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A B S T R A C T   

This paper provides an overview of concepts and computational approaches for the evaluation of feasibility/ 
flexibility and how they can be used for process design and process operations optimization. It emphasizes more 
recent topics in this area, in particular feasible region evaluation, feasibility-based optimization, and optimi
zation with flexibility requirements. The description of process feasibility and the feasibility-based optimization 
problem are presented as a way to efficiently incorporate multiple constraints and avoid unnecessary exploration 
of the infeasible space in the black-box optimization context. The relationship between flexibility analysis and 
robust optimization is also highlighted, and opportunities in exploring synergies therein are outlined. Applica
tions in pharmaceutical design and process scheduling are used to provide context in the utilization of the 
presented approaches.   

1. Introduction 

Operational flexibility is of critical importance to the process in
dustry, which is more true than ever due to faster-changing markets, a 
growing demand for product customization, increased use of resources 
with high variability, and more stringent safety and environmental 
regulations. For example, the use of intermittent renewable energy 
sources such as solar and wind in sustainable processes requires highly 
dynamic operation, and the uncertainty in weather conditions further 
adds to the need of process flexibility in such systems. Here, properly 
quantifying flexibility is important as these operational considerations 
must be taken into account already at the process design stage. Another 
prominent example is pharmaceutical manufacturing, where the iden
tification of the so-called design space has been a major focus since the 
launch of the Quality by Design (QbD) initiative by FDA (ICH, 2009). 
The design space is defined as “the multidimensional combination and 
interaction of input variables (e.g., material attributes) and process 
parameters that have been demonstrated to provide assurance of qual
ity” (ICH, 2009). Characterization of the design space offers the industry 
operational flexibility since working within the design space is not 
considered a change and would not initiate a regulatory post-approval 
change process (ICH, 2009). Additionally, it provides regulatory 
agencies with a convenient tool to monitor the compliance of the 
pharmaceutical production processes (García-Muñoz et al., 2015). 

While feasibility generally refers to a solution satisfying a set of 

constraints, the notion of flexibility (Grossmann et al., 2014) was spe
cifically introduced for the case with uncertainty where there is possible 
recourse in the form of the control variables. The process systems en
gineering (PSE) community has contributed a large body of research on 
the quantification of feasibility and flexibility and their incorporation 
into the optimization of process design and operations. It is worth 
mentioning that a concept similar to feasibility and flexibility is the 
process operability which is most commonly adapted in the process 
control community. The similarities and differences between flexibility 
and operability are elaborated in Lima et al. (2009). Algorithms to 
quantify and analyze process operability are summarized in 
Gazzaneoet al. (2019). This paper provides an overview of the feasibility 
and flexibility work, emphasizing the more recent advances and topics 
in this area. Among other related works, approaches on surrogate-based 
feasibility analysis and feasibility-based optimization are reviewed. A 
perspective is also provided on the relationship between flexibility 
analysis and robust optimization and how the synergies therein can be 
exploited to more efficiently solve optimization problems with flexi
bility requirements. 

The remainder of this paper is organized as follows. In Section 2, the 
major concepts and formulations in traditional feasibility and flexibility 
analysis are presented. Then, feasible region evaluation and feasibility- 
based optimization are reviewed in Sections 3 and 4, respectively. In 
Section 5, the optimization problem with flexibility requirements is 
discussed, highlighting the relationship between flexibility analysis and 
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robust optimization. Finally, some concluding remarks are provided in 
Section 6. 

2. Traditional feasibility and flexibility analysis 

The concept of feasibility and flexibility analysis was initially 
introduced by (Halemane and Grossmann, 1983) and (Swaney and 
Grossmann, 1985a). Since then, much research has been done on the 
solution of the problems formulated in that pioneering work. That line of 
research is referred to here as “traditional” feasibility and flexibility 
analysis, which is briefly reviewed in the following. 

2.1. Mathematical formulations 

To describe the mathematical formulations of the feasibility and 
flexibility problems, the following notation is considered following what 
is most commonly used in the literature. First the process is assumed to 
be described by the following set of constraints: 

h(d, z, y, θ) = 0 (1)  

g(d, z, y, θ) ≤ 0 (2)  

where h is the vector of equations that describe the physical process 
(such as mass and energy balances); g is the vector of inequalities which 
must be satisfied if operation is to be feasible (such as process operating 
limits and product specifications); d is the vector of design variables; y is 
the vector of state variables; z is the vector of control variables; and θ is 
the vector of uncertain parameters. One common simplification in the 
literature is that based on equality constraints h, the state variables can 
be expressed as an implicit function of d, z, and θ as follows (Halemane 
and Grossmann, 1983): 

y = y(d, z, θ) (3) 

Substituting y into g yields the reduced set of inequalities: 

g(d, z, y(d, z, θ), θ) = g(d, z, θ) ≤ 0 (4) 

A flexibility test problem for a design d is to determine whether by 
proper adjustment of the control variables z, the inequalities gj(d, z, θ),

j ∈ J, hold for all θ ϵ T = {θ : θL ≤ θ ≤ θU}. The first step to answer this 
question is to consider for a fixed value of θ whether a design d can meet 
the constraints. This can be accomplished if we can select the control 
variables z so as to minimize the largest gj: 

ψ(d, θ) = min
z

max
j∈J

gj(d, z, θ) (5)  

where ψ(d, θ) is called the feasibility function. If ψ(d, θ) is negative, we 
can have feasible operation; whereas if ψ(d, θ) is positive, the operation 
is infeasible even if we do our best in trying to adjust the control vari
ables z. If ψ(d,θ) = 0, it means that we are on the boundary of the feasible 
region of operation. 

The flexibility test problem can then be formulated as follows: 

χ(d) = max
θϵT

ψ(d, θ) (6)  

where χ(d) corresponds to the flexibility of design d over the range T. If 
χ(d) is negative, it means that feasible operation can be attained over the 
entire range of T; whereas a positive χ(d) reveals that for some re
alizations of uncertain parameters in T, feasibility cannot be guaranteed. 

Substituting Eq. (5) into Eq. (6) yields the general mathematical 
formulation of the flexibility test problem: 

χ(d) = max
θϵT

min
z

max
j∈J

gj(d, z, θ) (7) 

An extension to the flexibility test problem is to calculate the flexi
bility index (Swaney and Grossmann, 1985a), which is a metric that has 
been derived to quantify the degree of flexibility of a given design d. The 

flexibility index, denoted by F, is defined as follows: 

F(d) = max
δ∈R+

δ

s.t. max
θϵT

min
z

max
j∈J

gj(d, z, θ) ≤ 0 (8)  

where T(δ), which is a function of a nonnegative scalar δ, denotes the set 
of all allowed realizations of the uncertain parameters θ. Traditionally, 
T(δ) is assumed to be a hyperrectangle defined as 

T(δ) =
{

θ : θN − δΔθ− ≤ θ ≤ θN + δΔθ+
}

(9)  

where θN is a nominal point, and Δθ− and Δθ+ are incremental negative 
and positive deviations from θN, respectively. The flexibility index 
problem is to find F(d) which represents the largest δ such that the 
design d is feasible for all θ ∈ T(δ). An example of the largest possible 
T(δ) is shown in Fig. 1 as the rectangle inscribed in the projection of the 
feasible region onto the θ-space; it illustrates how the flexibility index is 
representative of the degree of operational flexibility of the given 
design. Flexibility index is greater than or equal to zero. 

2.2. Methods for feasibility and flexibility quantification 

Several methods have been proposed to solve the feasibility and 
flexibility problems. To quantify the feasibility/flexibility using flexi
bility index, full or partial vertex enumeration (Halemane and Gross
mann, 1983; Swaney and Grossmann, 1985b) has been proposed for the 
convex case, and active-set-based reformulation of the resulting bilevel 
problem (Grossmann and Floudas, 1987) for nonlinear systems, and 
parametric programming (Bansal et al., 2002) that unifies the solution of 
the linear, convex, and nonconvex, nonlinear systems. The readers are 
referred to (Biegler et al., 1997) for more details of the algorithms and 
examples. 

Other methods have been proposed as alternative representation for 
feasible region to achieve a complete feasible region characterization 
and quantification. As pointed out by (Ierapetritou, 2001), convex hulls 
can approximate the feasible region more accurately (less conservative) 
than prespecified geometric shapes such as rectangles and ellipses, 
where a new metric was also proposed to evaluate process flexibility 
based on the volume of the convex hull. Goyal and Ierapetritou (2002) 
presented the idea of approximating the feasible region from inside 
using the simplicial approximation approach and from the outside using 
the tangent planes at specific boundary points. To further extend the 
geometric representation to nonconvex and disjoint feasible regions, 
Banerjee and Ierapetritou (2005) proposed a surface reconstruction 
approach. The feasible region can also be identified by properly sam
pling the boundary. (Žilinskas et al., 2006) used sample points which are 
uniformly distributed over a unit hypercube to identify the feasible 

Fig. 1. Illustration for feasible region and flexibility index of an example 
problem in two-dimensional space. 
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region. (Bates et al., 2007) utilized search cones to identify the feasible 
region with uniform sampling points. Based on the use of auxiliary 
vectors to construct an approximation space, (Lai and Hui, 2008) pro
posed a novel method to estimate the size of the feasible space. (Adi 
et al., 2016) applied a random line search algorithm to identify feasible 
proximity points followed by the Delaunay triangulation technique to 
generate simplexes on the basis of the identified near-boundary points 
and finally determine the volumetric flexibility index. Instead of esti
mating the contour of the feasible region, (Zhao and Chen, 2018) used 
the cylindrical algebraic decomposition (CAD) method to decompose 
the feasible space into a finite number of valid cells arranged cylindri
cally which are described by analytical expressions, and then the com
bination of formulas were used to depict the complete region. Based on 
this idea, (Zheng et al., 2021) computed the integral of analytical ex
pressions to deduce the theoretical value of the feasible hypervolume. 

Extensions of the traditional flexibility analysis approach include 
stochastic flexibility (Pistikopoulos and Mazzuchi, 1990; Straub and 
Grossmann, 1990), flexibility measures using nonlinear confidence re
gions (Rooney and Biegler, 2001), and dynamic flexibility (Dimitriadis 
and Pistikopoulos, 1995). For a comprehensive review of the evolution 
of flexibility analysis, we refer the reader to the review paper by 
(Grossmann et al., 2014). 

3. Feasible region evaluation and design space application 

The launch of the Quality by Design initiative and the design space 
concept for pharmaceutical manufacturing have attracted a lot of 
attention over the past few decades. This has raised the issue of explicitly 
handling feasibility in process design and operations, leading to a large 
number of methods to evaluate and quantify feasibility. Experiment- 
based methods require a high number of experiments to determine the 
feasible region. To reduce the experimental load, one method is to use 
mathematical models of the underlying processes. The feasible region 
can be interpreted as the region of the input domain where the corre
sponding predicted model response satisfies all the required constraints. 
In the general deterministic case, the constraints are formulated as fol
lows: 

h′(d, x) = 0 (10)  

g′(d, x) ≤ 0 (11)  

where d is the vector of design variables and x is the vector of input 
variables. Here, we make a distinction between the input variables x and 
the control variables z used in the flexibility analysis formulation (see 
Section 2) since x can encompass more than just operational decisions; it 
may also include other parameters such as feed input and material at
tributes. The goal of feasibility analysis is to determine the set of feasible 
x given a design d. 

The feasibility function can then be defined as 

ψ′(d, x) = max
j∈J

g
′
j(d, x). (12) 

The purpose of feasibility analysis (design space evaluation) is to 
identify the region where ψ′(d, x) is negative. Note that this general 
deterministic feasibility function can be extended to the stochastic case 
and dynamic case, where uncertain model parameters, time de
pendency, and control variables can be introduced. 

In the following, we review the methods and applications for solving 
the feasibility analysis (design space evaluation) problem for different 
cases. 

3.1. Surrogate-based feasibility analysis/design space evaluation 

For the cases where process models are in closed form and easy to 
evaluate, straightforward sampling methods and geometry-based 

methods mentioned in Section 2 can be applied. For computationally 
expensive models, they might not be suitable since a large number of 
function evaluations is often required. Surrogate-based methods have 
been developed to reduce computational cost, where a simple surrogate 
model is fitted to the feasibility function and then used to predict the 
feasible region. (Banerjee and Ierapetritou, 2004) used the high 
dimensional model representation (HDMR) as a surrogate for the orig
inal black-box model. Kriging model and adaptive sampling strategies 
have also been investigated for feasibility analysis (Boukouvala and 
Ierapetritou, 2012, 2014). Adaptive sampling strategies are designed to 
identify the samples that provide the most important information 
regarding the feasible region boundary, so that a small number of 
sample points is needed in total to accurately characterize the feasible 
region. To achieve this, a novel expected improvement function for 
feasibility has been proposed based on Kriging surrogate (Boukouvala 
and Ierapetritou, 2014). By maximizing this function, samples will be 
put along feasibility boundary while considering model prediction un
certainty (Wang and Ierapetritou, 2018b). Using this function, radial 
basis functions (RBF) (Bano et al., 2018; Wang and Ierapetritou, 2017) 
and artificial neural networks (ANN) (Metta et al., 2020) were investi
gated and displayed good performance. Partial least-squares (PLS) 
models were also studied as the surrogate model with the advantage of 
reducing the dimensionality of feasibility representation to latent vari
able space (Facco et al., 2015).  

Surrogate- 
based 
flexibility 
analysis 
approach 

Basic model Sampling 
strategies 

Reference 

HDMR-based 
method 

High Dimensional 
Model 
Representation 
(HDMR) 

Distribution- 
dependent 

(Banerjee and 
Ierapetritou, 2004) 

GP-based 
method 

Gaussian process Initial and 
adaptive 
sampling 

(Boukouvala and 
Ierapetritou, 2012, 
2014; Wang and 
Ierapetritou, 2018b) 

RBF-based 
method 

Radial basis 
functions (RBF) 

Initial and 
adaptive 
sampling 

(Bano et al., 2018; 
Wang and 
Ierapetritou, 2017) 

ANN-based 
method 

Artificial Neural 
Networks (ANN) 

Initial and 
adaptive 
sampling 

(Metta et al., 2020) 

PLS-based 
method 

Partial least-squares 
(PLS) models 

N/A (Facco et al., 2015)  

3.2. Design space under uncertainty 

When model uncertainty is considered, for example, when the model 
parameters p are uncertain, the uncertainty will propagate to the model 
predictions and there will be a confidence interval or distribution of 
probability associated with the feasibility function ψ′(d,x,p). In this case, 
a stochastic measure is needed to evaluate how likely the process is to be 
feasible. This is also aligned with the concept of “assurance of quality” as 
advocated by ICH. Peterson (2008) first proposed to use a Bayesian 
approach to account for model parameter uncertainty and the correla
tion structure of the data. The Bayesian design space, or a design space 
associated with a reliability level can be represented by the following 
model: 

Pr(Y ∈ A|x, data) ≥ R, (13)  

where A is the acceptance region, Y is the model response, x is the input 
vector, Pr(⋅) is the probability of Y belonging to A, R is a prespecified 
reliability level. The posterior predictive distribution is used to compute 
the probability that the response is feasible. This method has been 
further applied in (Bano et al., 2018; Kusumo et al., 2019; Lebrun et al., 
2013, 2012; Peterson et al., 2009; Stockdale and Cheng, 2016). 
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An alternative approach to generate the probability of predictions is 
through various sampling methods such as Monte-Carlo simulation. 
These approaches have been applied in some studies and showed 
effectiveness (Figueroa et al., 2013; García-Muñoz et al., 2015; Kotidis 
et al., 2019; Kucherenko et al., 2020; Mortier et al., 2016; Van Bockstal 
et al., 2017). The main disadvantage is that it is computationally 
expensive since a large number of simulations are needed. (Laky et al., 
2019) proposed an algorithm that apply flexibility index formulation to 
replace the Monte-Carlo sampling. 

The stochastic prediction can also be modeled by stochastic simu
lation. Wang and Ierapetritou (2018b) used stochastic Kriging (Anken
man et al., 2010) as the surrogate for the stochastic feasibility function 
with heteroscedastic noise and investigated different adaptive sampling 
approaches to reduce computational cost. 

3.3. Design space for dynamic systems 

In the above sections, feasibility is considered in the static case. For 
dynamic systems, time-dependent design space has been discussed. This 
is closely related to the concept of dynamic flexibility briefly discussed 
in Section 2.2. According to (Dimitriadis and Pistikopoulos, 1995), the 
formulation for constraints include the path constraints and the points 
constraints, where the variables describing the operation of the process 
now depends on the time variable t: 

gpath(d, y(t), z(t), θ(t), t) ≤ 0 (14)  

gpoint
k

(
d, y

(
tk)

, z
(
tk)

, θ
(
tk)

, tk)
≤ 0, k = 1, …, NP (15) 

The evolution of the design space along time provides required in
formation for batch processes such as batch freeze-drying processes 
(Mortier et al., 2016; Van Bockstal et al., 2017) and cell cultivation 
processes (Hirono et al., 2022). It is also useful for adapting to process 
changes (e.g., due to fouling, clogging, environmental conditions) dur
ing operation (Bano et al., 2019). A recent review discussed the con
struction of dynamic design space as a direction forward for QbD in 
general (von Stosch et al., 2020). 

Control strategies have been investigated recently to improve pro
cess robustness and efficiency for continuous pharmaceutical 
manufacturing (Su et al., 2019). The introduction of control systems will 
add recourse to the process, similar to traditional flexibility analysis 
formulation. As shown by (Boukouvala, 2013; García-Muñoz et al., 
2010), a design space can be significantly enlarged if a correct control 
strategy is employed. 

3.4. Applications of feasibility analysis 

Feasibility analysis and design space characterization have been 
applied to various areas, including chemical reaction systems, phar
maceutical manufacturing, biopharmaceutical manufacturing, material 
design, and integrated planning and scheduling problems. Details are 
summarized in Table 1. 

As an illustration, the design space of a direct compaction (DC) 
pharmaceutical manufacturing process is shown below (Wang et al., 
2017). The DC line consists of feeders, co-mill, blender, and feed frame 
and tablet press unit operations to produce tablet products from powder 
materials, as shown in Fig. 2. 

Semi-empirical models have been developed for each unit operation, 
and integrated as a process simulation in gPROMS. Details of process 
models are provided in (Wang et al., 2017). Six operating variables were 
selected as critical process parameters based on sensitivity analysis 
which are “flow rate of API (FRAPI)”, “flow rate of excipient (FRExp)”, 
“comill rotation speed (RPMcomill)”, “blender blade speed (RPMblender)”, 
“tablet press fill depth (FillDepth)”, “tablet thickness set point 
(Thickness)”. The algorithm has a framework that is similar to the left 
half of Fig. 4. It starts with an initial sampling plan to build the surrogate 

model for feasibility function, then followed by an iterative procedure to 
add new samples and refine the surrogate model near feasibility 
boundary. One example of the infill criterion is the expected improve
ment function for feasibility (Boukouvala and Ierapetritou, 2014), 
which is able to balance exploration and exploitation when selecting 
new samples. The algorithm terminates when the sampling budget is 
used up. 

The results of surrogate-based feasibility analysis are shown in Fig. 3. 
The feasible space bounded by the red dotted line denotes the region in 
operating space that meets all the required constraints on intermediate 
material and product specifications. Based on the results, we notice that 
input variables FRAPI, FRExp, RPMblender are feasible almost over their 
entire ranges, while RPMcomill, FillDepth, Thickness need to be carefully 
maintained to assure product quality. Thus, incorporated with proper 
control strategies, the process will be more robust and be able to meet 
the strict product quality requirements without economic losses. 

Table 1 
Design space applications.  

Application area Problem type References 

Material design Deterministic (Banerjee et al., 2010) 
Pharmaceutical and 

biopharmaceutical 
processes 

Deterministic, 
stochastic/ 
probabilistic, 
dynamic 

(Bano et al., 2018, 2018;  
Boukouvala and Ierapetritou, 
2012; Castagnoli et al., 2010;  
Chatzizacharia and 
Hatziavramidis, 2014; Ding 
and Ierapetritou, 2021;  
Hirono et al., 2022; Kotidis 
et al., 2019; Lebrun et al., 
2013, 2012; Metta et al., 
2020; Mortier et al., 2016;  
Rogers and Ierapetritou, 2015; 
Stockdale and Cheng, 2016;  
Tabora et al., 2019; Van 
Bockstal et al., 2017; Wang 
et al., 2017; Wang and 
Ierapetritou, 2017, 2018a) 

Chemical reaction 
systems 

Stochastic/ 
probabilistic 

(Figueroa et al., 2013;  
García-Muñoz et al., 2015;  
Kucherenko et al., 2020;  
Kusumo et al., 2019; Laky 
et al., 2019) 

Integrated planning and 
scheduling problems 

Deterministic (Badejo and Ierapetritou, 
2022; Dias and Ierapetritou, 
2019)  

Fig. 2. Flowsheet of the DC manufacturing line.  
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4. Feasibility-based optimization 

The feasibility-based optimization problem can be formulated as 

min f (d, x)

s.t. g′(d, x) ≤ 0
h′(d, x) = 0

(16)  

where f(d, x) is the objective function. The aim is to identify the optimal 
set of input variables while satisfying the feasibility constraints. 

As feasibility is essentially described by a set of constraints, 
feasibility-based optimization is to find the optimal solution of input 
parameters while satisfying all the constraints. This makes the 
feasibility-based optimization problem belong to the category of 
simulation-based optimization problems (Amaran et al., 2014) if, in 
general, the process model is considered as a simulation. So, it is possible 
to utilize plentiful approaches from the simulation-based optimization 
literature to solve feasibility-based optimization problems. The solution 
of simulation-based optimization has many challenges. First, mostly the 
simulation is only available as a black box for the evaluation of the 
objective function and constraints. Second, many simulations are 
computationally expensive to run, limiting the number of function 
evaluations that can be performed in search of the optimal solution. 
Third, the derivative information is usually unavailable or hard to es
timate due to the computational burden and output noise. Thus, it be
comes challenging to utilize the conventional optimization approaches 
such as derivative-based and random search methods. Surrogate models 
have been proposed to approximate the expensive function evaluations 

and facilitate optimization (Bhosekar and Ierapetritou, 2018). One issue 
that needs to be considered is how to handle black-box feasibility and 
black-box objective function(s) in the surrogate-based optimization 
(SBO) framework, with a focus on balancing the sampling cost between 
feasibility characterization and objective improvement. 

The first type of strategy is to consider both feasibility and optimi
zation aspects together in one infill criterion. There have been both 
unconstrained and constrained formulations for the infill criteria to 
extend the efficient global optimization (EGO) framework (Jones et al., 
1998). Bagheri et al. (2017) surveyed the existing constraint handling 
methods for EGO and modified the unconstrained method by intro
ducing a newly defined probability of feasibility. 

The second type of strategy is to design separate stages that focus on 
feasibility and optimization, respectively. For example, Basudhar et al. 
(2012) used the first stage to drive the optimization based on expected 
improvement (EI) function and probability of feasibility indicated by 
probabilistic SVM models, and the second stage to refine the constraint 
boundary approximation by selecting samples in sparse regions with a 
high probability of misclassification. Boukouvala and Ierapetritou 
(2014) proposed a novel expected improvement function for locating 
feasibility boundaries in the feasibility stage, followed by an optional 
global search stage and trust region-based local search stage. 

The one-stage approach is expected to be more economical in terms 
of sampling cost as every sample is added with the consideration of both 
aspects. However, when the original function is complex, for example, 
when feasibility function is hard to approximate with a small number of 
samples, it will be beneficial to focus on feasibility refinement first and 

Fig. 3. Contour plots of the feasibility function of the DC manufacturing line (The red dotted line is the feasible region boundary. The area within the red dotted line 
is the feasible region with feasibility function values less than or equal to zero). Reproduced from (Wang et al., 2017). 
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then perform optimization within the feasible space. Therefore, there is 
a trade-off between sequential and simultaneous considerations of the 
two objectives depending on the nature of the problem. 

Note that both approaches can be used to address the integration of 
uncertainty in the design and process operations problems and have 
found different applications. Wang and Ierapetritou (2018a) proposed a 
feasibility-enhanced EI function that considered objective and feasibility 
simultaneously for a stochastic direct compaction pharmaceutical 
manufacturing process. Wang et al. (2017) used penalized feasibility EI 
function and penalized EI function for the feasibility and optimization 
stage, respectively, for a deterministic pharmaceutical manufacturing 
process. 

Again, as an illustration, Fig. 4 shows a flowchart of the two-stage 
feasibility-based optimization algorithm with the first stage to accu
rately characterize the feasible region and the second stage to identify 
the optimum within the feasible region. 

The algorithm was applied to the DC manufacturing line (Wang 
et al., 2017). The input variables are “flow rate of API (FRAPI)” and “refill 
strategy of API (RSAPI)” because they are influential to the calculation of 
total costs as well as the generation of wasted products caused by tem
poral process variations. The objective function is the total operation 
cost, including material cost, utility cost and waste cost. 

The termination condition is the total number of sampling points, 
which is 100 in the case study. After 20 initial sample points and 80 
adaptive sampling points (40 for feasibility stage and 40 for optimiza
tion stage), the algorithm stops and returns an optimal solution listed in 
Table 2. The returned optimal solution suggests a low API flow rate and 
a less frequent refill strategy in order to reduce the overall total cost. 

5. Optimization with flexibility requirements 

Most existing works on flexibility analysis consider the flexibility test 
or flexibility index problem for a given design d. Yet often, optimizing 
the design while meeting certain flexibility requirements with respect to 
the uncertain parameters θ is of interest. This problem was formulated 
early on by Halemane and Grossmann (1983); however, surprisingly, it 
has not been widely applied in that form. In the following, the original 
approach proposed by Halemane and Grossmann (1983) is presented 
and its equivalence to robust optimization is shown. This equivalence 
can be exploited to develop alternative solution algorithms or extend the 
flexibility concept to new classes of problems. 

5.1. Formulation with feasibility constraint 

Halemane and Grossmann (1983) formulate the design under un
certainty problem as follows: 

min
d

f1(d) + Eθ∈T

[

min
z

{f2(d, z) : g(d, z, θ) ≤ 0}

]

(17a)  

s.t. max
θ∈T

min
z

max
j∈J

gj(d, z, θ) ≤ 0 (17b)  

where f1 and f2 denote the (first-stage) design and (second-stage) 
operating costs, respectively. The objective is to minimize the total ex
pected cost subject to the feasibility constraint given in (17b), i.e. it 
requires the solution to be feasible for all θ ∈ T given the flexibility in the 
control variables z that can be chosen after the realization of the un
certainty. Problem (17) is generally intractable due to the expectation 
term in the objective function; hence, Halemane and Grossmann (1983) 
approximate it using a set of discrete scenarios, which results in the 
following formulation: 

min
d,z

f1(d) +
∑

s∈S
psf2(d, zs) (18a)  

s.t. g(d, zs, θs) ≤ 0 ∀ s ∈ S (18b)  

max
θ∈T

min
z

max
j∈J

gj(d, z, θ) ≤ 0 (18c)  

where S denotes the set of scenarios. Each scenario s ∈ S is defined by a 
specific realization of the uncertainty θs and the corresponding proba
bility ps. The control decisions for scenario s are denoted by zs, which 
must be feasible given θs, which is enforced by constraints (18b). 

To solve problem (18), Halemane and Grossmann (1983) developed 
an algorithm that first formulates a master problem which is (18) but 
with the feasibility constraint (18c) replaced by constraints over a finite 
set of critical points C (each point c being a possible realization of the 
uncertainty denoted by θc), i.e. 

g(d, zc, θc) ≤ 0 ∀ c ∈ C. (19) 

Fig. 4. Flowchart of the two-stage feasibility-based optimization algorithm. Reproduced from (Wang et al., 2017).  

Table 2 
Optimization results for the DC. Reproduced from (Wang et al., 2017).  

(lb ~ ub) [kg/h] RSAPI(lb ~ ub) [%] costtotal [$/day] 

2.8774 (2.85 ~ 3.15) 27.09 (10 ~ 70) 98,175  
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As shown in Fig. 5, the master problem is solved to obtain a design d. 
Then, the flexibility test problem is solved for the proposed design to 
check if the feasibility constraint is satisfied. If it is not yet feasible, the 
solution of the flexibility test problem provides a new critical point that 
can be added to C after which the master problem is re-solved. The al
gorithm iterates between the master and the flexibility test problem 
until the feasibility constraint is satisfied at which point the obtained 
design d is the optimal solution to problem (18). 

Note that without the feasibility constraint (18c), problem (18) be
comes a standard scenario-based two-stage stochastic program. In fact, 
this is the most common variant of (18) that is used in the literature for 
process design under uncertainty (Grossmann et al., 2016; Steimel and 
Engell, 2015; Zhou et al., 2013). However, while a two-stage stochastic 
program with a sufficiently large scenario set can provide a good 
approximation of problem (18), it can generally not guarantee that the 
solution is feasible for all θ ∈ T. Further note that design problems of the 
form (18) can in theory also be solved using feasibility-based optimi
zation (see Section 4), which focuses on the black-box setting. 

5.2. Relationship to robust optimization 

There is a close relationship between flexibility analysis and robust 
optimization (Ben-Tal et al., 2009), which was independently developed 
in the operations research community. This relationship was first 
formally established for linear optimization problems in (Zhang et al., 
2016). It was shown that the flexibility index problem can be formulated 
as a two-stage robust optimization problem, where T(δ) represents the 
so-called uncertainty set. Recently, alternative definitions of the flexi
bility index based on uncertainty sets with shapes other than a hyperbox 
have been proposed (Pulsipher et al., 2019), many of which are drawn 
from the robust optimization literature. 

Problem (18) is a robust optimization problem; however, the feasi
bility constraint (18c) is more commonly expressed in the robust opti
mization literature as follows: 

g(d, z(θ), θ) ≤ 0 ∀ θ ∈ T (20)  

where the notation z(θ) indicates that the control variables z can be 
chosen after the realization of the uncertainty and hence are functions of 

θ. Initial works in robust optimization, especially in PSE (Li et al., 2011; 
Li and Ierapetritou, 2008; Lin et al., 2004), only considered the static 
case in which z are constant, which is rather limiting compared to the 
flexibility analysis approach. This changed with the introduction of 
adjustable robust optimization (Ben-Tal et al., 2004), which incorporates 
recourse. Another possible reason for why problem (18) for a long time 
has not been recognized as a robust optimization problem is that robust 
optimization problems are typically formulated to optimize the worst 
case. In the design problem, it would lead to the following formulation: 

min
d, z(⋅)

f1(d) + max
θ∈T

f2(d, z(θ)) (21a)  

s.t. g(d, z(θ), θ) ≤ 0 ∀ θ ∈ T. (21b) 

The worst-case objective function avoids the use of a possibly large 
set of scenarios to approximate the expected cost and the associated 
potential computational challenges. However, conceptually, there is 
nothing that prevents us from using the same objective function as in 
problem (18) in a robust optimization formulation. In fact, in many 
settings, that may be the more appropriate choice. 

The most popular approach to solving problem (21) is the column- 
and-constraint generation algorithm (Zeng and Zhao, 2013). Interest
ingly, this is essentially the same algorithm as the one proposed by 
Halemane and Grossmann (1983) three decades earlier. 

It is also worth mentioning that flexibility analysis was developed for 
general nonlinear optimization problems whereas robust optimization 
has mainly been applied to linear and mixed-integer linear programs, 
where many of the solution approaches rely on linear programming 
duality. More recently, advances have been made in nonlinear robust 
optimization (Isenberg et al., 2021; Leyffer et al., 2020; Yuan et al., 
2018), leading to further convergence between the flexibility analysis 
and robust optimization approaches. 

5.3. The role of endogenous uncertainty 

The robust optimization formulation of the flexibility index problem 
involves endogenous (i.e. decision-dependent) uncertainty since the 
uncertainty set T(δ) depends on the decision variable δ. While Zhang 
et al. (2016) show that one can obtain a tractable reformulation with a 
fixed uncertainty set if T(δ) is a hyperbox and the problem is convex, 
more involved solution methods are needed for more complex uncer
tainty sets. In recent years, there has been a growing interest in robust 
optimization with endogenous uncertainty (Lappas and Gounaris, 2018; 
Zhang and Feng, 2020), which could be leveraged to extend flexibility 
analysis to broader classes of problems. For example, the design problem 
(18) could be extended to incorporate an uncertainty set T(δ) with 
variable size δ; this would allow us to determine a design that maximizes 
flexibility, i.e. maximize δ, or balances cost and flexibility. 

5.4. Extension to multistage problems and discrete recourse 

Design optimization with flexibility requirements gives rise to two- 
stage robust optimization problems where the control variables z are 
the second-stage decisions. When extending the flexibility concept to 
operational or planning problems, often multiple stages of decision 
making are involved, where uncertainty is realized and recourse de
cisions can be taken at multiple time points. Significant advances have 
been made in recent years in multistage robust optimization with ap
plications in PSE (Lappas and Gounaris, 2016; Shang and You, 2019; 
Zhang et al., 2016). Here, the decision rule approach (Georghiou et al., 
2018) has proven to be very effective, where the recourse variables are 
explicitly stated as functions of the uncertain parameters. For example, 
the following decision rule defines the recourse variables at time t, zt , as 
an affine function of all uncertain parameters realized up to time t, i.e. θk 
where k ≤ t: 

Fig. 5. Algorithm proposed by Halemane and Grossmann (1983) for solving the 
design under uncertainty problem with feasibility constraints. 
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zt = pt +
∑t

k=1
Qtkθk. (22) 

Such a decision rule inherently satisfies nonanticipativity and can be 
applied to problems with arbitrarily many stages. Importantly, the 
recourse decisions are now specified by the variables p and Q, which can 
be chosen before the actual realization of the uncertainty. As such, all 
methods for static robust optimization can be applied to solve decision- 
rule-based multistage robust optimization problems. Note that in gen
eral, decision rules only approximate the fully adjustable recourse de
cisions; however, they are highly effective as they typically lead to 
solutions that are very close to the true optimum while being much more 
tractable. As such, they can also be used to solve problem (21) 
approximately (Zhang et al., 2016). 

Figs. 6 and 7 show some results from a multistage robust optimiza
tion problem that considers the scheduling of a cryogenic air separation 
plant over a one-week time horizon with an hourly time discretization 
(Zhang et al., 2016). The plant operates under time-sensitive electricity 
prices and also has the opportunity to sell interruptible load to the 
electricity reserve market. Interruptible load is operating reserve that 
electricity consumers can provide by reducing (interrupting) their load 
when power demand exceeds supply in the grid. In that case, the grid 
operator can request from the electricity consumer a load reduction up 
to the committed amount of interruptible load; however, it is uncertain 
when and how much load reduction will be requested by the grid 
operator. One must decide at the beginning of the scheduling horizon 
how much interruptible load the plant will provide. Then, in each time 
period, the plant operation can be adjusted depending on the realized 
load reduction request. Therefore, recourse can be taken in every time 
period, resulting in a problem with 169 stages. 

Fig. 6 shows the liquid oxygen flows and inventory profile in the base 
case where no interruptible load is provided and, consequently, there is 
no uncertainty in the problem. Positive columns indicate accumulation 
of products, and negative columns (demand) indicate depletion of 
products. Fig. 7 shows the target liquid oxygen flows and inventory 
profile, where “target” refers to the case in which no load reduction is 
ever requested during the scheduling horizon. In addition, the green 
columns in Fig. 7 represent the cumulative recourse actions in terms of 
changes in production and purchase rates. Negative production recourse 
indicates time periods in which interruptible load is provided. One can 
see that most of the lost production is made up by increasing production 
after load reduction (positive production recourse). It was shown that 
significant financial benefits can be achieved by providing interruptible 
load, even when making rather conservative assumptions about the 
uncertainty in load reduction. Further, it can be noted that the target 
inventory levels are, in general, higher in Fig. 7 compared to Fig. 6, 
highlighting the utilization of flexibility in the plant when providing 
interruptible load. 

Another important extension is the incorporation of mixed-integer 
recourse variables, which can similarly be achieved using decision 
rules albeit more complex ones (Feng et al., 2021; Nasab and Li, 2021). 

Depending on the application, the flexibility of mixed-integer recourse 
can lead to significant performance improvements compared to only 
having continuous recourse (Jagana et al., 2023). Other approaches for 
considering discrete recourse in robust optimization include K-adapt
ability (Subramanyam et al., 2020) and (Postek and Hertog, 2016). 

Conclusions 

In this paper, the concepts of process feasibility and flexibility are 
highlighted, and ideas of evaluating and integrating those within pro
cess design optimization and process operations are described. Process 
feasibility describes the feasible space of process operation, which is 
determined by multiple process and product constraints. The charac
terization of the feasible space provides complete and accurate evalua
tion of process-critical parameters to ensure product quality. It also 
reveals a degree of flexibility of process operations since feasible oper
ation can be achieved in the entire feasible region instead of only the 
nominal point. Feasibility is a very practical concept. It has been widely 
studied and applied in many industrial problems. An example is the 
design space evaluation for pharmaceutical manufacturing processes. 
Utilizing the ideas of surrogate-based feasibility analysis, feasibility- 
based optimization has been utilized to address simulation-based opti
mization problems. The constraints are integrated within the feasibility 
function and explicitly handled. A two-stage algorithm has been shown 
to perform effectively for a variety of different applications and 
reviewed in this perspective. 

Given uncertainty in model parameters, it is often desired (or 
necessary) to perform process design optimization that satisfies certain 
flexibility requirements with respect to the uncertain parameters. This 
problem, initially introduced by the PSE community in the flexibility 
analysis literature, can be shown to be equivalent to a two-stage robust 
optimization problem, which has been extensively studied in the Op
erations Research community. This motivates the exchange of solution 
strategies from these two areas to solve complex problems of this kind. 
One such example is the efficient approximate modeling of recourse 
variables using decision rules, which can also be extended to the 
multistage case that is often more relevant in a process operations 
context. The effectiveness of this approach is demonstrated in a process 
scheduling problem involving a power-intensive chemical plant that 
operates under time-varying electricity prices and provides interruptible 
load to the power grid, where the load reduction requested by the grid 
operator in each time period is uncertain. More opportunities remain in 
the integration of flexibility analysis and robust optimization ap
proaches, e.g. in the design of processes with maximum flexibility, 
which can be formulated as a problem with a decision-dependent un
certainty set. 
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García-Muñoz, S., Luciani, C.V., Vaidyaraman, S., Seibert, K.D., 2015. Definition of 
design spaces using mechanistic models and geometric projections of probability 
maps. Org. Process Res. Dev. 19, 1012–1023. 

Gazzaneo, V., Carrasco, J.C., Vinson, D.R., Lima, F.V., 2019. Process operability 
algorithms: past, present, and future developments. Ind. Eng. Chem. Res. 59, 
2457–2470. 

Georghiou, A., Kuhn, D., Wiesemann, W., 2018. The decision rule approach to 
optimization under uncertainty: methodology and applications. Computat. Manag. 
Sci. 16, 545–576. 

Goyal, V., Ierapetritou, M., 2002. Determination of operability limits using simplicial 
approximation. AlChE J. 48, 2902–2909. 

Grossmann, I.E., Apap, R.M., Calfa, B.A., García-Herreros, P., Zhang, Q., 2016. Recent 
advances in mathematical programming techniques for the optimization of process 
systems under uncertainty. Comput. Chem. Eng. 91, 3–14. 

Grossmann, I.E., Calfa, B.A., Garcia-Herreros, P., 2014. Evolution of concepts and models 
for quantifying resiliency and flexibility of chemical processes. Comput. Chem. Eng. 
70, 22–34. 

Grossmann, I.E., Floudas, C.A., 1987. Active constraint strategy for flexibility analysis in 
chemical processes. Comput. Chem. Eng. 11, 675–693. 

Halemane, K.P., Grossmann, I.E., 1983. Optimal process design under uncertainty. AlChE 
J. 29, 425–433. 

Hirono, K., A., Udugama, I., Hayashi, Y., Kino-oka, M., Sugiyama, H, 2022. A dynamic 
and probabilistic design space determination method for mesenchymal stem cell 
cultivation processes. Ind. Eng. Chem. Res. 61, 7009–7019. 

ICH. (2009). Q8(R2) Pharmaceutical Development. In. 
Ierapetritou, M.G., 2001. New approach for quantifying process feasibility: convex and 1- 

D quasi-convex regions. AlChE J. 47, 1407–1417. 
Isenberg, N.M., Akula, P., Eslick, J.C., Bhattacharyya, D., Miller, D.C., & Gounaris, C.E. 

(2021). A generalized cutting-set approach for nonlinear robust optimization in 
process systems engineering. 67, e17175. 

Jagana, J.S., Amaran, S., Zhang, Q., 2023. Mixed-integer recourse in industrial demand 
response scheduling with interruptible load. In: Proceedings of the 33rd European 
Symposium on Computer Aided Process Engineering. 

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive 
black-box functions. J. Global Optim. 13, 455–492. 

Kotidis, P., Demis, P., Goey, C.H., Correa, E., McIntosh, C., Trepekli, S., Shah, N., 
Klymenko, O.V., Kontoravdi, C., 2019. Constrained global sensitivity analysis for 
bioprocess design space identification. Comput. Chem. Eng. 125, 558–568. 

Kucherenko, S., Giamalakis, D., Shah, N., García-Muñoz, S., 2020. Computationally 
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