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Figure 1: A demonstration of the process: from RGB human images to rendered animations

ABSTRACT

It takes less than half a second for a person to fall [8]. Capturing
the essence of a fall from video or motion capture is difficult. More
generally, generating realistic 3D human body motions from mo-
tion capture (MoCap) data is a significant challenge with potential
applications in animation, gaming, and robotics. Current motion
datasets contain single-labeled activities, which lack fine-grained
control over the motion, particularly for actions as sparse, dynamic,
and complex as falling. This work introduces a novel human falling
dataset and a learned multi-branch, Attribute-Conditioned Vari-
ational Autoencoder model to generate novel falls. Our unique
dataset introduces a new ontology of the motion into three phases:
Impact, Glitch, and Fall. Each branch of the model learns each phase
separately and the fusion layer learns to fuse the latent space to-
gether. Furthermore, we present encompassing data augmentation
techniques and an inter-phase smoothness loss for natural plau-
sible motion generation. We successfully generated high quality
images, validating the efficacy of our model in producing high-
fidelity, attribute-conditioned human movements.
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1 INTRODUCTION

The task of generating 3D human body motions, particularly from
motion capture (MoCap) data remains a critical yet challenging
endeavor, with potential applications in computer animation, game
development, and robotics. The key challenge lies in generating
motion sequences that have realistic and diverse body movements
using limited data. In this work, our goal is to leverage a combi-
nation of "falling movement sequences" attributes to generate an
infinite number of 3D human motions. Many works have been
conducted in this field that use a single action category as auxiliary
input [7, 22, 27, 30, 35, 40, 43, 44] or a description [23, 33, 42] of
a single action category. These methods often generate simple or
cyclic movements, which lack granular control over the motion.

Instead, our goals are to use the data of a single performing
artist and represent the action as a sequence of movements, each
characterized by a set of attributes specific to that artist’s vision
and analysis of motion.

We address this problem by training a Conditional Variational
Autoencoder (CVAE) [32] on a limited set of 3D human MoCap data
of a performer. Using a multi-branch encoder-decoder architecture
with a fusion layer in the middle, each of the (three) motion phases
has its encoder-decoder network. We fuse the latent distributions
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with a fully connected layer to allow communication between the
different phases and output the motion for each phase.

With no existing dataset, we collected recordings of a single
artist. The artist performed dramatic falls that conformed to the
movement score for "Animating Death," which was also developed
by the artist. This score is part of choreographies of falling and dy-
ing [19]. This project includes artistic works “Monumental Death”
[17] and “COMMIT!” [18] which use these dramatic falling chore-
ographies as primary material. Falls in these works conform to the
aforementioned score.

During data collection, the artist performed falls based on a
sequence of attributes: Impact, Glitch, and Fall. The Impact is the
embodied site of initiation for the motion; the Glitch is a performed
moment of panic, confusion, or shuddering ecstasy that sets the
stage for the next segment; and finally, the Fall is the passage of the
body from upright to lying down. To maintain parameters across the
recordings, the artist performed falls with randomized attributes in
the three phases. Utilizing the markerless Captury MoCap System
[1], we collected approximately 100 trials of the artist performing
dramatic falling actions, labeled with these attributes and granular
sub-definitions of expressive motion.

We adopt the SMPL human model [24] to represent the human
body and actions, providing access to human joints’ location, rota-
tion, and surface meshes. Following the methodology of Petrovich
et al. [30] and Lee et al. [20], we employ a mixed loss function
combining joint and mesh information.

Different from previous works, the falling movement is com-
plex and has multi-phase labels. Thus from a computational point
of view, it is more challenging to accurately represent and gen-
erate the falling movements. We tackle this problem by using a
multi-branch design with each branch specialized for one phase.
However, a challenge arises from the multi-branch design: abrupt
motion changes between different phases. To mitigate this issue,
we designed an inter-phase smoothness loss. By controlling the
variance of the motion sequence’s first derivative and modeling
the transition data using spline interpolation, we achieve smooth
transitions between phases. With a limited number of recorded
motion sequences, there are only a few samples for each falling
attribute. We introduced whole-body movement data augmentation
using Fourier transformation. Transforming the data into frequency
space and manipulating the phase and magnitude, we effectively
increased data variation, leading to a more robust model.

Our contributions to the field of human pose representation and
animation are as follows.

(1) We collected a unique falling pose dataset with multi-attribute
labeling (2) We developed an attribute-conditioned multi-branch 3D
human body motion synthesis model (3) We implemented human
body pose data augmentation using Fourier transformation, and
(4) We designed an Inter-Phase Smoothness Loss to smooth the
transition between phases.

Further, our work presents a unique collaboration between artists
and computer scientists; one in which the point of view of a partic-
ular artist drives the creative output of a machine-learning model.
Instead of animations built off of aggregate data, ultimately erasing
the identities and particularities of the contributing performers, our
resulting tool celebrates the particular creative vision and embod-
ied attributes of a single artist. The resulting animation tool offers
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new creative possibilities for falling animations, which could be
extended to a variety of other choreographed motions.

2 RELATED WORK

2.0.1 Machine Learning: Prior to deep learning, researchers ap-
plied optimization methods to 3D human motion prediction and
synthesis tasks [9, 21]. Methods like inverse kinematics [15, 38]
and motion graphs [2], however, need manual tuning and cannot
generate complex and diverse human movements. With the recent
development of generative models like GANs [6] and Diffusion [12],
3D human body motion tasks have received significant attention.
Yang, Ceyuan, et al [40] utilize GANs on pose sequences and se-
mantic consistency to control the dynamics of human motion. With
the help of large motion datasets, Lin and Amer [23] treat class
labels as text conditioning and feed them to an RNN-based GAN
network. [3] build a probabilistic function conditioned on previ-
ous frame actions. The limitations of GAN-based networks include
accumulated error in long sequences; it is difficult to train them
and hard to model spatial information. Denoising Diffusion models
have shown remarkable performance in generating diverse and
realistic images and videos. Recent works adopted this method-
ology for motion modeling with promising results. The MDM
model [33] is a transformer-based diffusion model designed for
various tasks, including text-to-motion and action-to-motion. A
significant contribution is that it predicts on samples rather than
noise. MotionDiffuse[42], a diffusion-based human motion synthe-
sis model, is capable of responding to fine-grained manipulation
of body parts. PhysDiff[41] is designed to integrate physical con-
straints into the diffusion process, enhancing the physical plausibil-
ity of existing models. The downside of the diffusion-based model,
however, is the need for a vast amount of data to generate high-
quality and diverse motion sequences. Variational Autoencoder
(VAE) has been a popular method for solving human body motion
synthesis tasks. Habibie et al. (2017) [11] designed a VAE with a
recurrent design, showing the potential of VAEs in capturing the
temporal dependencies. Yan et al. (2018) [39] utilize the concept
of motion modes to design their MT-VAE model capable of gen-
erating multiple diverse facial and full-body motions. Generating
motion frame by frame, He et al. (2018) combine VAE and RNN de-
sign to generate consistent and diverse video sequences. Our work
builds upon Petrovich et.al’'s ACTOR[30] network design to extract
sequence-level embeddings and generate holistic body movement.

2.0.2  Artistic Animation: Our work also builds on embodied data
collection, translation, and generative animation in artistic contexts.
Shaw [31] describes projects Synchronous Objects and Motion Bank;
the former presenting alternative visualizations of embodied data
and the latter providing a platform for annotating choreography
specific to an artist’s vision. Choreographic motion capture tools
have been explored by Whitley [36] and collaborators, though this
project creates sequences from prerecorded motions. Wayne Mc-
Gregor’s Living Archive [25] uses machine learning processes to
generate new choreography from the embodied data of McGre-
gor’s dancers. Ellsworth [5] used GANSs in the artwork Cellular
Automaton to extend spatial configurations of pre-recorded motion.
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2.0.3  Dataset: Previous researches have collected various human
body movement datasets, including the popular Human3.6M dataset
[13]. It contains 3.6 millions of human poses in 17 scenes. UESTC
dataset [14] collects 2.5 thousand movement sequences in 40 simple
action categories. With less recorded data, HumanAct12 dataset
[10] provides joints coordinates for 12 action categories.

3 METHOD
3.1 Problem setup

When describing human actions, it’s desirable to separate body
shape from pose [28, 29, 37]. Ignoring body shape, we aim to gen-
erate a sequence of pose parameters: specifically, the relative joint
rotation in the kinematic tree of the human body. In formal nota-
tion, given a combination of falling attribute labels L¢1, L¢ 2, L¢3
(phase ¢), and time intervals 1, ...N, we synthesize a sequence of
body joint parameters P; ... Py, that contain the root joint’s rotation
and translation, as well as the body joint rotation parameters as
shown in Fig 2.

3.2 Dataset

3.2.1 Data Collection. We used the Captury [1] motion capture
system to record human motion sequences. Eight MoCap cameras
in circular formation with four at high altitudes and four at low
altitudes were used to ensure good recording of the actor’s poses
when on the ground. For each trial, the actor’s body center location,
rotation, and the relative rotations of 24 bones in a kinematic tree
were recorded in line with SMPL [24].

We organize all falls into a new ontology consisting of a five-
part (impact, glitch, fall, end, and resurrection) movement score
for "animating death" [17, 18]. Our collection process focused on
the first three parts of the score: the Impact, the embodied site of
initiation for the motion; the Glitch, a performed moment of panic,
confusion, or shuddering ecstasy that sets the stage for the next
segment; and the Fall, the passage of the body from upright to lying
down. Our dataset specified body areas of initiation (head, torso,
arms, and legs), which were impacted described by the following
qualities: (1) Push: the impacted body part appears to be shoved
in any direction; (2) Prick: a localized, sharp action like a needle
piercing skin; (3) Shot: a forceful, localized action akin to a gunshot;
(4) Contraction: the hollowing out or concaving of an area of the
body; and (5) Explosion: a violent, bursting action starting at the
point of impact and radiating quickly outwards and away from the
body.

The next phase of the choreography is Glitch, which has its own
set of aesthetic parameters: (1) Shake: a quake or tremor; (2) Flail:
wild, out-of-control motions that extend outwards in a flinging
motion; (3) Flash: a single brief, spreading motion akin to a flash
of light; (4) Stutter: repetitive stop and start motions; (5) Contort:
twisting or warping the body; (6) Stumble: an off-balance, tripping
quality; and (7) Spin: turning around an axis, which can be full-
bodied (the performer turns around their center line) or localized
(for example, the spinning of the hand in a circle).

Finally, we defined qualities for the Fall phase: (1) Release: where
the muscles of the body relax and collapse; (2) Let Go: the feeling
of a cord being cut, or whatever is holding the body up disappears;
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(3) Hinge: a reference to Horton and Graham modern dance tech-
niques, where the body slowly descends to the ground in a flat
shape, akin to a door hinge; and (4) surrender: a performance
of pleading or giving up, often accompanied by kneeling or other
diminutive postures.

3.2.2 Data Augmentation. Due to the limited amount of data and
our aim of building a more robust model, we performed data aug-
mentations on existing data. We began by applying a Fast Fourier
Transform (FFT) to convert segments of motion time-series data
into the frequency domain. This transformation allows us to ma-
nipulate the motion data in ways that are not easily achievable
in the time domain. We then tweaked the magnitude and phase
information and converted it back to the time domain, ensuring
the augmented motion remains continuous and retains the natural
flow of human movement.

3.3 CVAE Model

We build on the CVAE-based ACTOR model [30], but use action
attributes as conditions and extend the model with a multi-branch
design. Specifically, for each of the three action phases, an encoder
and a decoder are used for extracting information and generating
poses from latent spaces.

3.3.1 Encoder. The input are a sequence of body poses from P; to
Pk, where P; to Py are poses for phase 1, Ppr4; to Py are inputs
for phase 2, and Py 41 to Pk are for phase 3. Since the operations
are similar for each phase, we will explain the steps in detail for
phase 1 only. After converting the phase label into learnable tokens,
we prepend them to the pose sequences. These tokens, similar to
those used in [30], are used for pooling purposes in the temporal
dimension. Due to the self-attention mechanism, these tokens will
aggregate (or pool) information from the entire action sequences.
A similar implementation can be seen in the BERT [4] model for
sentiment prediction. Positional Encoding (PE) has been proven
to be a vital part of various works, such as Transformer [34] and
NeRF [26] architectures. We also take advantage of it and add it to
the input, and the encoder encodes all data into a low-dimensional
latent space. To extract the distribution parameters p and X, we
simply take the first two outputs of the corresponding encoder for
each phase.

3.3.2 Embedded Space. With three separate encoders in our model,
merging information from the different phases is essential to pro-
duce smooth outputs. After extracting the two distribution param-
eters y and ¥ from the encoder outputs, we use the reparameter-
ization trick introduced in [16] to allow gradients to pass in the
sampling process. Then, we concatenate sampled latent vectors
and pass them to the fully connected fusion layer. The model is
expected to exchange and learn features from neighboring branches
and generate poses accordingly.

3.3.3  Decoder. The goal of the decoder is, given a latent vector z
and one of the falling attributes sLq;, Lp,, L, , to generate a novel

sequence of human body parameters P, ...Py. Again, we have three
very similar attention decoders so we only describe one decoder.
As one of the inputs of the decoder network, time information is
added by the positional encoding and fed into the decoder as a
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Figure 2: Attribute-Conditioned Variational Autoencoder model architecture: Encoder (orange box), embedded space (yellow
box), and decoder (red box). Taking a sequence of body poses, we split them into inputs for different phases. We prepend
two learnable variables (derived from action attributes) to the input sequences. Adding positional information to the input
through a positional encoder (PE), we feed them into the transformer encoder. However, we only take the first two outputs of
the encoder as the distribution parameters p and ¥ into the embedded space. The encoder uses a fully connected layer as a
fusion layer between different phases. The input of the decoder has two parts: time information (the length of the generated
sequences) and the attribute-biased latent space. The final multi-phase sequences are the concatenation of all the outputs from

the three phases.

query. To add falling attributes to the decoder, we sum a learnable
token with the latent space to shift it to an attribute-dependent
space. The output is then going through a fully connected layer
to get the final output motion sequences for the phase: Py to Py,.
To get a complete synthesized motion, we simply concatenate all
generated poses.

3.3.4 Inference. During inference, we randomly sample vectors
from a normal distribution. Shifted toward the attribute-defined
latent space, the sampled vector is combined with a learned attribute
token. An arbitrary length of empty sequences is also fed into the
decoder as input. This allows us to synthesize any length of falling
movements with any combination of attributes.

3.3.5 Loss. We utilize a combined loss comprising the human body
model’s parameters, KL divergence, and vertex reconstruction loss.
To enforce smooth transitions between phases, we also designed a
movement smoothness loss, which is added to the final objective.
For each phase, we have L2 Euclidean distance losses between
the human body model parameters, denoted as Lp, and L2 loss
between the reconstructed human model vertex Ly, along with the
standard Kullback-Leibler (KL) divergence loss. The total in-phase
loss can be expressed as the weighted sum of the above losses.
A key challenge in multi-phase pose generation is to maintain a
smooth transition between different phases. We implemented an
inter-phase smoothness loss to tackle this problem. The loss com-
prises two parts: velocity smoothness and displacement smoothness.
We take the last 10% of the data from previous phase and the first
10% of the data from current phase as transitional data. By calculat-
ing the first derivative of the joint displacement, we minimize the
variance of the velocity. The displacement smoothness constraint
is implemented using spline interpolation. For transitional data, we

model a movement curve using the interpolation and then calcu-
late the L2 Euclidean distance between the interpolation and the
predicted joint position. The total loss is a weighted sum between
the in-phase loss and the smoothness loss.

4 RESULTS

4.0.1 Experiment Setup. To enhance the robustness of our model,
we applied the pre-trained weights from ACTOR [30] on the UESTC
dataset [14] on all the encoder-decoder branches while discarding
the unfit weights. We trained our model on the falling dataset for
3000 epochs, using a batch size of 20 and a learning rate of le-4.

4.0.2 Qualitative Result. In Figures 3, 4, and 5, we present visual-
izations of a sample generated by our model.

4.0.3 Quantitative Result. We generated two sets of random mo-
tions using both our multi-branch model and the original ACTOR
model as a point of comparison [30]. Through a randomized blind
rating on a Likert scale ranging from 1 to 10, where higher scores
indicate better conformity to specified attributes and overall quality,
our model consistently outperformed the original by an average
margin of 20%.

4.0.4 Discussion and Limitation. We implemented data augmenta-
tion by varying the amplitude of the movement. However, due to
the randomness of the action and the augmentation process, there
were instances where parts of the human body, such as the elbow,
ended up inside the human model. Future work could explore more
realistic and robust methods of data augmentation. As we add more
branches to the model, the training time and resource requirements
increased. This is compounded by the fact that we input entire mo-
tion sequences into the model. Longer input motions would further
escalate the need for computational resources.
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Figure 5: Impact Location: Legs; Impact Attribute: Push; Glitch Attribute: Contort; Fall Attribute: Hinge

5 CONCLUSIONS

We present not only a unique dataset featuring complex labeling but
also a novel attribute-conditioned variational autoencoder designed
to focus on each phase of the input data. The multibranch design
achieved more granular control over the motion sequences. Despite
the limited amount of data, we successfully generated diverse and
realistic 3D human movement data by applying data augmentation
and smoothness losses.
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