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ABSTRACT
The Pólya tree (PT) process is a general-purpose Bayesian nonparametric model that has found wide applica-
tion in a range of inference problems. It has a simple analytic form and the posterior computation boils down
to beta-binomial conjugate updates along a partition tree over the sample space. Recent development in PT
models shows that performance of these models can be substantially improved by (i) allowing the partition
tree to adapt to the structure of the underlying distributions and (ii) incorporating latent state variables that
characterize local features of the underlying distributions. However, important limitations of the PT remain,
including (i) the sensitivity in the posterior inference with respect to the choice of the partition tree, and (ii)
the lack of scalability with respect to dimensionality of the sample space. We consider a modeling strategy
for PT models that incorporates a flexible prior on the partition tree along with latent states with Markov
dependency. We introduce a hybrid algorithm combining sequential Monte Carlo (SMC) and recursive
message passing for posterior sampling that can scale up to 100 dimensions. While our description of the
algorithm assumes a single computer environment, it has the potential to be implemented on distributed
systems to further enhance the scalability. Moreover, we investigate the large sample properties of the
tree structures and latent states under the posterior model. We carry out extensive numerical experiments
in density estimation and two-group comparison, which show that flexible partitioning can substantially
improve the performance of PT models in both inference tasks. We demonstrate an application to a mass
cytometry dataset with 19 dimensions and over 200,000 observations. Supplementary Materials for this
article are available online.
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1. Introduction

The Pólya tree (PT) (Freedman 1963; Ferguson 1974; Lavine
1992) is a stochastic process that generates random probability
measures and is introduced as a prior for Bayesian nonpara-
metric inference. While the PT generalizes the Dirichlet process
(DP) (Ferguson 1973) as it yields the DP under certain hyperpa-
rameters (Ferguson 1974), the statistical properties and practical
applications of the PT are very different. While the DP is most
frequently used as a mixing distribution that induces clustering
structures, the PT is often adopted for directly modeling proba-
bility densities.

The PT is defined generatively on a recursive partition—
or a partition tree—over the sample space through coarse-to-
fine sequential probability assignment at each tree split. In a
classical (univariate) PT, the tree is dyadic and the conditional
probability assigned to the two children nodes at each tree split
arises from independent beta priors, which leads to analytic
simplicity and ease in computing the posterior. Obtaining the
posterior is straightforward from beta-binomial conjugacy and
incurs a computational budget that scales only linearly with
the sample size, making the PT one of the few nonparametric
models applicable to data with massive sample sizes. Moreover,
the posterior computation is embassingly parallelizable across
the tree nodes.
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The PT has been applied in various contexts beyond
the original application of density estimation. A far-from-
exhaustive list includes survival analysis (Muliere and Walker
1997; Neath 2003), imputing missing values (Paddock 2002),
goodness-of-fit tests (Berger and Guglielmi 2001), two-group
comparison (Ma and Wong 2011; Chen and Hanson 2014;
Holmes et al. 2015; Soriano and Ma 2017), density regression
(Jara and Hanson 2011), ANOVA (Ma and Soriano 2018), test-
ing independence (Filippi and Holmes 2017), and hierarchical
modeling (Christensen and Ma 2020). The PT has also been
used in semi-parametric analyses such as in (generalized) linear
models (Walker et al. 1999; Walker and Mallick 1997; Hanson
and Johnson 2002).

Early developments of the PT are based on an a priori fixed
partition tree on the sample space. The resulting inference can
be sensitive to the choice of the partition points defining the
tree. In particular, the resulting process, both a priori and a
posteriori, can be jumpy at these points. In hypothesis test-
ing and model choice, this sensitivity is also reflected in the
sometimes substantial change in the marginal likelihood/Bayes
factor when the partition points are slightly varied. To remedy
the issue, Paddock et al. (2003) modified the PT model so that
observations are generated from the PT model with slightly
different partition points. Hanson and Johnson (2002) and Han-
son (2006) proposed a mixture of PTs by defining partition
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points along quantiles of a parametric model endowed with a
hyperprior to allow model averaging on the partition points.
This strategy does not allow individual partition points to adapt
to local features of the distribution but only the whole set of
points to the global structure of the distribution, and is most
effective when the underlying density is close to the specified
parametric model. Nieto-Barajas and Müller (2012) took a dif-
ferent approach by modeling the probability assignments within
each level of the tree in a correlated manner to smooth out
the random measure over the boundaries of partitioning. While
these approaches alleviate the sensitivity to partition points in
low-dimensional settings, they are not easily applicable (though
in principle possible) to problems with even just a handful of
dimensions. Moreover, Bayesian inference with these models
generally require Markov Chain Monte Carlo (MCMC), whose
effectiveness can (in fact often does) still suffer from the sensi-
tivity with respect to the partition points.

Another related issue regarding the partitioning scheme of
the PT is that in multivariate problems, traditionally the parti-
tion tree is constructed by dividing all dimensions of the sample
space at each split. For example, for a d-dimensional sample
space, each time a tree node is divided, it is split into 2d children
nodes, and probability assignment over these 2d child nodes is
modeled by independent Dirichlet priors. Wong and Ma (2010)
noted that such a “symmetric” partition scheme is undesirable as
the dimensionality increases, in which case due to the exponen-
tial growth of the partition blocks, the vast majority of the blocks
are barely, if at all, populated by data. As such they propose to
incorporate adaptivity into the partitioning strategy with respect
to the structure of the underlying distribution through adopting
a Bayesian CART-like prior (Chipman, George, and McCulloch
1998) on the space of dyadic partition trees.

However, in order to maintain the analytic simplicity of
the posterior and achieving MCMC-free exact Bayesian infer-
ence with a linear computational budget, the Bayesian CART-
like prior has to be restricted to only divide at the middle
point (or otherwise a predetermined fixed point) on one of
the dimensions at each tree split. Not only does this hamper
the model’s ability to adapt to distributional structures, but it
makes the model suffer from the same sensitivity with respect
to the partition points. Moreover, even with this restriction,
the inference algorithm (based on recursive message passing)
is only computationally practical for up to about 10 dimensions
on continuous sample spaces.

In a different vein, recent developments have demonstrated
that aside from enhancing the partitioning strategy, the PT can
also be substantially improved by adopting more flexible priors
(as opposed to independent betas) on the probability assign-
ment at each tree split (Jara and Hanson 2011; Nieto-Barajas
and Müller 2012; Ma 2017). One strategy for enriching the PT
in this regard is by introducing latent state variables at each
tree split and adopt priors on the probability assignment given
these states. When the latent states are discrete and modeled
with Markov dependency, analytical simplicity is preserved and
exact Bayesian inference can proceed through recursive message
passing that maintains the linear computational budget (Ma
2017).

Given these developments, we are motivated by the following
questions: Is it possible to incorporate into the PT a very flexible

partition tree prior, such as the general Bayesian CART (i.e.,
without the restriction to partition at middle points), that will (i)
enhance its adaptivity to distributional structures in multivari-
ate settings; (ii) resolve its sensitivity to the choice of partition
points; and (iii) allow a tractable form of the joint posterior
and a posterior inference algorithm that is scalable to moder-
ately high-dimensional problems (e.g., up to 100 dimensions)?
Moreover, should such a strategy exist, can the resulting model
and inference algorithm be made compatible with incorporating
(possibly Markov dependent) latent states on the tree nodes?

The goals of making the partition tree prior more flexible
while enhancing the computational scalability appear at odds
with each other. Large tree spaces are well known to be very hard
to compute over. In moderate- to high-dimensional settings
exact inference involving flexible tree structures is beyond reach
and even the most advanced MCMC approaches tailor-made for
trees encounter substantial difficulty due to the pervasive multi-
modality of distributions in such spaces. Recent advances in
sequential Monte Carlo (SMC) for regression tree models (Lak-
shminarayanan, Roy, and Teh 2013; Lu, Jiang, and Wong 2013),
however, suggest that efficient inference is possible in moder-
ately high-dimensional settings (up to about 100 dimensions).
Moreover, once the partition tree is sampled, the conditional
posterior for the rest of the model can be computed analytically
through recursive message passing. We will therefore exploit
a hybrid strategy that uses a new SMC sampler to efficiently
sample from the marginal posterior of the partition tree struc-
ture, along with recursive message passing to compute the exact
conditional posterior of the latent state variables given the tree.

Beyond the methodological development, we will also inves-
tigate the theoretical properties of the posterior on the partition
tree and the latent states. Previous theoretical literature on the
PT and related models have mostly focused on establishing the
posterior consistency and the contraction rate of the random
measure induced under these models (Castillo 2017; Castillo
and Randrianarisoa 2021). In multivariate settings, however, the
partition tree itself is highly informative about the underlying
distribution. Moreover, in applications involving model choice
and hypothesis testing, it is often the latent states, not the
random measures, that are of direct interest. As such, we focus
on studying the asymptotic behavior of the marginal posterior
on the partition tree and latent states, establishing consistency
results on their convergence toward the trees and states that
most closely characterize the underlying truth.

The rest of the article is organized as follows. In Section 2
we describe a flexible prior on the partition tree structure that
relaxes the restriction of “dividing in the middle” on partition
points and present a general form of PT models that adopt this
prior along with latent states associated with the tree nodes with
a Markov dependency structure. In Section 3, we present our
hybrid computational strategy that can work effectively up to
100 dimensions consisting of an SMC algorithm for sampling
on the marginal posterior of the partition tree and a recursive
message passing algorithm for obtaining the exact conditional
posterior of the latent states and the random measure given the
sampled trees. In Section A we investigate the asymptotic prop-
erties of the tree structures and latent states identified under the
posterior model. In Section 5, we carry out extensive numerical
experiments to examine the performance of our method in the
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context of two important applications of PTs—density estima-
tion and two-group comparison, followed by an application to
a dataset from mass cytometry in Section 6. In Section 7 we
conclude with a brief discussion. All proofs are provided in
Supplementary Materials E.

2. Method

We first review the PT model (Ferguson 1973; Lavine 1992) on
a dyadic recursive partition in Section 2.1. The model, while
defined on a general multivariate sample space, differs from a
traditional multivariate PT which adopts a multi-way symmet-
ric recursive partitioning. Then we introduce a new class of PT
models that incorporates both the flexible partition prior and
latent states with Markov dependency.

2.1. Pólya Trees Defined on Recursive Dyadic Partitions

Without loss of generality, we consider a continuous sample
space represented as a d-dimensional rectangle ! = (0, 1]d.
For unbounded sample spaces such as Rd, one can transform
each margin to (0,1] by applying, say, a cumulative distribution
function transform or by standardizing the data based on its
observed range of values. We use µ to denote the Lebesgue
measure on !. A (dyadic) recursive partitioning T on ! is a
sequence of partitions of ! such that the partition blocks at each
level of the partitioning are obtained by dividing each block in
the previous level into two children blocks. Formally, we can
write T = ⋃∞

k=0 Ak, where Ak is a partition of ! in the kth level.
More specifically, A0 = {!}, and A ∈ Ak (k = 0, 1, 2, . . .) is
divided into Al and Ar , which satisfy Al, Ar ∈ Ak+1, Al∪Ar = A,
and Al ∩ Ar = ∅. (Throughout the article, a subscript “l”
or “r” on a node indicates the left or right child node.) For
example, when d = 1 and if the tree is recursively divided at
the middle point of each node, then nodes in level k are of the
form (l/2k, (l + 1)/2k] for some l ∈ {0, . . . , 2k − 1}. Another
common strategy is to define the tree based on the quantiles
of a probability measure F so that A ∈ Ak is of the form
A = (F−1( l

2k ), F−1( l+1
2k )] for l ∈ 0, . . . , 2k − 1.

Given a partition tree T, we can define a random measure
Q by putting a prior on the conditional probability θ(A) =
Q(Al|A) = 1 − Q(Ar|A) at each A ∈ T. Under the PT
prior, the parameters θ(A) follow independent beta distribu-
tions Beta(αl(A), αr(A)), where αl(A) and αr(A) are hyper-
parameters. The corresponding posterior, given an iid sample
x1, . . . , xn from Q, is again a PT with a simple conjugate update
on the conditional proabilities:

θ(A) | x1, . . . , xn ∼ Beta(αl(A) + n(Al), αr(A) + n(Ar)),

where n(A) represents the number of observations in a set
A ⊂ !. Though the tree needs to be infinitely deep to ensure
full support of the PT, for practical purposes, one typically
sets a sufficiently large maximum depth (or resolution) of T
and compute the posteriors of θ(A)’s defined on this finite tree
structure (Hanson and Johnson 2002). We shall refer to a node
in the deepest level as a “leaf ” or “terminal node.” On a leaf,
the conditional distribution can be set to a baseline F(·|A),
such as the uniform distribution µ(·|A). In Section 3 when

we present inference algorithms, we shall adopt this practical
strategy and assume T is finite and use N (T) and L(T) to denote
the collection of the nonterminal nodes and the leaf nodes,
respectively.

2.2. Incorporating Flexible Partition Points

We incorporate a Bayesian-CART like prior on T by random-
izing both the dimension in which to divide a node and the
location to divide. Our prior relaxes the “always-divide-in-the-
middle” restriction imposed in Wong and Ma (2010). This prior
on the partition tree T differs from that in the mixture of PTs of
Hanson (2006), which does not randomize over the dimension
to divide, but generates the boundaries of the tree nodes jointly
using quantiles of a parametric family.

Our prior can be described iteratively as a generative process
that recursively divides the sample space. Specifically, suppose
we have a node A in the rectangular form, A = (a1, b1] × · · · ×
(ad, bd]. We divide A into two rectangular children by cutting
along a randomly chosen dimension at a random location. The
dimension to divide D(A) ∈ {1, 2, . . . , d}, and the (relative)
location to divide L(A) ∈ (0, 1) are given independent priors
of the following forms:

D(A) ∼ Mult(λ1(A), . . . , λd(A)) and

L(A) ∼
NL−1∑

l=1
βl(A)δl/NL(·), (1)

where δx(·) represents the unit point mass at x, and NL − 1 is
the total number of grid points along (0, 1). Both {λi(A)}i=1,...,d
and {βl(A)}l=1,...,NL−1 sum to 1. In the above, we have adopted
a uniform grid over (0, 1) for notational simplicity, but it does
not have to be as such. With D(A) = j and L(A) = l/NL, the
two children nodes Al and Ar are

Al = (a1, b1] × · · · × (aj, aj + l/NL · (bj − aj)]
× · · · × (ad, bd],

Ar = (a1, b1] × · · · × (aj + l/NL · (bj − aj), bj]
× · · · × (ad, bd].

In principle one could adopt a continuous prior on the par-
tition location L(A). A discretized prior is helpful, however,
because it will substantially simplify posterior computation. In
practice, as long as the grid is dense enough, the discrete prior
will be practically just as flexible. Indeed we have verified in
extensive numerical experiments that when NL is large enough
(more than 30–50) over a uniform grid, posterior inference no
longer improves in any noticeable way.

For the prior on D(A), we set λj(A) = 1/d for all nodes A
as a default choice. When L(A) is given a weak prior widely
spread over (0, 1), the resulting inference can be sensitive to
the “tail” behavior of the distribution in the node, resulting
in high posteriors of L(A) near the extreme values 0 and 1. A
detailed discussion on this phenomenon will be provided in
Section 5.1.1. This issue can be effectively addressed by making
the prior of L(A) depend on the sample size n(A) so that it
encourages more balanced divisions at large sample sizes. More
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Figure 1. A graphical representation of the PT models with hyperparameters hidden.

specifically, we adopt the following prior with an exponentially
decaying tail

P(L(A) = l/NL) = βl ∝ exp
[
−ηn(A)f (|l/NL − 0.5|)

]
,

l = 1, . . . , NL − 1, (2)

where η ≥ 0 is a hyperparameter and f : [0, ∞) → [0, ∞)

is an increasing function with f (0) = 0. In the following,
we shall use a function f (x) = x, and so our prior on L(A)

is a (discretized) Laplace distribution. We provide theoretical
justification for adopting this prior with exponential tails in
Supplementary Materials A.

Another generalization of the prior on L(A) is to incorporate
a spike-and-slab set-up with a spike at the middle point 1/2.
In particular, one can adopt a dependent spike prior among
the nodes such that once a node A is divided exactly at the
middle point, so are its descendants. This generalization will
substantially reduce the amount of computation in regions of the
sample space where the data are either sparse or lack interesting
structure, for example, close to the uniform distribution. We
implement the spike-and-slab in our software but defer the
details of this generalization to Supplementary Materials A to
avoid distracting the reader from the main ideas.

Given the tree prior, our PT model now consists of two
components—tree generation and conditional probability
assignment. Figures 1(a) and (b) present a graphical model
representation for each.

2.3. Hidden Markov Pólya Tree Models

2.3.1. General Framework
Next we extend the above model to accommodate two recent
developments in the PT literature: (i) incorporating latent state
variables along the tree structure and (ii) joint modeling of
multiple groups of observations. Incorporating latent variables
allows more flexibly characterizing distributional features
through adding prior dependency. As in recent literature, we
consider incorporating discrete state variables that follow a
Markov process along the tree structure. Because the description
in this section always pertains to the model given the randomly
generated partition tree T, for brevity we shall not keep stating
“given T.”

We generalize our notation to allow observing one or more
groups of iid observations. Let G be the number of groups of iid
observations. For the gth group (g = 1, 2, . . . , G), let Qg be the
sampling measure for that group. Let Q denote the collection
of all G sampling measures. That is, Q = {Qg}G

g=1. Let xg =
(xg,1, . . . , xg,ng ) denote the observations in the gth group, which
are iid given Qg , where ng , the sample size for the group, is

allowed to differ across the groups. We use x = {xg}G
g=1 to

denote the collection of all observations from all groups.
Next we specify a prior on Q in terms of a joint prior on the

conditional probabilities on each A ∈ T, θg(A) = Qg(Al | A) =
1 − Qg(Ar | A). We use latent variable modeling to incorporate
prior dependency among the tree nodes. Specifically, let {V(A) :
A ∈ T} denote a collection of latent state variables, one for
each A, and without loss of generality, assume that V(A) takes
discrete values from {1, . . . , I}. (In practice, the number of states
I can differ among A.) Joint priors of θg(A) for all g and A are
then defined conditionally on these latent states.

Existing literature has exploited these latent states to charac-
terize both the within-group structure of each distribution Qg
and the between-group relationship among the Qg . An example
of within-sample structures is the smoothness of each under-
lying distribution, which is explored in the context of density
estimation (Ma 2017). An example of between-group structures
is the difference between two (or more) distributions (Soriano
and Ma 2017).

Dependent modeling of the latent states over the partition
tree is desirable as a priori one would expect interesting struc-
tures (both within-group and between-group) to exhibit them-
selves in a correlated manner over the sample space. For exam-
ple, functions tend to have similar smoothness over adjacent
locations, and two-group difference tend to be clustered in
space. A computationally efficient strategy for modeling such
dependency over the tree is by a hidden Markov process along
the tree (Crouse and Baraniuk 1997), which starts from the root
node, A = !, and sequentially generates the latent states in
a coarse-to-fine fashion according to (possibly node-specific)
transition matrices ξ(A) whose (i, i′)th element is

ξ i,i′(A) = P(V(A) = i′ | V(Ap) = i) for i, i′ ∈ {1, . . . , I},

where Ap denotes A’s parent. (We shall use superscript “p” to
indicate the parent of a node in T.) For A = !, since ! has no
parent, we can simply let ξ i,i′(!) be constant over i, representing
the initial state probabilities on !.

Given the V(A)’s, {θg(A)}g=1,...,G can then be modeled as
conditionally independent a priori. Figure 1(c) presents a graph-
ical model representation for the latent state modeling on G
probability distributions by PTs given T, which along with our
generalized prior on the partition tree T presented in Figure 1(a)
forms the most general version of the model we consider in
this work. The specific choices of these conditional priors are
problem-dependent. We give two examples below.

Example 1: Density Estimation with Adaptive Smoothness
An example of within-group structures that the latent state V(A)

can characterize is the smoothness of the density functions
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for the random measures. For example, Ma (2017) proposed
the adaptive Pólya tree (APT) model which incorporates latent
states to allow different levels of local smoothness in the under-
lying distribution. This is achieved by modeling the θg(A)’s
as Beta(m(A)ν(A), (1 − m(A))ν(A)), where m(A) is the prior
mean and ν(A) the precision parameter which characterizes
the smoothness of the random measure with larger ν(A) cor-
responding to more smoothness. Then we model the precision
parameters conditional on the latent state V(A), which follows
a Markov process along a tree. The detail of the APT model is
provided in Supplementary Materials C.

Example 2: Two-Group Comparison
In two-group comparison, we are interested in testing and iden-
tifying differences between two measures Q = {Qg}g=1,2 based
on an iid sample from each. The “global” testing problem can be
formulated as testing the following null and alternative hypothe-
ses: H0 : Q1 = Q2 versus H1 : Q1 ̸= Q2. Noting that two-
group differences may exist in parts of the sample space and
not others, the coupling OPT (Ma and Wong 2011) and the
multi-resolution scanning (MRS) model (Soriano and Ma 2017)
are PT-based models that allow the measures to differ on some
nodes A ∈ T and not others. This more “local” perspective on
two-group comparison enables these models to not only test for
H0 versus H1, but to identify regions on which the two measures
differ. To achieve this, these models incorporate state variables
that characterize whether the conditional probabilities on each
A are equal:

V(A) = 1 ⇔ Q1(Al | A) ̸= Q2(Al | A),
V(A) = 2 ⇔ Q1(Al | A) = Q2(Al | A). (3)

When V(A) = 1, the two corresponding conditional proba-
bilities are given independent beta priors, whereas if V(A) = 2,
they are tied and given a single beta prior. Markov dependency
among the states on different nodes are incorporated to induce
the desired spatial correlation of cross-group differences. The
MRS model also incorporates “an absorbing state” V(A) = 3
with which we can ignore uninteresting regions, as detailed in
Supplementary Materials D.

3. Bayesian Inference

In sum, the models we consider all share a common structure
consisting of the following components: (i) the partition tree
T defined by the dimension and location variables D’s and L’s,
which follow the priors given in Equation (1); (ii) the latent
state variables V(A) given T which follow a Markov prior; (iii)
the conditional probabilities along the given tree T, {θg(A)}G

g=1,
whose joint prior are specified independently across the nodes
on T given the latent states; and finally (iv) given the random
measures Qg defined by T and θg(A)’s, we observe an iid sample
xg from each Qg , independently across g.

We shall refer to this general model class as the Hidden
Markov Pólya tree, or HMPT, and summarize it below:

T | λ, β , η ∼ p(T | λ, β , η)

{V(A) : A ∈ T} | ξ , T ∼ Markov(ξ)

(θ1(A), . . . , θG(A)) | V(A), T ind∼ p(θ1(A), . . . , θG(A) | V(A))

for A ∈ T
xg = (xg,1, xg,2, . . . , xg,ng ) | Qg

iid∼ Qg for g = 1, 2, . . . , G.

The key to Bayesian inference is the ability to either compute
or sample from the joint posterior (T, V, θ) given all data x =
(x1, . . . , xG), where V and θ represent the totality of all latent
states and conditional probabilities given T, respectively. While
in some problems such as density estimation one may mainly
be interested in just the marginal posterior of the Qg ’s, in others
such as two-group comparison where one wants to characterize
the between-group relationships among the distributions, the
latent states (along with T), which characterizes such relation-
ships, are often of prime interest. In multivariate problems, the
tree structure T is also of great interest as it sheds light on the
underlying structures in the distributions.

To this end, we shall take advantage of recent developments
in sequential Monte Carlo (SMC) sampling for tree-based mod-
els (Lakshminarayanan, Roy, and Teh 2013; Lu, Jiang, and Wong
2013) and advances in message passing algorithms for PT mod-
els with Markov dependency (Ma 2017). We introduce a hybrid
algorithm that combines these two computational strategies to
effectively sample from the joint posterior in high-dimensional
spaces. Overall, the hybrid algorithm consists of two stages:

1. Sampling from the marginal posterior of the partition tree
We design an SMC sampler—that is, a particle filter—to
sample a collection of tree structures T1, . . . , TM by growing
each tree from coarse to fine scales. It uses one-step look-
ahead message passing to construct proposal distributions for
D(A) and L(A), one node at a time.

2. Computing the conditional posterior given the sampled trees
Given each tree sampled by the SMC, the conditional model
essentially becomes a hidden Markov process, for which we
can analytically compute the exact conditional posteriors of
V(A)’s and θ(A)’s using recursive message passing.

3.1. SMC to Sample from Tree Posterior

In the SMC stage to sample the trees, each particle stores a
realized form of a finite tree structure, and one node of each tree
is divided at each step of the SMC sampling. Suppose Tt is the
finite tree obtained after dividing the sample space t times in a
particle, and for this tree we define the target distribution

πt(Tt) = P(Tt | x) ∝ P(Tt)P(x | Tt).

Here P(Tt) is the joint prior of the variables D(A)’s and L(A)’s
for the non-leaf nodes of Tt , and P(x | Tt) is the marginal
likelihood given the tree Tt , in which V and θ are integrated
out. To sample from this target distribution, we sequentially
construct a set of M particles {Tm

t , Wm
t }M

m=1, where Tm
t is a

realized tree and Wm
t is the associated importance weight for the

mth particle. Examples of generated trees are given in Figure 2,
where the sample space has been divided three times, and in the
next step, new partition boundaries will be added in the gray
nodes.

Following Lakshminarayanan, Roy, and Teh (2013), we adopt
in each step of the SMC a breadth-first tree-growth strategy by
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Figure 2. An example of realized finite trees in the particle system obtained after the step t = 3. The numbers in the squares indicate in which step the boundaries are
drawn. Among the current leaf nodes, the nodes colored gray are the oldest nodes generated in the earliest step, so they are split in the next step.

dividing the “oldest active” leaf node—that is, the one generated
in the earliest step and is yet to be terminated in division.
Further division of a node is terminated once the number of
observations in that node is below a preset threshold (e.g., 5 in
our software implementation) to avoid excessive partitioning.
(In Supplementary Materials G, we show through an additional
experiment where data points accumulate around the bound-
aries of the sample space to confirm that this sample size thresh-
olding indeed helps avoid excessive partitioning.) Otherwise
a node is bisected along a boundary whose dimension and
location are randomly drawn from a proposal distribution. For
each particle, a finite tree Tt is formed by a sequence of decisions
{Js}t

s=1, where Js = (Ds, Ls) correspond to all of the variables
D(A) and L(A) at the sth step of the SMC.

As we will see in Proposition 3.1, the target distribution
πt(Tt) = Ctπt−1(Tt−1)πt(Jt | Tt−1)wt(Tt−1), where Ct is a con-
stant independent of Tt , πt(Jt | Tt−1) a conditional distribution
on Jt given Tt−1, and wt(Tt−1) a function of Tt−1. We will choose
πt(Jt | Tt−1) as the proposal for Jt under which the correspond-
ing importance weight will simply be wt(Tt−1), independent
of Jt .

More specifically, suppose at the current step t, we are to
divide At ∈ Tt−1 into At,l and At,r . Let Mi(At | Jt) be
the marginal likelihood on the node At under the decision Jt
evaluated based on the observations in At . That is,

Mi(At | Jt) =
∫ ⎡

⎣
G∏

g=1
θg(At)

ng(At,l)(1 − θg(At))
ng(At,r)

⎤

⎦

dP(θ1(At), . . . , θG(At)|V(At) = i), (4)

where ng(A) is the number of observations of the gth group
included in A. To avoid cumbersome notation, we suppress in
our notation the dependency of Mi(At | Jt) on the observations
x. For example, if the {θg(At)}G

g=1 follow independent beta
priors written as Beta(αi

l(At), αi
r(At)) given V(At) = i, then

the marginal likelihood has the following expression Mi(At |
Jt) = ∏G

g=1
B(αi

l (A)+ng(At,l),αi
r(A)+ng(At,r))

B(αi
l (At),αir(At))

, where B(·, ·) is the
beta function. Based on the values of Mi(At | Jt), we can
analytically compute the proposal and the importance weight
using a general recursive algorithm, as described in the follow-
ing proposition.

Proposition 3.1. For every possible decision Jt and states i =
1, . . . , I, let ϕi(At) be a function defined recursively:

ϕi(At) =

⎧
⎪⎨

⎪⎩

ξ1,i(!)Mi(!|Jt)∑I
j=1 ξ1,j(!)Mj(!|Jt)

if At = !
∑I

j=1 ϕj(Ap
t )ξ j,i(At)Mi(At |Jt)

∑I
k=1

∑I
j=1 ϕj(Ap

t )ξ j,k(At)Mi(At |Jt)
otherwise,

(5)

where Ap
t is At ’s parent node. Also, let h(Jt | At) be a function of

Jt defined as

h(Jt | At) =
I∑

i=1

⎧
⎨

⎩

I∑

j=1
ϕj(Ap

t )ξ j,i(At)

⎫
⎬

⎭ Mi(At | Jt)

µ(At,l)−n(At,l)µ(At,r)−n(At,r)

µ(At)−n(At)
, (6)

where n(A) denotes the total number of observations included
in a node A. Then the target distribution πt(Tt) can be expressed
in terms of πt−1(Tt−1) as

πt(Tt) = Ctπt−1(Tt−1)πt(Jt | Tt−1)wt(Tt−1),

where Ct is a constant and

πt(Jt | Tt−1) = P(Jt)h(Jt | At)∑
jt P(jt)h(jt | At)

,

wt(Tt−1) =
∑

jt
P(jt)h(jt | At).

The summation over jt is taken over all possible decisions.

Corollary 3.1. Let h(Jt | At) be the function defined in Propo-
sition 3.1. Then the proposal distribution πt(Dt | Tt−1) is given
by

πt(Dt | Tt−1) = πt(Dt | Tt−1)πt(Lt | Dt , Tt−1), where

1. πt(Dt | Tt−1) is Mult(̃λ1(At), . . . , λ̃d(At)) with

λ̃j(At) ∝
NL−1∑

l=1
πt((j, l/NL) | Tt−1)

∝ λj(At)
NL−1∑

l=1
βl(At)h((j, l/NL) | At).

2. Given D(At) = j, the conditional proposal of L(At) is

πt(Lt = l/NL | Dt = j, Tt−1) =
NL−1∑

l=1
β̃l(At)δl/NL(·),

for j = 1, 2, . . . , I and l = 1, . . . , NL − 1 with

β̃l(At) ∝ β(At)h(j, l/NL | Tt−1).
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We also have an analytical expression of the incremental weight:

wt(Tt−1) =
d∑

j=1

NL−1∑

l=1
λj(At)βl(At)h((j, l/NL) | At).

Remark. The recursive function ϕi(At) can be computed
based on ϕi(Ap

t ) with the fixed computational cost. Hence, the
optimal proposal πt(Jt | Tt−1) and the incremental weight
wt(Tt−1), which are functions of h(Jt | At), can be obtained
at each step with constant computational cost with complexity
O(I2NLd n(At)). As such, our inference algorithm scales linearly
in both the dimensionality and the sample size.

The pseudo-code of the new SMC algorithm that summa-
rizes the discussion is provided in Supplementary Materials A.
In the algorithm, we stop dividing At if either the depth of At is
equal to a preset maximum resolution K (e.g., 15) or the number
of observations in At is less than a preset threshold (e.g., 5). The
SMC algorithm terminates when all the nodes of all the particles
have been stopped. The maximum resolution K controls the
level of local details that the HMPT model allows to infer, and
larger values of K require more computational time. In a range
of applications we have found that setting K beyond 15–20 leads
to minimal changes in the resulting inference.

3.2. Posterior Computation Given Sampled Tree
Structures

The second stage of our inference strategy is to compute the
posterior distributions of the latent states V(A) and the con-
ditional probabilities θg(A) given each sampled tree. In this
stage we first compute the marginal posterior of the latent states
given the tree with a recursive message-massing algorithm as
shown in Ma (2017) and Soriano and Ma (2017). The algorithm
written in our notation is provided in Supplementary Materials
A, and we note that this algorithm works for all models under
consideration. We note that in this recursive algorithm we
can compute the overall marginal likelihood given the tree T,
P(x | T), which can be used to find the maximum a posteriori
(MAP) tree among the sampled trees, that is, the sampled tree
Tm that maximizes P(Tm | x) ∝ P(Tm)P(x | Tm). We can use
this “representative” tree, along with the conditional posterior of
the latent states given this tree, to visualize and summarize the
posterior inference in an interpretable way.

Given both the tree and the latent states, the posterior of
θg(A) boils down to the corresponding posterior of standard PT
models on a dyadic tree, which is problem-specific as provided
in the literature on each such model. We specifically use the
two examples from Section 2.3.1 to demonstrate how one may
use the output of the algorithm—namely the sampled trees
along with the conditional posterior given the trees—to carry
out inference. We note that the inference strategies for these
quintessential examples are generalizable to a variety of other
tasks.

Example 1: Density Estimation
The problem of estimating an unknown density corresponds
to G = 1 and so we can drop the subscript g to simplify the
notation. We shall use the posterior mean density, also called the

predictive density—E[q(·) | x]—as an estimate for the density
q = dQ/dµ. As shown in Wong and Ma (2010) and Ma (2017),
given a tree Tm, we can use the marginal posterior of the latent
states to compute the conditional predictive measure E[Q(·) |
x, Tm] with a top-down recursive algorithm. The algorithm is
described in our generic notation in Supplementary Materials C.
Hence, given an SMC sample of M trees and weights, it is
possible to integrate out the random trees and compute the
posterior predictive density as follows:

E[q(x) | x] ≈
M∑

m=1
Wm E[Q(Bm(x)) | x, Tm]

µ(Bm(x))
,

where Bm(x) ∈ L(Tm) the leaf node to which x belongs, and
Wm is the final importance weight for Tm.

Example 2: Two-Group Comparison
To compare two groups of observations using generalizations
to the PT models described in Section 2.3.1, we shall compute
the posterior probability of the two hypotheses H0 and H1. For
example, when V(A) is defined as in Equation (3), the posterior
probability of the “global” null hypothesis H0 : Q1 = Q2 is given
by

P(H0 | x) =
∑

T∈T
P(V(A) ̸= 1 for all A ∈ N (T) | T, x)P(T | x)

≈
M∑

m=1
WmP(V(A) ̸= 1 for all A ∈ N (Tm) | Tm, x),

where the sum over T in the first row is over all finite trees
with maximum resolution K and the quantity P(V(A) ̸=
1 for all A ∈ N (Tm) | Tm, x) again is available analytically by
message passing (details given in Supplementary Materials D).

We can also detect where and how the underlying distribu-
tions differ by computing the “posterior marginal alternative
probability” (PMAP) on each node A, along any sampled tree
Tm:

P(θ1(A) ̸= θ2(A) | Tm, x) = P(V(A) = 1 | Tm, x).

Reporting the PMAPs along a representative tree such
as the MAP among the sampled trees can be a particularly
useful visualizing tool to help understand the nature of the
underlying difference. One can also report on each A the
estimated magnitude of the difference using a notion of “effect
size” based on the log-odds ratio (Soriano and Ma 2017),
eff(A) =

∣∣∣log
[

θ1(A)
1−θ1(A)

]
− log

[
θ2(A)

1−θ2(A)

]∣∣∣ . In particular, one can
report the posterior expected effect size E[eff(A) | x, T], which
can be computed using a standard Monte Carlo (not MCMC)
sample from the exact posterior given the representative tree.
We will demonstrate this using a mass cytometry dataset in
Section 6.

4. Theoretical Properties

Next we investigate the theoretical properties of the HMPT
model. Previous theoretical analysis on the PT had mostly
focused on establishing the marginal posterior consistency and
contraction of the random measures Qg with respect to an
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unknown fixed truth (Walker and Hjort 2001; Castillo 2017).
We, however, shall take a different perspective and instead
provide asymptotic theorems regarding the following questions
that are often of practical interest:

1. What tree structures does the marginal posterior of T con-
centrate around?

2. How does the posterior of the latent states given the tree
behave?

These two questions have broad relevance in inference using
PT models, and previously several authors have investigated the
second question in the two-group comparison context for their
variants of the PT model (Holmes et al. 2015; Soriano and Ma
2017). In addressing the second question more generally, we
aim to provide results that encompass these previous analyses
as special cases.

We will address each of the two questions in turn. Through-
out this section, we consider finite PTs with maximum depth
of the trees set to some value K. We use T K to denote this
collection of trees. Also, the asymptotic results are derived under
the prior for L(A) provided in Section 2.2 which can depend
on the (finite) sample size. The case of an uniform prior on
L(A) independent of the sample size is included as a special case
where the hyperparameter η = 0. Finally, we consider models
and sample sizes that satisfy Assumptions 1 and 2. The models
discussed in Section 2.3.1 all meet this requirement.

Assumption 1. For each group g ∈ {1, . . . , G}, let ng be the
sample size and Pg the true probability measure from which the
observations are generated. We assume that

(i) There exists ζg ∈ (0, 1] such that ζg = limn→∞
ng
n for g ∈

{1, . . . , G}, where n = n1 + · · · + nG is the total number of
observations across all groups.

(ii) The sampling distribution Pg satisfies Pg ≪ µ, and the
density pg = dPg/dµ is positive almost everywhere.

Additionally, given the tree T and the latent states, the parame-
ters {θg(A)}G

g=1 are given one of the following priors (the model
can adopt a mix of these priors for different combinations of A
and V(A) values):

Prior A : θg(A) independently follow a beta prior.
Prior B : θ1(A) = · · · = θG(A) and follow a beta prior.
Prior C : θ1(A) = · · · = θG(A) ≡ c(A), some constant in

(0, 1).

Establishing the theoretical properties also requires a con-
dition on the latent states. In particular, under some states,
the support of the prior of the parameters {θg(A)}G

g=1 needs
to include the true conditional probabilities. To describe this
requirement, given a tree T ∈ T K , let Si(A | T) be the support
of the prior on (θ1(A), . . . , θG(A)) under the state V(A) = i.
Then, let τ (A | T) denote the collection of “feasible states” on
A. (A state is “feasible” if the true conditional probabilities are in
the support of the corresponding prior given the state.) That is,

τ (A | T) := {i ∈ {1, . . . , I} : (P1(Al | A), . . . , PG(Al | A))

∈ Si(A | T)}.

The next assumption states that the prior for the latent states
must give positive probability for all the latent states to all
simultaneously be feasible.

Assumption 2. For every T ∈ T K , P (V(A) ∈ τ (A | T) for all
A ∈ T) > 0.

With these assumptions, we next derive asymptotic prop-
erties for the marginal posteriors for the tree and the state
variables. In the following, we use the notation xn instead of x
for the data to indicate the total sample size.

In order to describe the posterior convergence of the parti-
tion trees, we introduce a notion for “tree-based approximation
for probability measures.” Let T be a finite tree and H a probabil-
ity measure. Then the “tree-based approximation of H under T,”
denoted by H|T , is defined as H|T(B) = ∑

A∈L(T) H(A)µ(B∩A)
µ(A) .

for any B ∈ B(!). The following theorem then characterizes the
trees the posterior concentrates on as the sample size grows.

Theorem 4.1. Let T K
M be the collection of trees under which the

tree-based approximation of the measures Pg minimizes the
Kullback-Leibler divergence from the Pg ’s plus a penalty term
on unbalanced splits. That is,

T K
M = arg min

T∈T K

G∑

g=1
ζg

{
KL(Pg ||Pg |T) + ηBg(T)

}
, (7)

where

Bg(T) =
∑

A∈N (T)

Pg(A)f
(∣∣∣∣

µ(Al)

µ(A)
− 0.5

∣∣∣∣

)
.

Then the marginal posterior of T concentrates on T K
M . That is,

as n → ∞,

P(T ∈ T K
M | xn)

p−→ 1.

For the state variables, it is desirable that their posterior
distribution concentrates on a collection of feasible states. More-
over, when multiple configurations of the states are feasible, it
is desirable that the posterior concentrates around such con-
figurations that provide the most parsimonious representation
of the true distributions. For example, if the true conditional
distribution on a node is uniform, a model that introduces
a possible nonuniform structure on this node is feasible but
redundant. White and Ghosal (2011) and Li and Ghosal (2014)
showed that, in quite general settings of multi-resolution infer-
ence, the posterior probability of such redundant models tends
to concentrate its mass on 0. By adapting their techniques, we
show that the same property holds in the case of the HMPT
model.

To formally describe the results, we need to define the com-
plexity of the model specified by the latent states. Given the state
V(A) = i, the complexity of the {θg(A)}G

g=1, in other words,
the number of free parameters of the prior distribution under
the ith state is denoted by Ci(A). For example, for two-group
comparison,

Ci(A) =
{

1 if θ1(A) = θ2(A)

2 if θ1(A) ̸= θ2(A).
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Next we introduce the complexity of a combination of states
on the tree T. Given a tree T, let V denote a combination of
the state variables {V(A)}A∈N (T) and let v = {v(A)}A∈N (T)

(v(A) ∈ {1, . . . , I}) be one of the possible realizations of V. Then
we define the model complexity under v as follows:

C(v) =
∑

A∈N (T)

Cv(A)(A). (8)

The next theorem shows that the posterior distribution of the
states given the tree will concentrate on those that are feasible
and most parsimonious.

Theorem 4.2. For T ∈ T K , let VT = {v : v(A) ∈ τ (A | T)

for all A ∈ N (T)}.
Then P

(
{V ∈ VT} ∩

{
C(V) = minv∈VT C(v)

}
| T, xn

) p−→ 1.

Remark. Consistency results for several existing models are
special cases of this theorem. For example, we derive the con-
sistency of the MRS model for two-group comparison as a
corollary in Supplementary Materials F.

5. Experiments

In this section, we carry out simulation studies to examine
the performance of the HMPT model and inference algorithm.
We again consider the two quintessential examples—(i) den-
sity estimation and (ii) the two-group comparison—for infer-
ring within-group and between-group structures, respectively.
Details such as the settings of hyper-parameters and simu-
lated datasets are provided in Supplementary Materials H unless
explicitly described in this section.

5.1. Density Estimation

We first consider two-dimensional examples to observe what
kind of tree structures are obtained under the HMPT model
and how prior specification in Equation (2) influences the per-
formance. After that, we move to higher dimensional cases to
examine the scalability of our new SMC method and the effect
of incorporating the flexible partition. For this task we compare
the HMPT model with the original APT model (Ma 2017)
which also incorporates a prior on the dimension to divide but
restricts partitioning at middle points. Its posterior computation
is implemented by the apt function in the R package PTT.

5.1.1. Two-Dimensional Cases
Simulated data are generated from the three scenarios with the
densities visualized in the first row of Figure 3. (Details on
the simulation settings are provided in Supplementary Mate-
rials H.1.2.) Also presented in Figure 3 are examples of the
posterior mean densities E[q | x] as well as the partition
blocks under the MAP tree. Note that the posterior mean is
computed by integrating out the unknown tree, and the MAP
tree is presented to visualize key distributional features. The
results for the first scenario confirms that the HMPT model is
much more effective in capturing the discontinuous boundaries
of the true density. For the second scenario, our model tends
to draw the boundaries that surround the true clusters. In the

trees given the different values of η, however, we can see that
fewer nodes were divided inside the clusters when η = 0.01. In
contrast, when η = 0.1, the representative tree draws outlines
of the clusters and divides regions inside of the clusters at the
same time. A similar phenomenon is observed in the third
scenario—under our model with flexible partitioning points,
partition lines are formed around the region with high density,
and when η = 0.1, the boundaries were also drawn within the
high probability region. The quantitative comparison based on
the KL divergence is provided in Figure 11 in Supplementary
Materials I, which is consistent with the observations above.

5.1.2. Higher-Dimensional Cases
We generate d-dimensional iid observations from a density
with independent pairs of margins, that is, f (x1, x2, . . . , xd) =∏d/2

j=1 fj(x2j−1, x2j) where

fj(x2j−1, x2j) = pjBeta(x2j−1 | 0.25, 1) × Beta(x2j | 0.25, 1)

+ (1 − pj)Beta(x2j−1 | 50/j, 50/j)
×Beta(x2j | 50/j, 50/j),

with pj = 0.25 + 0.7/j. We consider two different situations:
(i) the dimension d = 6, and the sample size n changes from
5000 to 50,000; and (ii) the sample size n = 10,000 and the
dimensionality changes from 10 to 100. For our method, the
maximum depth K is set to 15. We show the comparison with
the original APT, and also with the classical PT method, the
kernel density estimation, and the Dirichlet process Gaussian
mixture model (Escobar and West 1995; Müller, Erkanli, and
West 1996).

Figure 4 presents the computational time for five different
datasets. To obtain the result, we used a single-core environment
using Intel Xeon Gold 6154 (3.00 GHz) CPU. The computational
time is linear in both the sample size and the dimensionality.

The models are compared based on predictive scores, that is,
the average of log-predictive densities, where as the predictive
density the posterior mean of the density E[q | x] is used. The
size of the test and training sets is both n, and we repeat the com-
putation for 50 pairs and take the average. The results, given in
Figure 5, show that the HMPT model substantially outperforms
the competitors by this criteria both when d = 6 with varying
sample size and when n is fixed with varying dimensionality. It is
worth noting that the poor performance of the APT in the d = 6
case is due to the fact that available software in the apt package,
which does not uses SMC, cannot be fit for maximal resolution
> 9. We also investigate the performance under sample sizes
< 1000, and the results are similar (Figure 12 in Supplementary
Materials I.)

5.2. Two-Group Comparison

Next we consider the two-group comparison problem, evalu-
ate the performance of the HMPT model, and compare it to
the original MRS with the “divide-in-the-middle” restriction.
We use three scenarios (“Local location shift,” “Local disper-
sion difference,” and “Correlation”) to generate 50-dimensional
datasets. (The details are provided in Supplementary Materials
H.2.2.) The first two scenarios involve two-group difference that
lies in only parts of the sample space, or “local” differences,
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Figure 3. The posterior means of the densities and the representative trees obtained under n = 1000. Each column corresponds to a simulation scenario. The first row
shows the true densities, the second row corresponds to the APT model (with fixed partition), and the third and fourth rows correspond to the HMPT model with flexible
partitioning with parameters η = 0.01 and 0.1, respectively.

which will help demonstrate the usefulness of inferring the
partition tree in identifying the nature of the differences. The
sample size is n1 = n2 = 2000 in all scenarios.

The original algorithm for inference under the MRS model
by message passing, which is implemented by the mrs function
in the R package MRS, is not scalable beyond about 10 dimen-

sions even with fixed partition locations. Hence, we compute the
posterior for both the HMPT model and the original MRS in all
scenarios with our SMC and message passing hybrid algorithm
with the maximum resolution fixed to 15. We compare the per-
formance using receiver operating characteristic (ROC) curves
computed based on 200 simulated datasets under each scenario.
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Figure 4. The wall time under five different datasets. The HMPT model with η = 0.01 is used. The black dashed lines indicate the average times.

Figure 5. Predictive performance of six methods. Each point corresponds to the average of the predictive score based on 50 datasets. Each interval is formed by adding
and subtracting the standard deviation. In the right plot, the predictive scores of the DPM model for the over 60-dimensional cases are below the displayed range.

Figure 6. The ROC curves for the 50-dimensional examples.

Figure 6 presents the ROC curves. For the location shift
and dispersion differences, the HMPT model with flexible
partitioning results in substantially higher sensitivity. For the
correlation scenario, the model with fixed partitioning locations
performed slightly better. This is not surprising since in this
scenario the difference exists smoothly over entire ranges
of the dimensions without natural “optimal” division points,
and so the performance gap is the cost for searching over
more possible partition locations, none of which improves
the model fit than the middle point. We again note that while

the model with fixed partitioning performs well here, it works
only with our new computational algorithm for data of such
dimensionality.

To demonstrate how the posterior model can help under-
stand the nature of the differences, we present under each sce-
nario the node with the highest PMAP, or P(V(A) = 1 | x) =
P(θ1(A) ̸= θ2(A) | x), in Figure 7. In the location shift and
dispersion difference scenarios the boundaries are away from
the middle point to characterize the difference, which partly
explains the sensitivity gain in adopting the flexible tree prior.
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Figure 7. Examples of the node with the highest PMAP under the three scenarios for two-group comparison, under the MRS with flexible partitioning and η = 0.1. The
solid lines mark the boundaries of the nodes and the partition line that divides them into the two children nodes. The red triangles and the blue circle are the observations
from the two groups in the node. Gray points are the observations outside the node.

Figure 8. The MAP tree for the mass cytometry dataset visualized up to the ninth level. The size and the color of each node indicate the estimated eff(A), and the number
above a node indicates dimension in which it is split. Only the nodes with more than 50 observations are shown.

6. Application to a Mass Cytometry Dataset

Finally, we apply our model for two-group comparison to a mass
cytometry dataset collected by Kleinsteuber et al. (2016). The
dataset records 19 different measurements including physical
measurements and biomarkers on single cells in blood samples
from a group of HIV patients as well as in reference samples
from healthy donors. For demonstration, we compare the sam-
ple from an individual patient sample (Patient #1) to that from
a healthy donor to identify differences in immune cell profiles.
The sample sizes are 29,226 for the health donor and 228,498
for the patient, with each observation corresponding to a cell.
We set η = 0.1 and the maximum depth K to 25.

Given the large sample sizes, the posterior probability for the
global alternative P(Q1 ̸= Q2 | x) is almost 1 and so is of less
interest. Our focus is instead on identifying the cell subsets on
which the samples differ and on quantifying such differences. To
this end, we report the effect size eff(A) defined in Section 3.2
on each node in a representative tree—the MAP among the
sampled trees.

The estimated eff(A)’s on the MAP tree up to level 9 is
visualized in Figure 8. The full tree and the nodes with large
eff(A) are provided in Supplementary Materials I. We note that
the nodes on which there is significant evidence for two-group

differences, as well as those with large estimated effect sizes tend
to be nested or clustered in subbranches of the tree, which is
consistent with our intuition that there is spatial correlation
in the two-group differences, and justifies the hidden Markov
structure embedded in the MRS model.

7. Concluding Remarks

We have proposed a general framework for the PT model that
incorporates a flexible prior on the partition tree and can accom-
modate latent state variables with Markov dependency along
the partition tree. We have proposed a sampling algorithm that
combines SMC and recursive message passing that can scale up
to moderately high-dimensional (∼ 100-dim) problems. Our
numerical experiments confirm that our sampling algorithm
scales linearly in the sample as well as the dimensionality size
and the flexible partitioning tree prior can result in substantial
gain in performance in some settings. Though we have mainly
used two inference tasks—namely density estimation and two-
group comparison—to demonstrate the HMPT model and algo-
rithm, our approach can be readily applied to other PT models
with a hidden Markov structure.

Our proposed algorithm is currently designed to be run in
a single computer environment, so though the computational
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cost is linear to the sample size n, direct application to problems
involving huge n (e.g., > 109) is not yet feasible. It is of future
interest to develop versions of the algorithm for distributed
systems, which could explore either the parallel structure over
nodes or parallel SMC algorithms.

Supplementary Materials

Supplementary Materials for this article are available online. Supplemen-
tary Materials A provides details on the posterior computation. Supplemen-
tary Materials B describes the spike-and-slab prior used for the location
variable. The details on density estimation with APT model and two-sample
comparison with the MRS model can be found in Supplementary Materials
C and D, respectively. All proofs are included in Supplementary Materials
E. Supplementary Materials F details the proof of consistency for the MRS
model with the flexible partitioning. Supplementary Materials G presents
the result of an additional experiment for evaluating the performance of
our HMPT model in density estimation. The details of the numerical
experiments are provided in Supplementary Materials H, and the additional
figures can be found in Supplementary Materials I.
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