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Particle shape plays a critical role in governing the properties and behavior
of granular materials. Despite advances in capturing and analyzing 3D
particle shapes, these remain more demanding than 2D shape analysis due
to the high computational costs and time-consuming nature of 3D imaging
processes. Consequently, there is a growing interest in exploring potential
correlations between 3D and 2D shapes, as this approach could potentially
enable a reasonable estimation of a 3D shape from a 2D particle image, or
at most, a couple of images. In response to this research interest, this study
provides a thorough review of previous studies that have attempted to
establish a correlation between 3D and 2D shape measures. A key finding
from the extensive review is the high correlation between 2D perimeter
circularity (c,) and Wadell’s true sphericity (S) defined in 3D, suggesting
that a 3D shape can be estimated from the c_ value in terms of S. To further
substantiate the correlation between c ~and S, this study analyzes
approximately 400 mineral particle geometries available from an open-
access data repository in both 3D and 2D. The analysis reveals a strong
linear relationship between S and ¢, compared with other 2D shape descriptors broadly used in the research community. Furthermore, the
limited variance in ¢, values indicates that ¢, is insensitive to changes in viewpoint, which indicates that fewer 2D images are needed.

Perimeter circularity, c,
(2D shape measure)

True sphericity, S
(3D shape measure)

This finding offers a promising avenue for cost-effective and reliable 3D shape estimation using 2D particle images.
Keywords: particle shape, shape descriptor, 3D shape analysis, 2D shape analysis, true sphericity, perimeter circularity

1. Introduction

Particle shape significantly influences the macroscopic
properties and behavior of granular materials (Cho et al.,
2006; Cook etal., 2017; Lee et al., 2017; Payan et al., 2016;
Shin and Santamarina, 2013; Stark et al., 2014). For exam-
ple, track ballast, which is a granular material essential for
railroad infrastructure, plays a vital role in facilitating
drainage around the tracks and distributing the load from
the train traffic, thereby stabilizing the railway track sys-
tem. The geometry of the ballast particle is a key parameter
that affects drainage and significantly affects track perfor-
mance, including strength, track modulus, and permanent
deformation. In the granular materials research community,
the influence of particle shape has been studied experimen-
tally (Cho et al., 2006; Lee et al., 2019) and numerically
(e.g., using the Discrete Element Method (DEM)) by ex-
plicitly modeling particle geometries (Lee, 2014; Lee et al.,
2010, 2012, 2021; Lee and Hashash, 2015; Qian et al.,
2013; Tutumluer et al., 2018). More recently, 3D-printed
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synthetic particles have been employed for the investiga-
tions. These particles were first digitally represented and
then 3D printed for experimental studies to investigate the
effect of particle shape (Hanaor et al., 2016; Landauer et
al., 2020; Su et al., 2017, 2020b).

Particle shape characterization has been conducted
through either 3D or 2D analysis, each with its own distinct
methodologies and inherent trade-offs. In 3D analysis,
geometric attributes such as the three principal dimensions
(such as length, width, and thickness), volume, and surface
area are measured using advanced imaging tools, including
3D laser scanning and X-ray microcomputed tomography
(uCT). The obtained geometric information is then used to
describe the shape, e.g., elongation, flatness, and sphericity.
These methods enable us to capture the 3D geometry of
particles with greater accuracy, making them increasingly
popular in the granular materials research community.
Nevertheless, 3D analysis is generally time-consuming,
computationally expensive, and labor-intensive. It requires
significant effort in the pre- and post-processing of data, as
well as in scanning particles whether individually or collec-
tively. In contrast, 2D analysis evaluates planar geometric
attributes such as the projected area and perimeter, which
are derived from projected 2D particle images. This
method, being more traditional with a longer history than

Copyright © 2024 The Authors. Published by Hosokawa Powder Technology Foundation. This is an open
access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1
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3D analysis methods, offers simplicity and speed, making it
suitable for rapid assessment of particle shapes. However,
it fails to provide a comprehensive understanding of 3D
particle geometry. In addition, 2D analysis can be sensitive
to changes in viewpoint, which can skew the analysis re-
sults.

Given the distinct strengths and limitations of 3D and 2D
analysis methods, there is increasing interest in bridging
the gap between these two approaches, aiming to ultimately
estimate 3D shape properties from a 2D particle image or
images. Many review papers have examined various 3D
and 2D shape descriptors (Anusree and Latha, 2023; Blott
and Pye, 2007; Jia and Garboczi, 2016; Rodriguez et al.,
2012). However, there appears to be a lack of comprehen-
sive reviews specifically focusing on the correlation be-
tween 3D and 2D shape measures with the goal of
estimating 3D shape from 2D particle images.

This review paper aims to examine existing research to
identify effective correlations between 3D and 2D shape
measures. This review is particularly timely given the re-
cent advances in 3D imaging techniques that facilitate the
creation of digitally representable 3D particles and enable
more accurate correlations across the different spatial di-
mensions. The comparative study of 3D and 2D shapes has
relevance across disciplines, including applications for
general objects in computer graphics fields (Petre et al.,
2010). However, this review narrows the focus to mineral
particles, ensuring that the findings are relevant and appli-
cable to the field of granular materials research.

We begin by reviewing various 3D and 2D shape analy-
sis methods that have been adopted by the research com-
munity, highlighting their benefits and drawbacks. These
are discussed in Sections 2 and 3. The salient conclusion
from the comprehensive reviews (as described in Sec-
tion 4) is that there is a good correlation between Wadell’s
3D true sphericity (S) and 2D perimeter circularity (cp),
which is attributable to the inherent relevance of their defi-
nitions. To further substantiate the findings, this paper in-
cludes a study using a dataset of 3D digital particles from
the NSF DesignSafe-CI, an open-access data repository
(Tripathi et al., 2023). The study analyzes 382 granite and
limestone particle geometries in the dataset. The analysis
compares the five broadly used 2D circularities, including
Cp with the 3D true sphericity (S), which is elaborated in
Section 5. For clarity, the upper-case symbols denote 3D
geometric properties, while the lower-case symbols are
used to indicate 2D properties throughout this paper. For
example, 4 indicates a particle’s surface area in 3D, while
a represents the projection area of a particle in 2D.

2. 3D shape anaysis
2.1 3D shape descriptors

Particle shape has been traditionally characterized on
three different scales: (i) form, (ii) roundness, and (iii)

surface texture, as shown in Fig. 1. Form identifies the
shape on the scale of particle diameter D. Three principal
dimensions are commonly used to describe the form of a
particle contained in a hypothetical tight box: length (D)),
width (D,), and thickness (D,). These dimensions are per-
pendicular to each other and represent the long, intermedi-
ate, and short dimensions, respectively. Ratios derived
from these three dimensions are used as form factors to
quantify the shape. For example, the D,/D, ratio has been
traditionally used to indicate elongation, and the D,/D, ra-
tio has been adopted for flatness. Various form classifica-
tion diagrams have been developed based on this approach,
most notably by Zingg (1935), Krumbein (1941), and
Sneed and Folk (1958). The lineage of efforts to define the
particle form based on three principal dimensions also in-
cludes contributions from Wentworth (1923), Corey (1949),
Aschenbrenner (1956), Janke (1966), Dobkins and Folk
(1970), among others. Interested readers can refer to Blott
and Pye (2007), which provides a comprehensive summary
of the various form factors. Roundness is defined at an in-
termediate scale, describing the sharpness of local corners
and edges, which is one order of magnitude smaller than
the particle diameter scale, i.e., D/10 (Cho et al., 2006;
Jerves et al., 2016). The diameters of the curvature at the
corners are commonly used as major parameters to quan-
tify roundness. Surface texture, which relates to surface
roughness at the micro-to-nano scale, requires high-
resolution optical characterization (Alshibli et al., 2015).
Unlike form and roundness that are characterized optically,
surface texture has frequently been characterized mechani-
cally, e.g., through measurements of the interparticle fric-
tion angle (Lee and Seed, 1967; Rowe, 1962; Terzaghi et
al., 1996). This mechanical characterization is also driven
by the fact that intrinsic mineralogy primarily determines
surface texture (Terzaghi et al., 1996).

Sphericity is another aspect of 3D particle shape and is a
measure of how closely the shape of a particle resembles
that of a sphere. Wadell (1932) developed the concept of
true sphericity (S) to quantify sphericity. This measure
compares the particle’s surface area 4 to the surface area of
a sphere with the same volume as the particle 4, as defined
in Eqn. (1). He added that sphericity was best measured by

Roundness

-

A
Sine

Form

Surface texture

Fig. 1 Particle shape defined on three different scales (Mitchell and
Soga, 2005).
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the true sphericity (Wadell, 1933).

S=4./4 (1)

Later, Wadell (1934) introduced an alternative measure
of sphericity, denoted as ¥, as defined in Eqn. (2), because
of the challenges in measuring surface area. In this defini-
tion, ¥ is the volume of a particle, and V is the volume of
the smallest circumscribed sphere.

Y=V )" @)

Krumbein (1941) showed that ¥ can be effectively rep-
resented by Eqn. (3), where D', D", and D" are the three
principal diameters of an ellipsoid. These diameters, or-
dered such that D' > D" > D", define an ellipsoid with the
same volume as the particle. He termed this measure inter-
cept sphericity. This approach uses the same definition as
the alternative sphericity in Eqn. (2) while simplifying the
measurement to three principal dimensions.

Y/:( " Dm /D/2)1/3 (3)

There has been some confusion within the granular ma-
terials research community regarding whether sphericity is
a form factor or a fourth aspect of shape. Sphericity has
often been considered a form factor because it can be mea-
sured using three principal dimensions, as shown in
Eqn. (3). However, many studies have suggested that
sphericity is a distinct aspect that is separate from particle
form. This view is supported by the fact that Wadell’s true
sphericity (S) is influenced by both form and roundness,
highlighting the need to treat sphericity as a distinct charac-
teristic (Barrett, 1980; Blott and Pye, 2007; Zhu and Zhao,
2021). Particle form is defined by particle’s three principal
dimensions; thus, it is independent of local shape features,
such as roundness. However, true sphericity quantifies a
comprehensive aspect of shape by measuring equidimen-
sionality in all directions; thus, it is not completely inde-
pendent of roundness. For example, a cube and a regular
dodecahedron are considered ‘equant’ across the three
principal dimensions; thus, they are evaluated as having the
same form. However, the regular dodecahedron, which is
close to the shape of a perfect sphere, exhibits higher true
sphericity. A form described as ‘equant’ needs only be
equidimensional in three directions, whereas a true sphere
is equidimensional in all directions; thus, equant shapes are
not equally spherical from the perspective of true spheric-
ity. For this reason, it is appropriate to discuss ‘sphericity
measures’ such as ¥ as a form factor, while treating ‘true
sphericity’ S as a distinct fourth aspect of shape, even
though S was originally proposed as a shape descriptor to
measure sphericity.

Larger-scale properties such as particle form and true
sphericity are more critical for understanding 3D shape
characteristics than local scale properties like roundness
and surface texture. Specifically, the 3D form is defined by

three principal dimensions, and true sphericity is measured
based on the 3D surface area of the particle. Therefore,
these measurements are inherently limited when estimated
from 2D projection images. However, since roundness and
surface texture are defined at a more localized level, 2D
analysis may not result in significant loss of information
compared with 3D analysis. This perspective aligns with
Wadell’s observation: “while sphericity is essentially a
three-dimensional conception, roundness is obtained by
measurements in one plane only” (Wadell, 1932). The
minimal emphasis on roundness analysis in 3D may ex-
plain why Wadell never proposed a concept of 3D round-
ness despite his extensive studies on 3D sphericity. Given
that surface texture operates at an even smaller scale, the
importance of understanding the 3D surface texture may
not be as significant. Therefore, the correlation between 3D
and 2D shape analyses may provide a more practical value
for characterizing form and true sphericity. Therefore, this
paper focuses on larger-scale shape properties rather than
roundness and surface texture.

2.2 Advances and challenges in 3D shape analysis

When the concept of 3D shape description was first
conceptualized in the 1920s and later, 3D shape analysis
relied on measuring three principal dimensions to quantify
form and sphericity. Today, 3D shape analysis is primarily
conducted using 3D digital imaging techniques. These
methods enable the capture of full particle geometries with
unprecedented accuracy, including particle volume and
surface area, and facilitate measurements such as true sphe-
ricity. The 3D digital imaging techniques adopted within
the granular materials research community can be broadly
categorized into four approaches: (i) using a set of projec-
tion images, (ii) employing general-purpose handheld or
desktop 3D scanners that utilize laser or structured light,
(iii) applying X-ray micro-computed tomography (uCT),
and (iv) utilizing other methods, including various micro-
scopes. Zhang et al. (2019) similarly classified modern 3D
shape analysis methods as involving charge-coupled de-
vice image processing, laser scanning, or nCT.

(1) 3D shape analysis based on a set of projection images:
Early approaches to image-based 3D shape analysis at-
tempted to reconstruct a particle’s geometry by combining
multiple 2D images from different viewpoints, commonly
using three orthogonal projection images. The early efforts
include Kuo et al. (1996), Lee et al. (2005), and Cavarretta
et al. (2009). Later, researchers at the University of Illinois
developed the Enhanced University of Illinois Aggregate
Image Analyzer (E-UIAIA), a 3D shape analysis system
specifically developed for coarse aggregates, as shown in
Fig. 2. The proposed system creates a polyhedral digital
representation of a 3D particle by combining three orthog-
onal particle images (Huang and Tutumluer, 2014; Moaveni
et al., 2013; Qian et al., 2013). However, using only three




Fig. 2 E-UIAIA 3D shape analysis system (modified from Qian et al. (2013)): (a) Mineral particle for analysis; (b) Particle placed on the E-UTATA
system; (c) Three orthogonal images of the particle; (d) Polyhedral representation of the particle, which is subsequently used for 3D shape analysis,
e.g., elongation, flatness, and sphericity; Image reused with written permission from the publisher.
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Fig. 3 Digital representation of 3D particles obtained using structure-from-motion (SfM) photogrammetry (Zhang et al., 2016); Image reused with

written permission from the publisher.

projections limits its ability to accurately represent detailed
particle shapes, such as surface concavities, as depicted in
Fig. 2(d). More recent methodologies, such as 3D Dy-
namic Image Analysis (DIA), extract features from a
greater number of projections of a particle, ranging from 8
to 12 (Li Linzhu et al., 2023; Li and Iskander, 2021).
Structure-from-motion (SfM) photogrammetry, which is
extensively used in the computer vision field, has also been
adopted by the granular materials research community.
This method facilitates digital representation of 3D particle
geometry from multiple photographs taken at random
viewpoints with standard or cellphone cameras (Ozturk
and Rashidzade, 2020; Paixao et al., 2018; Tunwal and
Lim, 2023; Zhang et al., 2016; Zhao et al., 2021). Fig. 3
shows an example of SfM-based imaging applied to min-
eral particles. Although this approach enables a more accu-
rate representation of particle shape, capturing detailed
geometries requires extensive photographic efforts.

(i) General-purpose handheld or desktop 3D scanners
using laser or structured light: This approach employs laser
or structured light (SL), differentiating it from the above-
described photo-based approach. A study by Lee et al.
(2005) can be considered an early attempt in this category.

Their system captured one side of a particle on a conveyor
belt, employing a customized setup that combined two
cameras and a uniform line laser. While the effect of scan-
ning resolution needs to be further studied, the approach to
capture 3D particle geometries employing laser or SL is
becoming increasingly popular in the granular materials
research community because many commercial tools are
available (Bhattacharya et al., 2020; Hu et al., 2023;
Latham et al., 2008; Lee C.H. et al., 2022; Lee S.J. et al.,
2022; Lietal., 2021; Sun et al., 2014; Tripathi et al., 2023,
2024; Xiao et al., 2020; Yang et al., 2023). Fig. 4 shows the
setup of a 3D SL scanning system applied to mineral parti-
cles. Fig. 5 shows a digitally represented particle obtained
by SL scanning.

(iii) X-ray micro-computed tomography (uCT): This
technique utilizes an X-ray beam to generate cross-
sectional images of a specimen, which are then combined
to reconstruct its 3D digital representation. Unlike the other
methods that use the selective ‘projection’ images, this
UCT approach employs ‘slice’ images which are compiled
into a 3D digital image. This non-destructive technique al-
lows for detailed visualization of the intricate particle con-
tacts that compose the internal structure of a specimen,




|
n emitt

==

ed ‘Ji\ght pattern | [

Fig. 4 3D structured light (SL) scanning system to capture 3D particle geometry (Bhattacharya et al., 2020); Image reused with written permission

from the publisher.

(2) (b)

Fig. 5 Captured 3D particle geometry using 3D SL scanning: (a) Orig-
inal particle; and (b) Digitally represented particle (Bhattacharya et al.,
2020); Image reused with written permission from the publisher.

such as soil fabric. The pCT imaging system is often inte-
grated with conventional laboratory experiments, such as
triaxial compression, for in situ tomography. Therefore,
this setup facilitates the simultaneous loading and scanning
of specimen inside a triaxial cell, allowing the observation
of changes in the internal structure. Consequently, many
studies have adopted pCT to capture changes in soil fabric
along with the evolution of particle geometries within soil
samples (Al-Raoush, 2007; Alshibli et al., 2015; Bagheri et
al.,, 2015; Bloom et al., 2010; Druckrey et al., 2016;

Axial loading
device

X-ray beam

(BT

(ELREE ;
mage
device

Positioning device

CCD camera

Erdogan et al., 2006; Fei et al., 2019; Fonseca et al., 2012;
Fu et al., 2006; Kutay et al., 2010; Li Linzhu et al., 2023;
Maroof et al., 2020; Masad et al., 2005; Nie et al., 2020; Su
and Yan, 2018a; Vlahini¢ et al.,2014; Wu et al., 2018; Yang
et al., 2017; Zhou et al., 2015; Zhou and Wang, 2017).
Fig. 6 presents a schematic and experimental setup for in
situ tomography using pCT. In general, 3D particle geome-
try characterization using pCT can be categorized into
three approaches (Zhao and Wang, 2016): (a) voxel assem-
bly in images (Alshibli et al., 2015; Fonseca et al., 2012;
Lin and Miller, 2005; Ueda, 2020; Yang et al., 2017), (b)
reconstructed surface mesh (Lin and Miller, 2005), and (c)
calculations based on surfaces formed through 3D spheri-
cal harmonic (SH) analysis (Cepuritis et al., 2017; Erdogan
et al., 2006; Kutay et al., 2011; Masad et al., 2005; Nie et
al., 2020; Su and Yan, 2018a; Wei et al., 2022; Zhou et al.,
2015; Zhou and Wang, 2017).

(iv) Other 3D analysis methods: These approaches in-
clude, but are not limited to, the following: using digital
microscopes (Fang et al., 2022), optical tomography sys-
tems composed of an inverted microscope and a digital
camera (Bloom et al., 2010), confocal microscopes

Fig. 6 X-ray micro-computed tomography (LCT) setup for in-situ tomography: schematic and experimental setup (Bésuelle et al., 2006); Image re-

used with written permission from the publisher.
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(McCormick and Gee, 2005), and optoelectronic analysis
(Krawczykowski et al., 2022). An approach worth men-
tioning is the study by Yeong and Torquato (1998), which
involved probabilistic reconstruction of mesoscale 3D par-
ticulate media from a 2D slice image. This technique has
gained interest owing to its ability to extrapolate three-
dimensional structures from two-dimensional data, particu-
larly due to the limited access to pCT and computing
resources available at the time. Subsequent research has
applied this technique to reproduce mesoscale 3D hetero-
geneous rocks from 2D cross-section images for discrete
element simulation (Wei et al., 2023). However, it remains
uncertain whether these probabilistically generated 3D
particles accurately reflect actual 3D shapes. Additionally,
high-fidelity 3D reconstruction is computationally expen-
sive. In their article, it was highlighted that using the ex-
haustive method to calculate the two-point probability
function requires enumerating hundreds of millions of
particle pairs, which can easily exceed the memory capac-
ity of a standard personal computer, necessitating the use of
Monte Carlo simulations. Consequently, further research is
required to determine whether the reconstructed 3D me-
dium truly represents the actual geometries of the particles.

Recent approaches have also adopted Artificial Intelli-
gence and Machine Learning (AI/ML) technologies. Wang
et al. (2023) utilized a deep learning-based approach to
capture 2D randomly projected images from a vibration
screen machine. Zubi¢ and Lio (2021) demonstrated an
application within the computer graphics domain to recon-
struct 3D models from a 2D image of general objects such
as cars and birds. Xiao et al. (2020) introduced an AI/ML-
based method for statistically reconstructing 3D particle
geometries using trained datasets. There have been at-
tempts to use SfM for field analysis of particles, such as
stockpiles, by creating a 3D point cloud directly from im-
ages taken on site and then segmenting the point cloud into
individual particles. A major challenge arises from the oc-
clusion problem, where only a few particles are fully visi-
ble on the surface. To address this issue, Huang et al.
(2022) adopted an AI/ML approach to reconstruct the oc-
cluded sides of partially visible particles.

A 3D shape analysis is generally considered time-
consuming, labor-intensive, and computationally costly.
When particles are individually scanned for 3D shape anal-
ysis, such as with a desktop 3D scanner: (a) each particle
requires multiple scans for full 3D geometry characteriza-
tion, necessitating the use of a rotating table and flipping
particles upside down to capture all sides (Bhattacharya et
al., 2020); and (b) a significant number of particles need to
be scanned to ensure statistical significance for represent-
ing the shapes of the bulk. While scanning a few particles
using a handheld or desktop scanner is feasible, scaling up
to hundreds or thousands of particles is practically chal-
lenging, which limits statistical significance in the analysis.

On the other hand, X-ray pCT allows the simultaneous
capture of 3D geometries of all particles within a sample,
eliminating the need to scan each particle individually (Wu
et al., 2018). However, this method is also time-consuming
and computationally expensive due to the processes re-
quired for sample preparation, operation, and data post-
processing (Anusree and Latha, 2023; Bloom et al., 2010;
Guida et al., 2020; Roslin et al., 2022). Moreover, pCT
equipment is less accessible due to its high initial costs and
setup requirements. Radiation safety is another concern
with its use. Lastly, irrespective of whether the particles are
scanned individually or collectively, the process of creating
3D digital representations of particles for shape analysis
typically results in large computer files to preserve detail,
sometimes exceeding hundreds of megabytes or even giga-
bytes per particle. For example, the 382 publicly available
3D particle files in the NSF DesignSafe-CI repository
comprise 188 gigabytes, with an average of approximately
500 megabytes per file (Tripathi et al., 2023).

A 3D shape analysis is also costly due to the algorithmic
complexities involved in quantifying a shape stemming
from the intricacies of 3D analysis (Hu et al., 2023; Lee et
al., 2005). Digitally captured 3D particle geometries have
been modeled in various ways, including as sphere clumps
(Zhao et al., 2021), polyhedrons (Chen et al., 2018; Huang
and Tutumluer, 2014), and 3D spherical harmonic (SH)
representations (Jia and Garboczi, 2016; Su and Yan,
2018a; Zhou et al., 2015), among others. These methods
necessitate additional mathematical operations compared
with their 2D counterparts, such as circle clumps, poly-
gons, and 2D Fourier-based models. For a state-of-the-art
review of these modeling strategies, please refer to the
discussions by Augarde et al. (2021) and Zhao et al. (2023).

3. 2D shape analysis
3.1 2D shape descriptors

The history of 2D shape analysis based on projected
particle images dates back nearly a century to pioneering
work by Wentworth (1923), Cox (1927), Tickell (1931),
Wadell (1932, 1935), and others. Tickell (1931) introduced
a shape descriptor known as area circularity (c,), which
compares two areas, as detailed in Eqn. (4). Wadell (1933)
introduced a measure, then termed degree of circularity
(cp), which is now commonly referred to as perimeter cir-
cularity (to distinguish it from various circularities intro-
duced since then in the research community), which
compares two perimeters, as shown in Eqn. (5). Wadell
(1933, 1935) introduced another descriptor (c,), referred to
as diameter circularity, which is defined based on two di-
ameters, as shown in Eqn. (6). While ¢ is computed based
on diameter, it requires calculating the area of the projected
particle to determine the diameter of a circle with the same
area. Therefore, the adoption of these methods was limited
due to the need to manually determine the area and perim-
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eter of the projected particle. Although these measurements
could be performed using tools such as a planimeter or an
opisometer, their widespread use was hindered by the
time-consuming nature of the measurement process. In-
spired by c,, Riley (1941) proposed the inscribed circle
circularity (c,), as shown in Eqn. (7). Unlike c,, Cp
the shape descriptor ¢, does not require measurement of the

or cg,

area or perimeter, eliminating the need for a planimeter or
opisometer; thus, it has been favored in practice due to its
simplicity of measurement and ability to deliver results
similar to those of ¢, (Blott and Pye, 2007). Another tradi-
tional circularity is ¢y, in Eqn. (8), known as width-to-
length ratio circularity, which quantifies a particle shape
by comparing two principal dimensions. A schematic of the
2D shape analysis is shown in Fig. 7, where the raw projec-
tion image is binarized to capture the outline and geometric
parameters are then applied to evaluate the circularity. It is
worth noting that in the original publications, some of these
metrics are referred to as sphericities, not circularities.
However, to emphasize their 2D nature and avoid confu-
sion with 3D sphericities, we refer to them as circularity in
this review.

c,=ala, 4)
¢,=p./p (©))
cg=d./d, (6)
c,=(d;/d )" (7)
cy=d,/d, 6))

In Eqns. (4) to (8), the variables are defined as follows:

a is the projection area of a particle.

a,, is the area of the smallest circle circumscribing a parti-
cle.

p, is the perimeter of a circle with the same area as the
projected particle.

p is the perimeter of the projected particle.

d_ is the diameter of a circle with the same area as the pro-
jected particle.

d_, is the diameter of the smallest circumscribing circle.

d ; is the diameter of the largest inscribed circle.

() (b)

d, is the largest dimension of the particle.
d, is the width of a particle, orthogonal to d,.

The ¢, is evaluated based on two principal dimensions;
thus, it can be perceived as a measure of 2D form. Pye and
Pye (1943) analytically derived that c, is essentially the
square root of ¢, indicating that c, is also a 2D form fac-
tor. They showed that d_ can be expressed as the square root
of the product of two principal dimensions of an ellipse
with the same area, i.e., d,= (d'd")”? , where d’ > d". Sub-
sequently, by substituting a = n(d, / 2)* and a_, = n(d'/ 2)?
into Eqn. (4), it becomes evident that ¢, essentially acts as
a 2D form factor. Given the equivalence between ¢, and c_,
as discussed by Riley (1941), ¢, can be considered a mea-
sure of the 2D form. Therefore, except for Cp the other
circularities essentially serve as 2D form factors.

There are variations indicating circularity. For instance,
many studies, including Bagheri et al. (2015), introduced
Cox circularity (c,,,) after Cox (1927). However, note that
C,.y 1s essentially the same as Cpr The definition of c ., is
provided in Eqn. (9), where a and p follow the definitions
given in Eqns. (4) and (5). Given that a = n(d, / 2)?, it fol-
lows that 47ta = pcz. Therefore, ¢, is the square of Cpe Kuo
and Freeman (2000) also discussed this equivalency. Addi-
tionally, some articles introduced a different version of c.
Originally presented in the square root format as shown in
Eqn. (7), the version without the square root is also used
and is referred to as circle ratio sphericity (Zheng and
Hryciw, 2015).

Coox = 4ma / p? = cp2 )

The five circularities from Eqns. (4) to (8) are the most
commonly used circularities in the granular materials re-
search community for measuring 2D shapes (Mitchell and
Soga, 2005; Zheng and Hryciw, 2015). An additional series
of 2D shape descriptors have been developed in the re-
search community, expanding on traditional descriptors.
These include shape measures using radial segments
(Sukumaran and Ashmawy, 2001), Fourier descriptors

~—a =

Fig. 7 Schematic of 2D shape analysis: (a) Raw projection image; (b) Binary image derived from captured image for 2D shape analysis; and (c)

Geometric parameters used to assess circularities.
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(Bowman et al., 2001; Chen et al., 2022; Su and Yan,
2018b; Wangetal.,2005), and fractal analysis (Bouzeboudja
etal., 2022; Guida et al., 2020). A comprehensive review of
broadly used 2D circularities and form factors is provided
in other review papers, including those by Blott and Pye
(2007) and Rodriguez et al. (2012).

3.2 Advances and challenges in 2D shape analysis

Modern digital imaging technology has enabled rapid
analysis of shape and size based on 2D particle images
(Hryciw et al., 2014). Early initiatives, such as those by
Kwan et al. (1999), used digital particle image processing
to analyze the shape characteristics of coarse aggregates.
Notably, WipFrag, a commercial image-based particle ge-
ometry analyzer, has been available since the 1990s, pri-
marily for size analysis (Maerz et al., 1996; WipWare,
2023). Subsequent developments include the Aggregate
Image Measurement System (AIMS) (Chandan et al.,
2004; Masad et al., 2005; Masad, 2005) and its successor,
AIMS2 (Gates et al., 2011), which were specifically de-
signed to characterize aggregate geometries. Bloom et al.
(2010) employed an optical microscopic system consisting
of a Nikon TS100 microscope and a Coolpix950
2-megapixel digital camera for 2D particle geometry char-
acterization. With the advent of scanning electron micros-
copy (SEM) techniques, capturing the 2D shapes of fine
particles has become more straightforward (Kodicherla,
2023).

Recently, dynamic image analysis (DIA) systems have
gained popularity in the research community. These sys-
tems allow particles to fall through a vertical chute, where
high-resolution, high-speed cameras optically capture them
for further geometric analysis. Several commercial prod-
ucts such as QICPIC (Sympatec GmbH, 2022) have been
used in research (Cavarretta et al., 2009; Krawczykowski et
al., 2022; Li and Iskander, 2020; Zhou and Wang, 2017).
Although this method provides rapid characterization, re-
searchers have noted issues associated with its somewhat
limited resolution. Cepuritis et al. (2017) highlighted the
limitation of accurately characterizing particles smaller
than approximately 40 um due to the relatively large pixel
size of the DIA system. Li and Iskander (2021) also noted
similar resolution limitations in their discussion of 2D DIA
measurements.

Attempts have also been made to estimate the 3D geom-
etry of particle shapes from a single image by augmenting
2D imaging. Montenegro Rios et al. (2013) employed a
light source alongside a digital camera system to estimate
the third dimension based on projected shadows. Addition-
ally, Zheng and Hryciw (2017) introduced a stereophotog-
raphy approach for estimating the third dimension of
particles.

An advantage of 2D analysis includes its potential to
conveniently analyze shapes from field photographs, such

as those taken from stockpiles, making it useful for field
inspections and on-site geometry quantification (Moaveni
et al., 2013; Tutumluer et al., 2017). The process involves
an image segmentation phase to identify individual parti-
cles in the photo, followed by 2D shape analysis to quantify
the geometry. Various image segmentation algorithms and
software are available, including the watershed segmenta-
tion algorithm (Vincent and Soille, 1991), which effec-
tively isolates individual particles in an image. With recent
advances in AI/ML techniques, image segmentation has
become more convenient, as demonstrated by tools such as
Meta AI’s Segment Anything (Meta, 2023). Fig. 8 shows
an example in which different colors indicate the seg-
mented particles. Nevertheless, perfecting this process for
analyzing particle geometry in the field is ongoing, with
limited success. Challenges such as inaccuracies caused by
shadows and occlusion, where particles are partially ob-
scured by nearer particles in the images, require further in-
vestigation in future. Consequently, 2D shape analysis is
still predominantly conducted in a laboratory environment.

The major disadvantage of 2D shape analysis is its sus-
ceptibility to changes in viewpoint and sensitivity, resulting
in analysis outcomes that depend on how a particle is pro-
jected (Alshibli et al., 2015; C.H. Lee et al., 2022; Li
Lianghui et al., 2023; Zheng et al., 2021). This limitation
can be addressed by capturing a sufficient number of 2D
images for each particle and repeating this process for a
large number of particles to achieve statistical significance
(Cepuritis et al., 2017); however, this approach compro-
mises the primary advantages of 2D analysis—speed, sim-
plicity, and convenience. Given the uncertainties regarding
the required number of 2D samples per particle, research-
ers have made different and often contradicting sugges-
tions. Xie et al. (2020) suggested using three orthogonal
projections, although they acknowledged the practical dif-
ficulties in field applications and therefore recommended
using three maximum-area and three minimum-area pro-
jections as alternatives. Li Linzhu et al. (2023) employed
Digital Image Analysis (DIA) with 8 to 12 projections per

Fig. 8 Image segmentation performed on a photo using the Segment
Anything code. The raw photo was taken from DepositPhotos (2014) and
used under its standard license.
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particle, but they argued that this number may not suffi-
ciently capture the 3D geometry of particles. Zhao et al.
(2021) reported that even 50 2D projection images may not
faithfully represent 3D particle geometry. Attempts have
also been made to optimize the number of particle projec-
tions required for effective and efficient 2D characteriza-
tion (Kfupka and Riha, 2015). In general, 2D shape
analysis compromises accuracy and a comprehensive un-
derstanding of 3D particle geometry, in favor of speed and
convenience.

4. Correlation between 3D and 2D shape
measures

4.1 Approaches and challenges in estimating 3D
shape from 2D images

There has been a growing interest within the research
community in bridging the gap between 3D and 2D shape
analyses due to their distinct strengths and limitations. This
interest stems from the vision to leverage the speed and
simplicity of 2D analysis while obtaining the accuracy of
3D analysis. Efforts to achieve this integration include the
development of a 2D-to-3D conversion database via parti-
cle sampling. This process begins by conducting 3D imag-
ing to digitally represent the 3D particle geometry,
followed by creating a series of 2D projections to generate
a set of 2D digital images. These images were then ana-
lyzed to develop a conversion database that could later be
used to estimate 3D geometry from 2D images (Ueda,
2020; Ueda et al., 2019; Wang et al., 2019). However,
opinions vary regarding the efficacy of this approach. Stud-
ies investigating this relationship have reported a range of
conclusions, from limited effectiveness to highly promising
results, indicating a complex and evolving understanding
of the potential for integrating 2D and 3D shape analyses.

Many studies have concluded that using 2D shape pa-
rameters, obtained from projected particle images, to esti-
mate 3D shape properties is inherently limited, as capturing
the full complexity of a 3D shape by a 2D particle image,
or even a set of 2D images, cannot adequately represent all
dimensions (Alshibli et al., 2015; Bouzeboudja et al., 2022;
Fonseca et al., 2012; Hu et al., 2023; Jia and Garboczi,
2016; C.H. Lee et al., 2022; Li Lianghui et al., 2023; Li
Linzhu et al., 2023; Li and Iskander, 2021; Maroof et al.,
2020; Su et al., 2019; Sun et al., 2014; Zheng et al., 2021).
The 2D shape analysis captures only the planar geometry
attributes of a particle, thereby missing critical information
about its 3D geometry. Additionally, 2D descriptions are
dependent on viewpoint, which can compromise the reli-
ability of shape characterization.

Nevertheless, many other studies have demonstrated the
significant potential of using 2D particle images to estimate
3D shapes, often reporting a strong correlation between 3D
and 2D shape analysis results. This suggests that the rela-
tionship between 3D and 2D geometry measures could be

leveraged in a 2D-to-3D approach, indicating a viable
pathway for reasonably deriving 3D shape properties from
2D data (Cavarretta et al., 2009; Cepuritis et al., 2017; Han
etal., 2023; Kaviani-Hamedani etal., 2024; Krawczykowski
etal., 2022; Kutay etal., 2011; Lu et al., 2022; Masad et al.,
2005; Ozturk and Rashidzade, 2020; Sandeep et al., 2023;
Suh et al., 2017; Xie et al., 2020; Zhao et al., 2021; Zheng
etal., 2019).

The granular materials research community has devel-
oped a diverse array of shape descriptors (Alshibli et al.,
2015; Chandan et al., 2004; Fang et al., 2022; Hu et al.,
2023; Kong and Fonseca, 2018; S.J. Lee et al., 2022; Su et
al., 2020a; Sun et al., 2014; Xiao et al., 2020). The large
number of currently available descriptors can be over-
whelming and can even lead to confusion (Cavarretta et al.,
2009; Maroof et al., 2020). As a result, the correlation be-
tween 3D and 2D shape measures, whether strong or weak,
often hinges on the specific shape descriptors selected from
the available array. For instance, Ozturk and Rashidzade
(2020) noted a good correlation between 3D sphericity and
2D circularity measures they selected for their study. How-
ever, they found no significant correlation with the form
factors, demonstrating that the effectiveness of using 2D
data to estimate 3D shapes varies depending on the descrip-
tor employed.

For a successful 2D-to-3D approach, the ‘mean’ value of
2D shape measures obtained from a set of 2D images
should have a strong relationship with the 3D shape mea-
sure. For example, by capturing ten 2D projection images
of a particle from various viewpoints and evaluating the 2D
shape using a circularity descriptor, one should find that the
mean value of these circularity measurements strongly
correlates with the 3D shape measurement across all sam-
ple particles. This indicates a robust correlation between
2D circularity and 3D shape measure, fulfilling a necessary
condition for the 2D-to-3D approach. At the same time, it is
equally important that the 2D shape measures exhibit a low
‘variance’ and remain insensitive to changes in viewpoints.
Even if 2D shape measures show a strong mean relation-
ship with 3D measures, high variance caused by differing
viewpoints requires capturing many 2D images to estimate
a 3D shape accurately and reliably. Such requirement could
limit the practicality and efficiency of the 2D-to-3D ap-
proach because the need for more images complicates the
process and reduces its overall feasibility. For instance,
Zheng et al. (2021) reported that the variation in the data
obtained from random-projection tests was too substantial
to reliably infer 3D particle shapes. This problem is inher-
ently an ill-posed problem because the variance arises
solely from 2D images despite the corresponding 3D de-
scriptor exhibiting zero variance. Consequently, this vari-
ability has led some researchers to view the 2D-to-3D
approach skeptically due to significant data scatter, despite
the strong correlation between the mean values of 2D and
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3D shape measures.

Therefore, to establish a reliable 2D-to-3D relationship
for 3D shape estimation from a 2D particle image, or at
most a couple of images, it is essential to identify a set of
2D and 3D shape descriptors that address both criteria re-
garding ‘mean’ and ‘variance’. Specifically: (i) when mul-
tiple 2D projection images are available, the mean value of
the 2D shape measures should exhibit a strong relationship
with the measures from the 3D shape descriptor, and (ii) the
2D shape measures must be minimally sensitive to varia-
tions in viewpoint to ensure consistent results, although
determination of the satisfactory tolerance may depend on
the cases. The achievement of a relatively low variance in
2D shape measures is critical for minimizing discrepancies
in quantifying a shape, thereby enhancing the reliability of
3D shape estimation. If such a set of 2D and 3D shape de-
scriptors can be identified, it will be possible to confidently
use a smaller number of 2D particle images, ideally even a
single random 2D image, for accurate 3D shape estimation.

4.2 Correlation between 3D true sphericity and
2D perimeter circularity

As discussed in Section 3.1, c,, ¢, ¢, and ¢, function as
2D form factors. According to our comprehensive review,
no meaningful correlation has been identified between
these circularities and a 3D form factor. The 3D form is
characterized using three principal dimensions to measure
equidimensionality in three directions, whereas the 2D
form relies on only two principal dimensions from the
projected particle image. Thus, this inherent limitation re-
stricts the accuracy of estimating 3D form from 2D form
measurements.

On the other hand, a number of studies have observed a
modest-to-good correlation between 2D perimeter circular-
ity (¢,) and 3D true sphericity (S), commonly showing that
the mean values of <, correlate well with S. (Cavarretta et
al., 2009; Han et al., 2023; Rorato et al., 2019; Sandeep et
al., 2023; Su and Yan, 2020; Xie et al., 2020; Zheng et al.,
2019). For example, Sandeep et al. (2023) demonstrated
that S was more closely related to [ than to other circular-
ities. The higher correlation likely stems from the equiva-
lence of their definitions across the different spatial
dimensions. In 2D space, the projected area captures the
object’s footprint, and the perimeter defines its boundary.
In parallel, in 3D space, the volume captures the full extent
of an object, and the surface area defines its boundary. Ac-
cordingly, the definition of ¢, as presented in Eqn. (5)
serves as the 2D counterpart of S in Eqn. (1). Wadell
(1933) indeed introduced both 3D true sphericity (S) and
2D perimeter circularity (cp) using similar notations, im-
plying that ¢, was developed as a 2D version of § (see
pages 317 and 321 to compare the definitions in the article).
Rorato et al. (2019) also noted that perimeter circularity is
the 2D descriptor that best correlates with true sphericity,
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reflecting the equivalence of their definitions in 2D and 3D.
Therefore, among the traditional circularities discussed in
Section 3.1, ¢, is unique in that it serves as a 2D version of
true sphericity.

If the mean of ¢, demonstrates good correlation with S,
then it is essential to assess how sensitive ¢ is to random
projections. A recent study by Lee et al. (2022) reported
that ¢, showed the smallest variance compared with other
classical 2D shape descriptors, indicating its relatively low
sensitivity to how a particle is projected. This indicates that
¢, can be reliably used to estimate 3D shape from 2D im-
ages, highlighting its potential for robust 3D shape analysis
based on random 2D projections. Bagheri et al. (2015) is
another study that confirmed a strong correlation between
the mean values of ¢, and S, while emphasizing that the
standard deviation of < data is notably low. (They analyzed
Ceox» Which is the square of ¢.) The study suggested that if
¢, is employed, the use of a minimum number of projection
images—specifically two projections, including minimum
and maximum projections, or three perpendicular projec-
tions—can achieve an optimal balance between efficiency
and accuracy. This approach was found to limit the maxi-
mum error to less than 10 %, even when compared to sce-
narios utilizing up to 1000 projections, demonstrating that
[ maintains a relatively invariant nature regardless of how
a particle is projected. This consistency implies that a lim-
ited number of 2D projection images can effectively esti-
mate a 3D shape using ¢, due to its low variance and strong
correlation with S.

Wadell originally developed 2D circularities, ¢, and ¢,
to address the practical challenges associated with measur-
ing 3D surface areas for quantifying particle shapes as de-
fined by true sphericity S (Hayakawa and Oguchi, 2005;
Howarth, 2017). With 3D imaging tools, it is now possible
to evaluate 3D particle geometry in terms of S with high
accuracy. These techniques present an opportunity to re-
examine the correlation between 2D circularity and 3D
sphericity, particularly between ¢, and S, given their defini-
tional equivalency. Establishing a strong correlation be-
tween these shape measures will significantly enhance the
accuracy of estimating 3D shape from random projection
2D particle images.

5. Demonstration

To further substantiate the findings from the literature
review, a series of shape analyses is conducted to determine
(1) whether there is a strong correlation between 3D true
sphericity () and the mean of 2D perimeter circularity (cp),
among others, and (ii) whether the variance of [ is mini-
mal compared to those of other 2D shape measures, thereby
making it a more reliable predictor of 3D shape from any
2D projection image.
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5.1 3D and 2D shape analyses

This study analyzes an extensive dataset of 382 mineral
particles sourced from Florida and Virginia. All particles
from Florida in this dataset are limestone, while all
particles from Virginia are freshly crushed granite sourced
from a quarry in Richmond, Virginia. The Florida lime-
stone (FL) particles are composed of three groups: FL-A,
FL-B, and FL-C. The FL-A group consists of 100 lime-
stone particles selected from a batch provided by the Flor-
ida Department of Transportation (FDOT) from District
Four and Six regions in South Florida. The FL-B and FL-C
groups, supplied by Titan America LLC, each comprises 50
particles sourced from the same limestone quarry and pro-
cessed using different crushers. The Virginia granite (VG)
particles, also provided by Titan America LLC, are com-
posed of two groups: VG-A and VG-B. The VG-A group
includes 100 randomly selected granite particles, while
group VG-B consists of 82 particles containing crushed
particles from the same granite batch. Therefore, the data-
set comprises five distinct groups of 382 particles.

5.1.1 3D shape analysis procedure

Each particle is individually scanned to digitally repre-
sent the 3D geometry using a Polyga C504 structured light
(SL) 3D scanner. This scanner is capable of scanning ob-
jects ranging from 5 to 30 mm in size with high resolution
and accuracy, down to 6 microns (Polyga, 2021). The
scanning setup is shown in Fig. 9. Each particle is placed
on a small clump of putty to scan one side of its surface at
a time (Fig. 9a). The particle is rotated while the 3D scan-
ner, which is positioned directly above, captures its geom-
etry from all corners to ensure comprehensive coverage
(Fig. 9b). The particle is turned upside down, and scanning
continues to ensure that all sides are captured thoroughly.
Approximately 15 to 20 scans are performed per particle to

complete the process. The scanned partial geometries are
merged to create a 3D digital particle that realistically rep-
resents the original particle (Fig. 9¢), for which the com-
panion software FlexScan3D is employed. The 3D digital
particle is created in the Wavefront .obj file format. The 3D
particle geometry attributes, including surface area (4) and
volume (¥), are measured using the 3D print toolbox in
Blender (2022), an open-source 3D computer graphics
software. An advantage of SL scanning is that it performs
3D scanning at a 1-to-1 scale, which means that the cap-
tured 3D digital particle is the exact size of the original
particle (Lansdown, 2019). As a result, the particle surface
area and volume can be directly obtained from 3D digital
particles without the need for re-scaling. These values are
then used to compute the true sphericity (S) per Eqn. (1).
Listing the 3D geometry information obtained for all 382
particles is extensive, but readers can directly refer to the
dataset, which is publicly available in the NSF Design-
Safe-CI data repository (Tripathi et al., 2023).

5.1.2 2D shape analysis procedure

Ten 2D projection images are captured from random
viewpoints for each particle using ParaView (Kitware Inc.,
2022), as illustrated in the first row of Fig. 10. A custom
Python script is developed to automate this random projec-
tion process in batch mode. Subsequently, each 2D image
is converted into a binary format with the background in
white and the foreground (particle) in black to capture the
outline geometry, as depicted in the second row of Fig. 10.
OpenCV (2023) is used for this binary conversion. This
process generates 3820 2D projection images. These 2D
binary images are then used to analyze the 2D shape in
terms of five commonly used circularities, c,, Cp Cop Coo and
¢, as shown in Eqns. (4) to (8). The 2D analysis uses
MATLAB code developed by Zheng and Hryciw (2016),

(@)

(b)

(©

Fig. 9 3D scanning of a particle: (a) Particle placed on putty; (b) 3D scan conducted using Polyga C504 SL 3D scanner; and (c) Digitally represented
3D particle (shown on the screen); Image source: Tripathi et al. (2023), available under the Open Data Commons Attribution License.



Priya Tripathi et al. / KONA Powder and Particle Journal

originally developed as a companion code to their earlier
work (Zheng and Hryciw, 2015). The circularity measure c,
computed by this code differs from the original definition
by Riley (1941) as per Eqn. (7). Therefore, the code is
modified to align with Riley’s original formulation. The
mean and standard deviation of the circularity measures are
then computed for each particle.

5.2 Analysis results

The analysis results for the five particle groups, FL-A,
FL-B, FL-C, VG-A, and VG-B, are presented in Figs. 11—
15. Each data point in the figures represents the shape
analysis result for a particle. Fig. 16 aggregates the data for
all five particle groups. In the figures, the x-coordinate of
the data point represents the mean () of circularities eval-
uated from ten 2D projection images of each particle.
These are assessed using five circularity measures: c,, Cp
¢y €, and ¢, as shown in the figures. In the first-row fig-
ures, the y-coordinate represents the evaluated true spheric-
ity (S), comparing the mean circularity values with S. The
blue line in the figure indicates the regression line for the
data points, and the coefficient of determination (R?) indi-
cates the data’s coherence with the regression line. In the

second-row figures, the y-coordinate represents the stan-
dard deviation (o) of circularities, evaluated from the ten
2D projection images of each particle. This comparison
highlights how standard deviations relate to mean values.
From all first-row figures in Figs. 11-16, it is apparent
that the mean of ¢, values, u(c,), demonstrates a relatively
strong linear relationship with S, with the data points clus-
tered coherently along the regression line. Compared with
the other circularity measures, ¢, consistently exhibits the
highest R? value across all five particle groups. This indi-
cates the reliability of using ¢, as a predictive measure, as
evidenced by prior studies. Furthermore, from all second-
row figures, it is evident that the distributed values of the
standard deviation of ¢, o(c,). are significantly lower than
those of other circularity measures. This indicates that a
random 2D projection image yields a comparable [ value,
demonstrating its insensitivity to viewpoint changes around
a particle. However, the other circularities, c,, ¢, c,, and
c,» do not exhibit a strong linear relationship with S as
compared with Cp as indicated by the low R? values and
high data scatter. This lack of correlation may be explained
by the fact that ¢, c,, ¢, and ¢, function as 2D form fac-
tors, whereas ¢, acts as the 2D analog of true sphericity,

Fig. 10 Ten 2D projection images of a VG-A particle.
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Fig. 11 2D and 3D shape analysis results for FL-A particles. (a) Mean (x) of 2D circularities vs. 3D true sphericity S, (b) Mean () vs. standard devi-

ation (¢) of 2D circularities.
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Fig. 12 2D and 3D shape analysis results for FL-B particles. (a) Mean (u) of 2D circularities vs. 3D true sphericity S, (b) Mean (x) vs. standard devi-

ation (o) of 2D circularities.
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Fig. 13 2D and 3D shape analysis results for FL-C particles. (a) Mean (u) of 2D circularities vs. 3D true sphericity S, (b) Mean () vs. standard devi-

ation (o) of 2D circularities.

supporting why < correlates well with S. The standard
deviations of c,, ¢, ¢, and c, are also significantly higher
than o(c,), because these measures rely on two principal
dimensions from the projected particle image, leading to
high variability depending on the viewpoint.

In summary, the low a(cp) indicates that a small number
of 2D projection images can effectively estimate ¢, that
closely approximates ,u(cp) for each particle, thus eliminat-
ing the need to evaluate many 2D projection images to get
u(c,). The strong linear relationship between u(c,) and S,
accompanied by limited data scatter along the regression
line, supports the feasibility of high-fidelity estimation of S

from Cpr For example, the regression line for FL-A in
Fig. 11(a) can be expressed as S=1.48 x ,u(cp) —0.56.
Given the low O'(Cp), this can be approximated as S ~
1.48 x ¢~ 0.56. This approach provides a fast and reliable
method for estimating a 3D shape in terms of S from the 2D
perimeter circularity, Cp obtained from a 2D particle image.

6. Concluding remarks

Particle shape significantly influences the behavior and
properties of granular materials, highlighting the impor-
tance of shape characterization. This characterization has
been conducted through either 3D or 2D analysis, each
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Fig. 15 2D and 3D shape analysis results for VG-B particles. (a) Mean () of 2D circularities vs. 3D true sphericity S, (b) Mean () vs. standard de-

viation (o) of 2D circularities.

offering distinct methodologies and associated trade-offs.
Although 3D analysis provides greater accuracy by captur-
ing the complete geometry of particles, it is more time-
consuming and computationally expensive. In contrast, 2D
analysis is simpler and faster, suitable for rapid assessment
but less effective for providing a comprehensive under-
standing of 3D geometry. These distinct strengths and lim-
itations have ignited interest within the granular materials
research community to explore the correlation between 3D
and 2D shapes, potentially enabling more efficient estima-
tion of 3D shape from a 2D particle image or images. In
response to this research interest, this paper comprehen-
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sively reviews previous studies to identify a set of 3D and
2D shape measures that best correlate with each other,
aiming to bridge the gap between these two approaches.
Particle shapes are commonly characterized by large-
scale properties such as form and true sphericity and local
scale properties such as roundness and surface texture. This
review focuses on larger scale shape properties, as they are
more critical for understanding 3D shape characteristics.
The literature review reveals a lack of meaningful correla-
tion between 3D and 2D form factors, primarily because
the 2D form is measured using only two principal dimen-
sions from the projected particle image, while the 3D form
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Fig. 16 2D and 3D shape analysis results for all 382 particles. (a) Mean (u) of 2D circularities vs. 3D true sphericity S, (b) Mean (u) vs. standard

deviation (¢) of 2D circularities.

is defined using aspect ratios based on three principal
dimensions. This limitation restricts the accuracy of esti-
mating 3D form from 2D random projection images. On
the other hand, true sphericity measures how closely a
particle’s shape approximates that of a perfect sphere.
From the comprehensive literature review, this study finds
that previous research has reported a good correlation be-
tween true sphericity (S) and perimeter circularity (c,). This
correlation exists because ¢, acts as the 2D analog of S; true
sphericity (S) is calculated based on the particle’s surface
area, whereas [ is derived using a similar definition, em-
ploying the perimeter of the projected particle to mirror the
role of surface area in S. Therefore, these definitions create
a natural equivalence across the different spatial dimen-
sions. Furthermore, S quantifies a comprehensive aspect of
shape by measuring equidimensionality in all directions,
unlike form measurements that are limited to only three
directions. The 2D image retains geometric characteristics
that facilitate partial evaluation of equidimensionality in all
directions, which supports the strong correlation between
true sphericity and perimeter circularity.

It is also worth noting that true sphericity (S) should be
distinguished from other sphericity measures such as inter-
cept sphericity (), even though S was originally proposed
as a shape descriptor to measure sphericity. Conventional
sphericity measures are often considered form factors be-
cause they can be calculated using the three principal di-
mensions, independent of local shape features such as
roundness. However, true sphericity is influenced by both
form and roundness because it evaluates a more compre-
hensive aspect of shape by measuring equidimensionality
in all directions. This highlights the need to treat true sphe-
ricity as a distinct fourth aspect of shape. This differentia-

tion extends to 2D circularities: commonly used circularities
such as c,, c;, c,, and c, function as 2D form factors be-
cause they can be defined using two principal dimensions
from a projected particle image. In contrast, ¢ and ¢,
(essentially ¢, squared) serve as 2D analogs of true spheric-
1ty.

This study further validates the correlation between S
and ¢, by analyzing approximately 400 mineral particles. A
robust linear relationship is evident between the mean of ¢,
values and S, which is characterized by high R? values and
limited data scatter. In addition, the standard deviations of
c, are significantly lower than those of other circularities,
indicating its insensitivity to viewpoint changes around a
particle. This finding underscores the potential of using
some 2D particle images to effectively and efficiently esti-
mate 3D particle shape based on the 2D-to-3D relationship
between ¢ and S. This approach combines the speed and
simplicity of 2D analysis with the accuracy of 3D analysis.
We encourage the granular materials research community
to further investigate the implications of the findings pre-
sented in this paper.
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