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Particle shape plays a critical role in governing the properties and behavior 
of granular materials. Despite advances in capturing and analyzing 3D 
particle shapes, these remain more demanding than 2D shape analysis due 
to the high computational costs and time-consuming nature of 3D imaging 
processes. Consequently, there is a growing interest in exploring potential 
correlations between 3D and 2D shapes, as this approach could potentially 
enable a reasonable estimation of a 3D shape from a 2D particle image, or 
at most, a couple of images. In response to this research interest, this study 
provides a thorough review of previous studies that have attempted to 

from the extensive review is the high correlation between 2D perimeter 
circularity (cp) and Wadell’s true sphericity (S
that a 3D shape can be estimated from the cp value in terms of S. To further 
substantiate the correlation between cp and S, this study analyzes 
approximately 400 mineral particle geometries available from an open-
access data repository in both 3D and 2D. The analysis reveals a strong 
linear relationship between S and cp compared with other 2D shape descriptors broadly used in the research community. Furthermore, the 
limited variance in cp values indicates that cp is insensitive to changes in viewpoint, which indicates that fewer 2D images are needed. 
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1. Introduction

properties and behavior of granular materials (Cho et al., 
2006; Cook et al., 2017; Lee et al., 2017; Payan et al., 2016; 
Shin and Santamarina, 2013; Stark et al., 2014). For exam-
ple, track ballast, which is a granular material essential for 
railroad infrastructure, plays a vital role in facilitating 
drainage around the tracks and distributing the load from 

-
tem. The geometry of the ballast particle is a key parameter 

-
mance, including strength, track modulus, and permanent 
deformation. In the granular materials research community, 

-
tally (Cho et al., 2006; Lee et al., 2019) and numerically 
(e.g., using the Discrete Element Method (DEM)) by ex-
plicitly modeling particle geometries (Lee, 2014; Lee et al., 
2010, 2012, 2021; Lee and Hashash, 2015; Qian et al., 
2013; Tutumluer et al., 2018). More recently, 3D-printed 

synthetic particles have been employed for the investiga-

then 3D printed for experimental studies to investigate the 
Hanaor et al., 2016; Landauer et 

al., 2020; Su et al., 2017, 2020b).
Particle shape characterization has been conducted 

through either 3D or 2D analysis, each with its own distinct 

geometric attributes such as the three principal dimensions 
(such as length, width, and thickness), volume, and surface 
area are measured using advanced imaging tools, including 
3D laser scanning and X-ray microcomputed tomography 

These methods enable us to capture the 3D geometry of 
particles with greater accuracy, making them increasingly 
popular in the granular materials research community. 
Nevertheless, 3D analysis is generally time-consuming, 
computationally expensive, and labor-intensive. It requires 

well as in scanning particles whether individually or collec-
tively. In contrast, 2D analysis evaluates planar geometric 
attributes such as the projected area and perimeter, which 
are derived from projected 2D particle images. This 
method, being more traditional with a longer history than 
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suitable for rapid assessment of particle shapes. However, 
it fails to provide a comprehensive understanding of 3D 
particle geometry. In addition, 2D analysis can be sensitive 
to changes in viewpoint, which can skew the analysis re-
sults.

Given the distinct strengths and limitations of 3D and 2D 
analysis methods, there is increasing interest in bridging 
the gap between these two approaches, aiming to ultimately 
estimate 3D shape properties from a 2D particle image or 
images. Many review papers have examined various 3D 
and 2D shape descriptors (Anusree and Latha, 2023; Blott 
and Pye, 2007; Jia and Garboczi, 2016; Rodriguez et al., 
2012). However, there appears to be a lack of comprehen-

-
tween 3D and 2D shape measures with the goal of 
estimating 3D shape from 2D particle images.

This review paper aims to examine existing research to 

measures. This review is particularly timely given the re-
cent advances in 3D imaging techniques that facilitate the 
creation of digitally representable 3D particles and enable 

-
mensions. The comparative study of 3D and 2D shapes has 
relevance across disciplines, including applications for 

Petre et al., 
2010). However, this review narrows the focus to mineral 

-

We begin by reviewing various 3D and 2D shape analy-
sis methods that have been adopted by the research com-

are discussed in Sections 2 and 3. The salient conclusion 
from the comprehensive reviews (as described in Sec-
tion 4) is that there is a good correlation between Wadell’s 
3D true sphericity (S) and 2D perimeter circularity (cp), 

-
-

cludes a study using a dataset of 3D digital particles from 
the NSF DesignSafe-CI, an open-access data repository 
(Tripathi et al., 2023). The study analyzes 382 granite and 
limestone particle geometries in the dataset. The analysis 

cp, with the 3D true sphericity (S), which is elaborated in 
Section 5. For clarity, the upper-case symbols denote 3D 
geometric properties, while the lower-case symbols are 
used to indicate 2D properties throughout this paper. For 
example, A indicates a particle’s surface area in 3D, while 
a represents the projection area of a particle in 2D.

2. 3D shape anaysis
2.1 3D shape descriptors

Particle shape has been traditionally characterized on 
form, (ii) roundness, and (iii) 

surface texture, as shown in Fig. 1
shape on the scale of particle diameter D. Three principal 
dimensions are commonly used to describe the form of a 
particle contained in a hypothetical tight box: length (D1), 
width (D2), and thickness (D3). These dimensions are per-
pendicular to each other and represent the long, intermedi-
ate, and short dimensions, respectively. Ratios derived 
from these three dimensions are used as form factors to 
quantify the shape. For example, the D2/D1 ratio has been 
traditionally used to indicate elongation, and the D3/D1 ra-
tio has been adopted for -
tion diagrams have been developed based on this approach, 
most notably by Zingg (1935), Krumbein (1941), and 
Sneed and Folk (1958)
particle form based on three principal dimensions also in-
cludes contributions from Wentworth (1923), Corey (1949), 
Aschenbrenner (1956), Janke (1966), Dobkins and Folk 
(1970), among others. Interested readers can refer to Blott 
and Pye (2007), which provides a comprehensive summary 

-
termediate scale, describing the sharpness of local corners 
and edges, which is one order of magnitude smaller than 
the particle diameter scale, i.e., D/10 (Cho et al., 2006; 
Jerves et al., 2016). The diameters of the curvature at the 
corners are commonly used as major parameters to quan-
tify roundness. Surface texture, which relates to surface 
roughness at the micro-to-nano scale, requires high- 
resolution optical characterization (Alshibli et al., 2015). 
Unlike form and roundness that are characterized optically, 
surface texture has frequently been characterized mechani-
cally, e.g., through measurements of the interparticle fric-
tion angle (Lee and Seed, 1967; Rowe, 1962; Terzaghi et 
al., 1996). This mechanical characterization is also driven 
by the fact that intrinsic mineralogy primarily determines 
surface texture (Terzaghi et al., 1996).

Sphericity is another aspect of 3D particle shape and is a 
measure of how closely the shape of a particle resembles 
that of a sphere. Wadell (1932) developed the concept of 
true sphericity (S) to quantify sphericity. This measure 
compares the particle’s surface area A to the surface area of 
a sphere with the same volume as the particle As

in Eqn. (1). He added that sphericity was best measured by 

Form Roundness

Surface texture
Fig. 1 Mitchell and 
Soga, 2005).
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the true sphericity (Wadell, 1933).

S = As / A (1)

Later, Wadell (1934) introduced an alternative measure 
of sphericity, denoted as Eqn. (2), because 

-
tion, V is the volume of a particle, and Vcs is the volume of 
the smallest circumscribed sphere.

 = (V / Vcs)
1/3 (2)

Krumbein (1941) showed that -
resented by Eqn. (3), where D D D
principal diameters of an ellipsoid. These diameters, or-
dered such that D D D
same volume as the particle. He termed this measure inter-
cept sphericity
the alternative sphericity in Eqn. (2) while simplifying the 
measurement to three principal dimensions.

 = (D D D 2)1/3 (3)

There has been some confusion within the granular ma-
terials research community regarding whether sphericity is 
a form factor or a fourth aspect of shape. Sphericity has 
often been considered a form factor because it can be mea-
sured using three principal dimensions, as shown in 
Eqn. (3). However, many studies have suggested that 
sphericity is a distinct aspect that is separate from particle 
form. This view is supported by the fact that Wadell’s true 
sphericity (S
highlighting the need to treat sphericity as a distinct charac-
teristic (Barrett, 1980; Blott and Pye, 2007; Zhu and Zhao, 
2021
dimensions; thus, it is independent of local shape features, 

comprehensive aspect of shape by measuring equidimen-
sionality in all directions; thus, it is not completely inde-
pendent of roundness. For example, a cube and a regular 
dodecahedron are considered ‘equant’ across the three 
principal dimensions; thus, they are evaluated as having the 
same form. However, the regular dodecahedron, which is 
close to the shape of a perfect sphere, exhibits higher true 
sphericity. A form described as ‘equant’ needs only be 
equidimensional in three directions, whereas a true sphere 
is equidimensional in all directions; thus, equant shapes are 
not equally spherical from the perspective of true spheric-
ity. For this reason, it is appropriate to discuss ‘sphericity 
measures’ such as  as a form factor, while treating ‘true 
sphericity’ S as a distinct fourth aspect of shape, even 
though S was originally proposed as a shape descriptor to 
measure sphericity.

Larger-scale properties such as particle form and true 
sphericity are more critical for understanding 3D shape 
characteristics than local scale properties like roundness 

three principal dimensions, and true sphericity is measured 
based on the 3D surface area of the particle. Therefore, 
these measurements are inherently limited when estimated 
from 2D projection images. However, since roundness and 

compared with 3D analysis. This perspective aligns with 
Wadell’s observation: “while sphericity is essentially a 
three-dimensional conception, roundness is obtained by 
measurements in one plane only” (Wadell, 1932). The 
minimal emphasis on roundness analysis in 3D may ex-
plain why Wadell never proposed a concept of 3D round-
ness despite his extensive studies on 3D sphericity. Given 
that surface texture operates at an even smaller scale, the 
importance of understanding the 3D surface texture may 

and 2D shape analyses may provide a more practical value 
for characterizing form and true sphericity. Therefore, this 
paper focuses on larger-scale shape properties rather than 
roundness and surface texture.

2.2 Advances and challenges in 3D shape analysis

conceptualized in the 1920s and later, 3D shape analysis 
relied on measuring three principal dimensions to quantify 
form and sphericity. Today, 3D shape analysis is primarily 
conducted using 3D digital imaging techniques. These 
methods enable the capture of full particle geometries with 
unprecedented accuracy, including particle volume and 
surface area, and facilitate measurements such as true sphe-
ricity. The 3D digital imaging techniques adopted within 
the granular materials research community can be broadly 
categorized into four approaches: (i) using a set of projec-
tion images, (ii) employing general-purpose handheld or 
desktop 3D scanners that utilize laser or structured light, 

and (iv) utilizing other methods, including various micro-
scopes. Zhang et al. (2019)
shape analysis methods as involving charge-coupled de-

(i) 3D shape analysis based on a set of projection images: 
Early approaches to image-based 3D shape analysis at-
tempted to reconstruct a particle’s geometry by combining 

include Kuo et al. (1996), Lee et al. (2005), and Cavarretta 
et al. (2009). Later, researchers at the University of Illinois 
developed the Enhanced University of Illinois Aggregate 
Image Analyzer (E-UIAIA), a 3D shape analysis system 

Fig. 2. The proposed system creates a polyhedral digital 
representation of a 3D particle by combining three orthog-
onal particle images (Huang and Tutumluer, 2014; Moaveni 
et al., 2013; Qian et al., 2013). However, using only three 
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projections limits its ability to accurately represent detailed 
particle shapes, such as surface concavities, as depicted in 
Fig. 2(d). More recent methodologies, such as 3D Dy-
namic Image Analysis (DIA), extract features from a 
greater number of projections of a particle, ranging from 8 
to 12 (Li Linzhu et al., 2023; Li and Iskander, 2021).  
Structure-from-motion (SfM) photogrammetry, which is 

adopted by the granular materials research community. 
This method facilitates digital representation of 3D particle 
geometry from multiple photographs taken at random 
viewpoints with standard or cellphone cameras (Ozturk 
and Rashidzade, 2020; Paixão et al., 2018; Tunwal and 
Lim, 2023; Zhang et al., 2016; Zhao et al., 2021). Fig. 3 
shows an example of SfM-based imaging applied to min-
eral particles. Although this approach enables a more accu-
rate representation of particle shape, capturing detailed 

(ii) General-purpose handheld or desktop 3D scanners 
using laser or structured light: This approach employs laser 

 
described photo-based approach. A study by Lee et al. 
(2005) can be considered an early attempt in this category. 

Their system captured one side of a particle on a conveyor 
belt, employing a customized setup that combined two 

-
ning resolution needs to be further studied, the approach to 
capture 3D particle geometries employing laser or SL is 
becoming increasingly popular in the granular materials 
research community because many commercial tools are 
available (Bhattacharya et al., 2020; Hu et al., 2023; 
Latham et al., 2008; Lee C.H. et al., 2022; Lee S.J. et al., 
2022; Li et al., 2021; Sun et al., 2014; Tripathi et al., 2023, 
2024; Xiao et al., 2020; Yang et al., 2023). Fig. 4 shows the 
setup of a 3D SL scanning system applied to mineral parti-
cles. Fig. 5 shows a digitally represented particle obtained 
by SL scanning.

: This 
technique utilizes an X-ray beam to generate cross- 
sectional images of a specimen, which are then combined 
to reconstruct its 3D digital representation. Unlike the other 
methods that use the selective ‘projection’ images, this 

into a 3D digital image. This non-destructive technique al-
lows for detailed visualization of the intricate particle con-
tacts that compose the internal structure of a specimen, 

(c)

Top

Side Front

(a) (b) (d)

Fig. 2 Qian et al. (2013)): (a) Mineral particle for analysis; (b) Particle placed on the E-UIAIA 
system; (c) Three orthogonal images of the particle; (d) Polyhedral representation of the particle, which is subsequently used for 3D shape analysis, 

Photo

Point cloud

3D digital 
representation

Fig. 3 Digital representation of 3D particles obtained using structure-from-motion (SfM) photogrammetry (Zhang et al., 2016); Image reused with 
written permission from the publisher.
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-
grated with conventional laboratory experiments, such as 
triaxial compression, for in situ tomography. Therefore, 
this setup facilitates the simultaneous loading and scanning 
of specimen inside a triaxial cell, allowing the observation 
of changes in the internal structure. Consequently, many 

along with the evolution of particle geometries within soil 
samples (Al-Raoush, 2007; Alshibli et al., 2015; Bagheri et 
al., 2015; Bloom et al., 2010; Druckrey et al., 2016; 

Erdogan et al., 2006; Fei et al., 2019; Fonseca et al., 2012; 
Fu et al., 2006; Kutay et al., 2010; Li Linzhu et al., 2023; 
Maroof et al., 2020; Masad et al., 2005; Nie et al., 2020; Su 
and Yan, 2018a; ; Wu et al., 2018; Yang 
et al., 2017; Zhou et al., 2015; Zhou and Wang, 2017). 
Fig. 6 presents a schematic and experimental setup for in 

-

three approaches (Zhao and Wang, 2016): (a) voxel assem-
bly in images (Alshibli et al., 2015; Fonseca et al., 2012; 
Lin and Miller, 2005; Ueda, 2020; Yang et al., 2017), (b) 
reconstructed surface mesh (Lin and Miller, 2005), and (c) 
calculations based on surfaces formed through 3D spheri-
cal harmonic (SH) analysis (Cepuritis et al., 2017; Erdogan 
et al., 2006; Kutay et al., 2011; Masad et al., 2005; Nie et 
al., 2020; Su and Yan, 2018a; Wei et al., 2022; Zhou et al., 
2015; Zhou and Wang, 2017).

(iv) Other 3D analysis methods: These approaches in-
clude, but are not limited to, the following: using digital 
microscopes (Fang et al., 2022), optical tomography sys-
tems composed of an inverted microscope and a digital 
camera (Bloom et al., 2010), confocal microscopes 

Dual cameras

Sliding rail

Particle sitting on a 
needle arrangement

Automatic turntable

An emitted light pattern

Fig. 4 3D structured light (SL) scanning system to capture 3D particle geometry (Bhattacharya et al., 2020); Image reused with written permission 
from the publisher.

(a) (b)

Fig. 5 Captured 3D particle geometry using 3D SL scanning: (a) Orig-
inal particle; and (b) Digitally represented particle (Bhattacharya et al., 
2020); Image reused with written permission from the publisher.

Axial loading
device

CCD camera

X-ray beam

Positioning device

Image
device

Fig. 6 Bésuelle et al., 2006); Image re-
used with written permission from the publisher.
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(McCormick and Gee, 2005), and optoelectronic analysis 
(Krawczykowski et al., 2022). An approach worth men-
tioning is the study by Yeong and Torquato (1998), which 
involved probabilistic reconstruction of mesoscale 3D par-
ticulate media from a 2D slice image. This technique has 
gained interest owing to its ability to extrapolate three- 
dimensional structures from two-dimensional data, particu-

 
resources available at the time. Subsequent research has 
applied this technique to reproduce mesoscale 3D hetero-
geneous rocks from 2D cross-section images for discrete 
element simulation (Wei et al., 2023). However, it remains 
uncertain whether these probabilistically generated 3D 

-
sive. In their article, it was highlighted that using the ex-
haustive method to calculate the two-point probability 
function requires enumerating hundreds of millions of 
particle pairs, which can easily exceed the memory capac-
ity of a standard personal computer, necessitating the use of 
Monte Carlo simulations. Consequently, further research is 
required to determine whether the reconstructed 3D me-
dium truly represents the actual geometries of the particles.

-
gence and Machine Learning (AI/ML) technologies. Wang 
et al. (2023) utilized a deep learning-based approach to 
capture 2D randomly projected images from a vibration 
screen machine.  demonstrated an 
application within the computer graphics domain to recon-
struct 3D models from a 2D image of general objects such 
as cars and birds. Xiao et al. (2020) introduced an AI/ML-
based method for statistically reconstructing 3D particle 
geometries using trained datasets. There have been at-

stockpiles, by creating a 3D point cloud directly from im-
ages taken on site and then segmenting the point cloud into 
individual particles. A major challenge arises from the oc-
clusion problem, where only a few particles are fully visi-
ble on the surface. To address this issue, Huang et al. 
(2022) adopted an AI/ML approach to reconstruct the oc-
cluded sides of partially visible particles.

A 3D shape analysis is generally considered time- 
consuming, labor-intensive, and computationally costly. 
When particles are individually scanned for 3D shape anal-
ysis, such as with a desktop 3D scanner: (a) each particle 
requires multiple scans for full 3D geometry characteriza-

particles upside down to capture all sides (Bhattacharya et 
al., 2020

-
ing the shapes of the bulk. While scanning a few particles 
using a handheld or desktop scanner is feasible, scaling up 
to hundreds or thousands of particles is practically chal-

capture of 3D geometries of all particles within a sample, 
eliminating the need to scan each particle individually (Wu 
et al., 2018). However, this method is also time-consuming 
and computationally expensive due to the processes re-
quired for sample preparation, operation, and data post- 
processing (Anusree and Latha, 2023; Bloom et al., 2010; 
Guida et al., 2020; Roslin et al., 2022
equipment is less accessible due to its high initial costs and 
setup requirements. Radiation safety is another concern 
with its use. Lastly, irrespective of whether the particles are 
scanned individually or collectively, the process of creating 
3D digital representations of particles for shape analysis 

sometimes exceeding hundreds of megabytes or even giga-
bytes per particle. For example, the 382 publicly available 

comprise 188 gigabytes, with an average of approximately 
Tripathi et al., 2023).

A 3D shape analysis is also costly due to the algorithmic 
complexities involved in quantifying a shape stemming 
from the intricacies of 3D analysis (Hu et al., 2023; Lee et 
al., 2005). Digitally captured 3D particle geometries have 
been modeled in various ways, including as sphere clumps 
(Zhao et al., 2021), polyhedrons (Chen et al., 2018; Huang 
and Tutumluer, 2014), and 3D spherical harmonic (SH) 
representations (Jia and Garboczi, 2016; Su and Yan, 
2018a; Zhou et al., 2015), among others. These methods 
necessitate additional mathematical operations compared 
with their 2D counterparts, such as circle clumps, poly-
gons, and 2D Fourier-based models. For a state-of-the-art 
review of these modeling strategies, please refer to the 
discussions by Augarde et al. (2021) and Zhao et al. (2023).

3. 2D shape analysis
3.1 2D shape descriptors

The history of 2D shape analysis based on projected 
particle images dates back nearly a century to pioneering 
work by Wentworth (1923), Cox (1927), Tickell (1931), 
Wadell (1932, 1935), and others. Tickell (1931) introduced 
a shape descriptor known as area circularity (ca), which 
compares two areas, as detailed in Eqn. (4). Wadell (1933) 
introduced a measure, then termed degree of circularity 
(cp), which is now commonly referred to as perimeter cir-
cularity (to distinguish it from various circularities intro-
duced since then in the research community), which 
compares two perimeters, as shown in Eqn. (5). Wadell 
(1933, 1935) introduced another descriptor (cd), referred to 
as diameter circularity -
ameters, as shown in Eqn. (6). While cd is computed based 
on diameter, it requires calculating the area of the projected 
particle to determine the diameter of a circle with the same 
area. Therefore, the adoption of these methods was limited 
due to the need to manually determine the area and perim-
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eter of the projected particle. Although these measurements 
could be performed using tools such as a planimeter or an 
opisometer, their widespread use was hindered by the 
time-consuming nature of the measurement process. In-
spired by cd, Riley (1941) proposed the inscribed circle 
circularity (cc), as shown in Eqn. (7). Unlike ca, cp, or cd, 
the shape descriptor cc does not require measurement of the 
area or perimeter, eliminating the need for a planimeter or 
opisometer; thus, it has been favored in practice due to its 
simplicity of measurement and ability to deliver results 
similar to those of cd (Blott and Pye, 2007). Another tradi-
tional circularity is cwl in Eqn. (8), known as width-to-
length ratio circularity
by comparing two principal dimensions. A schematic of the 
2D shape analysis is shown in Fig. 7, where the raw projec-
tion image is binarized to capture the outline and geometric 
parameters are then applied to evaluate the circularity. It is 
worth noting that in the original publications, some of these 
metrics are referred to as sphericities, not circularities. 
However, to emphasize their 2D nature and avoid confu-
sion with 3D sphericities, we refer to them as circularity in 
this review.

ca = a / acc (4)
cp = pc / p (5)
cd = dc / dcc (6)
cc = (dci / dcc)

1/2 (7)
cwl = d2 / d1 (8)

In Eqns. (4) to (8)
a is the projection area of a particle.
acc is the area of the smallest circle circumscribing a parti-
cle.
pc is the perimeter of a circle with the same area as the 
projected particle.
p is the perimeter of the projected particle.
dc is the diameter of a circle with the same area as the pro-
jected particle.
dcc is the diameter of the smallest circumscribing circle.
dci is the diameter of the largest inscribed circle.

d1 is the largest dimension of the particle.
d2 is the width of a particle, orthogonal to d1.

The cwl is evaluated based on two principal dimensions; 
thus, it can be perceived as a measure of 2D form. Pye and 
Pye (1943) analytically derived that cd is essentially the 
square root of cwl, indicating that cd is also a 2D form fac-
tor. They showed that dc can be expressed as the square root 
of the product of two principal dimensions of an ellipse 
with the same area, i.e., dc = ( )1/2 , where . Sub-
sequently, by substituting a dc / 2)2 and acc  / 2)2 
into Eqn. (4), it becomes evident that ca essentially acts as 
a 2D form factor. Given the equivalence between cd and cc, 
as discussed by Riley (1941), cc can be considered a mea-
sure of the 2D form. Therefore, except for cp, the other 
circularities essentially serve as 2D form factors.

There are variations indicating circularity. For instance, 
many studies, including Bagheri et al. (2015), introduced 
Cox circularity (ccox) after Cox (1927). However, note that 
ccox is essentially the same as cp ccox is 
provided in Eqn. (9), where a and p
given in Eqns. (4) and (5). Given that a dc / 2)2, it fol-

a = pc
2. Therefore, ccox is the square of cp. Kuo 

and Freeman (2000) also discussed this equivalency. Addi-
cc. 

Originally presented in the square root format as shown in 
Eqn. (7), the version without the square root is also used 
and is referred to as circle ratio sphericity (Zheng and 
Hryciw, 2015).

ccox a / p2 = cp
2 (9)

Eqns. (4) to (8) are the most 
commonly used circularities in the granular materials re-
search community for measuring 2D shapes (Mitchell and 
Soga, 2005; Zheng and Hryciw, 2015). An additional series 
of 2D shape descriptors have been developed in the re-
search community, expanding on traditional descriptors. 
These include shape measures using radial segments 
(Sukumaran and Ashmawy, 2001), Fourier descriptors 

dcc

dci

a

d1

d2

acc

p

(a) (b) (c)

Fig. 7 Schematic of 2D shape analysis: (a) Raw projection image; (b) Binary image derived from captured image for 2D shape analysis; and (c) 
Geometric parameters used to assess circularities.
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(Bowman et al., 2001; Chen et al., 2022; Su and Yan, 
2018b; Wang et al., 2005), and fractal analysis (Bouzeboudja 
et al., 2022; Guida et al., 2020). A comprehensive review of 
broadly used 2D circularities and form factors is provided 
in other review papers, including those by Blott and Pye 
(2007) and Rodriguez et al. (2012).

3.2 Advances and challenges in 2D shape analysis
Modern digital imaging technology has enabled rapid 

analysis of shape and size based on 2D particle images 
(Hryciw et al., 2014). Early initiatives, such as those by 
Kwan et al. (1999), used digital particle image processing 
to analyze the shape characteristics of coarse aggregates. 
Notably, WipFrag, a commercial image-based particle ge-
ometry analyzer, has been available since the 1990s, pri-
marily for size analysis (Maerz et al., 1996; WipWare, 
2023). Subsequent developments include the Aggregate 
Image Measurement System (AIMS) (Chandan et al., 
2004; Masad et al., 2005; Masad, 2005) and its successor, 
AIMS2 (Gates et al., 2011 -
signed to characterize aggregate geometries. Bloom et al. 
(2010) employed an optical microscopic system consisting 
of a Nikon TS100 microscope and a Coolpix950 
2-megapixel digital camera for 2D particle geometry char-
acterization. With the advent of scanning electron micros-

particles has become more straightforward (Kodicherla, 
2023).

Recently, dynamic image analysis (DIA) systems have 
gained popularity in the research community. These sys-
tems allow particles to fall through a vertical chute, where 
high-resolution, high-speed cameras optically capture them 
for further geometric analysis. Several commercial prod-
ucts such as QICPIC (Sympatec GmbH, 2022) have been 
used in research (Cavarretta et al., 2009; Krawczykowski et 
al., 2022; Li and Iskander, 2020; Zhou and Wang, 2017). 
Although this method provides rapid characterization, re-
searchers have noted issues associated with its somewhat 
limited resolution. Cepuritis et al. (2017) highlighted the 
limitation of accurately characterizing particles smaller 

size of the DIA system. Li and Iskander (2021) also noted 
similar resolution limitations in their discussion of 2D DIA 
measurements.

Attempts have also been made to estimate the 3D geom-
etry of particle shapes from a single image by augmenting 
2D imaging. Montenegro Ríos et al. (2013) employed a 
light source alongside a digital camera system to estimate 
the third dimension based on projected shadows. Addition-
ally, Zheng and Hryciw (2017) introduced a stereophotog-
raphy approach for estimating the third dimension of 
particles.

An advantage of 2D analysis includes its potential to 

Moaveni 
et al., 2013; Tutumluer et al., 2017). The process involves 
an image segmentation phase to identify individual parti-
cles in the photo, followed by 2D shape analysis to quantify 
the geometry. Various image segmentation algorithms and 
software are available, including the watershed segmenta-
tion algorithm (Vincent and Soille, 1991 -
tively isolates individual particles in an image. With recent 
advances in AI/ML techniques, image segmentation has 
become more convenient, as demonstrated by tools such as 
Meta AI’s Segment Anything (Meta, 2023). Fig. 8 shows 

-
mented particles. Nevertheless, perfecting this process for 

limited success. Challenges such as inaccuracies caused by 
shadows and occlusion, where particles are partially ob-
scured by nearer particles in the images, require further in-
vestigation in future. Consequently, 2D shape analysis is 
still predominantly conducted in a laboratory environment.

The major disadvantage of 2D shape analysis is its sus-
ceptibility to changes in viewpoint and sensitivity, resulting 
in analysis outcomes that depend on how a particle is pro-
jected (Alshibli et al., 2015; C.H. Lee et al., 2022; Li 
Lianghui et al., 2023; Zheng et al., 2021). This limitation 

images for each particle and repeating this process for a 

(Cepuritis et al., 2017); however, this approach compro-
mises the primary advantages of 2D analysis—speed, sim-
plicity, and convenience. Given the uncertainties regarding 
the required number of 2D samples per particle, research-

-
tions. Xie et al. (2020) suggested using three orthogonal 
projections, although they acknowledged the practical dif-

using three maximum-area and three minimum-area pro-
jections as alternatives. Li Linzhu et al. (2023) employed 
Digital Image Analysis (DIA) with 8 to 12 projections per 

Fig. 8 Image segmentation performed on a photo using the Segment 
Anything code. The raw photo was taken from DepositPhotos (2014) and 
used under its standard license.
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-
ciently capture the 3D geometry of particles. Zhao et al. 
(2021) reported that even 50 2D projection images may not 
faithfully represent 3D particle geometry. Attempts have 
also been made to optimize the number of particle projec-

-
tion ( ). In general, 2D shape 
analysis compromises accuracy and a comprehensive un-
derstanding of 3D particle geometry, in favor of speed and 
convenience.

4. Correlation between 3D and 2D shape 
measures

4.1 Approaches and challenges in estimating 3D 
shape from 2D images

There has been a growing interest within the research 
community in bridging the gap between 3D and 2D shape 
analyses due to their distinct strengths and limitations. This 
interest stems from the vision to leverage the speed and 
simplicity of 2D analysis while obtaining the accuracy of 

development of a 2D-to-3D conversion database via parti-
cle sampling. This process begins by conducting 3D imag-
ing to digitally represent the 3D particle geometry, 
followed by creating a series of 2D projections to generate 
a set of 2D digital images. These images were then ana-
lyzed to develop a conversion database that could later be 
used to estimate 3D geometry from 2D images (Ueda, 
2020; Ueda et al., 2019; Wang et al., 2019). However, 

-
ies investigating this relationship have reported a range of 

results, indicating a complex and evolving understanding 
of the potential for integrating 2D and 3D shape analyses.

Many studies have concluded that using 2D shape pa-
rameters, obtained from projected particle images, to esti-
mate 3D shape properties is inherently limited, as capturing 
the full complexity of a 3D shape by a 2D particle image, 
or even a set of 2D images, cannot adequately represent all 
dimensions (Alshibli et al., 2015; Bouzeboudja et al., 2022; 
Fonseca et al., 2012; Hu et al., 2023; Jia and Garboczi, 
2016; C.H. Lee et al., 2022; Li Lianghui et al., 2023; Li 
Linzhu et al., 2023; Li and Iskander, 2021; Maroof et al., 
2020; Su et al., 2019; Sun et al., 2014; Zheng et al., 2021). 
The 2D shape analysis captures only the planar geometry 
attributes of a particle, thereby missing critical information 
about its 3D geometry. Additionally, 2D descriptions are 
dependent on viewpoint, which can compromise the reli-
ability of shape characterization.

Nevertheless, many other studies have demonstrated the 

3D shapes, often reporting a strong correlation between 3D 
and 2D shape analysis results. This suggests that the rela-
tionship between 3D and 2D geometry measures could be 

leveraged in a 2D-to-3D approach, indicating a viable 
pathway for reasonably deriving 3D shape properties from 
2D data (Cavarretta et al., 2009; Cepuritis et al., 2017; Han 
et al., 2023; Kaviani-Hamedani et al., 2024; Krawczykowski 
et al., 2022; Kutay et al., 2011; Lu et al., 2022; Masad et al., 
2005; Ozturk and Rashidzade, 2020; Sandeep et al., 2023; 
Suh et al., 2017; Xie et al., 2020; Zhao et al., 2021; Zheng 
et al., 2019).

The granular materials research community has devel-
oped a diverse array of shape descriptors (Alshibli et al., 
2015; Chandan et al., 2004; Fang et al., 2022; Hu et al., 
2023; Kong and Fonseca, 2018; S.J. Lee et al., 2022; Su et 
al., 2020a; Sun et al., 2014; Xiao et al., 2020). The large 
number of currently available descriptors can be over-
whelming and can even lead to confusion (Cavarretta et al., 
2009; Maroof et al., 2020). As a result, the correlation be-
tween 3D and 2D shape measures, whether strong or weak, 

the available array. For instance, Ozturk and Rashidzade 
(2020) noted a good correlation between 3D sphericity and 
2D circularity measures they selected for their study. How-

data to estimate 3D shapes varies depending on the descrip-
tor employed.

For a successful 2D-to-3D approach, the ‘mean’ value of 
2D shape measures obtained from a set of 2D images 
should have a strong relationship with the 3D shape mea-
sure. For example, by capturing ten 2D projection images 
of a particle from various viewpoints and evaluating the 2D 

mean value of these circularity measurements strongly 
correlates with the 3D shape measurement across all sam-
ple particles. This indicates a robust correlation between 

condition for the 2D-to-3D approach. At the same time, it is 
equally important that the 2D shape measures exhibit a low 
‘variance’ and remain insensitive to changes in viewpoints. 
Even if 2D shape measures show a strong mean relation-

viewpoints requires capturing many 2D images to estimate 
a 3D shape accurately and reliably. Such requirement could 

-
proach because the need for more images complicates the 
process and reduces its overall feasibility. For instance, 
Zheng et al. (2021) reported that the variation in the data 
obtained from random-projection tests was too substantial 
to reliably infer 3D particle shapes. This problem is inher-
ently an ill-posed problem because the variance arises 
solely from 2D images despite the corresponding 3D de-
scriptor exhibiting zero variance. Consequently, this vari-
ability has led some researchers to view the 2D-to-3D 

the strong correlation between the mean values of 2D and 



Priya Tripathi et al. / KONA Powder and Particle Journal Review Paper

10

3D shape measures.
Therefore, to establish a reliable 2D-to-3D relationship 

for 3D shape estimation from a 2D particle image, or at 
most a couple of images, it is essential to identify a set of 
2D and 3D shape descriptors that address both criteria re-

-
tiple 2D projection images are available, the mean value of 
the 2D shape measures should exhibit a strong relationship 
with the measures from the 3D shape descriptor, and (ii) the 
2D shape measures must be minimally sensitive to varia-
tions in viewpoint to ensure consistent results, although 
determination of the satisfactory tolerance may depend on 
the cases. The achievement of a relatively low variance in 
2D shape measures is critical for minimizing discrepancies 
in quantifying a shape, thereby enhancing the reliability of 
3D shape estimation. If such a set of 2D and 3D shape de-

use a smaller number of 2D particle images, ideally even a 
single random 2D image, for accurate 3D shape estimation.

4.2 Correlation between 3D true sphericity and 
2D perimeter circularity

As discussed in Section 3.1, ca, cd, cc, and cwl function as 
2D form factors. According to our comprehensive review, 

these circularities and a 3D form factor. The 3D form is 
characterized using three principal dimensions to measure 
equidimensionality in three directions, whereas the 2D 
form relies on only two principal dimensions from the 
projected particle image. Thus, this inherent limitation re-
stricts the accuracy of estimating 3D form from 2D form 
measurements.

On the other hand, a number of studies have observed a 
modest-to-good correlation between 2D perimeter circular-
ity (cp) and 3D true sphericity (S), commonly showing that 
the mean values of cp correlate well with S. (Cavarretta et 
al., 2009; Han et al., 2023; Rorato et al., 2019; Sandeep et 
al., 2023; Su and Yan, 2020; Xie et al., 2020; Zheng et al., 
2019). For example, Sandeep et al. (2023) demonstrated 
that S was more closely related to cp than to other circular-
ities. The higher correlation likely stems from the equiva-

dimensions. In 2D space, the projected area captures the 

In parallel, in 3D space, the volume captures the full extent 
-

cp, as presented in Eqn. (5) 
serves as the 2D counterpart of S in Eqn. (1). Wadell 
(1933) indeed introduced both 3D true sphericity (S) and 
2D perimeter circularity (cp) using similar notations, im-
plying that cp was developed as a 2D version of S (see 

Rorato et al. (2019) also noted that perimeter circularity is 
the 2D descriptor that best correlates with true sphericity, 

Therefore, among the traditional circularities discussed in 
Section 3.1, cp is unique in that it serves as a 2D version of 
true sphericity.

If the mean of cp demonstrates good correlation with S, 
then it is essential to assess how sensitive cp is to random 
projections. A recent study by Lee et al. (2022) reported 
that cp showed the smallest variance compared with other 
classical 2D shape descriptors, indicating its relatively low 
sensitivity to how a particle is projected. This indicates that 
cp can be reliably used to estimate 3D shape from 2D im-
ages, highlighting its potential for robust 3D shape analysis 
based on random 2D projections. Bagheri et al. (2015) is 

the mean values of cp and S, while emphasizing that the 
standard deviation of cp data is notably low. (They analyzed 
ccox, which is the square of cp.) The study suggested that if 
cp is employed, the use of a minimum number of projection 

and maximum projections, or three perpendicular projec-

and accuracy. This approach was found to limit the maxi-
mum error to less than 10 %, even when compared to sce-
narios utilizing up to 1000 projections, demonstrating that 
cp maintains a relatively invariant nature regardless of how 
a particle is projected. This consistency implies that a lim-

-
mate a 3D shape using cp due to its low variance and strong 
correlation with S.

Wadell originally developed 2D circularities, cp and cd, 
to address the practical challenges associated with measur-
ing 3D surface areas for quantifying particle shapes as de-

S (Hayakawa and Oguchi, 2005; 
Howarth, 2017). With 3D imaging tools, it is now possible 
to evaluate 3D particle geometry in terms of S with high 
accuracy. These techniques present an opportunity to re- 
examine the correlation between 2D circularity and 3D 
sphericity, particularly between cp and S -
tional equivalency. Establishing a strong correlation be-

accuracy of estimating 3D shape from random projection 
2D particle images.

5. Demonstration

review, a series of shape analyses is conducted to determine 
(i) whether there is a strong correlation between 3D true 
sphericity (S) and the mean of 2D perimeter circularity (cp), 
among others, and (ii) whether the variance of cp is mini-
mal compared to those of other 2D shape measures, thereby 
making it a more reliable predictor of 3D shape from any 
2D projection image.
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5.1 3D and 2D shape analyses
This study analyzes an extensive dataset of 382 mineral 

particles sourced from Florida and Virginia. All particles 
from Florida in this dataset are limestone, while all  
particles from Virginia are freshly crushed granite sourced 
from a quarry in Richmond, Virginia. The Florida lime-
stone (FL) particles are composed of three groups: FL-A, 
FL-B, and FL-C. The FL-A group consists of 100 lime-
stone particles selected from a batch provided by the Flor-
ida Department of Transportation (FDOT) from District 
Four and Six regions in South Florida. The FL-B and FL-C 
groups, supplied by Titan America LLC, each comprises 50 
particles sourced from the same limestone quarry and pro-

particles, also provided by Titan America LLC, are com-
posed of two groups: VG-A and VG-B. The VG-A group 
includes 100 randomly selected granite particles, while 
group VG-B consists of 82 particles containing crushed 
particles from the same granite batch. Therefore, the data-

5.1.1 3D shape analysis procedure
Each particle is individually scanned to digitally repre-

sent the 3D geometry using a Polyga C504 structured light 
(SL) 3D scanner. This scanner is capable of scanning ob-
jects ranging from 5 to 30 mm in size with high resolution 
and accuracy, down to 6 microns (Polyga, 2021). The 
scanning setup is shown in Fig. 9. Each particle is placed 
on a small clump of putty to scan one side of its surface at 
a time (Fig. 9a). The particle is rotated while the 3D scan-
ner, which is positioned directly above, captures its geom-
etry from all corners to ensure comprehensive coverage 
(Fig. 9b). The particle is turned upside down, and scanning 
continues to ensure that all sides are captured thoroughly. 
Approximately 15 to 20 scans are performed per particle to 

complete the process. The scanned partial geometries are 
merged to create a 3D digital particle that realistically rep-
resents the original particle (Fig. 9c), for which the com-
panion software FlexScan3D is employed. The 3D digital 

particle geometry attributes, including surface area (A) and 
volume (V), are measured using the 3D print toolbox in 
Blender (2022), an open-source 3D computer graphics 
software. An advantage of SL scanning is that it performs 
3D scanning at a 1-to-1 scale, which means that the cap-
tured 3D digital particle is the exact size of the original 
particle (Lansdown, 2019). As a result, the particle surface 
area and volume can be directly obtained from 3D digital 
particles without the need for re-scaling. These values are 
then used to compute the true sphericity (S) per Eqn. (1). 
Listing the 3D geometry information obtained for all 382 
particles is extensive, but readers can directly refer to the 
dataset, which is publicly available in the NSF Design-
Safe-CI data repository (Tripathi et al., 2023).

5.1.2 2D shape analysis procedure
Ten 2D projection images are captured from random 

viewpoints for each particle using ParaView (Kitware Inc., 
2022 Fig. 10. A custom 
Python script is developed to automate this random projec-
tion process in batch mode. Subsequently, each 2D image 
is converted into a binary format with the background in 
white and the foreground (particle) in black to capture the 
outline geometry, as depicted in the second row of Fig. 10. 
OpenCV (2023) is used for this binary conversion. This 
process generates 3820 2D projection images. These 2D 
binary images are then used to analyze the 2D shape in 

ca, cp, cd, cc, and 
cwl, as shown in Eqns. (4) to (8). The 2D analysis uses 
MATLAB code developed by Zheng and Hryciw (2016), 

(a) (b) (c)

Fig. 9 3D scanning of a particle: (a) Particle placed on putty; (b) 3D scan conducted using Polyga C504 SL 3D scanner; and (c) Digitally represented 
3D particle (shown on the screen); Image source: Tripathi et al. (2023), available under the Open Data Commons Attribution License.
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originally developed as a companion code to their earlier 
work (Zheng and Hryciw, 2015). The circularity measure cc 

by Riley (1941) as per Eqn. (7). Therefore, the code is 

mean and standard deviation of the circularity measures are 
then computed for each particle.

5.2 Analysis results

FL-B, FL-C, VG-A, and VG-B, are presented in Figs. 11–
15
analysis result for a particle. Fig. 16 aggregates the data for 

x-coordinate of 
the data point represents the mean ( ) of circularities eval-
uated from ten 2D projection images of each particle. 

ca, cp, 
cd, cc, and cwl -
ures, the y-coordinate represents the evaluated true spheric-
ity (S), comparing the mean circularity values with S. The 

R2) indi-
cates the data’s coherence with the regression line. In the 

y-coordinate represents the stan-
dard deviation ( ) of circularities, evaluated from the ten 
2D projection images of each particle. This comparison 
highlights how standard deviations relate to mean values.

Figs. 11–16, it is apparent 
that the mean of cp values, (cp), demonstrates a relatively 
strong linear relationship with S, with the data points clus-
tered coherently along the regression line. Compared with 
the other circularity measures, cp consistently exhibits the 
highest R2 -
cates the reliability of using cp as a predictive measure, as 
evidenced by prior studies. Furthermore, from all second- 

standard deviation of cp, (cp

those of other circularity measures. This indicates that a 
random 2D projection image yields a comparable cp value, 
demonstrating its insensitivity to viewpoint changes around 
a particle. However, the other circularities, ca, cd, cc, and 
cwl, do not exhibit a strong linear relationship with S as 
compared with cp, as indicated by the low R2 values and 
high data scatter. This lack of correlation may be explained 
by the fact that ca, cd, cc, and cwl function as 2D form fac-
tors, whereas cp acts as the 2D analog of true sphericity, 

Fig. 10 Ten 2D projection images of a VG-A particle.
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Fig. 11 2D and 3D shape analysis results for FL-A particles. (a) Mean ( ) of 2D circularities vs. 3D true sphericity S, (b) Mean ( ) vs. standard devi-
ation ( ) of 2D circularities.
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supporting why cp correlates well with S. The standard  
deviations of ca, cd, cc, and cwl

than (cp), because these measures rely on two principal 
dimensions from the projected particle image, leading to 
high variability depending on the viewpoint.

In summary, the low (cp) indicates that a small number 
cp that 

closely approximates (cp) for each particle, thus eliminat-
ing the need to evaluate many 2D projection images to get 

(cp). The strong linear relationship between (cp) and S, 
accompanied by limited data scatter along the regression 

S 

from cp. For example, the regression line for FL-A in 
Fig. 11(a) can be expressed as S (cp) – 0.56. 
Given the low (cp), this can be approximated as S ~ 

cp – 0.56. This approach provides a fast and reliable 
method for estimating a 3D shape in terms of S from the 2D 
perimeter circularity, cp, obtained from a 2D particle image.

6. Concluding remarks

properties of granular materials, highlighting the impor-
tance of shape characterization. This characterization has 
been conducted through either 3D or 2D analysis, each  
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Fig. 12 2D and 3D shape analysis results for FL-B particles. (a) Mean ( ) of 2D circularities vs. 3D true sphericity S, (b) Mean ( ) vs. standard devi-
ation ( ) of 2D circularities.
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Fig. 13 2D and 3D shape analysis results for FL-C particles. (a) Mean ( ) of 2D circularities vs. 3D true sphericity S, (b) Mean ( ) vs. standard devi-
ation ( ) of 2D circularities.
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Although 3D analysis provides greater accuracy by captur-
ing the complete geometry of particles, it is more time- 
consuming and computationally expensive. In contrast, 2D 
analysis is simpler and faster, suitable for rapid assessment 

-
standing of 3D geometry. These distinct strengths and lim-
itations have ignited interest within the granular materials 
research community to explore the correlation between 3D 

-
tion of 3D shape from a 2D particle image or images. In 
response to this research interest, this paper comprehen-

sively reviews previous studies to identify a set of 3D and 
2D shape measures that best correlate with each other, 
aiming to bridge the gap between these two approaches.

Particle shapes are commonly characterized by large-
scale properties such as form and true sphericity and local 
scale properties such as roundness and surface texture. This 
review focuses on larger scale shape properties, as they are 
more critical for understanding 3D shape characteristics. 
The literature review reveals a lack of meaningful correla-
tion between 3D and 2D form factors, primarily because 
the 2D form is measured using only two principal dimen-
sions from the projected particle image, while the 3D form 
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Fig. 14 2D and 3D shape analysis results for VG-A particles. (a) Mean ( ) of 2D circularities vs. 3D true sphericity S, (b) Mean ( ) vs. standard de-
viation ( ) of 2D circularities.
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Fig. 15 2D and 3D shape analysis results for VG-B particles. (a) Mean ( ) of 2D circularities vs. 3D true sphericity S, (b) Mean ( ) vs. standard de-
viation ( ) of 2D circularities.
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dimensions. This limitation restricts the accuracy of esti-
mating 3D form from 2D random projection images. On 
the other hand, true sphericity measures how closely a 
particle’s shape approximates that of a perfect sphere. 

that previous research has reported a good correlation be-
tween true sphericity (S) and perimeter circularity (cp). This 
correlation exists because cp acts as the 2D analog of S; true 
sphericity (S) is calculated based on the particle’s surface 
area, whereas cp -
ploying the perimeter of the projected particle to mirror the 
role of surface area in S

-
sions. Furthermore, S
shape by measuring equidimensionality in all directions, 
unlike form measurements that are limited to only three 
directions. The 2D image retains geometric characteristics 
that facilitate partial evaluation of equidimensionality in all 
directions, which supports the strong correlation between 
true sphericity and perimeter circularity.

It is also worth noting that true sphericity (S) should be 
distinguished from other sphericity measures such as inter-
cept sphericity ( ), even though S was originally proposed 
as a shape descriptor to measure sphericity. Conventional 
sphericity measures are often considered form factors be-
cause they can be calculated using the three principal di-
mensions, independent of local shape features such as 

form and roundness because it evaluates a more compre-
hensive aspect of shape by measuring equidimensionality 
in all directions. This highlights the need to treat true sphe-

-

tion extends to 2D circularities: commonly used circularities 
such as ca, cd, cc, and cwl function as 2D form factors be-

from a projected particle image. In contrast, cp and ccox 
(essentially cp squared) serve as 2D analogs of true spheric-
ity.

This study further validates the correlation between S 
and cp by analyzing approximately 400 mineral particles. A 
robust linear relationship is evident between the mean of cp 
values and S, which is characterized by high R2 values and 
limited data scatter. In addition, the standard deviations of 
cp

indicating its insensitivity to viewpoint changes around a 

-
mate 3D particle shape based on the 2D-to-3D relationship 
between cp and S. This approach combines the speed and 
simplicity of 2D analysis with the accuracy of 3D analysis. 
We encourage the granular materials research community 

-
sented in this paper.

Data Availability Statement
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der the Open Data Commons Attribution License.
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