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Imaginary-time response functions of finite-temperature quantum systems are often obtained with methods
that exhibit stochastic or systematic errors. Reducing these errors comes at a large computational cost—in
quantum Monte Carlo simulations, the reduction of noise by a factor of two incurs a simulation cost of a factor of
four. In this paper, we relate certain imaginary-time response functions to an inner product on the space of linear
operators on Fock space. We then show that data with noise typically does not respect the positive definiteness of
its associated Gramian. The Gramian has the structure of a Hankel matrix. As a method for denoising noisy data,
we introduce an alternating projection algorithm that finds the closest positive definite Hankel matrix consistent
with noisy data. We test our methodology at the example of fermion Green’s functions for continuous-time
quantum Monte Carlo data and show remarkable improvements of the error, reducing noise by a factor of
up to 20 in practical examples. We argue that Hankel projections should be used whenever finite-temperature
imaginary-time data of response functions with errors is analyzed, be it in the context of quantum Monte Carlo,
quantum computing, or in approximate semianalytic methodologies.
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Introduction. A fundamental task in the study of quan-
tum field theories is the evaluation of the expectation value
of dynamical correlation functions in a statistical ensemble
[1]. For most nontrivial models, these correlation functions
cannot be evaluated analytically, and one has to resort to
numerical methods of some form. Chief among these are
quantum Monte Carlo (QMC) methods, which simulate field
theories by stochastic sampling [2—13]. These methods form
the backbone of correlated lattice model [14] and materials
simulations [15] and are also used to study systems in high
energy physics, such as quantum chromodynamics [8,16].
Many-body simulations of correlation functions on quantum
computers are similarly of a statistical nature.

The predictive power of stochastic simulations of quantum
field theories is often limited only by the precision to which
correlation functions, such as Green’s functions and suscep-
tibilities, can be obtained. This precision is characterized by
the size of the statistical error, which decreases only as the
square root of the computational effort. Thus, decreasing the
uncertainty comes at a high computational cost once some
threshold in effort (and thus precision) has been reached.
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The majority of statistical simulations of quantum field
theories are performed in so-called imaginary time or Mat-
subara frequencies [17], though alternative numerically exact
formulations based on Keldysh diagrammatics [10,18-20] are
possible on small systems. In the absence of a sign problem,
this Wick-rotated formalism results in positive real simulation
weights with a straightforward probabilistic interpretation.
However, the interpretation of response functions requires
an analytic continuation [21-23] that exponentially amplifies
statistical and systematic uncertainties.

Given the high computational cost, it is of great benefit
to identify components of the error that violate fundamen-
tal physical laws or mathematical constraints. For example,
if a quantum computing simulation is known to have a
fixed particle number, a sample that violates this constraint
can be removed from consideration [24]. Causality, or the
positivity of the spectral function, is another such physical cri-
terion. Noisy real-time simulations can make use of a causal
projection based on an inner product structure and a pro-
jection to an associated positive semidefinite (PSD) Toeplitz
matrix, leading to vastly improved spectra of time-evolved
systems [25].

This paper introduces a criterion based on an inner product
structure for equilibrium imaginary-time correlation func-
tions. We define an inner product of imaginary time (t)
operators on the Fock space and show its positivity. When
discretized on a uniform grid, its Gramian matrix is a positive
semidefinite Hankel matrix whose positivity may be violated
in noisy simulations. We then devise an alternating projection
algorithm to find the positive-seminite Hankel matrix clos-
est to given noisy data and thereby denoise imaginary time
data. In an application to numerical results from typical QMC
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problems, we find that this projection substantially reduces the
statistical error at negligible computational cost.

Method. For a system described with a Hamiltonian H at
inverse temperature 8 and with density matrix p = e #H/Z
and partition function Z = Tr(e #H), the real-time correlation
function G(¢,t") of an operator AT(t) with another operator
B('),

Gap(t.1') = Tr[p(e™ ATe ") Be™ )], (1)

induces an inner product (A(¢), B(t')) on the vector space
of linear operators A(t), B(t') from the Fock space to itself,
since it satisfies linearity, conjugate symmetry, and positivity
when the operators are identical: G4 (¢, 1) = (A(t),A(t)) > 0
[25,26]. The operators A and B may be either fermionic or
bosonic. As a consequence, for any sequence (¢, 1, - - - , ty),
and for any operator A, the Gramian G; = Gaati, 1)), 1 <
i, j < N is a positive semidefinite N x N matrix that can be
used as a starting point for denoising real-time simulations
[25]. Moreover, if the correlation function is time-translation
invariant, i.e., G(#;, t;) = G(t; — t;), the Gramian matrix is a
Toeplitz matrix.
Consider, in analogy, the imaginary time function:

Gap(t, ') = Tr[p(e™ATe ) (e " Be™ ™). (2)

This expression similarly satisfies linearity, conjugate sym-
metry, and for 0 < 7 4+ 1’ < B, Gap(t, /) coincides with the
definition of an imaginary time correlation function of 7 + 7’:

Gap(t, ') = Gap(t + 1) = Gap(7', 7). ©)

Due to the time-ordering in the definition of the imaginary-
time correlation function, this coincidence is only true inside
the interval 0 < 7 + 7t/ < B.

The remaining requirement for Gag(t, ') to be an in-
ner product, positivity, is straightforward. We define A(t) =
e~ ™MAe™ with AT(r) = e™ATe ™ | such that Guu(z, /) =
Tr[pAT(7)A(t")]. We note that B(t) = AT(v)A(7) is positive
semidefinite since it is a product of a matrix and its adjoint.
Thus, Gaa(t, T) = Tr[pB(t)] > 0 for any 7, since p is also
PSD, and Tr[PQ] > 0 for any two PSD matrices P and Q.
Gap(t, 1) therefore forms an inner product (A(t), B(z')) on
the space of linear operators from the Fock space to itself.
Moving forward, we will focus on Gaa(t, t’), drop the sub-
script, and simply refer to G(z, t’).

As a consequence, for time points (ty, T2, ---, Ty) the
Gramian matrix H, =Gt 1)) is positive semidefinite.
Moreover, if the time points are uniformly spaced at distance
A1, all antidiagonal entries of H are identical and H has the
structure of a Hankel matrix. In that case, the Gramian ma-
trix has entries H;; = Giyj = G(t; + 1;) with 7; = iAt1,i =
0,---,N/2=8/QR2A7) (N even). This matrix is illustrated in
Fig. 1, and by the argument above it must be PSD. In addition,
its submatrix with the first column and last row dropped (de-
picted with dashed lines in Fig. 1), which corresponds to time
points (4, 25, -+ -, (N_ZUAT ), is also PSD.

Algorithm. A Hankel matrix H, ; obtained from approxi-

mate or statistical simulations of a correlation function G is
typically not PSD due to approximation errors or noise. It
is therefore natural to construct the PSD Hankel matrix H;

H= |
Gyt Gn—2 Gna
Gy Gy Gn-1 Gy
FIG. . Hankel ~ matix  H;; =Giy; =G(r;+1;)  for
i,j=1(0,1,---, %) used in the projection. Also shown (dashed
line) is the Hankel matrix corresponding to i, j = (3, 2, -+, ¥=1).

that is closest to Hij within an appropriately chosen norm,
from which we can extract a denoised G. Here, we choose the
Frobenius norm. Additionally, G should satisfy physical con-
straints, such as fermion or boson (anti)commutation relations
or predetermined values at O and B.

Projection algorithm. Before outlining the procedure for
finding G, we make the following observations regarding PSD
and Hankel matrices.

(i) In the Frobenius norm, the closest PSD matrix to a
given Hankel matrix is obtained by diagonalizing the matrix
and setting all negative eigenvalues to zero [28]. The resulting
matrix is in general not a Hankel matrix. PSD matrices form
a convex set, since for any two PSD matrices P, Q and any
0 < o <1 the matrix A = P + (1 — «)Q is also PSD; this
follows straightforwardly from the observation that x” Ax =
ax”Px 4+ (1 — a)xT Qx > 0 for any vector x.

(i1) The closest Hankel matrix (in the Frobenius norm) to
any positive matrix is obtained by averaging the antidiagonals
[29]. The resulting matrix is in general not PSD. Hankel
matrices also form a convex set since, for two Hankel matrices
H, and H,, H; = aH; + (1 — a)H, is also a Hankel matrix.

(iii) Values of correlation functions at T = Q or T = § are
often known to much higher precision than values at arbitrary
times since they correspond to static expectation values. The
M x M matrix B (M = %V + 1) with fixed values at the (0,0)
and/or (M, M) position closest to a given matrix A is obtained
simply by replacing the values of A at (0,0) and (M, M) by
the desired values. If A is a PSD Hankel matrix, B retains the
Hankel structure but is in general not PSD. The set of matrices
with fixed values at (0,0) and (M, M) is convex.

At least one positive definite Hankel matrix with a given
value at T =0 and B exists, since the exact solution to
the problem satisfies these properties. Since the intersec-
tion of these convex sets is not empty, it is possible to use
Dykstra’s algorithm [30] (see also Appendix A) to find the
intersection point of these convex sets closest to any given
set of noisy data. Dykstra’s algorithm repeatedly performs
projections onto PSD matrices, onto the two Hankel matrices
of Fig. 1, and onto matrices with fixed values at (0,0) and
(M, M) until convergence is achieved within a predefined
tolerance. The PSD projections may enforce both the PSD
structure of H and the PSD structure of the submatrix il-
lustrated in Fig. 1. While the convergence of the algorithm
may be slow, for typical numbers of time slices (50-5000)
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FIG. 2. Left panel: Imaginary time Green’s function corresponding to a semicircular density of states at U = 0 and 8 = 100 showing the
exact data, data obtained with hybridization expansion continuous-time quantum Monte Carlo (CT-HYB) using the imaginary time estimator
of Ref. [6] (“t”) and the Legendre estimator of Ref. [27] (“Leg”). Middle panel: Zoom with t data and projection. Right panel: Zoom with

Legendre data and projection.

the numerical effort remains negligible compared to the QMC
simulation cost for obtaining data. Projections typically take
less than a second per iteration on a single core. We provide
an implementation of the algorithm in Ref. [31].

Result.

OMC data. We now discuss results of applying the de-
noising procedure of “Projection algorithm” to the example
of quantum Monte Carlo data. We first consider data ob-
tained with the numerically exact hybridization expansion
QMC method [6,9]. Methods of this type form the back-
bone of modern real-materials calculations within DFT +
DMFT [32] and are used for understanding minimal mod-
els of strongly correlated quantum many-body systems [14].
Numerous generalizations [9,33], improvements, and open
source implementations exist [34—37].

We apply the method to the fermionic imaginary time
Green’s function of the noninteracting (U = 0) half-filled
quantum impurity system coupled to a “semicircular” density
of states (for details see Appendix B). We calculate

the exact solution within Monte Carlo error bars (not shown)
but Monte Carlo noise is clearly visible. The middle panel
shows the same 7 estimator data, focused on 8 < v < 12. The
result from the projection of this noisy data is shown as an
orange dashed line and is consistent with the exact solution.

The right panel shows the same region for the Legendre
estimator. In this case, because the Legendre expansion intro-
duces correlations in imaginary time, the data appears smooth
but nevertheless shows considerable deviation from the exact
result. Similarly, this deviation is eliminated in the projected
data that (within the resolution of the plot) coincides with the
exact data.

In Fig. 3, we present a detailed error analysis for the same
system, focusing on G(8/2) which, at low T, is related to the
density of states at the Fermi energy [41]. We show the result
from 64 independent evaluations of the two estimators; as

0.001

0.01

G(r) = —Tr[pe(r)c’ (0)]. )

This system corresponds to the exact solution of a Bethe
lattice model in the infinite coordination number limit [38,39]
and is frequently studied in the context of dynamical mean
field theory [40]. While the solution for U = 0 is available
analytically, its simulation within the hybridization expansion
requires the statistical sampling of a large number of terms in
a diagrammatic expansion.

In the hybridization expansion, G(t) can either be es-
timated using a binning method in imaginary time (we
designate this as the “t” estimator [6]) or by expanding the
solution into orthogonal polynomials and sampling their coef-
ficients (we designate this the “Legendre” estimator [27]).

Figure 2 shows the improvement that can be obtained by
making use of the projection for this model. Results and error
bars are obtained from 64 independent Monte Carlo runs. The
left panel shows an imaginary-time Green’s function obtained
at temperature 7 = 1/100 (we set the hopping parameter to
t = 1). Data measured with both estimators is consistent with
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FIG. 3. Monte Carlo error of system of Fig. 2 as a function of
sweeps obtained from 64 independent runs. Black and red, top panel:
7 estimator of Ref. [6] and projection plotted with error bars. Green
and blue, bottom panel: Legendre measurement of Ref. [27]. Note
the different y-axis scales.
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FIG. 4. Average absolute value and error of the lowest eigenvalue
of the Pick matrix, calculated from 64 independent Monte Carlo runs,
as a function of the inverse number of sweeps. Legendre measure-
ment. Green: Original data. Blue: Data after projection. System as in
Fig. 2.

expected from a numerically exact method, when the number
of sweeps increases, the estimators approach the exact result.

We next project each of the 64 samples and average the
projected Green’s functions. For both estimators, the pro-
jected data are consistent with the exact result within error
bars for all samples, confirming that the projection did not
introduce a bias. For all numbers of sweeps considered, the
error bars on the projected G(B/2) using the T estimator
are approximately 20 times smaller than those before pro-
jection, corresponding to a 202 = 400-fold saving in CPU
time. Similarly, for the Legendre estimator, the average error
is reduced by around a factor of five (corresponding to a
25-fold saving in CPU time). For both estimators, this factor
remains approximately constant as the number of sweeps is
increased.

We note that the projection employed here is highly nonlin-
ear and may in general deform a Gaussian distribution, with
details depending on the type of Monte Carlo algorithm and
the observable estimator. It is therefore dangerous to perform
the projection with just one noisy sample (such as the mean
value of a QMC calculation). Rather, a careful statistical
analysis using, for example, jackknife or bootstrap error prop-
agation of independent data is advised. In this paper, we first
perform the Hankel projection on multiple independent data
sets and only then average the results.

Positive spectral functions. Is there a positive spectral
function that corresponds to a set of imaginary time points?
This question is answered by the Pick criterion [44], which
states that if the so-called Pick matrix for Matsubara data is
formed, a positive spectral function consistent with the data
only exists if the matrix has no negative eigenvalues [22]. See
Appendix D for a brief discussion.

The exact solution of a causal quantum problem has a Pick
matrix with only non-negative eigenvalues. However, Monte
Carlo noise generally introduces negative eigenvalues to the
Pick matrix. Figure 4 shows the average of the absolute value
of the minimal (i.e. the most negative) eigenvalue Ap, of
the Pick matrix constructed from the Legendre data of Fig. 2

(green) and its projection (blue). The projection reduces the
magnitude of |Anin| by one to two orders of magnitude on
average, demonstrating that the projected data is much closer
to a positive spectral function than the original results. The
remaining negative contribution may stem from a combination
of systematic errors such as the projection convergence cutoff
and Fourier transform precision artifacts, as well as from
errors that are consistent with the inner product introduced
here but inconsistent with causality. Aside from ensuring that
the Green’s functions are physical, the existence of a positive
spectral function is a prerequisite for obtaining precise ana-
Iytic continuations with modern methods [22,23,45-47].

Interacting model. The projection method is independent
of the algorithm and the system studied and is particularly
useful in systems with strong noise, including systems with a
sign problem caused by, for example, frustration. The square-
lattice Hubbard model with a large next-nearest hopping term
t'=1t =1 is such a frustrated model. Figure 5 shows the
Green’s function of a frustrated four-site cluster at temper-
ature T = 1/20, chemical potential © = 0, and interaction
U =5, coupled to a noninteracting bath (see Appendix C).
Systems of this type appear in the simulation of “dynam-
ical cluster approximation” (DCA) cluster dynamical mean
field problems [42]. The system is solved with a continuous-
time [9] auxiliary field [43] quantum impurity solver, using
a Green’s function estimator formulated in Matsubara fre-
quency space [5]. The average sign of the problem is ~0.63.

The left panel of Fig. 5 shows the (strictly negative)
momentum-space Greens’ functions at the three independent
momentum points k = (0,0),k = (0, ), and k = (7, 7).
The middle panel shows measured data along with the projec-
tion for k = (0, 0), and the right panel for k = (i, 0). Error
bars are shown on every fifth data point.

The improvement of the projection over the measured
data is around a factor of two on average (corresponding to a
fourfold saving of computer time). The smaller improvement
may be due to the different formulation of the Monte Carlo
estimator (which measures the Fourier transform of the data
shown [5] and therefore already induces strong correlations
between time points). Note that the smaller advantage
observed here is not due to the sign problem. We have
observed cases (not shown) where the Hankel projection
offers greater benefits as the temperature is lower and the sign
problem becomes more severe.

Discussion. The Hankel projection introduced here is a
generic postprocessing method that can be applied to any
imaginary-time response function data at negligible additional
cost. As we have shown, it removes unphysical components
of the noise and thereby leads to data that is much more
precise. A careful error analysis has shown that no bias is
introduced by the projection, and that projected data is sub-
stantially closer to a “causal” solution than unprojected data.
Hankel projections of this type should therefore be applicable
in all imaginary-time and Matsubara frequency calculations
where noise (such as stochastic noise, measurement noise, or
approximation errors) is a source of error.

The advantage of the method strongly depends on the
type of estimator and Monte Carlo algorithm used. In
continuous-time algorithms, where very many independent
time points are measured, the method is more effective than in
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FIG. 5. Projection of a strongly frustrated four-site DCA data cluster [42] as obtained from an auxiliary field continuous-time quantum
Monte Carlo (CT-AUX) [43] simulation (black) and Hankel projection (red). Left panel: Green’s functions at (0, 0), (i, 0), and (7, 7). Middle
panel: zoom for (0,0) Green’s function. Right panel: zoom for (7, 0) Green’s function.

discrete-time setups [2,3] where typically only a few corre-
lated imaginary-time slices are measured. Interaction [5,43]
and hybridization expansion [6] methods employ different
estimators with entirely different error structures and therefore
lead to different improvements of the result. Applications to
diagrammatic Monte Carlo of various types, such as inch-
worm Monte Carlo, bold-line Monte Carlo, to matrix-valued
correlators, and to bosonic systems [48] will be interesting to
explore.

Similarly, it will be interesting to explore if this method
can remove unphysical components of Green’s functions ob-
tained with methods with systematic approximations, such
as certain noncausal vertex-corrected beyond-GW methods
[49] or tensor-train approximations [50,51]. In those methods,
there is no stochastic “noise” component but a systematic
approximation error that may violate causality, which is
closely related to the inner product structure discussed in this
paper [25].

The data for the figures are submitted as a supplement to
this paper [52].
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Appendix A: Dykstra’s projection algorithm. Dykstra’s
algorithm [30] is a method that computes a point in the
intersection of convex sets. For a specified initial point, Dyk-
stra’s algorithm will find the projection of that initial point
onto the intersection. In other words, Dykstra’s algorithm will
find the point in the intersection that is closest to the initial
point.

Suppose we have two convex sets A and B which we know
we can do projections onto via operation P4 and Pp, and
we want to project the initial point xy on the intersection

of A and B. We set another two auxiliary variables a, b to
store the intermediate updates, where the initial values are
ap = by = 0. Dykstra’s algorithm updates the values of these
parameters at step k + 1 according to their value at step
k via

(a)

X = Palo — ar), (Ala)
a1 =X — (o — @), (Alb)
N = Pe(a) — be). (Alc)
ot =3, = (4, = bi). (Al)
X = X0 (Ale)

By the end of the calculation, the variables x converge to
the intended point of projection. It is obvious that the updates
from P4 [Egs. (Ala) and (A1b)] are identical to those from Pg
[Eqgs. (Alc) and (A1d)], except for their inputs. This allows us
to easily adapt the same approach when applying Dykstra’s
algorithm to more than two convex sets.

In applying Dykstra’s algorithm to Hankel projections,
we start with an initial Hankel matrix created from a given
Green’s function. We have four convex sets as detailed in
“Method” and ‘“Projection algorithm”. The corresponding
projections are as follows:

(i) Projection onto positive semidefinite (PSD) matrices.

(i) Projection onto matrices with specific values at G(0)
and G(pB).

(iii) Projection onto the entire Hankel matrix, as shown in
Fig. 1.

(iv) Projection onto the small Hankel matrix, outlined with
a dashed line in Fig. 1.

These four projections are performed sequentially in a
single update of Dykstra’s algorithm, similar to projection
‘P4 and Pp described above. The process continues until the
Hankel matrices from two consecutive iterations are close
enough, or until the calculation reaches a maximum number of
iterations. At the end of the calculation, the projected Green’s
function can be directly read from the converged Hankel
matrix.
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Appendix B: Single impurity coupled to an infinite-
dimensional bethe lattice. We study an impurity of two spin
degrees of freedom coupled to a bath with a dispersion char-
acterized by a semielliptical form having a bandwidth of
4¢. The corresponding density of states of the bath is given
by Dip(@) =Dy (0) = 725/417 — &? for =2t < < 21,
and the hybridization function is expressed as Aj4y(7) =
Ay (r) = —fde(w)lj;—rfﬁw for 0 < v < B. The action of
this impurity reads

B B
Simp = Sloc +/ d‘[/ dt’ Z C;(T)Aarr(f — 7)o (),
0 0 o=1t4
(B1)

B
Soe = [ dT 3 (000~ wen 0
0 o=t

B
+U/ drc?(t)cT(t)c’i(r)ci(r). (B2)
0

The hybridization expansion [6] treats S),. exactly and per-
forms a perturbation expansion of the hybridization term
around this solution.

The dynamical mean field formalism is reviewed in
Ref. [40].

Appendix C: DCA model hamiltonian. The DCA data of
Fig. 5 are obtained on a four-site cluster approximation to
the Hubbard model [42,53,54] on a heavily frustrated square
lattice with t' = ¢t = 1 as in [55]. Shown are the results for the
first iteration at an interaction strength of U = 5, starting from
the DCA solution of the noninteracting model.

The choice of parameters is motivated by the fact that the
frustration t+ = ¢’ leads to a strong fermion sign problem that
drastically amplifies noise. While the projection cannot over-
come the exponential cost of the sign problem, it alleviates the
size of the noise and therefore the prefactor of the exponential
scaling with temperature or interaction.

The DCA formalism is reviewed in Ref. [42].

Appendix D: Pick criterion. In this Appendix, we briefly
describe the Pick criterion for Matsubara Green’s functions.
The criterion is based on work by Pick [44], and was in-
troduced to the context of fermionic Matsubara Green’s
functions in Ref. [22].

The problem of analytic continuation is to find a
function G,

G:C—C,

that is analytic on the upper half of the complex plane, C*,
and coincides with the available numerical data G on the Mat-
subara axis, i.e., G, = G(z = iw,). Because G is to represent
a Green’s function, it should have an imaginary part with a
definite sign. Such a function is called a Nevanlinna function.

A priori it is not known whether a Nevanlinna function
exists that passes through numerical data with stochastic or
systematic errors. This question, and thus the question of
whether a physically correct Green’s function (i.e., analytic
on C* and with appropriate sign of the spectrum) exists,
is answered by the Pick criterion [44]. First, one maps the

(D1

(closed) upper half complex plane C+ to the (closed) complex
unit disk D via a Mobius transformation:

h: Ct - D, (D2)
h(z) = :ri (D3)

Next, one forms the Pick matrix out of the numerical data G,
and the Mobius-transformed Matsubara frequencies A (wj,):

G, + G,
Pam = [ 1 — h(w)h(wp)*

Note that the transformation is not strictly necessary, and that
a similar matrix can be formulated without the Mobius trans-
formation [45]. The Pick criterion states that a Nevanlinna
interpolant exists if and only if P is positive semidefinite
(PSD), and that a unique solution exists if and only if P is
singular. In other words, evaluating the degree to which P
for a given numerical Green’s function G fails to be PSD is
a measure of the causality violation of a numerical Green’s
function.

i|, nm=12,...,M. (D4)
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