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ABSTRACT

As location-based services (LBS) have grown in popularity, more
human mobility data has been collected. The collected data can be
used to build machine learning (ML) models for LBS to enhance
their performance and improve overall experience for users. How-
ever, the convenience comes with the risk of privacy leakage since
this type of data might contain sensitive information related to
user identities, such as home/work locations. Prior work focuses
on protecting mobility data privacy during transmission or prior to
release, lacking the privacy risk evaluation of mobility data-based
ML models. To better understand and quantify the privacy leak-
age in mobility data-based ML models, we design a privacy attack
suite containing data extraction and membership inference attacks
tailored for point-of-interest (POI) recommendation models, one
of the most widely used mobility data-based ML models. These
attacks in our attack suite assume different adversary knowledge
and aim to extract different types of sensitive information from
mobility data, providing a holistic privacy risk assessment for POI
recommendation models. Our experimental evaluation using two
real-world mobility datasets demonstrates that current POI recom-
mendation models are vulnerable to our attacks. We also present
unique findings to understand what types of mobility data are more
susceptible to privacy attacks. Finally, we evaluate defenses against
these attacks and highlight future directions and challenges.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; « Infor-
mation systems — Location based services.

Correspondence to Kunlin Cai, Yuan Tian, and Jianfeng Chi. Work unrelated to Meta.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

KDD °24, August 25-29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671758

Jinghuai Zhang
jinghuail998@g.ucla.edu
University of California, Los Angeles
Los Angeles, USA

Guang Wang
guang@cs.fsu.edu
Florida State University
Tallahassee, USA

Zhiqing Hong
zh252@cs.rutgers.edu
Rutgers University
New Brunswick, USA

Desheng Zhang
desheng@cs.rutgers.edu
Rutgers University
New Brunswick, USA

Yuan Tian
yuant@ucla.edu

University of California, Los Angeles

Los Angeles, USA
KEYWORDS

POI recommendation; privacy-preserving machine learning; data
extraction; membership inference

ACM Reference Format:

Kunlin Cai, Jinghuai Zhang, Zhiqing Hong, William Shand, Guang Wang,
Desheng Zhang, Jianfeng Chi, and Yuan Tian. 2024. Where Have You Been?
A Study of Privacy Risk for Point-of-Interest Recommendation. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD °24), August 25-29, 2024, Barcelona, Spain. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3637528.3671758

1 INTRODUCTION

With the development and wide usage of mobile and wearable de-
vices, large volumes of human mobility data are collected to support
location-based services (LBS), such as traffic management [3, 34],
store location selection [38], and point-of-interest (POI) recom-
mendation [58, 69]. In particular, POI recommendation involves
relevant POI suggestions to users for future visits based on per-
sonal preferences using ML techniques [27], which has recently
gained much research attention!. POI recommendation models
have also been integrated into popular services such as Yelp and
Google Maps to assist users in making informed decisions about
the next destination to visit. However, mobility data collected to
train POI recommendation models are highly sensitive as they can
leak users’ sensitive information such as their social relationships,
trip purposes, and identities [4].

Although there are a significant number of studies [2, 21, 32, 54]
on mobility data privacy, the existing research primarily focuses
on analyzing attacks and evaluations within the context of mobil-
ity data transmission and release processes. For example, previous
studies have demonstrated the linkages of mobility data from vari-
ous side channels, including social networks [24, 26], open-source
datasets [20, 44], and network packets [29, 61]. The linkages be-
tween these side channels can lead to the identification of individ-
uals. As a result, efforts to protect mobility data have primarily

'From 2017 to 2023, there are more than 111 papers on POI recommendation built
upon mobility data collected by location service providers [64].
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Figure 1: Our attack suite highlights the privacy concerns in
POI recommendation models. In particular, we demonstrate
that an adversary can extract or infer membership informa-
tion of locations or trajectories in the training dataset.

concentrated on data aggregations and releases [5, 21, 41]. These
studies neglect the risk of adversaries extracting sensitive attributes
or properties from the ML models (e.g., POI recommendation mod-
els) that use mobility data for training, which are inherently sus-
ceptible to privacy attacks [6, 52].

Evaluating privacy risks in POI recommendation models remains
challenging because existing attack and defense mechanisms are
ineffective due to the unique features of mobility data. Previous
privacy attacks have mainly focused on ML models trained with
image and text data [8, 18, 52], where each data point can uniquely
identify itself. However, mobility data, such as locations, are less
semantically unique without the context. Moreover, mobility data
is special in that it contains multimodal spatial and temporal infor-
mation, which describes each individual’s movements and behavior
patterns over time. All existing attacks fail to construct meaning-
ful context and leverage spatial-temporal information, resulting in
their failures when applied to POI recommendations. Furthermore,
existing defense mechanisms [1, 50, 51] have mainly been tested
on classification models trained with image or text data. Given the
task and data are significantly different, the effectiveness of defense
mechanisms is unknown when applied to POI recommendation.

In this paper, we design a comprehensive privacy attack suite to
study the privacy leakage in POI recommendation models trained
with mobility data. Specifically, our privacy attack suite contains
the two most popular kinds of privacy attacks on machine learning
models, data extraction and membership inference attacks, to assess
the privacy vulnerabilities of POI recommendation models at both
location and trajectory levels. In contrast to privacy attacks for
image and text data, the attacks in our attack suite are tailored
for mobility data and aim to extract different types of sensitive
information based on practical adversary knowledge.

We perform experiments on three representative POI recommen-
dation models trained on two mobility datasets. We demonstrate
that POI recommendation models are vulnerable to our designed
data extraction and membership inference attacks. We further pro-
vide an in-depth analysis to understand what factors affect the
attack performance and contribute to the effectiveness of the at-
tacks. Based on our analysis, we discover that the effect of data
outliers exists in privacy attacks against POI recommendations,
making training examples with certain types of users, locations,
and trajectories particularly vulnerable to the attacks in the attack
suite. Finally, We test several existing defenses and find that they
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do not effectively thwart our attacks with negligible utility loss,
which calls for better methods to defend against our attacks.
Contributions:

e We introduce a novel privacy attack suite? that incorporates
unique characteristics of mobility data (e.g., spatial-temporal
information) into the attack design. In particular, we target a
previously under-defended attack surface: neural-network-based
POI recommendation. To the best of our knowledge, our work is
the first to comprehensively evaluate the privacy risks in POI rec-
ommendation models using inference attacks from both location
and trajectory levels.

e We conduct extensive experiments on state-of-the-art POI rec-
ommendation models and datasets to demonstrate that POI rec-
ommendation models are vulnerable to data extraction and mem-
bership inference attacks in our attack suite.

e We provide an in-depth analysis to understand what unique
factors in mobility data make them vulnerable to privacy attacks.
We also explore the reason regarding how our attack design
works and test existing defenses against our attacks. Our analysis
identifies the challenges and future directions for developing
privacy-preserving POI recommendation models.

2 BACKGROUND
2.1 Point-of-Interest Recommendation

POI recommendation has recently gained much attention due to
its importance in many business applications [27], such as user
experience personalization and resource optimization. Initially, re-
searchers focused on feature engineering and algorithms such as
Markov chain [10, 71], matrix factorization algorithms [11, 36], and
Bayesian personalized ranking [25, 72] for POI recommendation.
However, more recent studies have shifted their attention towards
employing neural networks like RNN [37, 67], LSTM [31, 58], and
self-attention models [35, 39]. Neural networks can better learn
from spatial-temporal correlation in mobility data (e.g., check-ins)
to predict users’ future locations and thus outperform other POI rec-
ommendation algorithms by a large margin. Meanwhile, this could
introduce potential privacy leakage. Thus, we aim to design an
attack suite to measure the privacy risks of neural-network-based
POI recommendations systematically.

We first provide the basics of POI recommendations and no-
tations used throughout this paper. Let U be the user space, £
be the location space, and 7~ be the timestamp space. A POI rec-
ommendation model takes the observed trajectory of a user as
input and predicts the next POI that will be visited, which is for-
mulated as fy : U x L™ x T" — RIL| Here, the length of the
input trajectory is n. We denote a user by its user ID u € U for
simplicity. For an input trajectory with n check-ins, we denote its
trajectory sequence as x%"_l = {(lo,t0), ..., (In-1,tn—1)}, where
li € Land t; € 7 indicate the POI location and corresponding
time interval of i-th check-in. Also, the location sequence of this
trajectory is denoted as x%”_l ={ly,...,In—1}. The POl recommen-
dation model predicts the next location I, (also denoted as y by
convention) by outputting the logits of all the POIs. Then, the user
can select the POI with the highest logit as its prediction g, where
7 = arg max fp(u, xgi"’l). Given the training set Dy sampled from

20ur code is publicly available at: https://github.com/KunlinChoi/POIPrivacy
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Table 1: A summary of the threat model.

Attack Adversary Objective Adversary Knowledge
Extract the most frequently visited location / of
LocEXTRACT -
a target user u
TRAJE Extract the location sequence of a target user u Startine location
RAJEXTRACT o length n: xg. = {lg, ..., Lot} arting location [y
Infer th hip of -locati
LocMIA nfer the membership of a user-location Shadow dataset D
pair (u,l)
Infer th hip of a trajectory s
TrAJMIA nfer the membership of a trajectory sequence Shadow dataset Ds

xr = {(, t), -, (In, tn) }

an underlying distribution O, the model weights are optimized
to minimize the prediction loss on the overall training data, i.e.,

ming ﬁ Z(u,x%”_l,y)eDtr £(fy(u, x3"71), ), where £ is the cross-

entropy loss, i.e., £(fp(u, x%"‘l), y) = —log(fy(u, xOT:"_l))y. The
goal of the training process is to maximize the performance of the
model on the unseen test dataset Dy € D, which is drawn from
the same distribution as the training data. During inference, this
prediction 7 is then compared to the next real location label I, to
compute the prediction accuracy. The performance evaluation of
POI recommendation models typically employs metrics such as
top-k accuracy (e.g., k = 1,5, 10).

2.2 Threat Models

Adversary Objectives. To understand the potential privacy leak-
age of training data in POI recommendation models, we design
the following four attacks from the two most common privacy
attack families: membership inference attack [53] and data ex-
traction attacks [9], based on the characteristics of the mobility
data for POI recommendation, namely common location extrac-
tion (LOCEXTRACT), training trajectory extraction (TRAJEXTRACT),
location-level membership inference attack (LocMIA), and trajectory-
level membership inference attack (TRAJMIA). These four attacks
aim to extract or infer different sensitive information about a user
in the POI recommendation model training data.

LocExTRACT focuses on extracting a user’s most frequently vis-

ited location; TRAJEXTRACT extracts a user’s location sequence with
a certain length given a starting location; LocMIA infers whether
a user has been to a location and used for training; TRAJMIA in-
fers where a trajectory sequence has been used for training. The
summary of the threat model is outlined in Table 1.
Adversary Knowledge. For all attacks, we assume the attacker
has access to the query interface of the victim model. Specifically,
the attacker can query the victim model with the target user and
obtain the corresponding output logits. This assumption is realis-
tic in two scenarios: (1) A malicious third-party entity is granted
access to the POI model query API hosted by the model owner
(e.g., location service providers like Foursquare or Yelp) for spe-
cific businesses such as personalized advertisement. This scenario
is well-recognized by [42, 55, 66]. (2) The retention period of the
training data expires. Still, the model owner keeps the model and
an adversary (e.g., a malicious insider of location service providers)
can extract or infer the sensitive information using our attack suite,
even if the training data have been deleted. In this scenario, the
model owner may violate privacy regulations such as GDPR [15].

Depending on different attack objectives, the adversary also
possesses different auxiliary knowledge. In particular, for TRAJEX-
TRACT, we assume the attacker can query the victim model with
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a starting location Iy that the target user visited. This assump-
tion is reasonable because an attacker can use real-world obser-
vation [56, 60], LoCEXTRACT, and LocMIA as cornerstones. As for
LocMIA and TRAJMIA, we assume the attacker has access to a
shadow dataset following the standard settings of membership
inference attacks [6, 52].

3 ATTACK SUITE

Our attack suite is used to evaluate privacy vulnerabilities of POI
recommendation models at both location and trajectory levels. The
subsequent sections detail the technical approaches and design of
attacks, taking into account the unique aspects of mobility data.

3.1 Data Extraction Attacks

Our data extraction attacks are rooted in the idea that victim mod-
els display varying levels of memorization in different subsets of
training data. By manipulating the spatial-temporal information in
the queries, the attacker can extract users’ locations or trajectories
that these victim models predominantly memorize.
LocExTrAacT. Common location extraction attack (LOCEXTRACT)
aims to extract a user’s most frequently visited location in the victim
model training, i.e.,

LocEXTRACT(fy, u) — itopl: cees Ztopk'

The attack takes the victim model fy and the target user u as the
inputs and generates k predictions itopl, ey itopk to extract the
most frequently visited location of user u. The attack is motivated
by our key observation: querying POI recommendation models
with a random location reveals that these models tend to “over-
learn” a user’s most frequently visited locations, making these
locations more likely to appear in the model output. For example,
we randomly choose 10 users and query the victim model using
100 randomly selected locations. Of these queries, 32.5% yield the
most frequent location for the target user. Yet, these most common
locations are present in only 18.7% of these users’ datasets.

In LocEXTRACT, we first generate a set of different random inputs

for a specific user and use them to make iterative queries to the
victim model. Each query returns the prediction logits with a length
of | L| outputted by the victim model. The larger the logit value,
the more confident the model is in predicting the corresponding
location as the next POL Therefore, by iterating queries to the model
given a target user and aggregating the logit values of all queries,
the most visited location is more likely to have a large logit value
after aggregation. In particular, we use a soft voting mechanism,
i.e., averaging the logits of all the queries. With the resulting mean
logits, we output the top-k locations with k largest logit values as
the attack results. Algorithm 1 outlines LocExTRAcT. Though the
attack is straightforward, it is effective and can be a stepping stone
for TRAJEXTRACT in our attack suite.
TrRAJEXTRACT. Our training trajectory extraction attack
(TRAJEXTRACT) aims to extract the location sequence x
{lp,...,ln—1} in a training trajectory of user u with a length of
n from the victim model fy. Formally,

On—1 _

~0:n—-1 ~0:n—1
TRA)EXTRACT(fg,u,lo,n)—>xL0 oo X

() L/j >
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Algorithm 1 Common Location Extraction Attack

Algorithm 2 Training Trajectory Extraction Attack

Input: Victim model: fp, target user: u, query budget: g, query
timestamp: t, output size: k
Output: Top-k predictions: [itap1,~~~jzopk]
1: logits « {}
2: for g times do
3 | < RanpomSampLE(L) » Randomly generate a location
from the location space
logits U f (u. {(1.1)})
5. end for
6: logitsagg = AGGREGATE(logits) » Aggregate confidence for all
locations
7: return itopl,...,itopk — ArGMaXy (logitsagg)

ko

where fcg;"_l, el xLﬂ
quences by the attack.

The key idea of the training trajectory extraction attack is to
identify the location sequence with the lowest log perplexity, as
models tend to demonstrate lower log perplexity when they see

trained data. We denote log perplexity as:

£%7=1 indicate the top-f extracted location se-

n-1

—logPrfg(u, x%"_l) =- Z logPrfg(u, x%i_l),
i=0

12

PPL, (u, x§" 1) =

where Pr, () is the likelihood of observing x%”_l with user u un-
der the victim model fy. In order to get the lowest log perplexity
of location sequences with a length of n, we have to enumerate all
possible location sequences. However, in the context of POI recom-
mendation, there are O(|.£|"!) possible location sequences for a
given user. | £| equals the number of unique POIs within the mobil-
ity dataset and can include thousands of options. Thus, the cost of
calculating the log perplexity of all location sequences can be very
high. To this end, we use beam search to extract the location se-
quences with both time and space complexity O (| L|xnx ), where
B is the beam size. In particular, to extract a trajectory of length
n, we iteratively query the victim model using a set of candidate
trajectories with a size of f and update the candidate trajectories
until the extraction finishes. As highlighted in the prior work [16],
when using beam search to determine the final outcome of a se-
quential neural network, there is a risk of generating non-diverse
outputs and resembling the training data sequence. However, in
our scenario, this property can be leveraged as an advantage in
TRAJEXTRACT, as our primary objective revolves around extracting
the training location sequence with higher confidence. As a final
remark, both LocEXTRACT and TRAJEXTRACT need a query times-
tamp to query the victim model, and we will show the effects of
the timestamp in our experiments. Algorithm 2 gives the detailed
steps of TRAJEXTRACT.

3.2 Membership Inference Attacks

Membership inference attack (MIA) aims to determine whether a
target data sample is used in the model training. We extend the
notion to infer whether certain sensitive information (e.g., user-
location pair (u,1) and trajectory sequence (u,xr)) of the user’s
data is involved in the training of the victim model fy. Since POI
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Input: Victim model: fp, target user: u, starting location: o, target
extraction length: n, query timestamp: ¢, beam width: 8
Output: Top-f possible extraction results: J?O;", ., x0n

DXL
: forb—0tof—1do
J?%)O — (u, (I, t)) > Initialize the beam with ly and t
: end for
:fori«—1ton—1do

20:i—1 £0:i—1 20:i—1
forxT 1n{xTO ,...,xTﬂ } do

6: {ﬁ%i, . ﬁgﬁ’} — UppateBEaMg (fy(u, £3771)) » Up-
date the beam by keeping B trajectory with the smallest PPL from

the query output and current beam

[ N T

7: end for

8: end for

9: 9?2;"_1,...,322;1‘1 — GETLOC(?AC%)H_I,...,)AC%:I_I) > Take the
location sequence from 32%"_1 as result J?g”_l

10: return 322;)”’1, . ,fcg;‘*l

recommendation models use multi-modal sequential data as inputs
and adversaries lack sufficient information to construct a complete
input, we propose attack designs to manipulate the spatial-temporal
information in queries to enhance effectiveness of attacks. The
membership inference attack can be formulated as follow:

MIA(fy, Xtarget, Ds) — {member, nonmember},

where Xtqrger represents the target sensitive information (X¢qrger =
(u,1) in LocMIA and X;grger = (4, x7) in TRAJMIA), and Ds is the
shadow dataset owned by the adversary.

To effectively infer the membership of a given X;qrget, we adapt

the state-of-the-art membership inference attack - likelihood ratio
attack (LiRA) [6] to the context of POI recommendation. The key
insight of LiRA is that the model parameters trained with X;grger
differ from those trained without it, and the effect of the model
parameter on a data sample can be well approximated using a loss
value. By conducting a hypothesis test on the distributions of the
loss values, we can identify if the victim model is trained with
the X;arger or not. LiRA consists of four steps: (1) train multiple
shadow models, (2) query the shadow models trained with X;arger
and without X;4rges to obtain two distributions, (3) query the vic-
tim model X;qrget to obtain the output logits, and (4) conduct a A
hypothesis test to infer the membership of the X;qrger based on the
two distributions and the query results.
LocMIA. In this attack, the adversary aims to determine whether
a given user u has visited a location [ in the training data. However,
it is not feasible to directly apply LiRA to LocMIA as the victim
model takes the trajectory sequences as inputs, but the adversary
only has a target location without the needed sequential context.
In particular, LocMIA needs the auxiliary inputs to calculate the
membership confidence score since this process cannot be com-
pleted only using X;arger = (u, ). This attack is a stark contrast to
MIA for image/text classification tasks where the Xiarge; itself is
sufficient to compute the membership confidence score.

To this end, we design a spatial-temporal model query algorithm
(Algorithm 3) to tailor LiRA to LocMIA and optimize membership
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Algorithm 3 SPATEMQUERY: Spatial-Temporal Model Query Algo-
rithm for LocMIA

Input: Target model: fi4rger, number of query timestamps: ny,
number of query locations: n, target example: Xtqrget
Output: Membership confidence score: conf
u,l Xtarget
- confa — {}
: fori—Oton; —1do
confr — {}
for j < 0ton; —1do
t; i/nt
l; < RANDOMSAMPLE(.L)
confi < confr U frarget(u, (I, ti)) > Query the model
with random location and a synthetic timestamp
9: end for
10: confyy < confyy Umean(conf;) > Calculate average confi-
dence from all queries for this timestamp
11: end for
12: return conf <« max(confy;) > Take the confidence scores with
largest confidence at position | as output

A U o

confidence score calculation. The idea behind the algorithm is that
if a particular user has been to a certain POI location, the model
might “unintentionally” memorize its neighboring POI locations
and the corresponding timestamp in the training data. Motivated
by this, each time we query the models (e.g., the victim and shadow
models), we generate n; random locations and n; fixed-interval
timestamps. To obtain stable and precise membership confidence
scores, we first average the corresponding confidence scores at the
target location by querying with n; locations at the same timestamp.
While the adversary does not possess the ground truth timestamp
linked with the target POI for queries, the adversary aims to mimic
a query close to the real training data. To achieve this, we repeat the
same procedure of querying different locations for n; timestamps
and take the maximum confidence scores among the n; averaged
confidence scores as the final membership inference score for the
target example. Algorithm 4 gives the outline of LiRA in terms of
LocMIA, and the lines marked with red are specific to LocMIA.

TrAJMIA. The attack aims to determine whether a trajectory is
used in the training data of the victim model. Unlike LocMIA,
Xtarget = (u, x7) suffices to calculate the membership confidence
score in LiRA, and we do not need any auxiliary inputs. To fully
leverage information of the target example querying the victim
model and improve the attack performance, we also utilize the n —2
intermediate outputs and the final output from the sequence x7
with a length of n to compute the membership confidence score, i.e.,
we take the average of all n — 1 outputs. This change improves the
attack performance as the intermediate outputs provide additional
membership information for each point in the target trajectory. The
purple lines in Algorithm 4 highlight steps specific to TRAJMIA.

3.3 Practical Implications of the Attack Suite

Our attack suite is designed as an integrated framework focusing
on the basic units of mobility data — locations and trajectories. It
contains two prevalent types of privacy attacks: data extraction
and membership inference attacks. Each attack in our attack suite
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Algorithm 4 Membership Inference Attack
Below, we demonstrate our location-level MIA and trajectory-level
MIA algorithms. The lines marked in red are specific to LocMIA,
while the lines marked in purple are specific to TRAJMIA. Both
attacks share the remaining lines.

Input: Victim model: fy, shadow data: D, number of shadow mod-
els: N, inference target: X;arget, number of query timestamps:
nt, number of query locations: n;
Output: The likelihood ratio to determine if we should reject the
hypothesis that X;qrges is a member of fy: A
1: confin, confour — {}.{}
2: X5 < RANDOMSAMPLE({Xs : Xiqrger € Xs}) > Sample a loca-
tion sequence and includes Xt arget

3 Xg <_Xtarget

4: fori < 0to N do

5 Din < RanpoMSAMPLE(Ds) U X

6: Doyt < RanDoMSAMPLE(Dg) \ X

7: fins four < TRAIN(Djp), TRAIN(Doy;) > Train fin and four
8: confin < confin U ¢(SPATEMQUERY(fin, ns, np, Xtarget))
9: confour < confoyr U

10: P(SPATEMQUERY (fout, nt, ny, Xearget))

11: confip < confinU

12: ¢ (mean({fin(Xs)*, ..., fin(Xs)"""1}))

13: confour « confoyr U

14: ¢ (mean({four (Xs)?0,.. .. four (Xs)°™71}))

15: end for

16: Hins flout — mean(confi,), mean(con fout)

17: aizn, Ggut « var(con fin),var(con fout)

18: confops < ¢ (SPATEMQUERY(fp, n, ny, Xearget))
19: confops — ¢(mean({fp(Xs)*?,..., fo(Xs)*"1}))
P (confobs| N(llin’o'lzn))
P(Confobs | N(Fout,o'gm))

20: return A = > Hypothesis test

targets a specific type of mobility data and could serve as a privacy
auditing tool [28]. They can also be used to infer additional sensitive
information in mobility data:

e LoCEXTRACT extracts a user’s most common location. Combined
with the semantics of the POI, we may infer the user’s address
such as work address, which is closely related to user identity;

e TRAJEXTRACT can be further used to infer user trajectories and
identify trip purposes by analyzing the POIs visited during a
journey [40];

e LocMIA can determine the membership of multiple POIs, thereby
facilitating the inference of a user’s activity range and social
connections in Cho et al. [12], Ren et al. [48];

e TRAJMIA infers if a user’s trajectory is in the training dataset,
which can serve as an auditing tool to examine the privacy leak-
age by assuming a worst-case adversary.

4 EXPERIMENTS

We empirically evaluate the proposed attack suite to answer the
following research questions: (1) What’s the performance of the
proposed attacks in extracting or inferring the sensitive information
from POI recommendation models (Sec. 4.2.1)? (2) What unique
factors (e.g., user, location, trajectory) in mobility data correlate
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Figure 2: Main results of data extraction attacks (LocExTRAacT and TRAJEXTRACT) on three victim models and two datasets.
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Figure 3: Main results of membership inference attacks (LocMIA and TRAJMIA) on three victim models and two mobility
datasets. The diagonal line indicates the random guess baseline.

Table 2: The performance of victim models.

Dataset Model Top-1 ACC  Top-10 ACC
GETNEXT 0.34 0.71
4sQ LSTPM 0.25 0.67
RNN 0.24 0.68
GETNEXT 0.16 0.48
GowALLA LSTPM 0.15 0.39
RNN 0.10 0.26

with the attack performance (Sec. 4.2.2)? (3) How do different attack
designs (e.g., spatial-temporal querying for membership inference
attacks) improve the attack performance (Sec. 4.2.3)?

4.1 Experimental Setup

We briefly describe the datasets, models, and evaluation metrics
used in our experiments. Due to the space limit, we defer the details
of datasets (e.g., statistics of each dataset), data pre-processing
pipeline, default training and attack parameters to Appendix A.

Datasets. Following the literature [31, 69], we comprehensively
evaluate four privacy attacks on two POI recommendation bench-
marks: FourSquare (4sQ) [68] and GowaLLa [12]. We use the check-
ins collected in NYC for both sources.

Models. We experiment with three representative POI recom-
mendation models, including GETNExT? [69], LSTPM* [58], and
RNN [63]. Note that GETNEXT and LSTPM are the state-of-the-
art POI recommendation methods based on the transformer and
hierarchical LSTM, respectively.

Evaluation Metrics. We use the top-k extraction attack suc-
cess rate (ASR) to evaluate the effectiveness of data extraction at-
tacks. For LOCEXTRACT, the top-k ASR is defined as |Ueyiracted|/| U/,
where Ugyiracted 18 the set of users whose most visited locations are

3https://github.com/songyangme/GETNext
*https://github.com/NLPWM-WHU/LSTPM
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in the top-k predictions outputted by our attack; For TRAJEXTRACT
the top-k ASR is |correct extractions|/|all (u, ly) pairs|, where cor-
rect extractions are (u, lp) pairs with top-k extracted results match-
ing an exact location sequence in the training data.

For LocMIA and TRAJMIA, we utilize the commonly employed
metrics for evaluating membership inference attacks, namely the
area under the curve (AUC), average-case “accuracy” (ACC), and
true positive rate (TPR) versus false positive rate (FPR) in the low-
false positive rate regime. Our primary focus is the TPR versus
FPR metric in the low-false positive rate regime because evaluat-
ing membership inference attacks should prioritize the worst-case
privacy setting rather than average-case, as emphasized in [6].

4.2 Experimental Results and Analysis

4.2.1 Attack performance (RQ1). Figures 2 and 3 visualize the at-
tack performance of data extraction and membership inference
attacks, respectively. In Figure 2, we observe that LocExTRACT and
TRAJEXTRACT can effectively extract users’ most common locations
and trajectories across various model architectures and datasets as
the attack performance is significantly better than the random guess
baseline, i.e., 1/|.£] (0.04% for LocExTRrACT) and 1/|.£|"*~1(1078%
for TRAJEXTRACT). Likewise, as shown in Figure 3, LocMIA and
TrRAJMIA successfully determine the membership of a specific user-
location pair or trajectory, significantly outperforming the random
guess baseline (represented by the diagonal line in both figures).
The attack performance also demonstrates that trajectory-level
attacks are significantly more challenging than location-level at-
tacks, evident from the better performance of LocEXTRACT and
LocMIA compared to TRAJEXTRACT and TRAJMIA for data extrac-
tion and membership inference. We suspect this is because POI
recommendation models are primarily designed to predict a single
location. In contrast, our trajectory-level attacks aim to extract or
infer a trajectory encompassing multiple consecutive locations.
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The attack performance also differs across different model ar-
chitectures and datasets. We see a general trend of privacy-utility
trade-off in POI recommendation models based on the model per-
formance of the victim model in Table 2: with better victim model
performance comes better attack performance. While this is a com-
mon trend, it might not hold in some cases. For example, the MIA
performance against RNN is sometimes better than GETNEXT and
LSTPM performances. This might be because GETNExT and LSTPM
improve upon RNN by better leveraging spatial-temporal informa-
tion in the mobility datasets. However, the adversary cannot use
the exact spatial-temporal information in shadow model training
since the adversary cannot access that information. This result can
be inspiring in that even though spatial-temporal information can
effectively improve attack performance, victim models that better
utilize spatial-temporal information are still more resilient to MIAs.
Future studies should also consider this characteristic when de-
signing attacks or privacy-preserving POI recommendation models
with better privacy-utility trade-offs.
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Figure 4: How user-level aggregate statistics are related to
TrRAJEXTRACT. Users who have fewer unique POIs are more
vulnerable to TRAJEXTRACT.
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Figure 5: How location-level aggregate statistics are related
to LocMIA. Locations visited by fewer different users or have
fewer surrounding check-ins are more vulnerable to LocMIA.
4.2.2  Factors in mobility data that make it vulnerable to the attacks
(RQ2). Prior research demonstrates that data outliers are the most
vulnerable examples to privacy attacks [6, 59] in image and text
datasets. However, it is unclear whether the same conclusion holds
in mobility data and what makes mobility data as data outliers.
To this end, we investigate which factors of the mobility datasets
influence the attack’s efficacy. In particular, we collect aggregate
statistics of mobility data from three perspectives: user, location,
and trajectory. We analyze which factors in these three categories
make mobility data vulnerable to our attacks. We defer the details
of selecting the aggregate statistics and the list of selected aggregate
statistics in our study in Appendix A. Our findings are as follows:
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e For LocEXTRACT, we do not identify any meaningful pattern
correlated with its attack performance. We speculate that a user’s
most common location is not directly related to the aggregate
statistics we study.

For TRAJEXTRACT, our findings indicate that users who have vis-
ited fewer unique POIs are more vulnerable to this attack, as
referenced in Figure 4. This can be explained by the fact that
when users have fewer POIs, the model is less uncertain in pre-
dicting the next location due to the reduced number of possible
choices that the model memorizes.

For LocMIA, as shown in Figures 5(a) and 5(b), we find that
locations visited by fewer users or have fewer surrounding check-
ins are more susceptible to LocMIA. We believe this is because

those locations shared with fewer users or surrounding check-ins

make them training data outliers.

For TRAJMIA, users with fewer total check-ins (Figure 6(a)), unique
POIs (Figure 6(b)), and fewer or shorter trajectories (Figures 6(c)

and 6(d)) are more susceptible. In Figures 7(a) and 7(b), we also see

that trajectories intercepting less with others or with more check-ins

are more vulnerable to TRAJMIA. We believe these user-level and

trajectory-level aggregate statistics make the target examples
data outliers.

In summary, we conclude that the effect of data outliers also exists in
privacy attacks against POI recommendations. In the context of POI
recommendation, the mobility data outliers could be characterized
from the perspectives of user, location, and trajectory. Different
attacks in our attack suite might be vulnerable to particular types
of data outliers, which are more unique and are vulnerable against
our attacks compared to other data.

4.2.3 The impacts of various attack designs (RQ3). We explore dif-
ferent attack designs that may affect the performance of the attack
suite on the 4sq dataset. We summarize the key findings as follows:
The optimal query timestamp leads to better attack perfor-
mance. The significance of timestamps to our attack aligns with
the fact that POI recommendation relies on temporal information
for making accurate predictions. From Figure 8, we find that the
extraction attacks (i.e.,LOCEXTRACT and TRAJEXTRACT) ASRs first
increase and then decrease as the query timestamp increases, which
peaks at 0.5 (the middle of the day). The reason is that most check-
ins occur during the daytime rather than at night.

For LocEXTRACT, from Figure 9(b), we observed that utilizing
more queries with different timestamps in our spatial-temporal model
query algorithm improves the results of inferring the membership
of a target user-location pair (u,[). Since the adversary lacks in-
formation about real input sequences before the target location /,
utilizing more queries helps to traverse the search space to approx-
imate the correct timestamp and promotes the attack performance.
A small number of queries is sufficient for our attacks. Fig-
ure 10 in the Appendix demonstrates that our data extraction at-
tacks (LocEXTRACT and TRAJEXTRACT) remain effective even with
a limited number of queries. Specifically, a few queries (i.e., g = 50)
and a small beam width (i.e., § = 10) allow the attacker to achieve
high ASRs for LocEXTRACT and TRAJEXTRACT, respectively. In other
words, our attacks are practical in real-world scenarios.

Additionally, Figure 9(a) indicates that LocMIA remains effective
even with a limited number of queries for different location choices
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even with a small nj (i.e., number of query locations) per timestamp,
which yields better practicability of our attack.

A larger number of shadow models leads to better perfor-
mance of membership inference attacks. Figure 11 in the Ap-
pendix shows that a larger number of shadow models greatly
improves the performance of LocMIA and TRAJMIA since more
shadow models provide more samples to approximate the real loss
distributions of in-samples and out-samples.

5 DEFENSE

We evaluate existing defenses against privacy attacks on machine
learning models. Due to the limited space, we illustrate the defense
mechanisms and the key findings in the main paper and defer
experimental details to Appendix B.

Defense Techniques. In particular, we evaluate two streams of
defense mechanisms on proposed attacks, including (1) standard
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Figure 9: Both the number of query timestamps n; and the
number of query locations n; affect the performance of
LocMIA. We use n; = 10 and n; = 10 in (a) and (b), respec-
tively. LocMIA is effective with a limited number of queries.

techniques to reduce overfitting (e.g., early stopping, I, regulariza-
tion) and (2) differential privacy-based defenses (e.g., DP-SGD [1])
for provable risk mitigation. The standard techniques reduce the vic-
tim model’s memorization to some degree, but they are insufficient
due to the lack of statistical guarantees. To fill this gap, differential

privacy [14] is also used to defend against our attacks, which can

theoretically limit the impact of a single data point on the model’s

performance.

Specifically, we first experiment with DP-SGD [1], the most rep-
resentative DP-based defense, to train differentially-private POI
recommendation models. The key idea of DP-SGD is to add Gauss-
ian noises N (0,52C?I) to the clipped gradients g of the model
during its training process. C is a clipping threshold that bounds
the sensitivity of g by ensuring ||g|| < C. To achieve (¢, §)-DP, we

have ¢ = {/2In ITZS /€. Despite that DP-SGD provides promising
defense performance on language tasks [17], we find that it can
substantially sacrifice the model’s utility on the POI recommenda-
tion task. Specifically, the top-10 accuracy is only 4.97% when the
mechanism satisfies (5,0.001)-DP, while the original top-10 accu-
racy without DP is 71%. The reason for this performance decrease
is that POI recommendation aims to make accurate user-level pre-
dictions within a large output space (i.e., > 4,000 possible POIs).
For different users, even the same location sequence may lead to

a different result, which means that the model needs to capture

user-specific behavior patterns from a relatively small user dataset.
As a result, the training is quite sensitive to the noises introduced

by DP-SGD, making it not applicable to POI recommendations.
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Table 3: The exposure of sensitive information in each attack.

Attack ‘ Sensitive Information
LoCEXTRACT Most common location of each user
TRAJEXTRACT Each location sequence/sub-sequence (xr,)

LocMIA Each user-location pair (u, 1)
TrRAJMIA Each trajectory sequence/sub-sequence (x7)

However, we argue that DP-SGD provides undifferentiated pro-

tection for all the mobility data, while for POI recommendation,
protecting more tailored sensitive information is more important.
For example, a defender may only care about whether a list of
check-ins about home addresses is protected or not. To this end, we
introduce the notion of selective DP [51] to relax DP and improve
the model’s utility-privacy trade-offs. Specifically, we apply the
state-of-the-art selective DP method JFT [50] to protect different
levels of sensitive information for each attack. The key idea of JFT
is to adopt a two-phase training process: in the phase-I training, JFT
redacts the sensitive information in the training dataset and opti-
mizes the model with a standard optimizer; in the phase-II training,
JFT applies DP-SGD to finetune the model on the original dataset
in a privacy-preserving manner. Due to the phase-I training, we
observe that the model’s utility is significantly promoted. In addi-
tion to JFT, we also apply Geo-Indistinguishability (Geo-Ind) [2]
to protect common locations in LOCEXTRACT. We note that Geo-
Ind is only applicable to LocEXTRACT (but not LocMIA) because it
requires modifying the training data and is incompatible with the
notion of membership inference.
Takeaway Messages from the Defense. We evaluate different
defense mechanisms in terms of their performance in preventing
each attack from stealing the corresponding sensitive information.
Table 3 summarizes the exposure of sensitive information in each
attack. Besides, Appendix B illustrates our evaluation metrics, ex-
perimental setup, and the results. Recall that the check-ins within
a mobility dataset are not equally important. Therefore, in our ex-
periments, we comprehensively evaluate the defense mechanisms
from two perspectives. Specifically, we measure their performance
in (1) protecting all the sensitive information and (2) protecting a
targeted subset of sensitive information from being attacked. Fig-
ures 12 and 13 in the Appendix show that existing defenses provide
a certain degree of guarantee in mitigating privacy risks of ML-
based POI recommendations, especially for the targeted subset of
sensitive information. However, there is no such unified defense
that can successfully defend against all the proposed attacks within
a small utility drop. In other words, our exploration highlights the
need for more advanced defenses.

6 RELATED WORK

Mobility Data Privacy. Mobility data contain rich information
that can reveal individual privacy such as user identity. Previous
work utilizes side-channel attacks to extract sensitive information
about mobility data from LBS, including social relationships [44,
57], aggregated trajectories [45, 46, 70], trajectory history [22, 33],
network packets [29, 61] and location embeddings [13]. Despite
the focus of previous work, deep neural networks (DNN) built
on large volumes of mobility data have recently become state-
of-the-art backbones for LBS, opening a new surface for privacy
attacks. To the best of our knowledge, our work is the first of its

183

KDD ’24, August 25-29, 2024, Barcelona, Spain

kind to investigate the vulnerabilities of DNN models in leaking
sensitive information about mobility data using inference attacks.
Moreover, previous defenses [30, 43, 47, 62, 65] primarily focus on
data collection, aggregation, and publishing, which can not protect
DNN models built on POI data.

Privacy Attacks. Various types of privacy attacks, such as mem-
bership inference attacks [6, 23, 49, 52], training data extraction
attacks [7, 8], and model inversion attacks [19] have been proposed
to infer sensitive information from model training data. Our attack
suite contains membership inference and data extraction attacks.
Existing data extraction and membership inference attacks [6, 8]
are insufficient for POI recommendation models due to the spatio-
temporal nature of the data. Our work takes the first step to ex-
tracting sensitive location and trajectory patterns from POI rec-
ommendation models and solving unique challenges to infer the
membership of both user-location pairs and user trajectories. As
a final remark, our attacks differ from previous MIAs in mobility
data [45, 70], which focus on the privacy risks of data aggregation.

7 CONCLUSION

In this work, we take the first step to evaluate the privacy risks
of the POI recommendation models. In particular, we introduce
an attack suite containing data extraction attacks and member-
ship inference attacks to extract and infer sensitive information
about location and trajectory in mobility data. We conduct exten-
sive experiments to demonstrate the effectiveness of our attacks.
Additionally, we analyze what types of mobility data are vulnerable
to the proposed attacks. To mitigate our attacks, we further adapt
two mainstream defense mechanisms to the task of POI recom-
mendation. Our results show that there is no single solid defense
that can simultaneously defend against all proposed attacks. Our
findings underscore the urgent need for better privacy-preserving
approaches for POI recommendation models. Interesting future di-
rections include: (1) Generalize the attack suite to measure privacy
risks of real-world location-based services (e.g., Yelp/Google Maps)
in a more challenging setting (e.g., label-only setting); (2) Develop
more advanced defense mechanisms against our attacks.

Ethics Statement. This work introduces a novel attack suite on
POI recommendation models trained on public anonymized mobil-
ity datasets with no personally identifiable information, aimed at
bringing potential vulnerabilities in POI models to public attention.
The success of our attacks offers insights into future privacy leakage
measurement in learning-based models involving spatio-temporal
data. Moreover, it underscores the need for improved defense so-
lutions for POI models with better utility-privacy trade-offs. We
hope our study fosters further research in protecting the privacy of
mobility data.
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Table 4: Statistics of POI Recommendation Datasets.

#POIs  #Check-ins  #Users  #Trajectories ~ Avg. Len.
4sQ 4,556 63,648 1,070 17,700 3.63
GowALLA 2,559 32,633 1,419 7,256 4.46

A EXPERIMENT DETAILS

Data Preprocessing. We preprocess each dataset following the
literature [69]: (1) Filter out unpopular POIs and users that appear
less than ten times.(2) Construct trajectories of different users in a
daily manner (24-hours) (3) Normalize the timestamp (from 0:00
AM to 11:59 PM) in each check-in record into [0,1]. After the
aforementioned steps, the key statistics of the 4sQ and Gowarra
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Figure 10: Our LocExTRACT is effective with a small number
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size (i.e., both attacks are effective in a small query budget).
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Figure 11: The attack performance of LocMIA and TrRajMIA
significantly improves with more shadow models.

datasets are shown in Table 4. (4) Lastly, we split the datasets into the
training, validation, and test sets using the ratio of 8:1:1. For victim
model training, we use the official implementation of GETNEXT
and LSTPM to train victim models. By default, we train each model
with a batch size 32 for 200 epochs and use five random seeds in all
experiments to report the average results.

Attack Settings. (1) LocEXTRACT Given a target user u, we extract
the most visited location lop1 from the victim model fy with a
query number g = 50. We set the query timestamp ¢ = 0.5 (i.e., the
middle of the day) by default, and discuss the effect of different
query timestamps on the attack performance in the ablation study.
(2) TRAJEXTRACT In this attack, we experiment with n = 4 by default,
though the attacker can potentially extract location (sub-)sequences
with arbitrary length. We set the beam size f# = 50 and also have the
default query timestamp t = 0.5. (3) LocMIA In our experiments,
we randomly sample 80% of trajectories as the training dataset
Dy to build a victim model and treat the remaining 20% data as
non-members. For each target user u and the POI location [ pair, we
generate N = 64 synthesis trajectories using TRAJSYNTHESIS with
the query timestamp ts = 0.5. With the synthesis trajectories, we
can also have 64 in-models (fin) and 64 out-models (foy,). We also
set n; = 10 and n; = 10. (4) TRAJMIA We extract the membership
information of some trajectory sequences with arbitrary lengths
from the victim model. We also build N = 64 in-models (fi,) and
N = 64 out-models (foy:) for a target trajectory sequence. For
evaluation, we conduct a hypothesis test on a balanced number of
members and non-members for both LocMIA and TRAJMIA.
How to Select Aggregate Statistics. This section outlines the
basic principles and details for selecting representative aggregate
statistics for analysis. For user-level aggregate statistics, we target
the basic statistical information quantifying properties of locations
and trajectories of a user: (ul) Total number of check-ins; (u2)
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Figure 13: Defense performance on protecting the targeted subset of sensitive information for each attack.

Number of unique visited POIs; (u3) Number of trajectories; (u4)
Average trajectory length. For location-level statistics, we study
their users, “neighboring” check-ins and trajectories, and the check-
in time information. (11) Number of users who have visited this POI;
(12) Number of check-ins surrounding (< 1km) this POI; (13) Number
of trajectories sharing this POI (14) Average time in a day for the
visits to the POL Similar to location-level statistics, for trajectory-
level aggregate statistics, we select: (t1) Number of users who have
the same trajectories; (t2) Number of check-ins surrounding (< 1km)
all POl in the trajectory; (t3) Number of intercepting trajectories;
(t4) Average check-in time of the trajectory.

B DEFENSE

Defense Metrics. As summarized in Table 3, our attacks target
different sensitive information on the training dataset. To this end,
we evaluate defense mechanisms in terms of their performance in
preventing each attack from stealing the corresponding sensitive
information. Specifically, we measure their defense performance
on protecting all the sensitive information and a targeted subset of
sensitive information for each attack. We define the targeted subset
of sensitive information as what defenders want to protect in prac-
tice (e.g., some selected user-location pairs in LocMIA). We include
this metric because not all the mobility data are sensitive or equally
important. In fact, we should evaluate how defense mechanisms
perform on the sensitive information that needs to be protected
(e.g., user-location pairs that may leak personal identity).

To this end, we jointly measure the defense performance in
protecting all the sensitive information and the targeted subset
of sensitive information for each attack. Based on different attack
objectives, we construct a different targeted subset of sensitive in-
formation for measurement by randomly sampling a portion of
(e.g., 30%) the most common locations in LOCEXTRACT, location
sequences in TRAJEXTRACT, user-location pairs in LocMIA and
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trajectory sequences in TRAJMIA. It is noted that we randomly
sample 30% of sensitive information in each attack to construct
the targeted subset for the ease of experiments. In practice, the de-
fender may have more personalized choices based on user-specific
requirements, which we leave as future work.

Defense Setup. The GETNext model and 4sq dataset are used for
experiments. For Ly regularization, we use weight decay ||w| =
1e~2 and 3e2. For early stopping, we stop training after 5 epochs.
For JFT, we mask sensitive information that needs to be protected
in phase-I. Then in phase-II, we use DP-SGD [1] with different €;
(1 and 5) to finetune the model. The C and § are set to 10 and 1e™3.
For Geo-Ind against LOcCEXTRACT, we apply different e (0.01 and
0.05) to replace each sensitive POI with its nearby location such
that the original POI is indistinguishable from any location within
r = 400 meters. Since both JFT and Geo-Ind can be used to protect
different amounts of sensitive information, we either protect nearly
all the sensitive information or only the targeted subset of sensitive
information for each attack, denoted by suffixes (A) and (T).
Results. Figure 12 and 13 showcase the results of existing defenses
in mitigating the privacy risks of all the sensitive information and
the targeted subset of sensitive information regarding each attack.
The results show that existing defenses mitigate our privacy attacks
to some extent. However, it is challenging to remove all the vulnera-
bilities within a reasonable utility drop. This is because existing POI
recommendation models heavily rely on memorizing user-specific
trajectory patterns to make predictions, which lack semantic in-
formation as guidance. As a result, defense mechanisms such as
DP-SGD can easily compromise the utility of the protected model
due to the noises added to the gradients. Moreover, defenses such
as JFT are not general for all inference attacks since each attack
steals different sensitive information. To this end, our evaluation
calls for more advanced mechanisms to defend against our attacks.
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