p > ¢ implies that p = ¢. We fix p := dpv(p), and
apply induction on
tp,@) =1Up) +1—2z(p.q).
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Note that under the assumption that p > ¢, t(p,q) = 0 if and only if p = ¢,
where the conclusion holds trivially.
Suppose that ¢(p,q) = k > 0 and that the conclusion is verified for every

pair (p',q') € dpv (p) x dgy(p) with p' > ¢ and t(p',¢') < k. Recall that in
Lemma 3.1, we define 2 = 2(p,q) <y < r + 1 and define
lq

Bb = 17"'7qy7py+17"'7p?“]a
which is also in djy,(p) by Part (c) of that Lemma. By definition, we have

p>p >q,
and
z(p’, q) > z(p. q).

Note that Qb is obtained from p by replacing p,,p, in p with p, —1,p, + 1.

If I(p’) > I(p), then it is not hard to see from the construction that
y =1+ 1 and Qb = ¢, and hence the conclusion holds with o = 1. If
l(p°) = I(p), then t(p’, q) < t(p, q), and hence the induction hypothesis implies
that there exist {(z4,y;)}{_, such that ¢ can be obtained from Bb by replacing
{Pz;s Dy }5o In Bb with {p,, — 1,p,, + 1}{_,. Note that if & > 2, then

Dz, Spy—i—l =P — 2 < pg.

Therefore, the conclusion holds with (x1,y1) = (z,y). This completes the
proof of the lemma. ]

LemmA 3.3. Let X € {B,C,D}. Suppose p = [p1,...,p;] € Px(n),
and {(x:,y:) Y%, is a sequence of pairs of integers satisfies Conditions (a),(b)
and (c) in Lemma 3.2. If we define q by replacing {pz,,py, }i=1 in p with
{Pe; = 1,py, +1}52,, then dpy (p) = dpv(q) if and only if the following holds
for all 1 <i < «a, where we denote m; the multiplicity of pg, in p.

(i) If X = B, then py, is odd and m; + |B>p,,.| is odd.

(ii) If X = C, then p,, is even and m; + Z(B>; )+ |B>p | s even.

z

(iii) If X = D, then py; is odd and m; + |p_ | is even.

PrROOF. For 1 < j < a, we denote q by replacing {]9351.71)%.}{:1 in p

with {p,, — 1,py, + 1}{21. Also, we set q, =D Then it suffices to show the
conditions are equivalent to dBV(gj) =dpv (ng) for j =0,...,a — 1. Note
that Conditions (a), (b) and (c) in Lemma 3.2 imply that for 1 <i < «,

P, s ey, ) =g )>p.,)-

| = |(ﬂi_1)>pmi

Therefore, we may assume o = 1.
The necessary direction is already shown in the proof of Lemma 3.1. Also,
the computation of the sufficient direction is identical to the verification of
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the equality dpy (p°) = dpv (p) in the proof of Lemma 3.1(c), which we omit.
This completes the proof of the lemma. 0

Finally, we give a complete description of the set d,(p) using its unique
maximal element dgy (p).

THEOREM 3.4. Let (X, X') € {(B,C),(C,B),(D,D)} and p be a special
partition of type X'. Write dgy (p) =: p = [p{"*,...,p]""], and define a subset

I C{1,...,r} type by type as follows. (We set p,r1 =0 and myp1 =1.)
(i) When X = B,

pi s odd, and erZ;;i m;p; is odd.

I::{lgigr

Pi+1=Ppi—2 OT piy2=pi—2, }
(ii) When X =C,

= {1 <i<r ‘
(iii) When X = D,

Pi+1=pi—2 OT piy2=pi—2,
pi is even, and erZ;;} mj(p;+1) is even.

I::{lgigr

Pi41=Pi—2 OT Piy2=pi—2,
pi is odd, and m7+2:’7’;i m;p; is even.

For any subset J C I, we define P, from p by reducing the multiplicity of p;
and p; — 2 by 1 and increasing the multiplicity of p; — 1 by 2 for each j € J.

Then the following map is a bijection of partially ordered sets

(2,2) — (dpv(p).>)
Jr—p,,

where (21, >) is the power set of I with the partial ordering defined by J; > Ja
if J1 C Js.

Proor. This follows directly by applying Lemmas 3.2 and 3.3 to p =
dpv(p), the unique maximal element in dyy(p). |

We remark that Case (iii) in above Theorem can be viewed as the inverse of
[5, Lemma 6.3.9].

ExampLE 3.5. We explain Theorem 3.4 on FEzample 3.2. We have
dpv(p) = [7%,5%,3%,1%] =: p. Then I ={1,2,3}, and p;, =P, where

Jl = {2a3}7 JQ = {133}7 J3 = {172}7 ']4 = {3}7
Js = {2}, Jo = {1}, J7 =0, Js = {1,2,3}.
The following corollary is a useful criterion to argue dpy (p) # dpv (q).

COROLLARY 3.6. Suppose p = [p1,...,pr] > q = [q1,...,qs] are of the
same type and dpv(p) = dpv(q). Then for any 1 <t <r, we have

t t
OSZPi—Zqz‘Sl-
i=1 i=1
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PROOF. This follows from the explicit description in Theorem 3.4. ]

Finally, for (X,X’) € {(B,C),(C,B),(D,D)} and a special 0" € Nx,
we relate dgy,(0) with d;%/@o,) in the following proposition.

PRrOPOSITION 3.7. Let (X, X') € {(B,C),(C,B),(D,D)}. For each spe-
cial O’ € Nx:, we have the following.
(a) Ifp = P, is not very even of type D, then any p € dg%, (p) is not very
even, and
dpy(0") ={0y | p € dpy(p)}-
(b) Ifp:= P, is very even of type D, then

dpy (0') = {dpv (O},
which is a singleton.

PROOF. It suffices to show that if p is very even of type D, then d]}%,(g) =

{dpv(p)}. Indeed, it is not hard to see that p* is also very even of type D.
Therefore, we may write

dBV(E) = E* =DP= [p’i‘ﬂq,. .. ap;nr]a
where p; and m; are all even. Then the index set I defined in Theorem 3.4 is
the empty set, and hence dg%,(g*) is a singleton. This completes the proof of
the proposition. 0
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