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This paper provides an overview of concepts and computational approaches for the evaluation of feasibility/
flexibility and how they can be used for process design and process operations optimization. It emphasizes more
recent topics in this area, in particular feasible region evaluation, feasibility-based optimization, and optimi-
zation with flexibility requirements. The description of process feasibility and the feasibility-based optimization
problem are presented as a way to efficiently incorporate multiple constraints and avoid unnecessary exploration

of the infeasible space in the black-box optimization context. The relationship between flexibility analysis and
robust optimization is also highlighted, and opportunities in exploring synergies therein are outlined. Applica-
tions in pharmaceutical design and process scheduling are used to provide context in the utilization of the

presented approaches.

1. Introduction

Operational flexibility is of critical importance to the process in-
dustry, which is more true than ever due to faster-changing markets, a
growing demand for product customization, increased use of resources
with high variability, and more stringent safety and environmental
regulations. For example, the use of intermittent renewable energy
sources such as solar and wind in sustainable processes requires highly
dynamic operation, and the uncertainty in weather conditions further
adds to the need of process flexibility in such systems. Here, properly
quantifying flexibility is important as these operational considerations
must be taken into account already at the process design stage. Another
prominent example is pharmaceutical manufacturing, where the iden-
tification of the so-called design space has been a major focus since the
launch of the Quality by Design (QbD) initiative by FDA (ICH, 2009).
The design space is defined as “the multidimensional combination and
interaction of input variables (e.g., material attributes) and process
parameters that have been demonstrated to provide assurance of qual-
ity” (ICH, 2009). Characterization of the design space offers the industry
operational flexibility since working within the design space is not
considered a change and would not initiate a regulatory post-approval
change process (ICH, 2009). Additionally, it provides regulatory
agencies with a convenient tool to monitor the compliance of the
pharmaceutical production processes (Garcia-Munoz et al., 2015).

While feasibility generally refers to a solution satisfying a set of
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constraints, the notion of flexibility (Grossmann et al., 2014) was spe-
cifically introduced for the case with uncertainty where there is possible
recourse in the form of the control variables. The process systems en-
gineering (PSE) community has contributed a large body of research on
the quantification of feasibility and flexibility and their incorporation
into the optimization of process design and operations. It is worth
mentioning that a concept similar to feasibility and flexibility is the
process operability which is most commonly adapted in the process
control community. The similarities and differences between flexibility
and operability are elaborated in Lima et al. (2009). Algorithms to
quantify and analyze process operability are summarized in
Gazzaneoet al. (2019). This paper provides an overview of the feasibility
and flexibility work, emphasizing the more recent advances and topics
in this area. Among other related works, approaches on surrogate-based
feasibility analysis and feasibility-based optimization are reviewed. A
perspective is also provided on the relationship between flexibility
analysis and robust optimization and how the synergies therein can be
exploited to more efficiently solve optimization problems with flexi-
bility requirements.

The remainder of this paper is organized as follows. In Section 2, the
major concepts and formulations in traditional feasibility and flexibility
analysis are presented. Then, feasible region evaluation and feasibility-
based optimization are reviewed in Sections 3 and 4, respectively. In
Section 5, the optimization problem with flexibility requirements is
discussed, highlighting the relationship between flexibility analysis and
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robust optimization. Finally, some concluding remarks are provided in
Section 6.

2. Traditional feasibility and flexibility analysis

The concept of feasibility and flexibility analysis was initially
introduced by (Halemane and Grossmann, 1983) and (Swaney and
Grossmann, 1985a). Since then, much research has been done on the
solution of the problems formulated in that pioneering work. That line of
research is referred to here as “traditional” feasibility and flexibility
analysis, which is briefly reviewed in the following.

2.1. Mathematical formulations

To describe the mathematical formulations of the feasibility and
flexibility problems, the following notation is considered following what
is most commonly used in the literature. First the process is assumed to
be described by the following set of constraints:

h(d,z,y,0) =0 @
g(d,z,y,60) <0 @

where h is the vector of equations that describe the physical process
(such as mass and energy balances); g is the vector of inequalities which
must be satisfied if operation is to be feasible (such as process operating
limits and product specifications); d is the vector of design variables; y is
the vector of state variables; 2 is the vector of control variables; and 6 is
the vector of uncertain parameters. One common simplification in the
literature is that based on equality constraints h, the state variables can
be expressed as an implicit function of d, z, and @ as follows (Halemane
and Grossmann, 1983):

y=y(d,z,0) 3
Substituting y into g yields the reduced set of inequalities:
8(d,z,y(d,z,0),0) = g(d,z,0) <0 4

A flexibility test problem for a design d is to determine whether by
proper adjustment of the control variables z, the inequalities g;(d, z,0),
jeJ, holdforall@e T = {6:6" <6 < 6Y}. The first step to answer this
question is to consider for a fixed value of 6 whether a design d can meet
the constraints. This can be accomplished if we can select the control
variables z so as to minimize the largest g;:

¥(d,0) = minmaxg;(d, z,0) (5)
z JE

where y(d, 6) is called the feasibility function. If y/(d, 8) is negative, we
can have feasible operation; whereas if w(d, ) is positive, the operation
is infeasible even if we do our best in trying to adjust the control vari-
ables z. If yy(d,0) = 0, it means that we are on the boundary of the feasible
region of operation.
The flexibility test problem can then be formulated as follows:
x(d) = maxy(d,6) ©)
where y(d) corresponds to the flexibility of design d over the range T. If
x(d) is negative, it means that feasible operation can be attained over the
entire range of T; whereas a positive y(d) reveals that for some re-
alizations of uncertain parameters in T, feasibility cannot be guaranteed.
Substituting Eq. (5) into Eq. (6) yields the general mathematical
formulation of the flexibility test problem:
x(d) = fgng"{_mnjgxgj(d 12,0) ()
An extension to the flexibility test problem is to calculate the flexi-
bility index (Swaney and Grossmann, 1985a), which is a metric that has
been derived to quantify the degree of flexibility of a given design d. The
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flexibility index, denoted by F, is defined as follows:

F(d) = max é
5ER), 8)
s.t. maxminmaxg;(d,z,0) < 0
OeT  z  jeJ

where T(5), which is a function of a nonnegative scalar 6, denotes the set
of all allowed realizations of the uncertain parameters . Traditionally,
T(6) is assumed to be a hyperrectangle defined as

T(6)={0:0"-500 <0< 0" +5A0"} ©)

where 6" is a nominal point, and A9~ and Ag" are incremental negative
and positive deviations from 6V, respectively. The flexibility index
problem is to find F(d) which represents the largest 5 such that the
design d is feasible for all 6 € T(5). An example of the largest possible
T(6) is shown in Fig. 1 as the rectangle inscribed in the projection of the
feasible region onto the #-space; it illustrates how the flexibility index is
representative of the degree of operational flexibility of the given
design. Flexibility index is greater than or equal to zero.

2.2. Methods for feasibility and flexibility quantification

Several methods have been proposed to solve the feasibility and
flexibility problems. To quantify the feasibility/flexibility using flexi-
bility index, full or partial vertex enumeration (Halemane and Gross-
mann, 1983; Swaney and Grossmann, 1985b) has been proposed for the
convex case, and active-set-based reformulation of the resulting bilevel
problem (Grossmann and Floudas, 1987) for nonlinear systems, and
parametric programming (Bansal et al., 2002) that unifies the solution of
the linear, convex, and nonconvex, nonlinear systems. The readers are
referred to (Biegler et al., 1997) for more details of the algorithms and
examples.

Other methods have been proposed as alternative representation for
feasible region to achieve a complete feasible region characterization
and quantification. As pointed out by (lerapetritou, 2001), convex hulls
can approximate the feasible region more accurately (less conservative)
than prespecified geometric shapes such as rectangles and ellipses,
where a new metric was also proposed to evaluate process flexibility
based on the volume of the convex hull. Goyal and Ierapetritou (2002)
presented the idea of approximating the feasible region from inside
using the simplicial approximation approach and from the outside using
the tangent planes at specific boundary points. To further extend the
geometric representation to nonconvex and disjoint feasible regions,
Banerjee and lerapetritou (2005) proposed a surface reconstruction
approach. The feasible region can also be identified by properly sam-
pling the boundary. (Zilinskas et al., 2006) used sample points which are
uniformly distributed over a unit hypercube to identify the feasible

4
P(d,0) =0
ge
0Y + FAGS
07
0y — FAOS
0y —FAO7 N oY '+ FAOf "

Fig. 1. Illustration for feasible region and flexibility index of an example
problem in two-dimensional space.
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region. (Bates et al., 2007) utilized search cones to identify the feasible
region with uniform sampling points. Based on the use of auxiliary
vectors to construct an approximation space, (Lai and Hui, 2008) pro-
posed a novel method to estimate the size of the feasible space. (Adi
et al., 2016) applied a random line search algorithm to identify feasible
proximity points followed by the Delaunay triangulation technique to
generate simplexes on the basis of the identified near-boundary points
and finally determine the volumetric flexibility index. Instead of esti-
mating the contour of the feasible region, (Zhao and Chen, 2018) used
the cylindrical algebraic decomposition (CAD) method to decompose
the feasible space into a finite number of valid cells arranged cylindri-
cally which are described by analytical expressions, and then the com-
bination of formulas were used to depict the complete region. Based on
this idea, (Zheng et al., 2021) computed the integral of analytical ex-
pressions to deduce the theoretical value of the feasible hypervolume.

Extensions of the traditional flexibility analysis approach include
stochastic flexibility (Pistikopoulos and Mazzuchi, 1990; Straub and
Grossmann, 1990), flexibility measures using nonlinear confidence re-
gions (Rooney and Biegler, 2001), and dynamic flexibility (Dimitriadis
and Pistikopoulos, 1995). For a comprehensive review of the evolution
of flexibility analysis, we refer the reader to the review paper by
(Grossmann et al., 2014).

3. Feasible region evaluation and design space application

The launch of the Quality by Design initiative and the design space
concept for pharmaceutical manufacturing have attracted a lot of
attention over the past few decades. This has raised the issue of explicitly
handling feasibility in process design and operations, leading to a large
number of methods to evaluate and quantify feasibility. Experiment-
based methods require a high number of experiments to determine the
feasible region. To reduce the experimental load, one method is to use
mathematical models of the underlying processes. The feasible region
can be interpreted as the region of the input domain where the corre-
sponding predicted model response satisfies all the required constraints.
In the general deterministic case, the constraints are formulated as fol-
lows:

H(d,x) =0 10)
g(d,x) <0 (11

where d is the vector of design variables and x is the vector of input
variables. Here, we make a distinction between the input variables x and
the control variables z used in the flexibility analysis formulation (see
Section 2) since x can encompass more than just operational decisions; it
may also include other parameters such as feed input and material at-
tributes. The goal of feasibility analysis is to determine the set of feasible
x given a design d.
The feasibility function can then be defined as

w(d,x) = n;gxg}(d7 x). a2

The purpose of feasibility analysis (design space evaluation) is to
identify the region where y'(d,x) is negative. Note that this general
deterministic feasibility function can be extended to the stochastic case
and dynamic case, where uncertain model parameters, time de-
pendency, and control variables can be introduced.

In the following, we review the methods and applications for solving
the feasibility analysis (design space evaluation) problem for different
cases.

3.1. Surrogate-based feasibility analysis/design space evaluation

For the cases where process models are in closed form and easy to
evaluate, straightforward sampling methods and geometry-based
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methods mentioned in Section 2 can be applied. For computationally
expensive models, they might not be suitable since a large number of
function evaluations is often required. Surrogate-based methods have
been developed to reduce computational cost, where a simple surrogate
model is fitted to the feasibility function and then used to predict the
feasible region. (Banerjee and Ilerapetritou, 2004) used the high
dimensional model representation (HDMR) as a surrogate for the orig-
inal black-box model. Kriging model and adaptive sampling strategies
have also been investigated for feasibility analysis (Boukouvala and
lerapetritou, 2012, 2014). Adaptive sampling strategies are designed to
identify the samples that provide the most important information
regarding the feasible region boundary, so that a small number of
sample points is needed in total to accurately characterize the feasible
region. To achieve this, a novel expected improvement function for
feasibility has been proposed based on Kriging surrogate (Boukouvala
and Ierapetritou, 2014). By maximizing this function, samples will be
put along feasibility boundary while considering model prediction un-
certainty (Wang and lerapetritou, 2018b). Using this function, radial
basis functions (RBF) (Bano et al., 2018; Wang and lerapetritou, 2017)
and artificial neural networks (ANN) (Metta et al., 2020) were investi-
gated and displayed good performance. Partial least-squares (PLS)
models were also studied as the surrogate model with the advantage of
reducing the dimensionality of feasibility representation to latent vari-
able space (Facco et al., 2015).

Surrogate- Basic model Sampling Reference
based strategies
flexibility
analysis
approach
HDMR-based High Dimensional Distribution- (Banerjee and
method Model dependent lerapetritou, 2004)
Representation
(HDMR)
GP-based Gaussian process Initial and (Boukouvala and
method adaptive lerapetritou, 2012,
sampling 2014; Wang and
Ierapetritou, 2018b)
RBF-based Radial basis Initial and (Bano et al., 2018;
method functions (RBF) adaptive Wang and
sampling Ierapetritou, 2017)
ANN-based Artificial Neural Initial and (Metta et al., 2020)
method Networks (ANN) adaptive
sampling
PLS-based Partial least-squares N/A (Facco et al., 2015)
method (PLS) models

3.2. Design space under uncertainty

When model uncertainty is considered, for example, when the model
parameters p are uncertain, the uncertainty will propagate to the model
predictions and there will be a confidence interval or distribution of
probability associated with the feasibility function v (d,x,p). In this case,
a stochastic measure is needed to evaluate how likely the process is to be
feasible. This is also aligned with the concept of “assurance of quality” as
advocated by ICH. Peterson (2008) first proposed to use a Bayesian
approach to account for model parameter uncertainty and the correla-
tion structure of the data. The Bayesian design space, or a design space
associated with a reliability level can be represented by the following
model:

Pr(Y € Alx, data) > R, 13)

where A is the acceptance region, Y is the model response, x is the input
vector, Pr(-) is the probability of Y belonging to A, R is a prespecified
reliability level. The posterior predictive distribution is used to compute
the probability that the response is feasible. This method has been
further applied in (Bano et al., 2018; Kusumo et al., 2019; Lebrun et al.,
2013, 2012; Peterson et al., 2009; Stockdale and Cheng, 2016).
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An alternative approach to generate the probability of predictions is
through various sampling methods such as Monte-Carlo simulation.
These approaches have been applied in some studies and showed
effectiveness (Figueroa et al., 2013; Garcia-Munoz et al., 2015; Kotidis
et al., 2019; Kucherenko et al., 2020; Mortier et al., 2016; Van Bockstal
et al,, 2017). The main disadvantage is that it is computationally
expensive since a large number of simulations are needed. (Laky et al.,
2019) proposed an algorithm that apply flexibility index formulation to
replace the Monte-Carlo sampling.

The stochastic prediction can also be modeled by stochastic simu-
lation. Wang and Ierapetritou (2018b) used stochastic Kriging (Anken-
man et al., 2010) as the surrogate for the stochastic feasibility function
with heteroscedastic noise and investigated different adaptive sampling
approaches to reduce computational cost.

3.3. Design space for dynamic systems

In the above sections, feasibility is considered in the static case. For
dynamic systems, time-dependent design space has been discussed. This
is closely related to the concept of dynamic flexibility briefly discussed
in Section 2.2. According to (Dimitriadis and Pistikopoulos, 1995), the
formulation for constraints include the path constraints and the points
constraints, where the variables describing the operation of the process
now depends on the time variable t:

g”“”’(d,y(l),z(f)ae(t)7t) <0 (14)

gﬁml(d,y(tk),z(tk)ﬂ(fk%tk) <0, k=1,...,NP (15)

The evolution of the design space along time provides required in-
formation for batch processes such as batch freeze-drying processes
(Mortier et al., 2016; Van Bockstal et al., 2017) and cell cultivation
processes (Hirono et al., 2022). It is also useful for adapting to process
changes (e.g., due to fouling, clogging, environmental conditions) dur-
ing operation (Bano et al., 2019). A recent review discussed the con-
struction of dynamic design space as a direction forward for QbD in
general (von Stosch et al., 2020).

Control strategies have been investigated recently to improve pro-
cess robustness and efficiency for continuous pharmaceutical
manufacturing (Su et al., 2019). The introduction of control systems will
add recourse to the process, similar to traditional flexibility analysis
formulation. As shown by (Boukouvala, 2013; Garcia-Munoz et al.,
2010), a design space can be significantly enlarged if a correct control
strategy is employed.

3.4. Applications of feasibility analysis

Feasibility analysis and design space characterization have been
applied to various areas, including chemical reaction systems, phar-
maceutical manufacturing, biopharmaceutical manufacturing, material
design, and integrated planning and scheduling problems. Details are
summarized in Table 1.

As an illustration, the design space of a direct compaction (DC)
pharmaceutical manufacturing process is shown below (Wang et al.,
2017). The DC line consists of feeders, co-mill, blender, and feed frame
and tablet press unit operations to produce tablet products from powder
materials, as shown in Fig. 2.

Semi-empirical models have been developed for each unit operation,
and integrated as a process simulation in gPROMS. Details of process
models are provided in (Wang et al., 2017). Six operating variables were
selected as critical process parameters based on sensitivity analysis
which are “flow rate of API (FRap)”, “flow rate of excipient (FRgyp)”,
“comill rotation speed (RPM omu1)”, “blender blade speed (RPMpiender)”s
“tablet press fill depth (FillDepth)”, “tablet thickness set point
(Thickness)”. The algorithm has a framework that is similar to the left
half of Fig. 4. It starts with an initial sampling plan to build the surrogate
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Table 1
Design space applications.

Application area Problem type References

Deterministic
Deterministic,
stochastic/
probabilistic,
dynamic

Material design

Pharmaceutical and
biopharmaceutical
processes

(Banerjee et al., 2010)

(Bano et al., 2018, 2018;
Boukouvala and Ierapetritou,
2012; Castagnoli et al., 2010;
Chatzizacharia and
Hatziavramidis, 2014; Ding
and lerapetritou, 2021;
Hirono et al., 2022; Kotidis
et al., 2019; Lebrun et al.,
2013, 2012; Metta et al.,
2020; Mortier et al., 2016;
Rogers and lerapetritou, 2015;
Stockdale and Cheng, 2016;
Tabora et al., 2019; Van
Bockstal et al., 2017; Wang
et al., 2017; Wang and
Ierapetritou, 2017, 2018a)
(Figueroa et al., 2013;
Garcia-Munoz et al., 2015;
Kucherenko et al., 2020;
Kusumo et al., 2019; Laky

et al., 2019)

(Badejo and Ierapetritou,
2022; Dias and lerapetritou,
2019)

Stochastic/
probabilistic

Chemical reaction
systems

Integrated planning and Deterministic

scheduling problems

APl and Excipient
Feeders

Lubricant
Feeder

Blender

Feed Frame
& Tablet
Press

Fig. 2. Flowsheet of the DC manufacturing line.

model for feasibility function, then followed by an iterative procedure to
add new samples and refine the surrogate model near feasibility
boundary. One example of the infill criterion is the expected improve-
ment function for feasibility (Boukouvala and Ierapetritou, 2014),
which is able to balance exploration and exploitation when selecting
new samples. The algorithm terminates when the sampling budget is
used up.

The results of surrogate-based feasibility analysis are shown in Fig. 3.
The feasible space bounded by the red dotted line denotes the region in
operating space that meets all the required constraints on intermediate
material and product specifications. Based on the results, we notice that
input variables FRap;, FRgxy, RPMpjenger are feasible almost over their
entire ranges, while RPM_o1, FillDepth, Thickness need to be carefully
maintained to assure product quality. Thus, incorporated with proper
control strategies, the process will be more robust and be able to meet
the strict product quality requirements without economic losses.
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Fig. 3. Contour plots of the feasibility function of the DC manufacturing line (The red dotted line is the feasible region boundary. The area within the red dotted line
is the feasible region with feasibility function values less than or equal to zero). Reproduced from (Wang et al., 2017).

4. Feasibility-based optimization

The feasibility-based optimization problem can be formulated as

min f(d, x)
st g(d,x) <0 16)
K(d,x) =0

where f(d, x) is the objective function. The aim is to identify the optimal
set of input variables while satisfying the feasibility constraints.

As feasibility is essentially described by a set of constraints,
feasibility-based optimization is to find the optimal solution of input
parameters while satisfying all the constraints. This makes the
feasibility-based optimization problem belong to the category of
simulation-based optimization problems (Amaran et al., 2014) if, in
general, the process model is considered as a simulation. So, it is possible
to utilize plentiful approaches from the simulation-based optimization
literature to solve feasibility-based optimization problems. The solution
of simulation-based optimization has many challenges. First, mostly the
simulation is only available as a black box for the evaluation of the
objective function and constraints. Second, many simulations are
computationally expensive to run, limiting the number of function
evaluations that can be performed in search of the optimal solution.
Third, the derivative information is usually unavailable or hard to es-
timate due to the computational burden and output noise. Thus, it be-
comes challenging to utilize the conventional optimization approaches
such as derivative-based and random search methods. Surrogate models
have been proposed to approximate the expensive function evaluations

and facilitate optimization (Bhosekar and Ierapetritou, 2018). One issue
that needs to be considered is how to handle black-box feasibility and
black-box objective function(s) in the surrogate-based optimization
(SBO) framework, with a focus on balancing the sampling cost between
feasibility characterization and objective improvement.

The first type of strategy is to consider both feasibility and optimi-
zation aspects together in one infill criterion. There have been both
unconstrained and constrained formulations for the infill criteria to
extend the efficient global optimization (EGO) framework (Jones et al.,
1998). Bagheri et al. (2017) surveyed the existing constraint handling
methods for EGO and modified the unconstrained method by intro-
ducing a newly defined probability of feasibility.

The second type of strategy is to design separate stages that focus on
feasibility and optimization, respectively. For example, Basudhar et al.
(2012) used the first stage to drive the optimization based on expected
improvement (EI) function and probability of feasibility indicated by
probabilistic SVM models, and the second stage to refine the constraint
boundary approximation by selecting samples in sparse regions with a
high probability of misclassification. Boukouvala and Ierapetritou
(2014) proposed a novel expected improvement function for locating
feasibility boundaries in the feasibility stage, followed by an optional
global search stage and trust region-based local search stage.

The one-stage approach is expected to be more economical in terms
of sampling cost as every sample is added with the consideration of both
aspects. However, when the original function is complex, for example,
when feasibility function is hard to approximate with a small number of
samples, it will be beneficial to focus on feasibility refinement first and
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then perform optimization within the feasible space. Therefore, there is
a trade-off between sequential and simultaneous considerations of the
two objectives depending on the nature of the problem.

Note that both approaches can be used to address the integration of
uncertainty in the design and process operations problems and have
found different applications. Wang and Ierapetritou (2018a) proposed a
feasibility-enhanced EI function that considered objective and feasibility
simultaneously for a stochastic direct compaction pharmaceutical
manufacturing process. Wang et al. (2017) used penalized feasibility EI
function and penalized EI function for the feasibility and optimization
stage, respectively, for a deterministic pharmaceutical manufacturing
process.

Again, as an illustration, Fig. 4 shows a flowchart of the two-stage
feasibility-based optimization algorithm with the first stage to accu-
rately characterize the feasible region and the second stage to identify
the optimum within the feasible region.

The algorithm was applied to the DC manufacturing line (Wang
etal., 2017). The input variables are “flow rate of API (FRap)” and “refill
strategy of API (RSapr)” because they are influential to the calculation of
total costs as well as the generation of wasted products caused by tem-
poral process variations. The objective function is the total operation
cost, including material cost, utility cost and waste cost.

The termination condition is the total number of sampling points,
which is 100 in the case study. After 20 initial sample points and 80
adaptive sampling points (40 for feasibility stage and 40 for optimiza-
tion stage), the algorithm stops and returns an optimal solution listed in
Table 2. The returned optimal solution suggests a low API flow rate and
a less frequent refill strategy in order to reduce the overall total cost.

5. Optimization with flexibility requirements

Most existing works on flexibility analysis consider the flexibility test
or flexibility index problem for a given design d. Yet often, optimizing
the design while meeting certain flexibility requirements with respect to
the uncertain parameters 6 is of interest. This problem was formulated
early on by Halemane and Grossmann (1983); however, surprisingly, it
has not been widely applied in that form. In the following, the original
approach proposed by Halemane and Grossmann (1983) is presented
and its equivalence to robust optimization is shown. This equivalence
can be exploited to develop alternative solution algorithms or extend the
flexibility concept to new classes of problems.

Initial sampling plan

Observation

¢ Construct surrogate model for
feasibility function

¢  Construct surrogate model for
objective function

Optimize feasibility
stage acquisition
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Table 2
Optimization results for the DC. Reproduced from (Wang et al., 2017).

(b ~ ub) [kg/h] RS4pr(1b ~ ub) [%]
2.8774 (2.85 ~ 3.15) 27.09 (10 ~ 70)

Costrorar [$/day]

98,175

5.1. Formulation with feasibility constraint

Halemane and Grossmann (1983) formulate the design under un-
certainty problem as follows:

m[iin fi(d) + Eoer | min{fa(d, 2) : g(d,z,6) < 0} (17a)

s.t. maxminmajxg/-(d, 2,0) <0 (17b)
e

0Tz

where f; and f, denote the (first-stage) design and (second-stage)
operating costs, respectively. The objective is to minimize the total ex-
pected cost subject to the feasibility constraint given in (17b), i.e. it
requires the solution to be feasible for all § € T given the flexibility in the
control variables z that can be chosen after the realization of the un-
certainty. Problem (17) is generally intractable due to the expectation
term in the objective function; hence, Halemane and Grossmann (1983)
approximate it using a set of discrete scenarios, which results in the
following formulation:

min fi(d) + ) _pfi(d.z) (18a)
* =

st g(d,Z,0,) <0VseS (18b)

maxminmaxg;(d, z,0) < 0 (18¢c)

0Tz jeJ O

where S denotes the set of scenarios. Each scenario s € S is defined by a
specific realization of the uncertainty 6; and the corresponding proba-
bility ps. The control decisions for scenario s are denoted by z,, which
must be feasible given 6;, which is enforced by constraints (18b).

To solve problem (18), Halemane and Grossmann (1983) developed
an algorithm that first formulates a master problem which is (18) but
with the feasibility constraint (18c) replaced by constraints over a finite
set of critical points C (each point ¢ being a possible realization of the
uncertainty denoted by 6,), i.e.

8(d,z,0.) <OV ceC. 19

Observation

*  Construct surrogate model for
feasibility function

*  Construct surrogate model for
objective function

Optimize optimization
stage acquisition

function to select
the next point

Yes

function to select the
next point

Yes

Y
Feasibility stage

Return optimal
solution

Y
Optimization stage

Fig. 4. Flowchart of the two-stage feasibility-based optimization algorithm. Reproduced from (Wang et al., 2017).
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As shown in Fig. 5, the master problem is solved to obtain a design d.
Then, the flexibility test problem is solved for the proposed design to
check if the feasibility constraint is satisfied. If it is not yet feasible, the
solution of the flexibility test problem provides a new critical point that
can be added to C after which the master problem is re-solved. The al-
gorithm iterates between the master and the flexibility test problem
until the feasibility constraint is satisfied at which point the obtained
design d is the optimal solution to problem (18).

Note that without the feasibility constraint (18c), problem (18) be-
comes a standard scenario-based two-stage stochastic program. In fact,
this is the most common variant of (18) that is used in the literature for
process design under uncertainty (Grossmann et al., 2016; Steimel and
Engell, 2015; Zhou et al., 2013). However, while a two-stage stochastic
program with a sufficiently large scenario set can provide a good
approximation of problem (18), it can generally not guarantee that the
solution is feasible for all § € T. Further note that design problems of the
form (18) can in theory also be solved using feasibility-based optimi-
zation (see Section 4), which focuses on the black-box setting.

5.2. Relationship to robust optimization

There is a close relationship between flexibility analysis and robust
optimization (Ben-Tal et al., 2009), which was independently developed
in the operations research community. This relationship was first
formally established for linear optimization problems in (Zhang et al.,
2016). It was shown that the flexibility index problem can be formulated
as a two-stage robust optimization problem, where T(5) represents the
so-called uncertainty set. Recently, alternative definitions of the flexi-
bility index based on uncertainty sets with shapes other than a hyperbox
have been proposed (Pulsipher et al., 2019), many of which are drawn
from the robust optimization literature.

Problem (18) is a robust optimization problem; however, the feasi-
bility constraint (18c) is more commonly expressed in the robust opti-
mization literature as follows:

9(d,2(6),0) <0V OeT (20)

where the notation z(0) indicates that the control variables z can be
chosen after the realization of the uncertainty and hence are functions of

Initialize (set k= 1, select C!)

v

Solve master problem
(Eqgs. 18a, 18b, and 19)
with C¥, obtain d*

A

Fix dk, solve
flexibility test problem
(given by LHS of Eq. 18c),
find optimal solution 6*

Set k =k+1
Add 6* to Ck

Feasible?

Yes

Return optimal solution

Fig. 5. Algorithm proposed by Halemane and Grossmann (1983) for solving the
design under uncertainty problem with feasibility constraints.
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6. Initial works in robust optimization, especially in PSE (Li et al., 2011;
Li and Ierapetritou, 2008; Lin et al., 2004), only considered the static
case in which z are constant, which is rather limiting compared to the
flexibility analysis approach. This changed with the introduction of
adjustable robust optimization (Ben-Tal et al., 2004), which incorporates
recourse. Another possible reason for why problem (18) for a long time
has not been recognized as a robust optimization problem is that robust
optimization problems are typically formulated to optimize the worst
case. In the design problem, it would lead to the following formulation:

min f, (d) + maxf(d,z(0)) (21a)
s.t. g(d,z(0),0) <0V OeT. (21b)

The worst-case objective function avoids the use of a possibly large
set of scenarios to approximate the expected cost and the associated
potential computational challenges. However, conceptually, there is
nothing that prevents us from using the same objective function as in
problem (18) in a robust optimization formulation. In fact, in many
settings, that may be the more appropriate choice.

The most popular approach to solving problem (21) is the column-
and-constraint generation algorithm (Zeng and Zhao, 2013). Interest-
ingly, this is essentially the same algorithm as the one proposed by
Halemane and Grossmann (1983) three decades earlier.

It is also worth mentioning that flexibility analysis was developed for
general nonlinear optimization problems whereas robust optimization
has mainly been applied to linear and mixed-integer linear programs,
where many of the solution approaches rely on linear programming
duality. More recently, advances have been made in nonlinear robust
optimization (Isenberg et al., 2021; Leyffer et al., 2020; Yuan et al.,
2018), leading to further convergence between the flexibility analysis
and robust optimization approaches.

5.3. The role of endogenous uncertainty

The robust optimization formulation of the flexibility index problem
involves endogenous (i.e. decision-dependent) uncertainty since the
uncertainty set T(5) depends on the decision variable 5. While Zhang
et al. (2016) show that one can obtain a tractable reformulation with a
fixed uncertainty set if T(5) is a hyperbox and the problem is convex,
more involved solution methods are needed for more complex uncer-
tainty sets. In recent years, there has been a growing interest in robust
optimization with endogenous uncertainty (Lappas and Gounaris, 2018;
Zhang and Feng, 2020), which could be leveraged to extend flexibility
analysis to broader classes of problems. For example, the design problem
(18) could be extended to incorporate an uncertainty set T(5) with
variable size §; this would allow us to determine a design that maximizes
flexibility, i.e. maximize §, or balances cost and flexibility.

5.4. Extension to multistage problems and discrete recourse

Design optimization with flexibility requirements gives rise to two-
stage robust optimization problems where the control variables z are
the second-stage decisions. When extending the flexibility concept to
operational or planning problems, often multiple stages of decision
making are involved, where uncertainty is realized and recourse de-
cisions can be taken at multiple time points. Significant advances have
been made in recent years in multistage robust optimization with ap-
plications in PSE (Lappas and Gounaris, 2016; Shang and You, 2019;
Zhang et al., 2016). Here, the decision rule approach (Georghiou et al.,
2018) has proven to be very effective, where the recourse variables are
explicitly stated as functions of the uncertain parameters. For example,
the following decision rule defines the recourse variables at time t, 2, as
an affine function of all uncertain parameters realized up to time ¢, i.e. 6y
where k < t:
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t
z=p+»_ Qubk. 22)
k=1

Such a decision rule inherently satisfies nonanticipativity and can be
applied to problems with arbitrarily many stages. Importantly, the
recourse decisions are now specified by the variables p and Q, which can
be chosen before the actual realization of the uncertainty. As such, all
methods for static robust optimization can be applied to solve decision-
rule-based multistage robust optimization problems. Note that in gen-
eral, decision rules only approximate the fully adjustable recourse de-
cisions; however, they are highly effective as they typically lead to
solutions that are very close to the true optimum while being much more
tractable. As such, they can also be used to solve problem (21)
approximately (Zhang et al., 2016).

Figs. 6 and 7 show some results from a multistage robust optimiza-
tion problem that considers the scheduling of a cryogenic air separation
plant over a one-week time horizon with an hourly time discretization
(Zhang et al., 2016). The plant operates under time-sensitive electricity
prices and also has the opportunity to sell interruptible load to the
electricity reserve market. Interruptible load is operating reserve that
electricity consumers can provide by reducing (interrupting) their load
when power demand exceeds supply in the grid. In that case, the grid
operator can request from the electricity consumer a load reduction up
to the committed amount of interruptible load; however, it is uncertain
when and how much load reduction will be requested by the grid
operator. One must decide at the beginning of the scheduling horizon
how much interruptible load the plant will provide. Then, in each time
period, the plant operation can be adjusted depending on the realized
load reduction request. Therefore, recourse can be taken in every time
period, resulting in a problem with 169 stages.

Fig. 6 shows the liquid oxygen flows and inventory profile in the base
case where no interruptible load is provided and, consequently, there is
no uncertainty in the problem. Positive columns indicate accumulation
of products, and negative columns (demand) indicate depletion of
products. Fig. 7 shows the target liquid oxygen flows and inventory
profile, where “target” refers to the case in which no load reduction is
ever requested during the scheduling horizon. In addition, the green
columns in Fig. 7 represent the cumulative recourse actions in terms of
changes in production and purchase rates. Negative production recourse
indicates time periods in which interruptible load is provided. One can
see that most of the lost production is made up by increasing production
after load reduction (positive production recourse). It was shown that
significant financial benefits can be achieved by providing interruptible
load, even when making rather conservative assumptions about the
uncertainty in load reduction. Further, it can be noted that the target
inventory levels are, in general, higher in Fig. 7 compared to Fig. 6,
highlighting the utilization of flexibility in the plant when providing
interruptible load.

Another important extension is the incorporation of mixed-integer
recourse variables, which can similarly be achieved using decision
rules albeit more complex ones (Feng et al., 2021; Nasab and Li, 2021).

40 4

36 2
] : E
: 32 i f o 2
- -
g o= 2 3
s / E
g 24 ! -4 £
= i i £
g i © g
= i i =

16 -8

12 T ; T -10

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 .
Time [h]

i+t LO2 Production = LO2 Purchase ### LO2 Demand == LO2 Inventory

Fig. 6. Liquid oxygen flows and inventory profile when no interruptible load is
provided. Reproduced from (Zhang et al., 2016).
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Fig. 7. Target and recourse liquid oxygen flows, and target inventory profile
when interruptible load is provided. Reproduced from (Zhang et al., 2016).

Depending on the application, the flexibility of mixed-integer recourse
can lead to significant performance improvements compared to only
having continuous recourse (Jagana et al., 2023). Other approaches for
considering discrete recourse in robust optimization include K-adapt-
ability (Subramanyam et al., 2020) and (Postek and Hertog, 2016).

Conclusions

In this paper, the concepts of process feasibility and flexibility are
highlighted, and ideas of evaluating and integrating those within pro-
cess design optimization and process operations are described. Process
feasibility describes the feasible space of process operation, which is
determined by multiple process and product constraints. The charac-
terization of the feasible space provides complete and accurate evalua-
tion of process-critical parameters to ensure product quality. It also
reveals a degree of flexibility of process operations since feasible oper-
ation can be achieved in the entire feasible region instead of only the
nominal point. Feasibility is a very practical concept. It has been widely
studied and applied in many industrial problems. An example is the
design space evaluation for pharmaceutical manufacturing processes.
Utilizing the ideas of surrogate-based feasibility analysis, feasibility-
based optimization has been utilized to address simulation-based opti-
mization problems. The constraints are integrated within the feasibility
function and explicitly handled. A two-stage algorithm has been shown
to perform effectively for a variety of different applications and
reviewed in this perspective.

Given uncertainty in model parameters, it is often desired (or
necessary) to perform process design optimization that satisfies certain
flexibility requirements with respect to the uncertain parameters. This
problem, initially introduced by the PSE community in the flexibility
analysis literature, can be shown to be equivalent to a two-stage robust
optimization problem, which has been extensively studied in the Op-
erations Research community. This motivates the exchange of solution
strategies from these two areas to solve complex problems of this kind.
One such example is the efficient approximate modeling of recourse
variables using decision rules, which can also be extended to the
multistage case that is often more relevant in a process operations
context. The effectiveness of this approach is demonstrated in a process
scheduling problem involving a power-intensive chemical plant that
operates under time-varying electricity prices and provides interruptible
load to the power grid, where the load reduction requested by the grid
operator in each time period is uncertain. More opportunities remain in
the integration of flexibility analysis and robust optimization ap-
proaches, e.g. in the design of processes with maximum flexibility,
which can be formulated as a problem with a decision-dependent un-
certainty set.
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