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Accurate road networks play a crucial role in modern mobile applications such as navigation and last-mile delivery. Most
existing studies primarily focus on generating road networks in open areas like main roads and avenues, but little attention
has been given to the generation of community road networks in closed areas such as residential areas, which becomes more
and more significant due to the growing demand for door-to-door services such as food delivery. This lack of research is
primarily attributed to challenges related to sensing data availability and quality. In this paper, we design a novel framework
called SmallMap that leverages ubiquitous multi-modal sensing data from last-mile delivery to automatically generate
community road networks with low costs. Our SmallMap consists of two key modules: (1) a Trajectory of Interest Detection
module enhanced by exploiting multi-modal sensing data collected from the delivery process; and (2) a Dual Spatio-temporal
Generative Adversarial Network module that incorporates Trajectory of Interest by unsupervised road network adaptation to
generate road networks automatically. To evaluate the effectiveness of SmallMap, we utilize a two-month dataset from one
of the largest logistics companies in China. The extensive evaluation results demonstrate that our framework significantly
outperforms state-of-the-art baselines, achieving a precision of 90.5%, a recall of 87.5%, and an F1-score of 88.9%, respectively.
Moreover, we conduct three case studies in Beijing City for courier workload estimation, Estimated Time of Arrival (ETA) in
last-mile delivery, and fine-grained order assignment.
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Fig. 1. Motivation. (a) Community roads and open roads. (b) Commercial maps with missing commu-
nity road networks. (c) Failure of travel time estimation without community road networks.

1 INTRODUCTION

Accurate and fine-grained community road networks, roads in closed or semi-closed areas such as residential
neighborhoods and industrial parks that typically have lower speed limits and may have restrictions on vehicle
access, are important for emerging door-to-door services [64, 65] (e.g., last-mile delivery and on-demand food
delivery) because these service workers (e.g., couriers) rely on searching for accurate community locations
to fulfill tasks, e.g., travel time estimation. However, road networks in many communities (especially those
newly built) are not captured by current commercial navigation software (e.g., Google and Baidu Maps [1]) and
open-source geographic database [5]) (as in Fig. 1(a) and Fig. 1(b)), which brings huge challenges for efficient
door-to-door services. For example, as in Fig. 1(c) the service provider cannot accurately estimate the delivery
time without community road networks, which potentially decreases business efficiency and user satisfaction.
Hence, in this work, we aim to design a novel framework to automatically generate community road networks.

To date, various approaches have been proposed for the generation of open road networks [10, 16, 23, 63, 70, 82],
i.e., road networks designed for higher-speed vehicular traffic such as avenues and highways. These roads connect
different urban and suburban areas with fewer access restrictions. These studies cannot be applied to community
road network generation directly due to the following three reasons. (i) Most communities, especially residential
areas in Chinese cities, are closed, i.e., no through traffic is allowed to get inside of communities. Therefore,
existing studies utilizing public vehicles’ trajectories (such as taxis) are not applicable [16, 76] for community
road network generation. Also, in many communities, some restrictions prohibit the entry of public bikes and
commercial data collection vehicles like Google Maps cars or Baidu Maps cars, for pedestrian safety and regulatory
purposes. In addition, it brings a high cost to deploy a specific system like drones for collecting and updating
community maps. (ii) The characteristics of community roads are different. The diverse shapes (e.g., circular,
undulating, and straight) and narrow widths (e.g., 2-meter width) of community roads, combined with GPS
inaccuracies [19], pose significant challenges to generating community roads. (iii) Roads in communities can be
obscured by trees or buildings, severely limiting the effectiveness of image-based methods [10, 23, 70].

Even though some community road networks are included by commercial navigation companies like Google
Maps [3] and Gaode Maps [2], it poses two practical challenges for delivery companies to directly use these
existing data. Firstly, utilizing commercial community road networks could potentially leak critical business
information such as order distribution and real-time courier locations, which is similar to the privacy risk in
vehicle-based urban sensing [8]. Secondly, even though commercial maps are free for individual users, delivery
companies need to pay a high cost for frequent usage [40]. Therefore, it is necessary and important to design a
low-cost approach to generate community road networks.
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Recent advancements in door-to-door delivery services present us with an unprecedented opportunity. Experi-
enced delivery couriers regularly traverse in communities, thereby enabling the collection of rich multi-modal
sensing data (e.g., GPS and magnetic field sensor data) using their Personal Digital Assistants (PDAs, which
are similar to smartphones). The continuously collected sensing data has the potential to capture structural
details of the road networks. However, through our data analysis, we found that utilizing this multi-modal
sensing data for the community road network generation is nontrivial because of three main challenges. (i)
Uncertain courier behavior. Couriers’ mobility within communities is highly uncertain, including a mixture of
indoor activities (such as package delivery), outdoor movements, and stationary trajectories, which makes it
difficult to discern trajectories that fall within the road networks. (ii) Inaccurate sensing. Due to the hardware
limitations and environmental effects, the GPS trajectories recorded from devices carried by couriers may contain
uncertain measurement errors, ranging from a few meters to 100 meters, in complex environments [12, 19].
(iii) Unbalanced sensing. Despite a high penetration rate in communities, different road segments within a
community are visited with varying frequencies. Details are introduced in Section 3.3.

To address the above challenges, in this paper, we design SmallMap a low-cost community road network
generation framework based on multi-modal sensing data. Specifically, within the SmallMap framework: (i) We
design a novel Trajectory-of-Interest Detection module to eliminate noisy trajectories caused by uncertain courier
behaviors via discerning courier statuses from multi-modal sensing data. (ii) We combine aggregated trajectories
and design a Dual Spatio-Temporal Generative Adversarial Network (DualSTGAN) to generate road networks
that preserve real-world topology and geometry despite the noisy sampled trajectories. DualSTGAN is designed
to model the shape information displayed by the aggregated trajectories, which consists of a RoadGAN module
to generate road networks from aggregated trajectories that address the challenge of inaccurate sensing, and
a LineGAN module to enrich the generated road structures with low revisitation frequencies and address the
challenge of unbalanced sensing. We summarize our contribution as follows.

o To our knowledge, we conduct the first study to generate community road networks by utilizing noisy
sampled multi-modal sensing data from last-mile delivery. The generated fine-grained community road
networks have great potential to benefit various emerging door-to-door services.

o Technically, we design a low-cost community map generation framework called Smal1lMap, which consists of
two main modules, a Trajectory-of-Interest Detection module to address uncertain courier status challenge,
and a Dual Spatio-temporal Generative Adversarial Network (DualSTGAN) module to address inaccurate
sensing and unbalanced sensing challenges.

e More importantly, we collect a real-world dataset in two Chinese cities, including 12,336 trajectories and
over 3.16 million GPS points to evaluate the performance of SmallMap quantitatively and qualitatively.
Extensive evaluation results show that SmallMap achieves an overall F1-score of 88.9%. Furthermore, by
working with the logistics company we are collaborating with, we have conducted case studies in the
Chinese city of Beijing. The results of case studies demonstrate the utility of the generated road networks
on three fundamental tasks in last-mile delivery.

2 RELATED WORK
2.1 Road Network Generation

With the growing importance of road networks in smart cities, road network generation (or road network
inference) has attracted much interest in research communities [9, 10, 14, 17, 24, 27, 34, 36, 43, 50, 54, 58, 63, 63, 70,
83]. Most existing studies fall into three categories, i.e., inference based on GPS trajectories [13, 15, 21, 26, 69, 76, 86],
inference based on aerial images [10, 23, 63, 70, 83], and inference based on the combination of trajectory and
aerial images [63, 71, 77]. Zhang et al. [83] generate a map (houses and roads) using high-resolution aerial images
by designing a U-Net-based deep learning model. Fang et al. [27] infer road network structure and categories by
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modeling complementary trajectories such as taxi and truck. Another line of work combines different modalities
of data such as images and trajectories [63, 71, 77], which explore the semantic information in images and the
sequence information in trajectories. While most existing works focus on road networks in open areas for vehicles,
Li et al. [50] utilize on-demand delivery data to generate community road networks. However, this work cannot
be applied to our scenario directly due to the uncertain quality of trajectory data brought by uncertain courier
status in last-mile delivery. Also, Cao et al. [14] infer walkways utilizing trajectories and step counts derived
from mobile devices, which differs from our scenario where the detailed step counts are not available and the
topology of road segments in communities are more complex.

2.2 Road Network and Trajectory Mining

The road network is closely tight to human mobility and thus attracts lots of research interests in building practical
applications upon road networks, e.g., traffic prediction [51], map matching [68, 72], trajectory recovery [74],
and localization [44, 78]. Spatio-temporal trajectories are generated every day with a huge volume and spatial
coverage, which inspires much research in this direction, e.g., trajectory data management [31, 87], trajectory
modeling and representation [25, 51, 56, 80, 81], and trajectory-based sensing [37, 38, 59, 73]. Based on vehicle
trajectories, Li et al. [51] propose a deep learning model to predict urban traffic flow that can potentially benefit
downstream traffic management. Due to the potentially wide coverage rate, trajectory enables many urban
service applications. Based on crowdsourced bike trajectories, He et al. [38] design a framework to detect illegal
parking vehicles along city roads, which utilizes the spatiotemporal trajectory patterns.

2.3 Urban Sensing

By harnessing multi-modal sensing data, there is a growing interest in the research community to measure the
physical phenomenon for smart city applications, e.g., human status estimation [33, 88, 89], human mobility
modeling [45, 79], traffic analysis [18, 61, 74, 85], last-mile delivery [41, 42], and urban boundary identification [20].
Isaacman et al. [45] design a model based on Call Detail Records (CDRs) [39] to model human mobility in multiple
metropolitan areas and evaluate it on large-scale datasets. Based on open government data, Chen et al. [20]
propose a framework to estimate urban village boundaries and population. Crowdsensing provides a great
opportunity to obtain multi-modal sensing data on a large scale to support various urban sensing tasks, but few
existing works utilize multi-modality crowdsensing data for community road network generation.

In summary, our work is different from existing studies because of the following aspects.

(1) We focus on community road network generation, which is an extension of existing studies but with significant
differences. GPS has more drifts in communities due to the impact of environmental factors such as high
buildings and trees. Also, community roads are mainly designed for pedestrians and thereby are narrow and
of casual shapes, which makes our problem more challenging.

(2) We design a framework based on both online and offline inference, which reduces the storage and data
transition costs significantly. Moreover, a DualSTGAN with a novel data augmentation approach is presented
to generate high-quality road networks with low costs, which also benefits related studies to address the
challenge of training data shortage.

(3) Most existing studies utilize an existing map (such as OSM [5]) and complement existing maps with GPS
trajectories. On the contrary, we focus on generating road networks from scratch, since many communities’
roads have not been charted by existing open-sourced maps like OSM.

3 COURIER SENSING SYSTEM AND MOTIVATION

In this section, we introduce the design of the courier sensing system, multi-modal sensing data, opportunities,
and challenges in generating community road networks with multi-modal courier sensing data.
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3.1 Sensing System and Data Collection

In Fig. 2, we illustrate the overall process of last-mile delivery, which integrates three main processes, i.e., in
the delivery station, on the road, and in communities for parcel delivery. (1) From t, to 1, the courier picks the
parcels up when the parcels arrive at the delivery station. (2) From # to t;, the courier carries the parcels and
drives on open roads to customers’ locations. (3) From t; to t4, the courier delivers parcels in communities. The
courier carries PDAs during the delivery process, which can be utilized to collect heterogeneous sensing data
that covers road networks in communities from different types of sensors. In this study, we especially focus on
the duration from t, to t4, where couriers are in communities.

In Delive{y Station On Road In Community
\ _( \ P \
Location T< ................................. >$< ................... >$< .................. T ............................... >%
______ Parcel Arrival  Leave Station  Amiveat  Parcel 7 “Leave
t Stati for Deli Communit Delive Communit
Process a- ation or Delivery Yy Ty Y

=R iy _— 8 8

Fig. 2. Last-mile delivery illustration.

In last-mile delivery, the real-time location information of couriers is important for delivery time estimation
and courier scheduling. Normally, a courier carries a PDA, starting from the delivery station to one or multiple
communities for parcel delivery. Inside the community, couriers frequently change their statuses, moving between
indoors and outdoors. For courier localization and sensing data collection, we design a localization module and
deploy it at couriers’ PDAs with various operating systems (from Android 4 to Android 11) and hardware (e.g.,
Youboxun 19000 [7]). Based on the localization module, multi-modal sensing data is generated when couriers are
working carrying PDAs. The data is summarized in Table 1.

Table 1. Multi-modal Sensing Data

Trajectory Sensor Data Reporting

Feature  Latitude, Longitude, Timestamp Light intensity, Cellular signal, Magnetic field OrderID, Timestamp
Sampling 10 seconds for 1 point 1 second for 1 point Uncertain

Trajectory. For communities in metropolitan areas with high buildings and trees, there are significant noises
brought by environmental effects and device hardware issues that will impact localization accuracy. To improve
the localization accuracy and quality of trajectories, we design a localization strategy based on WiFi and GPS. We
use the raw GPS measurement for localization by default. Specifically, we estimate the quality of the GPS signal
by the Accuracy parameter. When the Accuracy is greater than a threshold (e.g., 100 meters), we switch to utilize
the network localization approach provided by commercial mapping services [44, 60, 78]. As shown in Table 1,
the GPS is sampled every 10 seconds and a group of consecutive GPS points form a trajectory Traj = <p1, p2, ...,
Dis - Pn>, Where p; = (lat;,Ing; t;), representing the latitude, longitude, and timestamp. These trajectories can be
used to extract topology and geometry information of roads.

Sensor data. During the working process, the PDAs collect data from different sensors. As shown in Table 1, the
sensor data include three different types of sensors in PDAs, i.e., light intensity, cellular signal, and magnetic field

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 50. Publication date: June 2024.



50:6 + Hongetal.

sensors. These sensor data can reflect the couriers’ current status, e.g., indoors or outdoors. The light sensor,
magnetic field sensor, and cellular sensor are sampled every 1 second for indoor and outdoor detection.

Courier reporting sensing data. During the working process, couriers manually report parcel statuses on PDAs,
i.e., human reporting, an action performed by the courier to report a parcel is delivered at the user’s address,
denoted as Rep = (lat, Ing, t, orderID), representing the parcel orderID is delivered at timestamp ¢ at location
(lat, Ing). Intuitively, human reporting represents both parcel status and courier status (arrive at customers’
locations indoors). Therefore, we might utilize it for community road network generation.

We also investigate the battery consumption of the localization module. Results show that a regular PDA device
with an Android 7 system consumes 0.64% of battery in 30 minutes, which is acceptable in real-world usage.
Utilizing this localization module, we could collect useful sensing data from the delivery process for community
road network generation.

3.2 Opportunities in Couriers’ Sensing Data

For business accounting purposes, logistics companies collect massive courier mobility data [28, 65]. In this
subsection, we conduct a data-driven investigation to show the characteristics of the courier mobility data and
demonstrate the feasibility of generating community road networks based on such data.

(i) Frequent visiting patterns. In last-mile delivery, couriers visit communities multiple times every working
day, and one community is visited by one or multiple couriers in a day, as shown in Fig. 3(a). Such frequent
visiting pattern generates massive mobility data, which are recorded by mobile devices (i.e., PDAs). This massive
mobility data benefits the generation of road networks because each visit is a sensing of partial community
roads and it records the road topology and connectivity. As shown in Fig. 3(b), we also found that couriers are in
communities for parcel delivery or parcel pick-up during most of their working times.

> 1.0
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2 = B Inside community time . é é
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(a) Frequent revisitation (b) Working time (a) Heatmap in Beijing City (b) Yizhuang area (c) # of GPS / community
Fig. 3. Community visiting patterns. Fig. 4. Penetration rate in Beijing city.

(ii) High penetration rates. The platform we work with has more than 120,000 delivery couriers to serve over
500 million active users in over 600 cities. These couriers frequently travel in communities for parcel delivery or
pickup, which brings a high community penetration rate. We sample 190,000 communities across all Chinese
cities and find that the trajectory coverage rate is 96.3% (i.e., 96.3% of communities have been visited by couriers).
Fig. 4(a) illustrates the coverage of couriers’ mobility coverage in the Chinese city of Beijing on a normal workday,
and we can find couriers’ mobility covers most parts of the city, i.e., most communities. Downtown areas are
visited more often due to the high community density with more parcels delivered. We further zoom in and
present the heatmap of a region in Fig. 4(b). There are typically multiple GPS points every day in each community
generated during couriers’ parcel delivery process as shown in Fig. 4(c).

3.3 Challenges for Utilizing Couriers’ Sensing Data

However, it is still nontrivial to generate community road networks with the above opportunities.
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(i) Uncertain courier behavior. Unlike vehicle trajectories on open roads, delivery couriers’ trajectories are more
complex due to behavior uncertainty. Couriers’ trajectories in communities consist of driving, walking, and staying.

Also, couriers consecutively switch between indoor and outdoor statuses for 10

the delivery as shown in Fig. 5. Trajectories collected during staying status may _ 0s

have huge GPS measurement errors due to the GPS hardware characteristics % 06 (20483, 80%)
and environmental effects, e.g., the GPS points will still change when the £ ,,

courier is staying at a fixed location. The trajectories in an indoor context do & | (12’03[31;52@,0““5
not contribute to road generation as they are not on roads and might bring .
negative effects. Therefore, how to detect courier status and filter unnecessary 0 "
trajectories is important but challenging. Number of GPS Points

(ii) Inaccurate sensing. There are usually more high buildings and trees in Fig. 5. Uncertain mobility.

communities as shown in Fig. 1(c), which potentially brings high GPS localiza-

tion errors. As shown in Fig. 6a, we found 50% of GPS points have sampling intervals of more than 10 seconds,
which is caused by three main reasons: (i) weak GPS signals in community areas; (ii) the localization module is
killed by the operating system; (iii) the device is shut down due to low battery. To measure the GPS deviation
in communities, we carry two devices: a high-precision device equipped with an RTK (Real Time Kinematic)
module and a standard PDA utilized by couriers. The ground truth is derived from the RTK device (deviation
error is less than 1 meter) and manual inspection. We calculate the difference between GPS points from two
devices at the same timestamp. Results in Fig. 6b show that for in-community settings, more than 50% points
have deviation errors greater than 17.8 meters. In addition to environmental factors, GPS also deviates from the
precise location when switching between GPS localization and network localization strategies.

10 10
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Fig. 6. Uncertainty in (a) sampling interval and (b) measurement error. (c)(d) Examples of unbalanced
sensing on community roads.

(iii) Unbalanced sensing. Couriers’ mobility in communities is unbalanced, i.e., some roads are visited with
high frequency and some others are barely visited, which brings uneven GPS coverage rates on different road
segments and makes it challenging to sense community road networks. Examples are shown in Fig. 6d and Fig. 6c.

To address these challenges, we design SmallMap, a novel community road network generation framework
based on couriers’ multi-modal sensing data. Details will be introduced in the following section.

4 FRAMEWORK OF SMALLMAP

In this section, we introduce the framework of SmallMap. Fig. 7 shows the two primary components of SmallMap,
i.e., the Trajectory of Interest (Tol) Detection module and the Community Road Network Generation module.
(i) Trajectory of Interest (ToI) Detection: This module is designed to detect Tols, i.e., trajectory segments (<p;,
weos Djs s Djtps = » Pjiags ) that cover community road networks when a courier is either walking or driving. The
goal is to filter out noisy trajectories for effective road network generation.
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(i) Trajectory of Interest (Tol)
Detection(Section 5)
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Fig.7. Framework illustration. SmallMap consists of a Tol Detection module (in Sec. 5) and a Community
Road Network Generation module (in Sec. 6).

(ii) Community Road Network Generation: Once trajectories on road networks have been identified, this
module’s objective is to determine the centerlines of noisy trajectories and generate interconnected roads through
DualSTGAN, a hierarchical Generative Adversarial Network. DualSTGAN, trained with data generated by a
novel data augmentation approach, is capable of generating community road networks from noisy in-community
trajectories upon completion of the training phase.

5 TRAJECTORY OF INTEREST DETECTION

Courier trajectories comprise three components: walking or driving outdoors, remaining outdoors (e.g., resting on
the grass), and staying or walking indoors. Moreover, these statuses are changing constantly. This is considerably
different from the mobility patterns of business or private vehicles on urban roads. Even though the couriers’
mobility does reflect the structure of community road networks, it is also mixed with various types of noise, i.e.,
indoor trajectories, trajectories that are not in communities, and couriers’ stay patterns.

Such indoor or stay-pattern trajectories are not relevant to road network generation, and their removal can
enhance the quality of the trajectory. Consequently, we design a two-step approach to detect and eliminate
these trajectories, as illustrated in Algorithm 1. For each GPS point in the trajectory Traj, it will be added to the
Trajectory of Interest (Tol) if both the indoor status detector fi,q00r and staying status detector fi;4ying indicate a
negative result, and the in-community status detector fcommuniry indicates a positive result, i.e., the point is in
communities and it is neither indoors nor in a static position.

5.1 Indoor and Outdoor Status Detection

Indoor trajectories fail to represent the road structure accurately, resulting in erroneous road network inferences.
Therefore, we need to detect and remove these trajectories. Intuitively, we can easily segment indoor trajectories
utilizing the spatial boundary of buildings, i.e., trajectories within building boundaries would be categorized as
indoor trajectories. However, our empirical findings reveal that this approach is not feasible in a real-world setting,
because indoor trajectories have large deviation errors and thereby often drift outside of building boundaries.

Another approach is reporting-based indoor trajectory detection. During delivery, couriers are required to
report parcel delivery accurately when they deliver parcels at customers’ locations inside of buildings. Thus,
we can segment trajectories according to the reporting timestamps. However, we found that courier reporting
is highly uncertain and unreliable as shown in Fig. 8(a), which shows the large deviation between reporting
locations and the actual locations of couriers.
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Algorithm 1: Trajectory of Interest Detection

Input: Couriers’ Trajectories Traj
Output: Trajectory of Interests Tol
1 Tol =]
i=0
while i < len(Traj) do
statusy < findoor (Traj[i]) # detect whether a point is in indoor
status; < feommunity(Traji]) # detect whether a point is in community
statuss < fsraying(Traj[i]) # detect whether a point is in staying
if not status; and status, and not statuss; then
L Tol.add(Trajli])
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Fig. 8. (a) Courier reporting errors, (b) Sampling rates of indoor outdoor status, GPS, and reporting,
and (c) Voting process illustration.

The PDAs carried by couriers offer an opportunity to overcome the challenge of indoor/outdoor status detection
by utilizing the sensors embedded in these devices. Accordingly, we design a status detection approach built
upon IODetector [88, 89], a cutting-edge method for discerning between indoor and outdoor environments. In
status detection, we harness multiple sensors (light intensity, cellular signal, and magnetic field measurements)
to distinguish between outdoor and indoor statuses. The rationale is that indoor and outdoor environments
differently impact the readings of these sensors. Hence, we can detect the couriers’ status by modeling these
sensor values. The final detection outcome is the average result from the three sensors.

One approach is to collect and relay sensor data to the server for detection. However, the data transmission
brings substantial data and energy costs for PDAs, making it impractical for large-scale implementation. Therefore,
we design a lightweight approach that can operate on PDAs and relay the detected results to the server, obviating
the need to transmit raw sensor data. Nonetheless, our findings indicate that relying solely on sensor data is
inadequate for our purposes due to environmental influences such as buildings and trees within community
settings. To address this, we have developed a voting-based approach to improve the accuracy of our detection
system. In particular, the detection algorithm is executed every second, which produces a series of 10 statuses
for each trajectory point (given that the GPS sampling rate is set as one point per 10 seconds). The details of
the sampling rate and the voting approach are depicted in Fig. 8(b) and Fig. 8(c), respectively. A trajectory point
is deemed to be indoors if the majority of its status sequence suggests indoor statuses. Consequently, indoor
trajectories can be detected, paving the way for subsequent road network generation.
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5.2 In-community Status Detection

Following the detection of indoor trajectories, the subsequent step involves the detection of in-community
trajectories. As shown in Fig. 9(a), a courier travels from an external location to a community, generating
corresponding trajectories (Traj,q.w). When trajectories are directly filtered using the Area of Interest (Aol) of
community boundaries, drifting points p;, ps, and ps are mistakenly incorporated as in-community trajectory
points. This inclusion adversely impacts the performance of road network generation. Therefore, we detect
such drifting points to establish in-community trajectories (Traj) by computing each point’s preceding and
succeeding points. That is, drifting points are determined by their preceding and succeeding points being outside
the community within a specific time window.

ecommunity Aol boundary staying traj,  staying traj,

in-community traj sm é 3
— end

é road network
(a) In-community trajectory (b) Staying trajectory

Fig. 9. In-community trajectory and staying status detection.

5.3 Staying Status Detection

In communities, couriers sometimes stay on the grass to take a break or contact customers (not on roads), as
illustrated in Fig. 9(b). During these pauses, the GPS signals received can drift away from the true locations and
cannot reflect the road networks, leading to considerable deviation errors if these trajectories are not detected. As
shown in Fig. 10, the distance deviation in a stay point can be more than 100 meters. The number of GPS records
and stay duration in a stay point are also large. For each trajectory segment in a day, we detect stay points (i.e.,
groups of consecutive points in a trajectory that are produced during a stationary period of a moving object at a
specific location) based on the location and timestamp information [52]. Specifically, if a trajectory segment stays
within radius meters for more than m minutes, the segment is identified as a stay point. The parameters radius
and m can be adjusted according to different scenarios, such as setting a smaller r in areas with minimal GPS
drifting. Based on our observations from real-world data, we set radius as 20 and m as 2 in our experiment.
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Fig. 10. Characteristics for each stay point.

After the detection of indoor and stationary statuses, we categorize the original courier trajectories into two
groups: trajectories that cover community road networks (Tol), and trajectories that are not pertinent to road
network generation. The computation of Tol is demonstrated in Eqn. 1.

Tol =Traj \ (Trajindoor Y Trajstaying) (1)
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where T7ajindoor and Trajstaying are the indoor trajectory set and stationary trajectory set, respectively. The set
union operator U combines the two subsets of trajectories that we aim to exclude from the Traj into one set. The
set difference operator \ is used to subtract both Trajingoor and T7ajssaying-

6 COMMUNITY ROAD NETWORK GENERATION

Motivation. The subsequent step involves generating road networks from the noisy and accumulated sparse
trajectories. According to our data analysis, one critical observation is that the GPS signals follow the mixed
Gaussian distributions, and the centerline of roads can be discerned by humans when the trajectories are displayed
graphically. Thus, rather than generating road networks through various stages of trajectory processing, as in
most trajectory-based road generation studies [27, 43, 54], we reframe this task as a translation problem. Recently,
Generative Adversarial Networks (GANs) have been empirically evaluated in the sensing community and exhibit
great performance in reconstructing accurate topology information from sensing signals [55]. Therefore, we
design a GAN-based model to generate community road networks from distributively collected trajectories.

The right part of Fig. 7 presents our generative model, DualSTGAN, which is composed of two modules:
RoadGAN and LineGAN, respectively. To tackle the challenge of training data shortage, we design a novel
approach to augment road network data for model training. After the training phase, DualSTGAN generates
community road networks from Trajectory of Interests as shown in Fig. 11.

' &Y
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of Interest

Fig. 11. Inference phase of DualSTGAN.

6.1 Road Network Topology Generation

The Generative Adversarial Network (GAN) is a representative generative model that has demonstrated excellent
performance in various domains, including image generation and natural language generation [30]. A GAN
consists of a generator (G) that synthesizes a sample from an input dataset (which can either be noise or a real
sample from other domains), and a discriminator (D) that inputs data from either the generator or the real sample
database and outputs a probability representing the likelihood of the input coming from the real sample database.
The generator and discriminator are co-trained to achieve a Nash equilibrium [30], as shown in Eqn. 2.

minmax L(D, G) =Ey-p, (y) [10g(D())] + Ez~p,(z) [log(1 = D(G(2)))] )
where y are sampled from the real dataset and z are sampled from random noises.

6.1.1 Domain Alignment. Nevertheless, the application of GAN for generating community road networks from
spatiotemporal trajectories is not straightforward. Trajectories contain timestamp information, which differs
from road network data. This domain gap between the two datasets poses a challenge to conventional GAN
models, making it impractical to directly use trajectories as model input. Consequently, we design a mapping
mechanism to project raw trajectories and road networks into the same domain for model training and inference.
Given a collection of the Tols (< Tol;, Tol,, ..., Tol, >) in a community, we project all trajectory points into a
two-dimensional matrix T7ajag, by normalizing trajectories using the spatial boundaries of the community, as

shown in Eqn. 3.
Trajagg = Mc(< Tol, Toly, ..., Tol, >) (3)
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Here, M, represents the mapping process and c is the information about community boundaries. Specifically,
each GPS point in Tols is mapped by calculating % X dy and %
Ingmax, and Ingpi, are the minimum and maximum latitude and longitude of the community. lat and Ing are the
latitude and longitude of the current GPS point. d; and d; denote the width and height of the matrix, and both of
them are set to 256 in the experiment to match the model input size. Trajqqy € R%*4 p is the number of Tol in
the community. Consequently, all trajectory points are embedded in this two-dimensional matrix as the input of

our GAN model to generate community road networks.

X di, where laty,qx, latmin,

6.1.2  Generation Networks. Unlike generating a sample from noise, conditional GAN (cGAN) typically generates
samples from source domain data samples. In road network generation, the source domain is noisy trajectories
and the target domain is the road networks. In the conditional generation setting, the model can be guided more
easily to generate road networks that follow the true geometry and topology as the training label. The loss
function of conditional generation is in Eqn. 4.

Lean (D, G) =Ex,y[log(D(x, y))] + Exz[log(1 - D(x,G(x, 2)))] (4)

where x are samples in the source domain, y are corresponding training labels in the target domain, and z are
random noises.

The generative model in our setting is designed to map noisy trajectories into structured road networks.
Therefore, we design a generator based on the encoder-decoder architecture. Specifically, the generator consists
of two encoding blocks and two decoding blocks, with 6 residual blocks [35]. Each residual block contains a
convolutional layer, a normalization layer, and an activation layer. As shown in Fig. 12, the encoder downsamples
the input road network from 256x256 to 64x64, and the residual blocks transform the features into the target
domain. The input size is chosen because the majority of community widths in metropolitan areas are smaller
than 500 meters, and 256 is a popular size following the experience from existing studies [63]. The decoder then
upsamples the features and generates road networks of size 256x256. To guide the generator in learning a correct
mapping from trajectories to road networks, a CNN-based discriminator is utilized. The discriminator determines
whether a patch of the generated road network is real or generated. Instead of predicting a whole road network
to be real or generated, such patch-based discrimination provides fine-grained training supervision and it has
shown superior performance in different tasks [46].
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Fig. 12. Generator’s encoder-decoder architec- Fig. 13. Training data generation. (a) Aol par-
ture. The input is noisy trajectories and the tition boundaries as labels (Y). (b) Trajectory
output is corresponding road networks. simulation. (c) Road network adaptation (X).

6.1.3 Training Data Construction. A key challenge in generating road networks with GANs is the shortage
of training data, i.e., ground truth roads and noisy trajectories on corresponding roads (X). Intuitively, a road
network partitions a region into different areas by road path, which is similar to Area-of-Interest (Aol) boundaries
that partition an area into different Aols. Aol boundaries consist of major street roads, building boundaries, and
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other geographical elements such as rivers. Therefore, we might be able to train the road network generation
model by utilizing existing Aol boundary data that is easy to obtain.

(i) Aol partition boundary generation (Y). Aol boundary data can be collected on platforms such as Open-
StreetMap (OSM) [5], which are consecutive spatial points (latitude, longitude) representing the spatial boundary
of a region. However, the main road network is very different from community roads, e.g., the shape is very
different. Therefore, we combine Aol boundaries and main road skeletons by expanding Aol boundaries until
they connect with a road to obtain synthetic roads, which are similar to community roads. In this way, we obtain
synthetic road networks in various shapes as in Fig. 13 (a). These Aol boundaries can be utilized as the training
label for road network generation.

(ii) Trajectory simulation. Even with synthetic community road networks as in Fig. 13 (a), we are still not
ready to train our generation model. For real trajectories in communities, GPS points are spread alongside road
segments that follow mixed Gaussian distributions. Therefore, we add noise to the Aol partition image (Fig. 13
(a)) by sampling synthetic GPS points from multiple Gaussian distributions as shown in Eqn. 5.

k
Traj(r) = Z TN (Flgie =) (5)

where Traj(r) represents simulated trajectories, k is the number of distributions, and Zle 7. = 1. The result is
shown in Fig. 13 (b), which simulates the trajectories generated by PDAs.

(iii) Road network adaptation (X). The road network structure in Fig. 13 (b) is too clear and easy to recognize,
which does not benefit the generative model as it cannot provide a realistic training environment that simulates
the real trajectories. Thus, we conduct a two-step road network adaptation. Firstly, multiple noises are sampled
centering each point on the road networks, and then we replace the original roads with these sampled points. This
process blurs the road network skeleton, which is similar to real-world trajectories on community roads. Then,
we observe that real-world trajectory points are not uniformly distributed on each road segment due to visiting
frequency and preference variance. Based on this observation, we design a novel adaptation approach motivated
by the pre-training task in the natural language processing community, where a few words in a sentence are
masked and the model is trained to infer the masked content [53]. Specifically, we randomly mask a segment along
the road networks and remove some noisy points to sparse the selected road segments, which generates road
networks covered with simulated trajectories as in Fig. 13 (c). It can be observed that the generated trajectories
are similar to the real trajectories on community road networks.

6.1.4 Model Training. Once we have constructed the training data (input X as in Fig. 13 (c) and training label Y
as in Fig. 13 (a)), we can train RoadGAN to generate road networks from noisy trajectories Trajggg.

Road;rqj = RoadGANGg, g, (Trajagy) (6)
where Road;rqj € Rd1xdz g p1 are trainable parameters for the generator and discriminator of RoadGAN,
respectively. The training loss consists of two parts, i.e., loss from the conditional GAN, and the loss from L1 loss.

Existing studies show that L1 loss captures low-level features such as boundary and shape information, which is
important for road line generation. The loss is shown in Eqn. 7.

LroadcaN = Legan(D, G) + AL11(G) (7)

where L1 (G) = Ex y-[|ly — G(x,2)||1] and A is a hyperparameter that balances the importance of two losses.

6.2 Road Network Deadend Imputation

Motivation. One of the principal challenges faced by generative models in generating images with robust
topological structures is the deadend effect. This refers to the abrupt discontinuation of generated lines or curves,
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which adversely affects the performance of road network generation. This issue likely stems from the training
mechanisms of generative models, wherein only portions of images are sampled throughout the training and
optimization process [34]. Furthermore, the task of creating a coherent road network skeleton and seamlessly
connecting road networks from noisy trajectories poses significant challenges for generative models due to the
complexities inherent in the training process.

This phenomenon motivates us to design LineGAN to address the deadend issue and generate road networks
with better topology and geometry. LineGAN is a generative model for road network imputation, i.e., infer
incomplete or damaged segments of a road network based on partial roads. The generator and discriminator
follow the same architecture of RoadGAN, but the training purpose is different, i.e., rather than training to generate
road networks from noisy trajectories, LineGAN aims to impute broken deadends. However, it is challenging to
train LineGAN due to the lack of training data. Thus, we design a novel data augmentation approach.

For each Aol boundary (i.e., training label (Y) as in Fig. 7), all roads are connected and there are no deadends.
To simulate the results with deadends generated by RoadGAN, we first sample multiple grids in Aol boundaries
and remove roads in the selected grids. Thus, we turn a connected Aol boundary into a road network that is
similar to the road network generated by the RoadGAN, i.e., road networks with deadends as in Fig. 7. After
training with the constructed data, LineGAN generates road networks Road based on the output of RoadGAN.

Road = LineGANy, g, (Roady, ;) (8)

where Road € R91%42 9, B, are trainable parameters for the generator and discriminator of LineGAN, respec-
tively.

7 EVALUATION

In this section, we introduce the evaluation setup, baseline comparison, and system efficiency analysis.

7.1 Evaluation Setup

7.1.1  Implementation details. Our framework is implemented on a machine with 40GB memory, P40 GPU with
24GB memory, Python 3.6, and Pytorch 1.6. Our RoadGAN is adapted from Pix2Pix Model [46]. We set the batch
size as 1, and the maximum training epoch as 150. The initial learning rate is set as 0.0002. All deep learning-based
baseline models are trained at least 100 epochs to ensure model convergence.

7.1.2  Dataset. We collect a multi-modal dataset from 119 communities during the delivery process of 205 couriers
at the logistics platform we work with from 2022.07.01 to 2022.08.31, including 12,336 trajectories and 3.16 million
GPS points. The communities are in the Chinese cities of Beijing (urban areas, 112 communities, 196 couriers) and
Xuancheng (suburban areas, 7 communities, 9 couriers). The community Aol polygons and general Aol partition
polygons are provided by the company’s spatial database, generated by standard geospatial data production
process, e.g., combining satellite images, geographical structures such as open road lines and river boundaries,
and manual inspection. We utilize the Aol partition polygons to construct 4,000 trajectory-road network pairs
to train the road network generation models. We collect the community road network ground truth with the
professional team at the logistics company we work with to evaluate our model performance. Since the scale of
the Beijing Dataset is much larger, results are shown based on the Beijing Dataset unless noted otherwise.

7.1.3  Ground Truth. The community road network ground truth consists of two parts. For communities with
clear satellite images, we manually label the ground truth with professional map annotation software. For the rest
of the communities, we manually visit communities with high-accuracy localization devices equipped with an
RTK localization module. After annotating key points in communities, we further post-processing the annotated
data on map annotation software. For courier status ground truth collection, we develop an APP that runs our
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indoor status recognition approach. The App also supports marking the timestamp of getting in and out of a
building.

7.1.4  Metrics. We use both qualitative methods and quantitative metrics (i.e., precision, recall, F1, and road
network difference (rd)) to evaluate the generated road networks. We follow the commonly-used evaluation
approach [11] to evaluate both topology (measuring the interconnections) and geometries (measuring the
geographical location) of generated road networks.

Qualitative evaluation. To have a straightforward comparison of different methods, we compare the performance
of representative methods qualitatively by visualizing generated road networks from two communities. More
similarities between the generated road networks and the ground truth represent better performance.

Road network difference (rd). To measure the detailed difference between generated road networks with
ground truth road networks, we calculate the road difference rate (rd). rd measures the ratio of pixels in generated
road networks that are different from ground truth road networks as in Eqn. 9, where 7 and r are generated road
network image and ground truth road network image, respectively. v(7; ;) is the pixel value at location (i, j) in r.
H(x) is a step function that transforms x into 0 or 1. H(x)=0 if x=0, and H(x)=1 if x #0. The smaller rd indicates
better performance.
1<Z<NH(U(fi,j) —o(rij))

rd = —2= N2 )
Precision, recall, and F1. We follow the de-facto road network evaluation approach to calculate the precision,
recall, and F1 [11], which refers to the proportion of the generated roads that accurately represent true roads, the
proportion of roads that are correctly captured by the model, and the harmonic mean of precision and recall,
respectively. Specifically, we randomly select n starting locations in ground truth roads and put a hole with a
radius of r every distance d until a maximum distance threshold s is reached. Then, for generated roads, we
follow the same n, d, and s to put a marble every distance d. A hole is successfully matched with a marble if the

marble is within the r-radius of the hole. We can calculate the correctly matched holes to evaluate the precision,
# of matched marbles # of matched holes dFl= 2-precision-recall
# of marbles # of holes > an ~  precision+recall *

,recall =

recall, and F1. precision =

7.1.5 Baselines.

e TrajCluster [76] is a representative method to generate city road networks and has achieved good performance.
It generates road networks by clustering GPS trajectories generated by vehicles traveling on road networks. It
can also infer road attributes by mining trajectory properties.

e coMap [27] utilizes complementary vehicle mobility data to infer city-scale road network structure and road
categories. The intuition is that an increased volume of mobility data offers more detailed information to
underline road networks. We adapt coMap in our setting using mobility data from multiple couriers.

e Pix2Pix [46] is a generative model trained on paired data. We train pix2pix with road networks and apply the
trained model to generate road networks from trajectories to compare with our framework. Pix2pix utilizes
U-Net [62] as the generator and PatchGAN as the discriminator.

e CycleGAN [90] is a Generative Adversarial Network trained on non-paired data. It has been utilized to generate
road networks from aerial images. We train CycleGAN with unpaired road network data and generate road
networks from noisy trajectories. The generator and discriminator of CycleGAN are the same as in Pix2Pix.

e RoadGAN is a variant of our DualSTGAN by removing the deadend imputation module.

7.2 Overall Evaluation

We evaluate the model performance based on both qualitative evaluation and quantitative evaluation.
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(a) Raw Trajectory (b) Tol (c) CycleGAN (d) Pix2Pix (e) RoadGAN (f) Our DualSTGAN
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Fig. 14. Road network generation results. (a) is the raw data (couriers’ GPS points in the communities).
(b) shows the Trajectory of Interest (Tol) after removing staying and indoor trajectories. (c)-(f) shows
the generation results by different methods. (g) is the road network ground truth.

Qualitative evaluation. We compare different models by the visual differences between generated roads with
the ground truth roads in Fig. 14. It can be noted that our SmallMap generates roads most similar to the ground
truth roads in terms of overall topology and geometry. Moreover, with LineGAN designed to infer deadends,
the interconnection of generated roads is improved significantly. Another interesting observation is that even
trained with the same generator and discriminator architecture, CycleGAN generates much worse road networks
than Pix2Pix. This phenomenon demonstrates that unsupervised training is hard to yield very good performance
in translating noisy trajectories into corresponding road networks. It is probably because unsupervised training
in CycleGAN guides the model to learn the road network "style", i.e., road networks are connected lines rather
than noisy points, but hard to provide enough training guidance to generate lines corresponding to noisy points
and maintain geometry and topology information.

We also show the imputation effect of LineGAN in Fig.15. LineGAN is trained to impute road segments in favor
of road connectivity. It can be noted that the road network with multiple deadends (Fig.15(a)) can be imputed as
Fig.15(b), which is very close to the ground truth road network (Fig.15(c)).

l l without voting with voting
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Fig. 15. LineGAN imputation result. Fig. 16. Indoor context evaluation.

Quantitative evaluation. The comparison between SmallMap and baseline models is illustrated in Table 2.
SmallMap achieves the best performance among all metrics in two cities with an average F1-score of 88.9%. Note
that the recall in the Xuancheng Dataset is lower, which is probably because there are fewer orders in communities
in Xuancheng and thereby fewer courier trajectories. According to our communication with the business team of
the logistics platform, such performance can meet most of the business needs such as travel time estimation.
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Overall, the results in the two cities are consistent. CycleGAN has the highest rd, which means road networks
generated by CycleGAN are the most different from ground truth road networks, which follows the phenomenon
in Fig. 14. One of the main reasons is the unpaired training paradigm in CycleGAN, i.e., the training data is not
one-to-one paired data as in Pix2Pix. Therefore, it is challenging for CycleGAN to precisely translate trajectories
to corresponding road networks. Pix2Pix, coMap, and TrajCluster have similar scores of rd but significantly
different precision, recall, and F1 scores. This is probably because road networks generated by these methods
are similar in terms of absolute difference from ground truth road networks, but are different in terms of road
geometry and topology, which are captured by the F1-score. For trajectory-based models, TrajCluster and coMap,
the inaccurate individual GPS trajectories might be the main reasons that decrease their performance. From
RoadGAN to DualSTGAN, the performance is improved by imputing the broken deadends, which follows the
visual comparison in Fig.14.

Table 2. Overall Evaluation Result

Beijing Dataset Xuancheng Dataset
Model rd Precision Recall F1 rd Precision Recall F1
CycleGAN 0.728 0.561 0.533 0.547 0.593 0.612 0.596 0.604
TrajCluster 0.155 0.631 0.685 0.657 0.168 0.626 0.674 0.649
coMap 0.142 0.735 0.761 0.748  0.149 0.718 0.701  0.709
Pix2Pix 0.136 0.832 0.810 0.821 0.141 0.813 0.797 0.805
Our RoadGAN 0.059 0.883 0.876 0.879  0.077 0.871 0.830 0.850

Our DualSTGAN 0.051 0.913 0.907 0.910 0.064 0.896 0.842 0.868

Indoor context detection evaluation. To evaluate the performance of indoor context detection, we implement
our algorithm on PDA and Android smartphones. To collect the ground truth, we develop an APP, to record the
time duration of indoor contexts. We compare the detection accuracy in different regions and time slots, shown
in Fig. 16. The overall accuracy is above 80%. The accuracy of residential areas is higher because there are more
complex indoor environments in Central Business District (CBD) areas. At the same time, the accuracy in the
daytime is better than at nighttime. It can be noted that the accuracy is improved with the voting-based approach.

7.3 Impact of Different Components

To further investigate the importance of different components, we conduct experiments to evaluate their impacts
on the performance of SmallMap.

Impact of deadend imputation. In this work, we develop LineGAN for the deadend imputation to improve
the performance of community road network generation. The qualitative and quantitative results are shown
in Fig. 14 and in Table 2, respectively. We evaluate how the deadend imputation component contributes to the
quality of generated roads. Fig. 14 shows that with deadend imputation, the model can successfully identify
the broken generated road segments and impute them with road lines. Quantitatively, the deadend imputation
module improves the F1-score by 3.1% in Beijing City and 1.8% in Xuancheng City as shown in Table 2.

Impact of radius r. The hyper-parameter radius r determines the error tolerance level and thereby impacts
the evaluation results. Intuitively, a larger r represents a more coarse evaluation granularity and brings higher
precision and recall. The impacts of r on precision, recall, and F1-score are shown in Fig. 17, Fig. 18, and Fig. 19,
respectively. Generally, the results of all models are improved with the increase of radius r, which follows our
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assumption. Also, the performance gap among the five models decreases with the increase of r. This is because a
large r matches a point on generated road networks (marble) with another point (hole) on ground truth road
networks even though they are far away from each other.

Impact of the number of starting points. Intuitively, the location of starting point determines the locations
of marbles and holes, which then impact precision, recall, and F1. The number of starting points impacts the
variance of calculated metric values. Therefore, we investigate how variance changes along with the number of
starting points by calculating the variance as shown in Fig. 20. As a demonstration, we compare the variance of
CycleGAN and DualSTGAN, which represent low-performance and high-performance models, respectively. It can
be noted that the variance of both models continuously decreases with the increase of the starting points, which is
probably because more starting points cover more possible comparison points on generated and ground truth road
networks, and thereby the result has a smaller variance. Also, the variance of CycleGAN is significantly higher
than DualSTGAN before 30 starting points, because the connectivity of the generated road network by CycleGAN
is worse. The variances become stable after 30, we thereby choose 30 starting points in our experiments.
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Impact of road network adaptation. To verify the effectiveness of our training data augmentation process, we
remove the road network adaptation in the trajectory-road training pair generation process. The results are shown
in Table 3. Experiments show that without the adaptation step, the performance decreases significantly, which
is probably because of the great difference between simulated trajectories and real-world couriers’ trajectories.
This analysis highlights the great importance of the third step of the training data generation process.

Table 3. Impact of Road Network Adaptation Module

Model rd Precision Recall F1
w/o adaptation 0.153 0.742 0.720 0.731
Our DualSTGAN 0.051 0.913 0.907 0.910

7.4 Post-processing of Road Networks

Based on the generated road network structures, we can further generate road graphs by detecting road segments
in the road networks [22]. We show examples in Fig. 21. Note that, road segments can be further processed and
merged to reduce the storage cost, which is not the focus of this paper.

7.5 Computation Efficiency Analysis

Efficiency is an important factor that impacts the large-scale application capability of SmallMap. Therefore, we
analyze the efficiency of SmallMap in terms of training speed and inference speed. The training of DualSTGAN
takes 2.8 hours on a single P40 GPU for 100 epochs with 4,000 training images. For a city of size 50km X 50km,
we can partition it into 500 meters X 500 meters grids, which yield 10,000 grids in total. Then, we can generate
the road networks for the whole city in 1.9 hours, with 0.7 seconds for each grid. Note that larger grid sizes bring
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Generated road Road thinning Road vectorize Generated road Road thinning Road vectorize

fewer grids to be generated and thereby leading to a shorter generation time. This demonstrates the efficiency of
our method for generating large-scale community road networks.

8 REAL-WORLD CASE STUDIES

We conduct real-world case studies in a region around the fifth ring of Beijing City, China, to support important
applications in last-mile delivery utilizing our generated community road networks.

8.1 Courier Workload Estimation

In last-mile delivery, an important task is to estimate the workload for delivering a group of parcels, which
benefits various tasks such as equitable assignment of tasks or rewards. Calorie consumption, which can be
measured by commercial bracelets [4], can be utilized to quantify the difficulty level of delivery tasks. However,
due to high costs and privacy concerns, the bracelet-based method cannot be applied on a large scale. Instead, a
straightforward approach is estimating workload based on the number of delivered parcels, i.e., assuming more
parcels bring a higher workload. However, due to the significant environmental differences in metropolitan areas,
the difficulty of delivering parcels can vary significantly. For example, delivering 10 parcels to one address might
be easier than delivering 5 parcels to 5 addresses that are far away from each other. Therefore, we design a new
method as follows.

10 10
0.8— 0.8
2 Fl
= 064 = 064
g ] £ ]
S 04+ 8 04+

Q‘: T Raw trajectory D‘: 1 (61 0 kCZ!.l, 80%)
0.2 i, Ours 0.2
0 AR ERE AR R EEREE otk
10000 20000 % 100 150 08:19AM  13:42PM  16:06PM  19:28 PM
Travel distance comparison Calorie consumption (kcal) 75 KCal 347 KCal 437 KCal 607 KCal
(a) Travel distance difference (b) Calorie consumption CDF (c) Smart bracelet data collection

Fig. 22. Smart bracelet illustration. (a) shows a substantial discrepancy in couriers’ travel distance
between the result calculated from raw trajectories and our method. (b) shows couriers’ calorie con-
sumption patterns. (c) shows an example of our smart bracelet recording couriers’ calorie consumption.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 50. Publication date: June 2024.



50:20 + Hongetal.

Method. The most relevant features related to couriers’ workload include the horizontal moving distance, the
weight of parcels, etc. Most horizontal moving distance is generated in communities, which rely on fine-grained
community road networks for the measurement. Therefore, based on SmallMap, we design a technical framework
to estimate the workload of couriers. Specifically, we design a learning-based method to estimate the calorie
consumption of delivery couriers from a set of features. The features include parcel weight, parcel volume, walk
distance, work time span, and number of parcels, etc. walk distance is calculated by map matching [57] couriers’
trajectories with the generated road networks.

Ground truth collection. For model training and evaluation, we design a ground truth collection system based
on smart bracelets (i.e., Keep B2 Bracelet [4]), which is illustrated in Fig. 22. It has been widely adopted to utilize
wearable devices for calorie consumption measurement [48]. Human status detection based on smart bracelets
has been widely studied and some applications such as sleep monitoring have been utilized in commercial
devices [4, 49, 67]. We collaborate with 18 couriers in the logistics platform we work with and collect the calorie
consumption data from 2023.02.17 to 2023.03.14. The hourly calorie consumption is shown in Fig. 22(b) by wearing
smart bracelets as in Fig. 22(c). Each courier receives 30 RMB per day as a reward for wearing the bracelet during
working time to collect the ground truth data.

Results. The result is shown in Table 4 using a linear

regression (LG) model and gradient-boosted decision tree Table 4. Calorie Estimation Results
(GBDT) model [29]. For methods without generated road

networks (w/o SmallMap), the estimated walking distance Method MAPE MAE RMSE
is significantly different from the actual distance as shown LG 0.23 1034 13.93
in Fig. 22(a), which potentially brings negative impacts ~ W/0 SmallMap GBDT 022 1009 14.03
on calorie estimation. The superior performance with G 0.19 891 1228

SmallMap follows our assumptions on the importance of ~ With SmallMap GBDT  0.17 797 1047

walking distance and our method.

8.2 Travel Time Estimation

Estimating the travel time between couriers’ current locations with other locations is one of the most important
tasks in delivery services, which enables many applications such as customer experience improvement and
courier scheduling strategies [84]. The most important factors that impact travel time include travel distance and
travel speed. During parcel delivery, couriers travel in communities mainly by walking and travel on open roads
by driving delivery vehicles, both with relatively stable speeds. Therefore, the accurate travel distance between
the two locations has a huge impact on the estimation of travel time.

We utilize the shortest path query method [47] on road network data to get the travel distance. According
to the walking and driving speeds depicted in Figure 23a, it is evident that the majority of couriers’ speeds are
less than 5.8 km/hour and 18.6 km/hour, respectively. Thus, we set the walking speed as 5 km/hour and the
driving speed as 18 km/hour, similar to other research studies [6]. In Fig. 23b, we present the error rate of travel
time estimation based on the generated community road networks by SmallMap. It can be noted that, without
community road networks (w/o community road), the error rate is the highest (mean error rate is 0.55, i.e., the
ratio of estimated travel time error to ground truth travel time). Also, utilizing lines to represent the actual travel
distance (line-based) brings sub-optimal results (mean error rate is 0.303). With SmallMap, the mean error rate
(0.092) is the lowest. The results demonstrate the utility of SmallMap for travel time estimation.

8.3 Fine-grained Order Assignment

In last-mile delivery [64] and on-demand delivery [88], one of the fundamental tasks is order assignment, i.e.,
assigning orders to couriers according to spatial areas [32]. Most existing methods focus on the assignment at
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Fig. 23. (a) Travel speed of walking and driving, (b) Travel time error, and (c) Order assignment results.

the coarse-grained Aol level [32], which, while effective for most business operations, may not meet the specific
business needs that require a more granular approach. To fill this gap, we propose a new method for fine-grained
order assignment that leverages the generated community road networks from SmallMap.

Specifically, we first partition the community into fine-grained sub-areas according to the generated road
networks from SmallMap. Then, we project each online order into one of the sub-areas by transforming its
shipping address into a spatial location utilizing Geocoding services [28]. We utilize one-week (2023.12.10 to
2023.12.16) order data from the platform we work with and show the assignment results of a residential area in
Fig. 23c, where darker colors indicate more orders in a sub-area, with the x-axis denoting longitude and the y-axis
denoting latitude. Based on such fine-grained assignment results, the platform can conduct more fine-grained
business, e.g., more efficient courier scheduling when multiple couriers work in the same community.

9 DISCUSSIONS

9.1 Lessons Learned

e Low-cost crowdsensing for urban applications. Urban sensing involves strong spatio-temporal characteris-
tics and thereby brings the huge costs to maintain an up-to-date sensing system, e.g., a road network generation
system. Designing a crowdsensing system with an incentive to involve citizens or workers would significantly
lower the cost and also improve urban data quality for various urban applications such as last-mile delivery
and instant food delivery. At the same time, these crowd-sensing data have different uncertainties, which
need to be captured and addressed. Based on large-scale multi-modal sensing data, we have the opportunity
to eliminate such uncertainties to improve the performance of urban applications such as community road
network generation.

e Collective human mobility. Even though individual mobility has significant random noises due to environ-
mental and contextual effects, collective mobility, however, has the potential to address the noises by fusing
useful information from all individual mobility. Currently, human mobility data are increasingly available. It is
important to use these collective human mobility data for ubiquitous computing towards low-cost sensing and
high-quality urban services.

9.2 Limitations and Future Work

While SmallMap generates fine-grained community road networks with a low cost, we identify a few limitations
that can be improved in future studies. Road network semantics (e.g., walking-only roads) are also important
for real-world applications, which are not addressed in this study. Also, road networks generated by SmallMap
still do not match the ground truth perfectly. The integration of more GPS trajectories and other data such as
aerial images could potentially improve the road network sensing performance. Moreover, the evaluation scale is
limited in the current study, and we plan to enhance the evaluation part in the future.
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¢ Road network semantics sensing. Trajectory data and other sensor data from couriers’ PDAs contain
rich information and reflect the physical status of couriers, e.g., walking or driving. Therefore, based on
the generated roads by SmallMap, advanced classification models can be designed to infer the road network
semantics such as walking only or can be driven through, by classifying couriers’ trajectories with models like
Transformers [53].

e Generative Al for road network sensing. Given the great success of generative Al like GPTs [75] and
diffusion models [66] in natural language processing and image understanding, we aim to design proper
generative models for road network sensing. A key direction of future work involves the fusion of trajectory
data and aerial imagery to harness the advantage of both trajectories (fine granularity and free-from-shadowing
effects) and aerial images (wide coverage). We plan to investigate how to tokenize trajectories and aerial images
for large foundation models [75] to get road networks in corresponding areas as the output.

e Evaluation enhancement. In the future study, we intend to increase the scale of evaluation by collecting
ground truth data from more cities. Additionally, we plan to explore further case studies, for instance, developing
a navigation App leveraging community road networks, thereby enriching the applications of our work.

9.3 Privacy Protection and Data Consent

We discuss privacy protection approaches in this study. (i) The data is collected from couriers’ working devices,
i.e., PDAs, which only record data during working hours. (ii) Couriers can turn off the localization function
whenever they want. (iii) We only utilized aggregated mobility data in communities for road generation, and no
personal information was accessed or used during the study.

10 CONCLUSION

In this paper, we design a novel framework called SmallMap to generate community road networks based on
multi-modal sensing data. Specifically, SmallMap consists of two major modules, i.e., a Trajectory of Interest
Detection Module and a Community Road Network Generation Module. To generate road networks with accurate
topology structures, we design DualSTGAN, a hierarchical Generative model framework to generate road network
skeletons and impute road network deadends. To tackle the challenge of training label shortage, we design a
novel data augmentation approach to facilitate the training of DualSTGAN. Extensive results show that SmallMap
outperforms state-of-the-art methods significantly. Moreover, we conduct concrete case studies to estimate the
workload of delivery couriers, travel time, and order assignment by utilizing generated community road networks,
which indicates the great potential of our SmallMap for real-world applications.
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