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ABSTRACT

As location-based services (LBS) have grown in popularity, more

human mobility data has been collected. The collected data can be

used to build machine learning (ML) models for LBS to enhance

their performance and improve overall experience for users. How-

ever, the convenience comes with the risk of privacy leakage since

this type of data might contain sensitive information related to

user identities, such as home/work locations. Prior work focuses

on protecting mobility data privacy during transmission or prior to

release, lacking the privacy risk evaluation of mobility data-based

ML models. To better understand and quantify the privacy leak-

age in mobility data-based ML models, we design a privacy attack

suite containing data extraction and membership inference attacks

tailored for point-of-interest (POI) recommendation models, one

of the most widely used mobility data-based ML models. These

attacks in our attack suite assume different adversary knowledge

and aim to extract different types of sensitive information from

mobility data, providing a holistic privacy risk assessment for POI

recommendation models. Our experimental evaluation using two

real-world mobility datasets demonstrates that current POI recom-

mendation models are vulnerable to our attacks. We also present

unique findings to understand what types of mobility data are more

susceptible to privacy attacks. Finally, we evaluate defenses against

these attacks and highlight future directions and challenges.

CCS CONCEPTS

• Security and privacy→ Privacy-preserving protocols; • Infor-
mation systems→ Location based services.
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1 INTRODUCTION

With the development and wide usage of mobile and wearable de-

vices, large volumes of humanmobility data are collected to support

location-based services (LBS), such as traffic management [3, 34],

store location selection [38], and point-of-interest (POI) recom-

mendation [58, 69]. In particular, POI recommendation involves

relevant POI suggestions to users for future visits based on per-

sonal preferences using ML techniques [27], which has recently

gained much research attention
1
. POI recommendation models

have also been integrated into popular services such as Yelp and

Google Maps to assist users in making informed decisions about

the next destination to visit. However, mobility data collected to

train POI recommendation models are highly sensitive as they can

leak users’ sensitive information such as their social relationships,

trip purposes, and identities [4].

Although there are a significant number of studies [2, 21, 32, 54]

on mobility data privacy, the existing research primarily focuses

on analyzing attacks and evaluations within the context of mobil-

ity data transmission and release processes. For example, previous

studies have demonstrated the linkages of mobility data from vari-

ous side channels, including social networks [24, 26], open-source

datasets [20, 44], and network packets [29, 61]. The linkages be-

tween these side channels can lead to the identification of individ-

uals. As a result, efforts to protect mobility data have primarily

1
From 2017 to 2023, there are more than 111 papers on POI recommendation built

upon mobility data collected by location service providers [64].
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Figure 1: Our attack suite highlights the privacy concerns in

POI recommendation models. In particular, we demonstrate

that an adversary can extract or infer membership informa-

tion of locations or trajectories in the training dataset.

concentrated on data aggregations and releases [5, 21, 41]. These

studies neglect the risk of adversaries extracting sensitive attributes

or properties from the ML models (e.g., POI recommendation mod-

els) that use mobility data for training, which are inherently sus-

ceptible to privacy attacks [6, 52].

Evaluating privacy risks in POI recommendation models remains

challenging because existing attack and defense mechanisms are

ineffective due to the unique features of mobility data. Previous

privacy attacks have mainly focused on ML models trained with

image and text data [8, 18, 52], where each data point can uniquely

identify itself. However, mobility data, such as locations, are less

semantically unique without the context. Moreover, mobility data

is special in that it contains multimodal spatial and temporal infor-

mation, which describes each individual’s movements and behavior

patterns over time. All existing attacks fail to construct meaning-

ful context and leverage spatial-temporal information, resulting in

their failures when applied to POI recommendations. Furthermore,

existing defense mechanisms [1, 50, 51] have mainly been tested

on classification models trained with image or text data. Given the

task and data are significantly different, the effectiveness of defense

mechanisms is unknown when applied to POI recommendation.

In this paper, we design a comprehensive privacy attack suite to

study the privacy leakage in POI recommendation models trained

with mobility data. Specifically, our privacy attack suite contains

the two most popular kinds of privacy attacks on machine learning

models, data extraction and membership inference attacks, to assess

the privacy vulnerabilities of POI recommendation models at both

location and trajectory levels. In contrast to privacy attacks for

image and text data, the attacks in our attack suite are tailored

for mobility data and aim to extract different types of sensitive

information based on practical adversary knowledge.

We perform experiments on three representative POI recommen-

dation models trained on two mobility datasets. We demonstrate

that POI recommendation models are vulnerable to our designed

data extraction and membership inference attacks. We further pro-

vide an in-depth analysis to understand what factors affect the

attack performance and contribute to the effectiveness of the at-

tacks. Based on our analysis, we discover that the effect of data

outliers exists in privacy attacks against POI recommendations,

making training examples with certain types of users, locations,

and trajectories particularly vulnerable to the attacks in the attack

suite. Finally, We test several existing defenses and find that they

do not effectively thwart our attacks with negligible utility loss,

which calls for better methods to defend against our attacks.

Contributions:

• We introduce a novel privacy attack suite
2
that incorporates

unique characteristics of mobility data (e.g., spatial-temporal

information) into the attack design. In particular, we target a

previously under-defended attack surface: neural-network-based

POI recommendation. To the best of our knowledge, our work is

the first to comprehensively evaluate the privacy risks in POI rec-

ommendation models using inference attacks from both location

and trajectory levels.

• We conduct extensive experiments on state-of-the-art POI rec-

ommendation models and datasets to demonstrate that POI rec-

ommendation models are vulnerable to data extraction and mem-

bership inference attacks in our attack suite.

• We provide an in-depth analysis to understand what unique

factors in mobility data make them vulnerable to privacy attacks.

We also explore the reason regarding how our attack design

works and test existing defenses against our attacks. Our analysis

identifies the challenges and future directions for developing

privacy-preserving POI recommendation models.

2 BACKGROUND

2.1 Point-of-Interest Recommendation

POI recommendation has recently gained much attention due to

its importance in many business applications [27], such as user

experience personalization and resource optimization. Initially, re-

searchers focused on feature engineering and algorithms such as

Markov chain [10, 71], matrix factorization algorithms [11, 36], and

Bayesian personalized ranking [25, 72] for POI recommendation.

However, more recent studies have shifted their attention towards

employing neural networks like RNN [37, 67], LSTM [31, 58], and

self-attention models [35, 39]. Neural networks can better learn

from spatial-temporal correlation in mobility data (e.g., check-ins)

to predict users’ future locations and thus outperform other POI rec-

ommendation algorithms by a large margin. Meanwhile, this could

introduce potential privacy leakage. Thus, we aim to design an

attack suite to measure the privacy risks of neural-network-based

POI recommendations systematically.

We first provide the basics of POI recommendations and no-

tations used throughout this paper. Let U be the user space, L
be the location space, and T be the timestamp space. A POI rec-

ommendation model takes the observed trajectory of a user as

input and predicts the next POI that will be visited, which is for-

mulated as 𝑓𝜃 : U × L𝑛 × T𝑛 → R | L | . Here, the length of the

input trajectory is 𝑛. We denote a user by its user ID 𝑢 ∈ U for

simplicity. For an input trajectory with 𝑛 check-ins, we denote its

trajectory sequence as 𝑥0:𝑛−1
𝑇

= {(𝑙0, 𝑡0), . . . , (𝑙𝑛−1, 𝑡𝑛−1)}, where
𝑙𝑖 ∈ L and 𝑡𝑖 ∈ T indicate the POI location and corresponding

time interval of 𝑖-th check-in. Also, the location sequence of this
trajectory is denoted as 𝑥0:𝑛−1

𝐿
= {𝑙0, . . . , 𝑙𝑛−1}. The POI recommen-

dation model predicts the next location 𝑙𝑛 (also denoted as 𝑦 by

convention) by outputting the logits of all the POIs. Then, the user

can select the POI with the highest logit as its prediction 𝑦, where

𝑦 = argmax 𝑓𝜃 (𝑢, 𝑥0:𝑛−1𝑇
). Given the training set 𝐷tr sampled from

2
Our code is publicly available at: https://github.com/KunlinChoi/POIPrivacy

 

176

https://github.com/KunlinChoi/POIPrivacy


Where Have You Been? A Study of Privacy Risk for Point-of-Interest Recommendation KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: A summary of the threat model.

Attack Adversary Objective Adversary Knowledge

LocExtract
Extract the most frequently visited location 𝑙 of
a target user𝑢

–

TrajExtract

Extract the location sequence of a target user𝑢
with length 𝑛: 𝑥𝐿 = {𝑙0, . . . , 𝑙𝑛−1 } Starting location 𝑙0

LocMIA

Infer the membership of a user-location

pair (𝑢 ,𝑙 )
Shadow dataset 𝐷s

TrajMIA

Infer the membership of a trajectory sequence

𝑥𝑇 = { (𝑙0, 𝑡0 ), . . . , (𝑙𝑛 , 𝑡𝑛 ) } Shadow dataset 𝐷s

an underlying distribution D, the model weights are optimized

to minimize the prediction loss on the overall training data, i.e.,

min𝜃
1

|𝐷tr |
∑
(𝑢,𝑥0:𝑛−1

𝑇
,𝑦) ∈𝐷tr

ℓ (𝑓𝜃 (𝑢, 𝑥0:𝑛−1𝑇
), 𝑦), where ℓ is the cross-

entropy loss, i.e., ℓ (𝑓𝜃 (𝑢, 𝑥0:𝑛−1𝑇
), 𝑦) = − log(𝑓𝜃 (𝑢, 𝑥0:𝑛−1𝑇

))𝑦 . The
goal of the training process is to maximize the performance of the

model on the unseen test dataset 𝐷𝑡𝑒 ∈ D, which is drawn from

the same distribution as the training data. During inference, this

prediction 𝑦 is then compared to the next real location label 𝑙𝑛 to

compute the prediction accuracy. The performance evaluation of

POI recommendation models typically employs metrics such as

top-𝑘 accuracy (e.g., 𝑘 = 1, 5, 10).

2.2 Threat Models

Adversary Objectives. To understand the potential privacy leak-

age of training data in POI recommendation models, we design

the following four attacks from the two most common privacy

attack families: membership inference attack [53] and data ex-

traction attacks [9], based on the characteristics of the mobility

data for POI recommendation, namely common location extrac-
tion (LocExtract), training trajectory extraction (TrajExtract),

location-level membership inference attack (LocMIA), and trajectory-
level membership inference attack (TrajMIA). These four attacks

aim to extract or infer different sensitive information about a user

in the POI recommendation model training data.

LocExtract focuses on extracting a user’s most frequently vis-

ited location; TrajExtract extracts a user’s location sequence with

a certain length given a starting location; LocMIA infers whether

a user has been to a location and used for training; TrajMIA in-

fers where a trajectory sequence has been used for training. The

summary of the threat model is outlined in Table 1.

Adversary Knowledge. For all attacks, we assume the attacker

has access to the query interface of the victim model. Specifically,

the attacker can query the victim model with the target user and

obtain the corresponding output logits. This assumption is realis-

tic in two scenarios: (1) A malicious third-party entity is granted

access to the POI model query API hosted by the model owner

(e.g., location service providers like Foursquare or Yelp) for spe-

cific businesses such as personalized advertisement. This scenario

is well-recognized by [42, 55, 66]. (2) The retention period of the

training data expires. Still, the model owner keeps the model and

an adversary (e.g., a malicious insider of location service providers)

can extract or infer the sensitive information using our attack suite,

even if the training data have been deleted. In this scenario, the

model owner may violate privacy regulations such as GDPR [15].

Depending on different attack objectives, the adversary also

possesses different auxiliary knowledge. In particular, for TrajEx-

tract, we assume the attacker can query the victim model with

a starting location 𝑙0 that the target user visited. This assump-

tion is reasonable because an attacker can use real-world obser-

vation [56, 60], LocExtract, and LocMIA as cornerstones. As for

LocMIA and TrajMIA, we assume the attacker has access to a

shadow dataset following the standard settings of membership

inference attacks [6, 52].

3 ATTACK SUITE

Our attack suite is used to evaluate privacy vulnerabilities of POI

recommendation models at both location and trajectory levels. The

subsequent sections detail the technical approaches and design of

attacks, taking into account the unique aspects of mobility data.

3.1 Data Extraction Attacks

Our data extraction attacks are rooted in the idea that victim mod-

els display varying levels of memorization in different subsets of

training data. By manipulating the spatial-temporal information in

the queries, the attacker can extract users’ locations or trajectories

that these victim models predominantly memorize.

LocExtract. Common location extraction attack (LocExtract)

aims to extract a user’s most frequently visited location in the victim

model training, i.e.,

LocExtract(𝑓𝜃 , 𝑢) → ˆ𝑙𝑡𝑜𝑝1, . . . , ˆ𝑙𝑡𝑜𝑝𝑘 .

The attack takes the victim model 𝑓𝜃 and the target user 𝑢 as the

inputs and generates 𝑘 predictions
ˆ𝑙𝑡𝑜𝑝1, . . . , ˆ𝑙𝑡𝑜𝑝𝑘 to extract the

most frequently visited location of user 𝑢. The attack is motivated

by our key observation: querying POI recommendation models

with a random location reveals that these models tend to “over-

learn” a user’s most frequently visited locations, making these

locations more likely to appear in the model output. For example,

we randomly choose 10 users and query the victim model using

100 randomly selected locations. Of these queries, 32.5% yield the

most frequent location for the target user. Yet, these most common

locations are present in only 18.7% of these users’ datasets.

In LocExtract, we first generate a set of different random inputs

for a specific user and use them to make iterative queries to the

victim model. Each query returns the prediction logits with a length

of |L| outputted by the victim model. The larger the logit value,

the more confident the model is in predicting the corresponding

location as the next POI. Therefore, by iterating queries to themodel

given a target user and aggregating the logit values of all queries,

the most visited location is more likely to have a large logit value

after aggregation. In particular, we use a soft voting mechanism,

i.e., averaging the logits of all the queries. With the resulting mean

logits, we output the top-𝑘 locations with 𝑘 largest logit values as

the attack results. Algorithm 1 outlines LocExtract. Though the

attack is straightforward, it is effective and can be a stepping stone

for TrajExtract in our attack suite.

TrajExtract. Our training trajectory extraction attack

(TrajExtract) aims to extract the location sequence 𝑥0:𝑛−1
𝐿

=

{𝑙0, . . . , 𝑙𝑛−1} in a training trajectory of user 𝑢 with a length of

𝑛 from the victim model 𝑓𝜃 . Formally,

TrajExtract(𝑓𝜃 , 𝑢, 𝑙0, 𝑛) → 𝑥0:𝑛−1
𝐿0

, . . . , 𝑥0:𝑛−1
𝐿𝛽

,
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Algorithm 1 Common Location Extraction Attack

Input: Victim model: 𝑓𝜃 , target user: 𝑢, query budget: 𝑞, query

timestamp: 𝑡 , output size: 𝑘

Output: Top-𝑘 predictions: [ˆ𝑙𝑡𝑜𝑝1,. . . ,ˆ𝑙𝑡𝑜𝑝𝑘 ]
1: logits← {}

2: for 𝑞 times do

3: 𝑙 ← RandomSample(L) ⊲ Randomly generate a location
from the location space

4: logits ∪ 𝑓𝜃
(
𝑢, {(𝑙, 𝑡)}

)
5: end for

6: logitsagg = Aggregate(logits) ⊲ Aggregate confidence for all
locations

7: return
ˆ𝑙𝑡𝑜𝑝1,. . . ,ˆ𝑙𝑡𝑜𝑝𝑘 ← Argmax𝑘 (logitsagg)

where 𝑥0:𝑛−1
𝐿0

, . . . , 𝑥0:𝑛−1
𝐿𝛽

indicate the top-𝛽 extracted location se-

quences by the attack.

The key idea of the training trajectory extraction attack is to

identify the location sequence with the lowest log perplexity, as

models tend to demonstrate lower log perplexity when they see

trained data. We denote log perplexity as:

PPL𝑓𝜃 (𝑢, 𝑥
0:𝑛−1
𝑇 ) = − log Pr𝑓𝜃 (𝑢, 𝑥

0:𝑛−1
𝑇 ) = −

𝑛−1∑︁
𝑖=0

log Pr𝑓𝜃 (𝑢, 𝑥
0:𝑖−1
𝑇 ),

where Pr𝑓𝜃 (·) is the likelihood of observing 𝑥0:𝑛−1
𝑇

with user 𝑢 un-

der the victim model 𝑓𝜃 . In order to get the lowest log perplexity

of location sequences with a length of 𝑛, we have to enumerate all

possible location sequences. However, in the context of POI recom-

mendation, there are O(|L|𝑛−1) possible location sequences for a

given user. |L| equals the number of unique POIs within the mobil-

ity dataset and can include thousands of options. Thus, the cost of

calculating the log perplexity of all location sequences can be very

high. To this end, we use beam search to extract the location se-

quences with both time and space complexity O(|L|×𝑛×𝛽), where
𝛽 is the beam size. In particular, to extract a trajectory of length

𝑛, we iteratively query the victim model using a set of candidate

trajectories with a size of 𝛽 and update the candidate trajectories

until the extraction finishes. As highlighted in the prior work [16],

when using beam search to determine the final outcome of a se-

quential neural network, there is a risk of generating non-diverse

outputs and resembling the training data sequence. However, in

our scenario, this property can be leveraged as an advantage in

TrajExtract, as our primary objective revolves around extracting

the training location sequence with higher confidence. As a final

remark, both LocExtract and TrajExtract need a query times-

tamp to query the victim model, and we will show the effects of

the timestamp in our experiments. Algorithm 2 gives the detailed

steps of TrajExtract.

3.2 Membership Inference Attacks

Membership inference attack (MIA) aims to determine whether a

target data sample is used in the model training. We extend the

notion to infer whether certain sensitive information (e.g., user-

location pair (𝑢, 𝑙) and trajectory sequence (𝑢, 𝑥𝑇 )) of the user’s
data is involved in the training of the victim model 𝑓𝜃 . Since POI

Algorithm 2 Training Trajectory Extraction Attack

Input: Victim model: 𝑓𝜃 , target user: 𝑢, starting location: 𝑙0, target

extraction length: 𝑛, query timestamp: 𝑡 , beam width: 𝛽

Output: Top-𝛽 possible extraction results: 𝑥0:𝑛
𝐿0

, . . . , 𝑥0:𝑛
𝐿𝛽

1: for 𝑏 ← 0 to 𝛽 − 1 do
2: 𝑥0:0

𝑇𝑏
← (𝑢, (𝑙0, 𝑡)) ⊲ Initialize the beam with 𝑙0 and 𝑡

3: end for

4: for 𝑖 ← 1 to 𝑛 − 1 do
5: for 𝑥0:𝑖−1

𝑇
in {𝑥0:𝑖−1

𝑇0
, . . . , 𝑥0:𝑖−1

𝑇𝛽
} do

6: {𝑥0:𝑖
𝑇0
, . . . , 𝑥0:𝑖

𝑇𝛽
} ← UpdateBeam𝛽 (𝑓𝜃 (𝑢, 𝑥0:𝑖−1𝑇

)) ⊲ Up-
date the beam by keeping 𝛽 trajectory with the smallest PPL from
the query output and current beam

7: end for

8: end for

9: 𝑥0:𝑛−1
𝐿0

, . . . , 𝑥0:𝑛−1
𝐿𝛽

← Getloc(𝑥0:𝑛−1
𝑇0

, . . . , 𝑥0:𝑛−1
𝑇𝛽

) ⊲ Take the

location sequence from 𝑥0:𝑛−1
𝑇

as result 𝑥0:𝑛−1
𝐿

10: return 𝑥0:𝑛−1
𝐿0

, . . . , 𝑥0:𝑛−1
𝐿𝛽

recommendation models use multi-modal sequential data as inputs

and adversaries lack sufficient information to construct a complete

input, we propose attack designs to manipulate the spatial-temporal

information in queries to enhance effectiveness of attacks. The

membership inference attack can be formulated as follow:

MIA(𝑓𝜃 , 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷𝑠 ) → {member, nonmember},

where𝑋𝑡𝑎𝑟𝑔𝑒𝑡 represents the target sensitive information (𝑋𝑡𝑎𝑟𝑔𝑒𝑡 =

(𝑢, 𝑙) in LocMIA and 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑢, 𝑥𝑇 ) in TrajMIA), and 𝐷𝑠 is the

shadow dataset owned by the adversary.

To effectively infer the membership of a given 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 , we adapt

the state-of-the-art membership inference attack – likelihood ratio

attack (LiRA) [6] to the context of POI recommendation. The key

insight of LiRA is that the model parameters trained with 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

differ from those trained without it, and the effect of the model

parameter on a data sample can be well approximated using a loss

value. By conducting a hypothesis test on the distributions of the

loss values, we can identify if the victim model is trained with

the 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 or not. LiRA consists of four steps: (1) train multiple

shadow models, (2) query the shadow models trained with 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

and without 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 to obtain two distributions, (3) query the vic-

tim model 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 to obtain the output logits, and (4) conduct a Λ
hypothesis test to infer the membership of the 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 based on the

two distributions and the query results.

LocMIA. In this attack, the adversary aims to determine whether

a given user 𝑢 has visited a location 𝑙 in the training data. However,

it is not feasible to directly apply LiRA to LocMIA as the victim

model takes the trajectory sequences as inputs, but the adversary

only has a target location without the needed sequential context.

In particular, LocMIA needs the auxiliary inputs to calculate the

membership confidence score since this process cannot be com-

pleted only using 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑢, 𝑙). This attack is a stark contrast to

MIA for image/text classification tasks where the 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 itself is

sufficient to compute the membership confidence score.

To this end, we design a spatial-temporal model query algorithm

(Algorithm 3) to tailor LiRA to LocMIA and optimize membership
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Algorithm 3 SpaTemQuery: Spatial-Temporal Model Query Algo-

rithm for LocMIA

Input: Target model: 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 , number of query timestamps: 𝑛𝑡 ,

number of query locations: 𝑛𝑙 , target example: 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

Output: Membership confidence score: 𝑐𝑜𝑛𝑓

1: 𝑢, 𝑙 ← 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

2: 𝑐𝑜𝑛𝑓𝑎𝑙𝑙 ← {}
3: for 𝑖 ← 0 to 𝑛𝑡 − 1 do
4: 𝑐𝑜𝑛𝑓𝑡 ← {}
5: for 𝑗 ← 0 to 𝑛𝑙 − 1 do
6: 𝑡𝑖 ← 𝑖/𝑛𝑡
7: 𝑙 𝑗 ← RandomSample(L)
8: 𝑐𝑜𝑛𝑓𝑡 ← 𝑐𝑜𝑛𝑓𝑡 ∪ 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑢, (𝑙 𝑗 , 𝑡𝑖 )) ⊲ Query the model

with random location and a synthetic timestamp
9: end for

10: 𝑐𝑜𝑛𝑓𝑎𝑙𝑙 ← 𝑐𝑜𝑛𝑓𝑎𝑙𝑙 ∪mean(𝑐𝑜𝑛𝑓𝑡 ) ⊲ Calculate average confi-
dence from all queries for this timestamp

11: end for

12: return 𝑐𝑜𝑛𝑓 ← max(𝑐𝑜𝑛𝑓𝑎𝑙𝑙 ) ⊲ Take the confidence scores with
largest confidence at position 𝑙 as output

confidence score calculation. The idea behind the algorithm is that

if a particular user has been to a certain POI location, the model

might “unintentionally” memorize its neighboring POI locations

and the corresponding timestamp in the training data. Motivated

by this, each time we query the models (e.g., the victim and shadow

models), we generate 𝑛𝑙 random locations and 𝑛𝑡 fixed-interval

timestamps. To obtain stable and precise membership confidence

scores, we first average the corresponding confidence scores at the

target location by querying with 𝑛𝑙 locations at the same timestamp.

While the adversary does not possess the ground truth timestamp

linked with the target POI for queries, the adversary aims to mimic

a query close to the real training data. To achieve this, we repeat the

same procedure of querying different locations for 𝑛𝑡 timestamps

and take the maximum confidence scores among the 𝑛𝑡 averaged

confidence scores as the final membership inference score for the

target example. Algorithm 4 gives the outline of LiRA in terms of

LocMIA, and the lines marked with red are specific to LocMIA.

TrajMIA. The attack aims to determine whether a trajectory is

used in the training data of the victim model. Unlike LocMIA,

𝑋𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑢, 𝑥𝑇 ) suffices to calculate the membership confidence

score in LiRA, and we do not need any auxiliary inputs. To fully

leverage information of the target example querying the victim

model and improve the attack performance, we also utilize the 𝑛−2
intermediate outputs and the final output from the sequence 𝑥𝑇
with a length of 𝑛 to compute the membership confidence score, i.e.,

we take the average of all 𝑛 − 1 outputs. This change improves the

attack performance as the intermediate outputs provide additional

membership information for each point in the target trajectory. The

purple lines in Algorithm 4 highlight steps specific to TrajMIA.

3.3 Practical Implications of the Attack Suite

Our attack suite is designed as an integrated framework focusing

on the basic units of mobility data – locations and trajectories. It

contains two prevalent types of privacy attacks: data extraction

and membership inference attacks. Each attack in our attack suite

Algorithm 4 Membership Inference Attack

Below, we demonstrate our location-level MIA and trajectory-level

MIA algorithms. The lines marked in red are specific to LocMIA,

while the lines marked in purple are specific to TrajMIA. Both

attacks share the remaining lines.

Input: Victim model: 𝑓𝜃 , shadow data:𝐷𝑠 , number of shadowmod-

els: 𝑁 , inference target: 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 , number of query timestamps:

𝑛𝑡 , number of query locations: 𝑛𝑙
Output: The likelihood ratio to determine if we should reject the

hypothesis that 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 is a member of 𝑓𝜃 : Λ
1: 𝑐𝑜𝑛𝑓𝑖𝑛, 𝑐𝑜𝑛𝑓𝑜𝑢𝑡 ← {},{}

2: 𝑋𝑆 ← RandomSample({𝑋𝑆 : 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑋𝑆 }) ⊲ Sample a loca-
tion sequence and includes 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

3: 𝑋𝑆 ← 𝑋𝑡𝑎𝑟𝑔𝑒𝑡

4: for 𝑖 ← 0 to 𝑁 do

5: 𝐷𝑖𝑛 ← RandomSample(𝐷𝑠 ) ∪ 𝑋𝑆

6: 𝐷𝑜𝑢𝑡 ← RandomSample(𝐷𝑠 ) \ 𝑋𝑆

7: 𝑓𝑖𝑛, 𝑓𝑜𝑢𝑡 ← Train(𝐷𝑖𝑛), Train(𝐷𝑜𝑢𝑡 ) ⊲ Train 𝑓𝑖𝑛 and 𝑓𝑜𝑢𝑡
8: 𝑐𝑜𝑛𝑓𝑖𝑛 ← 𝑐𝑜𝑛𝑓𝑖𝑛 ∪ 𝜙 (SpaTemQuery(𝑓𝑖𝑛, 𝑛𝑡 , 𝑛𝑙 , 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 ))
9: 𝑐𝑜𝑛𝑓𝑜𝑢𝑡 ← 𝑐𝑜𝑛𝑓𝑜𝑢𝑡 ∪
10: 𝜙 (SpaTemQuery(𝑓𝑜𝑢𝑡 , 𝑛𝑡 , 𝑛𝑙 , 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 ))
11: 𝑐𝑜𝑛𝑓𝑖𝑛 ← 𝑐𝑜𝑛𝑓𝑖𝑛∪
12: 𝜙

(
mean({𝑓𝑖𝑛 (𝑋𝑆 )0:0, . . . , 𝑓𝑖𝑛 (𝑋𝑆 )0:𝑛−1})

)
13: 𝑐𝑜𝑛𝑓𝑜𝑢𝑡 ← 𝑐𝑜𝑛𝑓𝑜𝑢𝑡 ∪
14: 𝜙

(
mean({𝑓𝑜𝑢𝑡 (𝑋𝑆 )0:0, . . . , 𝑓𝑜𝑢𝑡 (𝑋𝑆 )0:𝑛−1})

)
15: end for

16: 𝜇in, 𝜇out ← mean(𝑐𝑜𝑛𝑓in), mean(𝑐𝑜𝑛𝑓out)

17: 𝜎2
in
, 𝜎2

out
← var(𝑐𝑜𝑛𝑓in),var(𝑐𝑜𝑛𝑓out)

18: 𝑐𝑜𝑛𝑓
obs
← 𝜙 (SpaTemQuery(𝑓𝜃 , 𝑛𝑡 , 𝑛𝑙 , 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 ))

19: 𝑐𝑜𝑛𝑓
obs
← 𝜙

(
mean({𝑓𝜃 (𝑋𝑆 )0:0, . . . , 𝑓𝜃 (𝑋𝑆 )0:𝑛−1})

)
20: return Λ =

𝑝 (𝑐𝑜𝑛𝑓obs |N (𝜇in,𝜎2

in
) )

𝑝 (𝑐𝑜𝑛𝑓obs |N (𝜇out,𝜎2

out
) ) ⊲ Hypothesis test

targets a specific type of mobility data and could serve as a privacy

auditing tool [28]. They can also be used to infer additional sensitive

information in mobility data:

• LocExtract extracts a user’s most common location. Combined

with the semantics of the POI, we may infer the user’s address

such as work address, which is closely related to user identity;

• TrajExtract can be further used to infer user trajectories and

identify trip purposes by analyzing the POIs visited during a

journey [40];

• LocMIA can determine the membership of multiple POIs, thereby

facilitating the inference of a user’s activity range and social

connections in Cho et al. [12], Ren et al. [48];

• TrajMIA infers if a user’s trajectory is in the training dataset,

which can serve as an auditing tool to examine the privacy leak-

age by assuming a worst-case adversary.

4 EXPERIMENTS

We empirically evaluate the proposed attack suite to answer the

following research questions: (1) What’s the performance of the

proposed attacks in extracting or inferring the sensitive information

from POI recommendation models (Sec. 4.2.1)? (2) What unique

factors (e.g., user, location, trajectory) in mobility data correlate
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Figure 2: Main results of data extraction attacks (LocExtract and TrajExtract) on three victim models and two datasets.

(a) LocMIA (4sq) (b) LocMIA (Gowalla) (c) TrajMIA (4sq) (d) TrajMIA (Gowalla)

Figure 3: Main results of membership inference attacks (LocMIA and TrajMIA) on three victim models and two mobility

datasets. The diagonal line indicates the random guess baseline.

Table 2: The performance of victim models.

Dataset Model Top-1 ACC Top-10 ACC

4sq

GETNext 0.34 0.71

LSTPM 0.25 0.67

RNN 0.24 0.68

Gowalla

GETNext 0.16 0.48

LSTPM 0.15 0.39

RNN 0.10 0.26

with the attack performance (Sec. 4.2.2)? (3) How do different attack

designs (e.g., spatial-temporal querying for membership inference

attacks) improve the attack performance (Sec. 4.2.3)?

4.1 Experimental Setup

We briefly describe the datasets, models, and evaluation metrics

used in our experiments. Due to the space limit, we defer the details

of datasets (e.g., statistics of each dataset), data pre-processing

pipeline, default training and attack parameters to Appendix A.

Datasets. Following the literature [31, 69], we comprehensively

evaluate four privacy attacks on two POI recommendation bench-

marks: FourSquare (4sq) [68] and Gowalla [12]. We use the check-

ins collected in NYC for both sources.

Models.We experiment with three representative POI recom-

mendation models, including GETNext
3
[69], LSTPM

4
[58], and

RNN [63]. Note that GETNext and LSTPM are the state-of-the-

art POI recommendation methods based on the transformer and

hierarchical LSTM, respectively.

Evaluation Metrics. We use the top-𝑘 extraction attack suc-

cess rate (ASR) to evaluate the effectiveness of data extraction at-

tacks. For LocExtract, the top-𝑘 ASR is defined as |𝑈
extracted

|/|U|,
where𝑈

extracted
is the set of users whose most visited locations are

3https://github.com/songyangme/GETNext
4https://github.com/NLPWM-WHU/LSTPM

in the top-𝑘 predictions outputted by our attack; For TrajExtract

the top-𝑘 ASR is |correct extractions|/|all (𝑢, 𝑙0) pairs|, where cor-
rect extractions are (𝑢, 𝑙0) pairs with top-𝑘 extracted results match-

ing an exact location sequence in the training data.

For LocMIA and TrajMIA, we utilize the commonly employed

metrics for evaluating membership inference attacks, namely the

area under the curve (AUC), average-case “accuracy” (ACC), and

true positive rate (TPR) versus false positive rate (FPR) in the low-

false positive rate regime. Our primary focus is the TPR versus

FPR metric in the low-false positive rate regime because evaluat-

ing membership inference attacks should prioritize the worst-case

privacy setting rather than average-case, as emphasized in [6].

4.2 Experimental Results and Analysis

4.2.1 Attack performance (RQ1). Figures 2 and 3 visualize the at-

tack performance of data extraction and membership inference

attacks, respectively. In Figure 2, we observe that LocExtract and

TrajExtract can effectively extract users’ most common locations

and trajectories across various model architectures and datasets as

the attack performance is significantly better than the random guess

baseline, i.e., 1/|L| (0.04% for LocExtract) and 1/|L|𝑛−1(10−8%
for TrajExtract). Likewise, as shown in Figure 3, LocMIA and

TrajMIA successfully determine the membership of a specific user-

location pair or trajectory, significantly outperforming the random

guess baseline (represented by the diagonal line in both figures).

The attack performance also demonstrates that trajectory-level

attacks are significantly more challenging than location-level at-

tacks, evident from the better performance of LocExtract and

LocMIA compared to TrajExtract and TrajMIA for data extrac-

tion and membership inference. We suspect this is because POI

recommendation models are primarily designed to predict a single

location. In contrast, our trajectory-level attacks aim to extract or

infer a trajectory encompassing multiple consecutive locations.
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The attack performance also differs across different model ar-

chitectures and datasets. We see a general trend of privacy-utility

trade-off in POI recommendation models based on the model per-

formance of the victim model in Table 2: with better victim model

performance comes better attack performance. While this is a com-

mon trend, it might not hold in some cases. For example, theMIA

performance against RNN is sometimes better than GETNext and

LSTPM performances. This might be becauseGETNext and LSTPM

improve upon RNN by better leveraging spatial-temporal informa-

tion in the mobility datasets. However, the adversary cannot use

the exact spatial-temporal information in shadow model training

since the adversary cannot access that information. This result can

be inspiring in that even though spatial-temporal information can

effectively improve attack performance, victim models that better

utilize spatial-temporal information are still more resilient to MIAs.

Future studies should also consider this characteristic when de-

signing attacks or privacy-preserving POI recommendation models

with better privacy-utility trade-offs.
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Figure 4: How user-level aggregate statistics are related to

TrajExtract. Users who have fewer unique POIs are more

vulnerable to TrajExtract.
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Figure 5: How location-level aggregate statistics are related

to LocMIA. Locations visited by fewer different users or have

fewer surrounding check-ins aremore vulnerable to LocMIA.

4.2.2 Factors in mobility data that make it vulnerable to the attacks
(RQ2). Prior research demonstrates that data outliers are the most

vulnerable examples to privacy attacks [6, 59] in image and text

datasets. However, it is unclear whether the same conclusion holds

in mobility data and what makes mobility data as data outliers.

To this end, we investigate which factors of the mobility datasets

influence the attack’s efficacy. In particular, we collect aggregate

statistics of mobility data from three perspectives: user, location,

and trajectory. We analyze which factors in these three categories

make mobility data vulnerable to our attacks. We defer the details

of selecting the aggregate statistics and the list of selected aggregate

statistics in our study in Appendix A. Our findings are as follows:

• For LocExtract, we do not identify any meaningful pattern

correlated with its attack performance. We speculate that a user’s

most common location is not directly related to the aggregate

statistics we study.

• For TrajExtract, our findings indicate that users who have vis-
ited fewer unique POIs are more vulnerable to this attack, as

referenced in Figure 4. This can be explained by the fact that

when users have fewer POIs, the model is less uncertain in pre-

dicting the next location due to the reduced number of possible

choices that the model memorizes.

• For LocMIA, as shown in Figures 5(a) and 5(b), we find that

locations visited by fewer users or have fewer surrounding check-
ins are more susceptible to LocMIA. We believe this is because

those locations shared with fewer users or surrounding check-ins

make them training data outliers.

• For TrajMIA, users with fewer total check-ins (Figure 6(a)), unique
POIs (Figure 6(b)), and fewer or shorter trajectories (Figures 6(c)
and 6(d)) are more susceptible. In Figures 7(a) and 7(b), we also see

that trajectories intercepting less with others or with more check-ins
are more vulnerable to TrajMIA. We believe these user-level and

trajectory-level aggregate statistics make the target examples

data outliers.

In summary, we conclude that the effect of data outliers also exists in

privacy attacks against POI recommendations. In the context of POI

recommendation, the mobility data outliers could be characterized

from the perspectives of user, location, and trajectory. Different

attacks in our attack suite might be vulnerable to particular types

of data outliers, which are more unique and are vulnerable against

our attacks compared to other data.

4.2.3 The impacts of various attack designs (RQ3). We explore dif-

ferent attack designs that may affect the performance of the attack

suite on the 4sq dataset. We summarize the key findings as follows:

The optimal query timestamp leads to better attack perfor-

mance. The significance of timestamps to our attack aligns with

the fact that POI recommendation relies on temporal information

for making accurate predictions. From Figure 8, we find that the

extraction attacks (i.e.,LocExtract and TrajExtract) ASRs first

increase and then decrease as the query timestamp increases, which

peaks at 0.5 (the middle of the day). The reason is that most check-

ins occur during the daytime rather than at night.

For LocExtract, from Figure 9(b), we observed that utilizing
more queries with different timestamps in our spatial-temporal model

query algorithm improves the results of inferring the membership

of a target user-location pair (𝑢, 𝑙). Since the adversary lacks in-

formation about real input sequences before the target location 𝑙 ,

utilizing more queries helps to traverse the search space to approx-

imate the correct timestamp and promotes the attack performance.

A small number of queries is sufficient for our attacks. Fig-

ure 10 in the Appendix demonstrates that our data extraction at-

tacks (LocExtract and TrajExtract) remain effective even with

a limited number of queries. Specifically, a few queries (i.e., 𝑞 = 50)

and a small beam width (i.e., 𝛽 = 10) allow the attacker to achieve

highASRs for LocExtract andTrajExtract, respectively. In other

words, our attacks are practical in real-world scenarios.

Additionally, Figure 9(a) indicates that LocMIA remains effective

even with a limited number of queries for different location choices
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Figure 6: How user-level aggregate statistics are related to TrajMIA. x-axis: Percentile categorizes users/locations/trajectories
into different groups according to their feature values. y-axis: Λ indicates the (averaged) likelihood ratio of training trajecto-

ries/locations being the member over non-member from the hypothesis test for each group, with a higher value indicating

the larger vulnerability. The users with fewer total check-ins, fewer unique POIs, and fewer or shorter trajectories are more

vulnerable to TrajMIA.
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Figure 7: How trajectory-level aggregate statistics are related

to TrajMIA. The trajectories with fewer intercepting trajec-

tories or fewer POIs are more vulnerable to TrajMIA.

0 0.25 0.5 0.75 1.0
Normalized Day Time

0

20

40

60

80

100

T
op

k-
A

S
R

(%
)

k = 1

k = 3

k = 5

(a) LocExtract

0 0.25 0.5 0.75 1.0
Normalized Day Time

0

10

20

30

40

50

T
op

k-
A

S
R

(%
)

k = 1

k = 3

k = 5

(b) TrajExtract

Figure 8: The optimal query timestamp can improve the per-

formance of LocExtract and TrajExtract.

even with a small 𝑛𝑙 (i.e., number of query locations) per timestamp,

which yields better practicability of our attack.

A larger number of shadow models leads to better perfor-

mance of membership inference attacks. Figure 11 in the Ap-

pendix shows that a larger number of shadow models greatly

improves the performance of LocMIA and TrajMIA since more

shadow models provide more samples to approximate the real loss

distributions of in-samples and out-samples.

5 DEFENSE

We evaluate existing defenses against privacy attacks on machine

learning models. Due to the limited space, we illustrate the defense

mechanisms and the key findings in the main paper and defer

experimental details to Appendix B.

Defense Techniques. In particular, we evaluate two streams of

defense mechanisms on proposed attacks, including (1) standard
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Figure 9: Both the number of query timestamps 𝑛𝑡 and the

number of query locations 𝑛𝑙 affect the performance of

LocMIA. We use 𝑛𝑡 = 10 and 𝑛𝑙 = 10 in (a) and (b), respec-

tively. LocMIA is effective with a limited number of queries.

techniques to reduce overfitting (e.g., early stopping, 𝑙2 regulariza-

tion) and (2) differential privacy-based defenses (e.g., DP-SGD [1])

for provable risk mitigation. The standard techniques reduce the vic-

tim model’s memorization to some degree, but they are insufficient

due to the lack of statistical guarantees. To fill this gap, differential

privacy [14] is also used to defend against our attacks, which can

theoretically limit the impact of a single data point on the model’s

performance.

Specifically, we first experiment with DP-SGD [1], the most rep-

resentative DP-based defense, to train differentially-private POI

recommendation models. The key idea of DP-SGD is to add Gauss-

ian noises N(0, 𝜎2𝐶2𝐼 ) to the clipped gradients 𝑔 of the model

during its training process. 𝐶 is a clipping threshold that bounds

the sensitivity of 𝑔 by ensuring ∥𝑔∥ ≤ 𝐶 . To achieve (𝜖, 𝛿)-DP, we
have 𝜎 =

√︃
2 ln

1.25
𝛿
/𝜖 . Despite that DP-SGD provides promising

defense performance on language tasks [17], we find that it can

substantially sacrifice the model’s utility on the POI recommenda-

tion task. Specifically, the top-10 accuracy is only 4.97% when the

mechanism satisfies (5, 0.001)-DP, while the original top-10 accu-
racy without DP is 71%. The reason for this performance decrease

is that POI recommendation aims to make accurate user-level pre-

dictions within a large output space (i.e., > 4, 000 possible POIs).

For different users, even the same location sequence may lead to

a different result, which means that the model needs to capture

user-specific behavior patterns from a relatively small user dataset.

As a result, the training is quite sensitive to the noises introduced

by DP-SGD, making it not applicable to POI recommendations.
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Table 3: The exposure of sensitive information in each attack.

Attack Sensitive Information

LocExtract Most common location of each user

TrajExtract Each location sequence/sub-sequence (𝑥𝐿 )
LocMIA Each user-location pair (𝑢, 𝑙 )
TrajMIA Each trajectory sequence/sub-sequence (𝑥𝑇 )

However, we argue that DP-SGD provides undifferentiated pro-

tection for all the mobility data, while for POI recommendation,

protecting more tailored sensitive information is more important.

For example, a defender may only care about whether a list of

check-ins about home addresses is protected or not. To this end, we

introduce the notion of selective DP [51] to relax DP and improve

the model’s utility-privacy trade-offs. Specifically, we apply the

state-of-the-art selective DP method JFT [50] to protect different

levels of sensitive information for each attack. The key idea of JFT

is to adopt a two-phase training process: in the phase-I training, JFT

redacts the sensitive information in the training dataset and opti-

mizes the model with a standard optimizer; in the phase-II training,

JFT applies DP-SGD to finetune the model on the original dataset

in a privacy-preserving manner. Due to the phase-I training, we

observe that the model’s utility is significantly promoted. In addi-

tion to JFT, we also apply Geo-Indistinguishability (Geo-Ind) [2]

to protect common locations in LocExtract. We note that Geo-

Ind is only applicable to LocExtract (but not LocMIA) because it

requires modifying the training data and is incompatible with the

notion of membership inference.

Takeaway Messages from the Defense. We evaluate different

defense mechanisms in terms of their performance in preventing

each attack from stealing the corresponding sensitive information.

Table 3 summarizes the exposure of sensitive information in each

attack. Besides, Appendix B illustrates our evaluation metrics, ex-

perimental setup, and the results. Recall that the check-ins within

a mobility dataset are not equally important. Therefore, in our ex-

periments, we comprehensively evaluate the defense mechanisms

from two perspectives. Specifically, we measure their performance

in (1) protecting all the sensitive information and (2) protecting a
targeted subset of sensitive information from being attacked. Fig-

ures 12 and 13 in the Appendix show that existing defenses provide

a certain degree of guarantee in mitigating privacy risks of ML-

based POI recommendations, especially for the targeted subset of

sensitive information. However, there is no such unified defense

that can successfully defend against all the proposed attacks within

a small utility drop. In other words, our exploration highlights the

need for more advanced defenses.

6 RELATEDWORK

Mobility Data Privacy. Mobility data contain rich information

that can reveal individual privacy such as user identity. Previous

work utilizes side-channel attacks to extract sensitive information

about mobility data from LBS, including social relationships [44,

57], aggregated trajectories [45, 46, 70], trajectory history [22, 33],

network packets [29, 61] and location embeddings [13]. Despite

the focus of previous work, deep neural networks (DNN) built

on large volumes of mobility data have recently become state-

of-the-art backbones for LBS, opening a new surface for privacy

attacks. To the best of our knowledge, our work is the first of its

kind to investigate the vulnerabilities of DNN models in leaking

sensitive information about mobility data using inference attacks.

Moreover, previous defenses [30, 43, 47, 62, 65] primarily focus on

data collection, aggregation, and publishing, which can not protect

DNN models built on POI data.

Privacy Attacks. Various types of privacy attacks, such as mem-

bership inference attacks [6, 23, 49, 52], training data extraction

attacks [7, 8], and model inversion attacks [19] have been proposed

to infer sensitive information from model training data. Our attack

suite contains membership inference and data extraction attacks.

Existing data extraction and membership inference attacks [6, 8]

are insufficient for POI recommendation models due to the spatio-

temporal nature of the data. Our work takes the first step to ex-

tracting sensitive location and trajectory patterns from POI rec-

ommendation models and solving unique challenges to infer the

membership of both user-location pairs and user trajectories. As

a final remark, our attacks differ from previous MIAs in mobility

data [45, 70], which focus on the privacy risks of data aggregation.

7 CONCLUSION

In this work, we take the first step to evaluate the privacy risks

of the POI recommendation models. In particular, we introduce

an attack suite containing data extraction attacks and member-

ship inference attacks to extract and infer sensitive information

about location and trajectory in mobility data. We conduct exten-

sive experiments to demonstrate the effectiveness of our attacks.

Additionally, we analyze what types of mobility data are vulnerable

to the proposed attacks. To mitigate our attacks, we further adapt

two mainstream defense mechanisms to the task of POI recom-

mendation. Our results show that there is no single solid defense

that can simultaneously defend against all proposed attacks. Our

findings underscore the urgent need for better privacy-preserving

approaches for POI recommendation models. Interesting future di-

rections include: (1) Generalize the attack suite to measure privacy

risks of real-world location-based services (e.g., Yelp/Google Maps)

in a more challenging setting (e.g., label-only setting); (2) Develop

more advanced defense mechanisms against our attacks.

Ethics Statement. This work introduces a novel attack suite on

POI recommendation models trained on public anonymized mobil-

ity datasets with no personally identifiable information, aimed at

bringing potential vulnerabilities in POI models to public attention.

The success of our attacks offers insights into future privacy leakage

measurement in learning-based models involving spatio-temporal

data. Moreover, it underscores the need for improved defense so-

lutions for POI models with better utility-privacy trade-offs. We

hope our study fosters further research in protecting the privacy of

mobility data.
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Table 4: Statistics of POI Recommendation Datasets.

#POIs #Check-ins #Users #Trajectories Avg. Len.

4sq 4,556 63,648 1,070 17,700 3.63

Gowalla 2,559 32,633 1,419 7,256 4.46

A EXPERIMENT DETAILS

Data Preprocessing. We preprocess each dataset following the

literature [69]: (1) Filter out unpopular POIs and users that appear

less than ten times.(2) Construct trajectories of different users in a

daily manner (24-hours) (3) Normalize the timestamp (from 0:00

AM to 11:59 PM) in each check-in record into [0, 1]. After the
aforementioned steps, the key statistics of the 4sq and Gowalla
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Figure 10: Our LocExtract is effective with a small number

of queries and TrajExtract is effective with a small beam

size (i.e., both attacks are effective in a small query budget).
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Figure 11: The attack performance of LocMIA and TrajMIA

significantly improves with more shadow models.

datasets are shown in Table 4. (4) Lastly, we split the datasets into the

training, validation, and test sets using the ratio of 8:1:1. For victim

model training, we use the official implementation of GETNext

and LSTPM to train victim models. By default, we train each model

with a batch size 32 for 200 epochs and use five random seeds in all

experiments to report the average results.

Attack Settings. (1) LocExtract Given a target user 𝑢, we extract

the most visited location 𝑙𝑡𝑜𝑝1 from the victim model 𝑓𝜃 with a

query number 𝑞 = 50. We set the query timestamp 𝑡 = 0.5 (i.e., the

middle of the day) by default, and discuss the effect of different

query timestamps on the attack performance in the ablation study.

(2)TrajExtract In this attack, we experiment with𝑛 = 4 by default,

though the attacker can potentially extract location (sub-)sequences

with arbitrary length. We set the beam size 𝛽 = 50 and also have the

default query timestamp 𝑡 = 0.5. (3) LocMIA In our experiments,

we randomly sample 80% of trajectories as the training dataset

𝐷𝑡𝑟 to build a victim model and treat the remaining 20% data as

non-members. For each target user𝑢 and the POI location 𝑙 pair, we

generate 𝑁 = 64 synthesis trajectories using TrajSynthesis with

the query timestamp 𝑡𝑠 = 0.5. With the synthesis trajectories, we

can also have 64 in-models (𝑓𝑖𝑛) and 64 out-models (𝑓𝑜𝑢𝑡 ). We also

set 𝑛𝑡 = 10 and 𝑛𝑙 = 10. (4) TrajMIAWe extract the membership

information of some trajectory sequences with arbitrary lengths

from the victim model. We also build 𝑁 = 64 in-models (𝑓𝑖𝑛) and

𝑁 = 64 out-models (𝑓𝑜𝑢𝑡 ) for a target trajectory sequence. For

evaluation, we conduct a hypothesis test on a balanced number of

members and non-members for both LocMIA and TrajMIA.

How to Select Aggregate Statistics. This section outlines the

basic principles and details for selecting representative aggregate

statistics for analysis. For user-level aggregate statistics, we target

the basic statistical information quantifying properties of locations

and trajectories of a user: (u1) Total number of check-ins; (u2)
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Figure 12: Defense performance on protecting all corresponding sensitive information for each attack.

40 50 60 70 80
Top10-ACC (%)

0

10

20

30

40

50

T
op

1-
A

S
R

(%
)

Undefended

Early stop

‖w‖ = 1e−2

‖w‖ = 3e−2

εG = 0.01 (T)

εG = 0.05 (T)

εG = 0.05 (A)

εJ = 1 (T)

εJ = 5 (T)

εJ = 1 (A)

εJ = 5 (A)

(a) LocExtract

40 50 60 70 80
Top10-ACC (%)

0

50

100

150

200

N
u

m
b

er
of

S
u

cc
es

sf
u

l
A

tt
ac

k

Undefended

Early stop

‖w‖ = 1e−2

‖w‖ = 3e−2

εJ = 1 (T)

εJ = 5 (T)

εJ = 1 (A)

εJ = 5 (A)

(b) TrajExtract

0 20 40 60 80
Top10-ACC (%)

0

20

40

60

80

100

T
P

R
@

10
%

F
P

R

Undefended

Early stop

‖w‖ = 1e−2

‖w‖ = 3e−2

εJ = 1 (T)

εJ = 5 (T)

εJ = 1 (A)

εJ = 5 (A)

(c) LocMIA

0 20 40 60 80
Top10-ACC (%)

0

20

40

60

80

100

T
P

R
@

10
%

F
P

R

Undefended

Early stop

‖w‖ = 1e−2

‖w‖ = 3e−2

εJ = 1 (T)

εJ = 5 (T)

εJ = 1 (A)

εJ = 5 (A)

(d) TrajMIA

Figure 13: Defense performance on protecting the targeted subset of sensitive information for each attack.

Number of unique visited POIs; (u3) Number of trajectories; (u4)

Average trajectory length. For location-level statistics, we study

their users, “neighboring” check-ins and trajectories, and the check-

in time information. (l1) Number of users who have visited this POI;

(l2) Number of check-ins surrounding (≤ 1km) this POI; (l3) Number

of trajectories sharing this POI; (l4) Average time in a day for the

visits to the POI. Similar to location-level statistics, for trajectory-

level aggregate statistics, we select: (t1) Number of users who have

the same trajectories; (t2) Number of check-ins surrounding (≤ 1km)

all POI in the trajectory; (t3) Number of intercepting trajectories;

(t4) Average check-in time of the trajectory.

B DEFENSE

Defense Metrics. As summarized in Table 3, our attacks target

different sensitive information on the training dataset. To this end,

we evaluate defense mechanisms in terms of their performance in

preventing each attack from stealing the corresponding sensitive

information. Specifically, we measure their defense performance

on protecting all the sensitive information and a targeted subset of
sensitive information for each attack. We define the targeted subset

of sensitive information as what defenders want to protect in prac-

tice (e.g., some selected user-location pairs in LocMIA). We include

this metric because not all the mobility data are sensitive or equally

important. In fact, we should evaluate how defense mechanisms

perform on the sensitive information that needs to be protected

(e.g., user-location pairs that may leak personal identity).

To this end, we jointly measure the defense performance in

protecting all the sensitive information and the targeted subset

of sensitive information for each attack. Based on different attack

objectives, we construct a different targeted subset of sensitive in-

formation for measurement by randomly sampling a portion of

(e.g., 30%) the most common locations in LocExtract, location

sequences in TrajExtract, user-location pairs in LocMIA and

trajectory sequences in TrajMIA. It is noted that we randomly

sample 30% of sensitive information in each attack to construct

the targeted subset for the ease of experiments. In practice, the de-

fender may have more personalized choices based on user-specific

requirements, which we leave as future work.

Defense Setup. The GETNext model and 4sq dataset are used for

experiments. For 𝐿2 regularization, we use weight decay ∥𝑤 ∥ =
1𝑒−2 and 3𝑒−2. For early stopping, we stop training after 5 epochs.

For JFT, we mask sensitive information that needs to be protected

in phase-I. Then in phase-II, we use DP-SGD [1] with different 𝜖𝐽

(1 and 5) to finetune the model. The 𝐶 and 𝛿 are set to 10 and 1𝑒−3.
For Geo-Ind against LocExtract, we apply different 𝜖𝐺 (0.01 and

0.05) to replace each sensitive POI with its nearby location such

that the original POI is indistinguishable from any location within

𝑟 = 400 meters. Since both JFT and Geo-Ind can be used to protect

different amounts of sensitive information, we either protect nearly

all the sensitive information or only the targeted subset of sensitive

information for each attack, denoted by suffixes (A) and (T).

Results. Figure 12 and 13 showcase the results of existing defenses

in mitigating the privacy risks of all the sensitive information and

the targeted subset of sensitive information regarding each attack.

The results show that existing defenses mitigate our privacy attacks

to some extent. However, it is challenging to remove all the vulnera-

bilities within a reasonable utility drop. This is because existing POI

recommendation models heavily rely on memorizing user-specific

trajectory patterns to make predictions, which lack semantic in-

formation as guidance. As a result, defense mechanisms such as

DP-SGD can easily compromise the utility of the protected model

due to the noises added to the gradients. Moreover, defenses such

as JFT are not general for all inference attacks since each attack

steals different sensitive information. To this end, our evaluation

calls for more advanced mechanisms to defend against our attacks.
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