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Control of Movement

A table tennis serve versus rally hit elicits differential hemispheric
electrocortical power fluctuations
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Abstract

Human visuomotor control requires coordinated interhemispheric interactions to exploit the brain’s functional lateralization. In
right-handed individuals, the left hemisphere (right arm) is better for dynamic control and the right hemisphere (left arm) is better
for impedance control. Table tennis is a game that requires precise movements of the paddle, whole body coordination, and
cognitive engagement, providing an ecologically valid way to study visuomotor integration. The sport has many different types
of strokes (e.g., serve, return, and rally shots), which should provide unique cortical dynamics given differences in the sensorimo-
tor demands. The goal of this study was to determine the hemispheric specialization of table tennis serving – a sequential, self-
paced, bimanual maneuver. We used time-frequency analysis, event-related potentials, and functional connectivity measures of
source-localized electrocortical clusters and compared serves with other types of shots, which varied in the types of movement
required, attentional focus, and other task demands. We found greater alpha (8–12 Hz) and beta (13–30 Hz) power in the right
sensorimotor cortex than in the left sensorimotor cortex, and we found a greater magnitude of spectral power fluctuations in the
right sensorimotor cortex for serve hits than return or rally hits, in all right-handed participants. Surprisingly, we did not find a dif-
ference in interhemispheric functional connectivity between a table tennis serve and return or rally hits, even though a serve
could arguably be a more complex maneuver. Studying real-world brain dynamics of table tennis provides insight into bilateral
sensorimotor integration.

NEW & NOTEWORTHY We found different spectral power fluctuations in the left and right sensorimotor cortices during table
tennis serves, returns, and rallies. Our findings contribute to the basic science understanding of hemispheric specialization in a
real-world context.

electroencephalography; interhemispheric interaction; table tennis

INTRODUCTION

Hemispheric specialization has a long history of research
and is thought to be an important factor in the organization
and function of the brain (1–5). In visuomotor control, the
left hemisphere is associated with higher-order aspects of
coordination such as skilled movement and language (6–8),
whereas the right hemisphere is involved in global features
of visuospatial processing (9, 10). Effective interhemispheric
integration is vital for coordinated, everydaymovements.

Traditional neuroimaging studies have been limited to
simple laboratory-based tasks due to technological con-
straints. Functional magnetic resonance imaging (fMRI)

and positron emission tomography (PET) scans require
participants to remain stationary inside big machines.
Electroencephalography (EEG) offers high temporal reso-
lution, on the scale of milliseconds, and easier portability
than fMRI or PET, but EEG has traditionally been con-
strained to stationary tasks due to movement artifacts.
However, recent advances in hardware and software have
enabled mobile EEG studies (11–13). A previous analysis
from our laboratory demonstrated the feasibility of re-
cording high-fidelity EEG data during table tennis (14).

A table tennis serve is a complex, sequential, self-paced
movement that could be used to study the visuomotor con-
trol of a real-world, complex maneuver (15). Right-handed
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players toss the ball with their left hand and hit the ball with
a paddle in their right hand. A successful serve requires
bimanual coordination and likely activates bilateral sensori-
motor networks in the brain (16). The serve is the only shot
that uses both hands to manipulate the ball and paddle,
unlike return and rally hits that use one hand to intercept an
incoming ball.

In this study, we sought to determine the hemispheric
specialization for an ecologically valid, sequential, bimanual
task (e.g., a table tennis serve). Our aim was to investigate
whether the left or right sensorimotor cortices showed a
greater magnitude of spectral power fluctuations during a ta-
ble tennis serve. To do this, we performed time-frequency
analysis on source-localized EEG sensorimotor clusters from
participants playing table tennis. As a means of contrast, we
compared serve hits to other types of table tennis hits such
as the return of serve and rally hits. Each type of shot varied
in the movements required, attentional focus, and other task
demands – all of which have been shown to affect hemi-
spheric bias (2).

We hypothesized that serve hits would show a greater
magnitude of spectral power fluctuations across the entire
swing in the right sensorimotor cortex than return or rally
hits. Event-related desynchronization (ERD) often occurs
during motor planning and execution, and event-related
synchronization (ERS) typically follows movement termina-
tion (i.e., the beta rebound) (17, 18). Dynamic changes in
power indicate an increased involvement of that brain area
for the experimental task (19). We believed that serve hits
would require more involvement of the right sensorimotor
cortex because the serve is the only shot in table tennis that
uses the left hand to toss the ball (for right-handed partici-
pants). Given that the brain controls movement (largely)
contralaterally (20), we predicted that serving the ball would
show an increased involvement of the right sensorimotor
cortex to control the left-handed toss.

We also hypothesized that functional connectivity would
be higher between the left and right hemispheres for a serve
than for rally or return hits. Asynchronous, temporally coor-
dinated bimanual maneuvers require more bilateral brain
activation, less interhemispheric inhibition, and more com-
munication between the two hemispheres than unimanual
maneuvers in healthy young adults (21–28). Previous studies
used simple finger-tapping tasks to study bimanual coordi-
nation (26, 29, 30). However, everyday life is filled with
bimanual activities that are more complex than finger move-
ments. Studying the visuomotor control of table tennis serve
could provide valuable insights into the neural mechanisms
underlying the execution and control of real-world, self-
paced movements. This information could have practical
applications in fields such as sports training and rehabilita-
tion, where improving bimanual visuomotor skills is impor-
tant for performance and functional recovery.

METHODS

Participants

Thirty-seven participants (ages 23.5 ± 6.7 yr, 13 females)
enrolled in our study. All participants were right-handed,
self-reported as being fit to play, had normal or corrected-to-

normal vision, and were skilled enough to repeatedly make
contact with the ball. Our protocol was approved by the
University of Florida Institutional Review Board, and we
obtained written informed consent from each participant.

Experimental Design and Procedure

Our analysis used a table tennis data set reported in a pre-
vious study (14). Participants played in a variety of table ten-
nis trials separated into four blocks of 15 min. Within each
block, half of the trials were with a human player and the
other half were with a ball machine. For this analysis, we
focused on the human player trials only. The participants
played either competitively or cooperatively for a continu-
ous 7.5 min. Participants were instructed to try winning a 21-
point game in the competitive trials, switching serves every
five points. In the cooperative trials, we instructed partici-
pants to work together with the human player to keep the
ball in play as long as possible. The human player (A.S.) was
experienced and scaled their play to the level of the partici-
pant. We collected a 5-min standing baseline at the begin-
ning and end of the experiment, totaling 70 min of data
collection (not including breaks).

Data Acquisition

We collected dual-layer EEG (14, 31) data from 120 scalps
and 120 noise electrodes logged on four LiveAmp 64 ampli-
fiers (BrainVision ActiCAP, 500 Hz). Eight of the 128 original
scalp electrodes near the back of the head were re-purposed
to measure neck muscle activity. We separated the online
reference (CPz) and online ground (Fpz) for the scalp and
noise layers, as recommended for the dual-layer EEG setup
(31). Before the start of the experiment, we acquired a three-
dimensional (3-D) head scan of the electrode locations using
itSeez3D software (Structure Sensor from Occipital Inc.). We
recorded the timing of hit events using the acceleration from
inertial measurement units (IMU) on the handles of two
wooden paddles (Cometa WaveTrack Inertial System, 2,000
Hz). Hits were defined when the first derivative of the result-
ant acceleration exceeded 0.75 gravity. We also recorded
video (GoPro Hero 7, range of 30–240 fps) of all the trials,
which helped in postprocessing to filter out any mislabeled
events. The EEG and inertial measurement unit data were
synchronized using pulses from an Arduino every 5 s, and
the video was aligned to the data using a cross-correlation
between the IMU acceleration and the timing of hits that
were manually marked in Adobe Premiere Pro software. Any
inertial measurement unit hit events outside of 200 ms from
the video markers were removed. On a different day, we col-
lected a T1 structural MRI scan of the participants’ head (3 T
Philips Ingenia Scanner) using a 32-channel head coil.
Sixteen participants were scanned with 7.00 ms repetition
time, 3.17 ms echo time, 8� flip angle, 240 � 240 � 176 mm
field of view, and 1 mm3 recon voxel size. Twenty-one partic-
ipants were scanned with 11.13 repetition time, 5.10 ms echo
time, 8� flip angle, 256 � 240 � 179.9 mm field of view, and
0.67� 0.67� 0.67mm3 recon voxel size.

Data Processing

We processed data using custom scripts (MATLAB, R2020A)
and open-source software such as EEGLAB v2021.0, FieldTrip,
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and Computational Anatomy Toolbox for SPM (CAT12.8). Data
were 1 Hz high-pass filtered to remove drift. We marked hit
events, visually inspected, and manually separated trials into
individual datasets based on continuous blocks of hit events.
We removed 60 Hz line noise with Cleanline (32), down-
sampled the data to 250 Hz, rejected bad channels that were
outside of three standard deviations from the median of other
channels, averaged re-referenced the data with full rank, and
spherically interpolated the rejected channels. We used
iCanClean (33, 34) to address motion and muscle artifacts
(2-s sliding window). We used an r2 threshold of 0.85 to
reject subspaces of scalp electrodes that correlated with
the noise electrodes and an r2 threshold of 0.40 to reject
subspaces of scalp electrodes that correlated with the mus-
cle channels. Then, we used clean_artifacts to perform
time window rejection with a standard deviation threshold
of 30 and a window criterion of 0.3.

To minimize the effects of volume conduction on subse-
quent analyses, we used an Independent component analy-
sis (ICA) based approach (35). First, principal component
analysis reduced the number of principal components by the
maximum number of scalp channels that were interpolated
across trials for each participant. Then, we ran adaptive mix-
ture independent component analysis (AMICA) to separate
the signal into maximally temporally independent compo-
nents (36, 37). We applied the resulting weight matrix to the
data before the time window rejection.

We created participant-specific conduction head models
with the finite elementmethod in the FieldTrip-SimBio pipe-
line (38). We marked the electrode locations on the 3-D head
scan using EEGLAB get_chanlocs and specified an inward
shift of 10 mm to account for the extra height of the dual-
layer electrodes. The participant’s T1 MR images were seg-
mented into five tissue layers using the CAT12 plug-in for
SPM, and tissue connectivity values were specified according
to Ref. 39 (skin: 430, skull: 10, CSF: 1,790, gray matter: 330,
white matter: 140 mS/m). Then, we meshed the tissues into
hexahedrons, aligned the head model with the electrode
locations based on fiducials (nasion and left/right preauricu-
lar points), and computed the source model, transfer matrix,
and leadfield matrix with FieldTrip functions.

DIPFIT 3.3 allowed us to fit each independent component to
an equivalent dipole to our custom headmodels. We converted
the dipole locations to Montreal Neurological Institute (MNI)
space and retained components that explained more than 85%
of the scalp variance (35, 40). With a combination of ICLabel
and visual inspection (41, 42), we only chose brain components
for further analysis and then clustered the remaining brain
components using k-means by dipole location. We chose k ¼
10 clusters based on the silhouette algorithm (43) and assigned
any dipolesmore than three standard deviations from the clus-
ter centroids as outliers. Clusters with components from more
than 50% of the participants were further analyzed. If more
than one component per participant contributed to a cluster,
we retained the component with the lowest residual variance.
We removed an average of nine components per cluster.

We performed a secondary analysis at the electrode-level,
instead of the component-level, which follows the approach
of more traditional EEG studies. The preprocessing remained
the same, except we used more conservative criteria for com-
ponent selection after independent component analysis. We

rejected components that weremore than 75% labeled as non-
brain by ICLabel. Then, we back-projected the components
and focused on channels F3 and F4 (an equivalent to left/right
cingulate), C3 and C4 (an equivalent to left/right sensorimo-
tor), and P3 and P4 (an equivalent to left/right parietal).

There were three different hit types in our analyses: rally,
return, and serve hits (Fig. 1). Both return and serve hits
occurred at the beginning of the point (competitive trials) or
friendly volley (cooperative trials). The rally hits were the
subsequent shots that occurred after the point started. A
serve hit was the only shot that required bimanual coordina-
tion – tossing the ball with the left hand and hitting the ball
with the paddle in the right hand. Data were epoched �1.5 to
1.5 s around when the participant’s paddle made contact
with the ball (time 0). We rejected 10% of the epochs that had
the highest voltage maxima to get rid of noisy epochs. Since
there were fewer serve hits than other rally and return hits,
we randomly sampled the epochs to the average number of
serve hits across participants (50 epochs).

OutcomeMeasures

We calculated the average EEG log spectral power density
(PSD) to measure any total power differences between the
left and right hemispheres in the cingulate gyrus, sensorimo-
tor, and parietal cortices. The spectopo function in EEGLAB
gave us individual power spectral densities (nonoverlapping
hamming windows with the pwelch method, 250 window
length). Then, we used the FOOOF toolbox to model the
power spectra from 3 to 40 Hz, peak width limits [1 Hz, 8 Hz],
minimum peak height of 0.05, and maximum number of
peaks being 2. This allowed us to compute flattened power
spectra by removing the aperiodic components from the origi-
nal power spectra. We tested for significant differences in
alpha/mu (8–12 Hz) and beta (13–30 Hz) power between the
left and right sensorimotor cortex for each of the hit types
using a two-way repeated-measures ANOVA for participants
that contributed a component to both clusters (n¼ 11).

We performed time-frequency analysis and calculated sin-
gle trial spectrograms using newtimef. We took the mean
event-related spectral perturbation (ERSP) across compo-
nents in each cluster to create a grand average ERSP. The
spectral baseline was the average power in the epoch for all
hit types. We bootstrapped individual ERSPs (0.05 alpha,
2,000 iterations) to find statistically significant time-fre-
quency changes within each hit type and corrected for multi-
ple comparisons using the false discovery correction with
the Benjamini and Hochberg method (44). Nonsignificant
values were set to zero. We used nonparametric statistics
with cluster-based multiple comparison corrections to com-
pute significance-masked difference ERSPs (Serve–Rally,
Serve–Return, and Return–Rally) (45).

We also compared the left and right sensorimotor clusters
by subtracting a spectral baseline that was the average power
in the epoch across the two clusters. Then, we focused on the
alpha (8–12 Hz) and beta (13–30 Hz) frequency bands by
averaging the power in those bands to plot the change in
power across time. Significant differences in power between
left and right sensorimotor cortices were tested with a two-
sided Wilcoxon signed rank test in four separate time win-
dows (�1,000 to �500 ms,�500 to 0 ms, 0 to 500 ms, and
500 to 1,000ms around the hit event).
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Event-related potentials (ERPs) and intertrial phase coher-
ence (ITPC) measured the consistency of phase across trials
within a cluster. We averaged the event-related potentials
across participants. For the intertrial phase coherence,
we found the mean across participants in each cluster,
bootstrapped individual ITPCs (0.05 alpha, 2,000 itera-
tions), and masked for significance at 0.05 alpha (cor-
rected for multiple comparisons with the Benjamini and
Hochberg false discovery rate correction). We used non-
parametric statistics with cluster-based multiple compar-
ison corrections for the different ERSPs. According to
Ref. 46, researchers must be careful to draw conclusions
from small changes in ITPC. Therefore, we chose a con-
servative approach and additionally set any values less
than 0.1 ITPC to zero.

Event-related phase coherence (ERCOH) gave us a mea-
sure of functional connectivity between the source-localized
clusters (47). For each calculation, we only included partici-
pants who contributed a component to both clusters for each
pairwise comparison. We used the function newcrossf with
epoch latency limits �0.5 to 1.0 s around the hit event, aver-
aged the coherence across participants, bootstrapped indi-
vidual ERCOH spectrograms, and masked for significance at
0.05 alpha (2,000 iterations, shuffled along the time dimen-
sion). Nonparametric permutation statistics with cluster-
based multiple comparison corrections (2,000 iterations,
0.05 alpha) assessed the significant differences across the hit
types.

Accessibility

Raw and processed data files can be accessed at doi.org/
10.18112/openneuro.ds004505.v1.0.4. The data have been
organized according to the BIDS standard (48, 49).

RESULTS
The resulting clusters that contained components from

more than half of the participants were found in the left and
right cingulate gyrus, left and right sensorimotor, supple-
mentary motor area, precuneus, cuneus, and left and right
parieto-occipital cortices (Fig. 2). MNI coordinates of the
cluster centroids are shown in Table 1.

Cortical clusters had increased power in the theta (3–8
Hz), alpha (8–12 Hz), and beta (13–30 Hz) bands above the
aperiodic component (Fig. 3). When comparing the shape of
the power spectral density plots between left and right hemi-
spheres, the left/right cingulate and left/right parieto-occipi-
tal brain areas were very similar, whereas there were notable
differences in power between the left and right sensorimotor
cortices. The 2 � 3, two-way, repeated-measures ANOVA of
the flattened alpha power with hemisphere (left and right)
and hit type (rally, return, and serve) as within-subjects fac-
tors revealed a main effect of hemisphere, F(1, 60) ¼ 10.81,
P ¼ 0.0017. There was no main effect of hit type, F(2, 60) ¼
0.34, P ¼ 0.7156. There were no significant interactions
between hemisphere and hit type, F(2, 60) ¼ 0.03, P ¼

Figure 1. Rally, return, and serve hits. In a rally, the participant (left side of each picture) played table tennis in a continuous volley of hits with the human
player (right side of each picture). In a return, the rally had not started yet, and the participant prepared to return the serve from the human player. In a
serve, the participant began the rally by tossing the ball with their left hand and hitting the ball with the paddle in their right hand. Epochs for subsequent
analyses were centered on the participant hit (time 0, circled in red).
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0.9658. The two-way ANOVA of the flattened beta power
revealed a main effect of the hemisphere, F(1, 60) ¼ 6.22, P ¼
0.0154. There was no main effect of hit type, F(2, 60) ¼ 0.73,
P ¼ 0.4875. There were no significant interactions between
hemisphere and hit type, F(2, 60) ¼ 1.34, P ¼ 0.2702. The av-
erage power of the left and right sensorimotor clusters in the
alpha and beta bands are summarized in Fig. 4.

In the channel-level analysis, we found small increases in
power in the theta (3–8 Hz), alpha (8–12 Hz), and gamma
(30þ Hz) bands above the aperiodic component with little
difference between the electrodes over the left or right
hemisphere (Supplemental Fig. S1). The repeated-measures
ANOVA of the flattened alpha power with channel (C3 left
and C4 right) and hit type (rally, return, and serve) as
within-subjects factors revealed no significance for hemi-
sphere: F(1, 144) ¼ 1.76, P ¼ 0.1872, no significance for hit
type: F(2, 144) ¼ 1.27, P ¼ 0.2847, and no significant interac-
tion: F(2, 144) ¼ 0.02, P ¼ 0.9789. The repeated-measures
ANOVA of the flattened beta power revealed no significance
for hemisphere: F(1, 144) ¼ 0.14, P ¼ 0.7102, no significance
for hit type: F(2, 144) ¼ 1.16, P ¼ 0.3177, and no significant
interaction between hemisphere and hit type: F(2, 144) ¼
0.4, P ¼ 0.6692. The average power of the channels C3 and
C4 in the alpha and beta bands are summarized in
Supplemental Fig. S2.

All ERSP plots showed significant power fluctuations in
theta, alpha, beta, and gamma bands, but the most promi-
nent power fluctuations were in the parietal and sensorimo-
tor clusters (Fig. 5). In the left and right parieto-occipital
clusters, broadband desynchronization occurred before the
hit event in the rally and return conditions only. For serve
hits, we observed beta synchronization and theta desynchro-
nization in that same period. Beta desynchronization after
the hit event occurred in both left and right parieto-occipital
clusters for the serve and return hits but not for rally hits. In
the cuneus cluster, we observed gamma synchronization
before serve hits and gamma desynchronization before rally
and return hits. We also found a common pattern of theta
and alpha desynchronization before the hit event, followed
by theta and alpha synchronization after the hit event,
across all conditions in the cuneus cluster.

In the left sensorimotor cortex, the most prominent spec-
tral power fluctuations occurred in the beta band (13–30
Hz) across conditions (Fig. 5). We observed beta desynchro-
nization just before and around the hit event (time 0).
Although the beta desynchronization during the rally con-
dition was more focused around the hit event. Notably, the
beta synchronization (beta rebound) after hits was strong-
est during a rally. There was also a significant beta rebound
around 600 ms after a return. However, there was no signif-
icant beta rebound after a serve in the left sensorimotor
cortex.

There were significant spectral power fluctuations in
theta (3–8 Hz) and gamma (30–100 Hz) bands in the left
sensorimotor cortex across hit types (Fig. 5). The serve con-
dition showed gamma synchronization before and follow-
ing the hit event whereas the rally and return conditions
showed gamma desynchronization. The serve showed theta
desynchronization before contacting the ball, and the rally
and return hits showed more theta synchronization around
the hit event within those conditions. The significant differ-
ence between serve and rally and between serve and return
conditions was in the beta and gamma bands.

Figure 2. Cluster centroids and corresponding group-aver-
age component scalp maps for the nine clusters that con-
tained dipoles from more than half of the participants: right
sensorimotor (dark red, 13 participants), right cingulate gyrus
(magenta, 18 participants), supplementary motor area (yel-
low, 15 participants), left cingulate gyrus (purple, 18 partici-
pants), left sensorimotor (cyan, 17 participants), left parieto-
occipital (light green, 18 participants), cuneus (dark green, 16
participants), precuneus (dark blue, 21 participants), and
right parieto-occipital (light red, 19 participants).

Table 1. Coordinates of the cluster centroids in MNI
space

Cluster MNI Coordinates

Right sensorimotor 34, �24, 57
Right cingulate gyrus 18, 11, 31
Supplementary motor area 6, �5, 53
Left cingulate gyrus �16, 13, 40
Left sensorimotor �31, �25, 54
Left parieto-occipital �26, �68, 27
Cuneus 0, �86, 34
Precuneus 3, �53, 51
Right parieto-occipital 29, �67, 31
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The right sensorimotor cortex showed different patterns
of spectral power fluctuations than the left sensorimotor cor-
tex across hit types (Fig. 5). In the right sensorimotor cortex,
there was prominent alpha and beta synchronization after
the serve, preceded by very strong alpha and beta desynch-
ronization before ball contact (time 0). The serve condition
also showed theta synchronization before ball contact. This
was very different than the rally and return conditions that
showed alpha and beta synchronization and theta desynch-
ronization before the ball hit.

We found that all hit types in the right sensorimotor cortex
had more spectral power in the alpha and beta bands than
the left sensorimotor cortex across all time blocks within the

epoch (Fig. 6). The significant difference between left and
right sensorimotor cortex for rally hits were in the alpha
band �500 to 0 ms before the hit. For return hits, alpha
power was significantly greater in the right than left sensori-
motor cortex�1,000 to�500ms and 500 to 1,000ms around
the hit event, and beta power was significantly greater in the
right than left sensorimotor cortex�1,000 to�500ms before
the hit event. The serve hits showed significantly more right
sensorimotor cortex alpha power 500 to 1,000 ms after the
hit event and significantly more beta power �500 to 1,000
ms around the hit event.

In the channel-level ERSP analysis (Supplemental Fig.
S3), the alpha and beta spectral power changes were less

Figure 3. Power spectral density plots of
the source-localized brain clusters (com-
ponent-level). Average ± standard error
for the left hemisphere (purple) and right
hemisphere (green) in each of the corre-
sponding brain areas (rows) for each of
the following hit types (columns). The flat-
tened spectra were calculated by taking
the difference between the original power
spectra and the aperiodic components
(modeled with FOOOF).

Figure 4. Means ± standard error of the
sensorimotor flattened power spectra for
left (purple) and right (green) clusters (only
11 participants that contributed to both
clusters). Left: alpha/mu power (8–12 Hz).
Right: beta power (13–30 Hz).
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pronounced and hidden by broadband power changes, as
compared with the component-level ERSP analysis. However,
if we focused on the alpha and beta bands, the right sensori-
motor (C4 channel) had more spectral power than the left

sensorimotor (C3 channel) across most of the time blocks
within the epoch, similar to the component-level ERSPs.

Intertrial phase coherence (ITPC) increased in the theta
(3–8 Hz) band around or just after the participant made

Figure 5. Event-related spectral perturbation (ERSP) plots of the group average result for rally, return, and serve hits in all clusters. Significant increases
in spectral power relative to baseline are in red and significant decreases in spectral power relative to baseline are in blue (P < 0.05). At time 0, the par-
ticipant hit the ball with their paddle. Spectral baseline was the average power across the entire epoch in all hit types. To the left of the bold black vertical
line, the ERSPs are significance-masked within condition using bootstrap statistics. To the right of the bold black vertical line, the ERSPs show significant
differences between hit types (permutation statistics).
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contact with the ball (Fig. 7). The serve hits had higher ITPC
than rally hits across most clusters. The serve and return hits
had similar ITPC, although it was higher for serve hits in the
right cingulate and right sensorimotor cluster. Return and
rally hits had similar ITPC, except for the supplementary
motor area, left parieto-occipital, and right parieto-occipital
clusters where the return had higher ITPC than rally hits.
There were no significant differences between the left and
right sensorimotor cortices in the alpha and beta bands for
ITPC (Supplemental Fig. S4).

No differences in event-related coherence (ERCOH)
between left and right hemispheres were found across hit

types (rally vs. return vs. serve) (Fig. 8). Within hit type, there
were increases in event-related coherence across the differ-
ent frequencies, although there was no apparent pattern or
trend. In Supplemental Fig. S5, we averaged the ERCOH
across the epoch for the alpha and beta bands in the left/
right sensorimotor comparison and further demonstrated lit-
tle changes in coherence.

The event-related potentials time-locked to the partici-
pant hit event were very small (Supplemental Fig. S6). The
unmasked cluster results were also included in the supple-
mentary material: ERSPs in Supplemental Fig. S7 and ITPCs
in Supplemental Fig. S8.

Figure 6. Event-related spectral perturbation (ERSP) plots of the left vs. right sensorimotor clusters for rally, return, and serve hits. Increases in spectral
power relative to baseline are in red and decreases in spectral power relative to baseline are in blue. At time 0, the participant hit the ball with their pad-
dle. Spectral baseline was the average power across the entire epoch in left and right sensorimotor clusters. The green/purple line plots show the aver-
age ± standard error of the power (relative to spectral baseline) in alpha and beta bands. The P value is the result of the Wilcoxon signed rank test
between left and right hemispheres. Gray shading denotes significant differences in left vs. right sensorimotor ERSP power in each time block.
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DISCUSSION

We found different spectral power fluctuations in the left
and right sensorimotor cortices during table tennis serves,

returns, and rallies. In line with our hypothesis, we found a
greater magnitude of spectral power fluctuations in the
right sensorimotor cortex for serve hits than return or rally
hits across the entire hit epoch. Alpha/mu and beta powers

Figure 7. Intertrial phase coherence (ITPC) of the group average result for rally, return, and serve hits. Significant increases in intertrial phase coherence
are in red (P < 0.05). At time 0, the participant hit the ball with their paddle. To the left of the bold black vertical line, the ITPC plots are significance-
masked within condition using bootstrap statistics, with an additional conservative masking (any ITPC values < 0.1 are set to 0). To the right of the bold
black vertical line, the ITPC plots show significant differences between hit types (permutation statistics, no additional conservative masking).
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were higher in the right sensorimotor cortex compared to
the left sensorimotor cortex, across the entire hit epoch.
Surprisingly, we did not find any differences in interhemi-
spheric connectivity for any of the hit types. We also found
significant power fluctuations in the other brain regions,
but the most prominent fluctuations were in the parieto-
occipital and sensorimotor clusters.

The right sensorimotor cortex may have been more
involved in serve hits than return or rally hits because of the
postural control of the tossing hand. The Complementary
Dominance Hypothesis developed by Sainburg et al. posits
that each hemisphere is specialized for different aspects of
motor control (4, 5). An example of this theory is the
dynamic dominance model, which proposes that the hemi-
sphere contralateral to the dominant side (left brain and
right arm) specializes in predictive control and dynamic
movement, whereas the nondominant hemisphere (right
brain and left arm) specializes in endpoint precision and sta-
bility tasks. In one experiment, they had right-handed par-
ticipants perform a bread-slicing motion, and they found
that the right hand showed a straighter reaching perform-
ance and the left hand showedmore stable holding perform-
ance in right-handed participants. This theory is in line with
other studies that showed varying effects of left and right
brain lesions on the different phases of an aimingmovement
(50, 51). In the context of a table tennis serve, both hands
must work together since the paddle in the right hand must
hit the ball that the left hand tossed. The serve is the only

shot in the game that uses both hands to perform a coordi-
nated bimanual maneuver, so the greater magnitude of spec-
tral power fluctuations in the right sensorimotor cortex for
serve hitsmay be explained by the toss.

An alternative theory that may explain the greater
involvement of the right sensorimotor cortex for serve hits
focuses on the type of spatial attentional mechanisms at
play—global versus local. The right hemisphere is associ-
ated with encoding global features whereas the left hemi-
sphere is associated with processing local features (52). In
a concept proposed by Ivry and Roberston (53), each hemi-
sphere is thought to encode different spatial frequencies.
The right hemisphere amplifies low-frequency sensory in-
formation and the left hemisphere amplifies high frequen-
cies. In the case of table tennis, the quick visual and
sensory processing required to hit an incoming ball would
require amplification of high-frequency content. The serve
is less reactionary and more of a self-paced movement. A
player has time to reflect and plan where and how they
want to hit a serve. More visuospatial and planning proc-
esses would require the amplification of low-frequency
content.

Other task- and performer-related parameters could affect
hemispheric bias. The left hemisphere shows more involve-
ment in tasks as movement complexity increases (54) and is
thought to specialize in temporal processing for sequential
movements. However, it is difficult to determine which table
tennis shot is more “complex.” On one hand, a serve is more

Figure 8. Event-related coherence (ERCOH) between left
and right cingulate, sensorimotor, and parieto-occipital clus-
ters for rally, return, and serve hits. Significant increases in
event-related coherence are in red (within hit type condi-
tion, bootstrap statistics with P< 0.05). At time 0, the partici-
pant hit the ball with their paddle. Only the participants who
contributed a component to both clusters for each pairwise
comparison were chosen.
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of a sequential, bimanual movement than rally and return
hits. On the other hand, rally and return hits require faster
temporal processing. Second, skill development and the nov-
elty of a task may affect the involvement of both hemi-
spheres. As a motor skill develops, the reliance on external
sensory cues (largely represented in the right hemisphere)
decreases and a consolidated internal representation of that
motor skill (largely represented in the left hemisphere)
increases (55). It is possible that the service motion was more
novel to our participants. Many more rally hits were per-
formed over the course of the experiment than serve hits,
which could affect the internal task representation. In future
studies, specific parameters of a table tennis paradigm could
be systematically altered so that the task- and performer-
related effects on hemispheric asymmetry could be teased
apart better.

Our study complements classic hemispheric specializa-
tion research that focused on preparation during self-paced
sports [e.g., golf putting (56), rifle shooting (57, 58), archery
(59), etc.]. These studies found that temporal lateralization
ratios indicated a shift towards right-brain dominance before
movement onset, shown as a decrease in T3 (left-temporal)
alpha power and a constant T4 (right-temporal) alpha power.
Their findings suggested that verbal activity was inhibited
just before the self-paced maneuver. A table tennis study by
Wolf et al. (60) found that an imagined return of serve eli-
cited this response but only for expert table tennis players.
In our study, we similarly saw that the relative alpha power
between left and right sensorimotor clusters decreased
approaching the time to hit a return (Fig. 6). However, our
results indicated that a decrease in the right sensorimotor
alpha was more evident than any change in the left sensori-
motor alpha.

We conducted our analysis at the component level, rather
than the electrode level, to increase spatial resolution and
resolve subtle conditional differences that are often washed
out due to volume conduction (61). In our channel analysis
of the alpha and beta powers over sensorimotor channels (C3
and C4), we did not find any statistical significance between
hemisphere or hit types (Supplemental Figs. S1 and S2). At
the component level, we found a significant difference
between left and right sensorimotor clusters for both alpha
and beta power (Fig. 3 and 4). There was also a notable differ-
ence in the time-frequency data between the sensorimotor
components and channels (Fig. 6 vs. Supplemental Fig. S3).
The channel ERSPs (Supplemental Fig. S3) had broadband
increases in spectral power around the hit event, which
looked very similar to muscle ERSPs for the same table ten-
nis task (14).

We should mention a few limitations of our work. First,
we did not rigorously assess the participant’s handedness.
All participants self-reported as being right-handed and
played the game with the paddle in their right hand but
evidence shows that the degree of handedness (strength)
can affect measures of interhemispheric interactions (21).
A future study could recruit left and right-handed people
to play the game, and we could ask them to play with both
dominant and nondominant hands. Second, we did not
consider the effect of hitting the ball as a forehand (on the
right side of the table) versus a backhand (on the left side
of the table). Hemispheric specialization is modulated by

spatial attention (62, 63), so this could have been a con-
founding factor in our analysis. In addition, other table
tennis shots, besides the serve, require some degree of
bimanual coordination. The serve may be the only shot
that uses both hands to manipulate the ball (toss) and
paddle (hit) but the other shots likely use both arms for
balance during hitting. Future work could focus on differ-
ent aspects of a table tennis shot in a more controlled set-
ting. Lastly, it is important to note that readers should
interpret our discussion of brain area “involvement” with
caution. Drawing parallels across neuroimaging modal-
ities remains a difficult task – both in the type of signal
acquired and the different spatial scales. In this study, we
reasoned that an increase in the magnitude of spectral
power fluctuations in the source-localized clusters of the
EEG data equates to more involvement in that brain area
(19). However, it is also important to point out that EEG
has lower spatial resolution than other modalities like
fMRI. We reported the cluster centroid locations and their
corresponding MNI coordinates (Fig. 2 and Table 1) but
individual participant’s components cross over different
neighboring regions and likely represent a broader local
network of activity. As a field, more work should use
cross-modal recordings (e.g., combined EEG and fMRI).

Our findings contribute to the basic science understand-
ing of hemispheric specialization in a natural environment.
With any real-world paradigm, scientists must find a deli-
cate balance between experimental control and ecological
validity. Studying the visuomotor control of table tennis
serve could provide valuable insights into the neural mech-
anisms underlying the execution and control of complex,
self-paced movements. However, there are many theories
and factors that may explain the observed left-right brain
differences. Future work could look at the directional flow
of information (i.e., effective connectivity) between differ-
ent brain regions, as well as the brain’s response during per-
formance monitoring while controlling for skill level, to
paint a better picture of what goes on inside the head of a
table tennis athlete.
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