
Robotics and Autonomous Systems 171 (2024) 104555

A
0

a

b

R
m
m
e
t

T
a
d

n

2

h
R

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Shared autonomy and positive power control for powered exoskeletons✩

Benjamin Beiter a,∗, Divya Srinivasan b, Alexander Leonessa a
Virginia Tech, Blacksburg, 24060, VA, USA
Clemson University, Clemson, 29634, SC, USA

A R T I C L E I N F O

Keywords:
Powered exoskeleton
Whole Body Control
Shared control

A B S T R A C T

Powered exoskeletons have been shown to significantly reduce physical workload during occupational tasks.
Due to this they have great potential impact on future labor practices. However, powered exoskeleton
controllers must first be developed that are able to directly assist with task objectives and truly collaborate
with users. To address this need we present a shared autonomy control framework that separates the human
and exoskeleton control objectives. This allows for creating a feedback-based exoskeleton controller that will
help accomplish the user’s task goals rather than just assisting in specific motions. We introduce Positive Power
control for the human-based controller that is designed to allow the human to directly command work that
accomplishes the desired task. While a standard robotic controller can be used for the feedback-based control,
we introduce ‘acceptance’ as a measure of how well the exoskeleton’s control objective matches the human’s.
Both control objectives are implemented in an optimization-based Whole-Body-Control structure. Finally, we
introduce a method to update the exoskeleton’s objectives to match the humans’ such that after operating for
a time the exoskeleton can learn to assist the user in accomplishing their task. This framework is implemented
on a 10-DoF upper-body powered exoskeleton. The results verify that the control framework works as desired
and can form a basis for developing extended methods for directly improving cooperative control for powered
exoskeletons.
1. Introduction

Powered or active exoskeletons are robots that are worn by a
user in order to assist or enhance the strength and mobility of their
body. These exoskeletons have numerous applications, but can primar-
ily be sorted into rehabilitation and occupational exoskeletons [1,2].
ehabilitation exoskeletons are designed to assist users to achieve
obility that has been lost permanently or to aid in recovering that
obility during rehabilitation. These exoskeletons come in lower-limb
xoskeletons, which are primarily focused on assisting in locomo-
ion [3,4], and upper-limb exoskeletons that are focused on providing
joint assistance to accomplish manipulation tasks in the presence of
some injury [5,6]. Occupational exoskeletons are instead designed to
assist the user in accomplishing industrial tasks either by augmenting
their strength [7] or helping avoid injury from repetitive action [3,6].
here are many lower-body exoskeletons designed for gait and strength
ugmentation [4,8,9], as well as several whole-body-exoskeletons in
evelopment [10–12], however, most occupational exoskeletons focus
on the upper body [13]. Active occupational exoskeletons can sig-
ificantly reduce the workload when accomplishing tasks [14], and
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therefore have the potential to revolutionize the experience of labor
in the future, with a large market for industrial powered exoskele-
tons. Despite the increased interest and usage of upper-body powered
exoskeletons, one area that has lagged behind in development is the
control strategies for exoskeletons. Numerous review papers [2,3,15–
19] present the same control strategies with only minor improvements
in the performance of the human robot system. There is a need for
controllers that can incorporate a new understanding and strategy for
human–robot interaction that provides more than just physical assis-
tance to the human, all while maintaining a high level of cooperation
and performance of the human–robot system.

A way of organizing the variety of available control approaches for
powered exoskeletons is as robotics control approaches and human-
aware approaches. Robotics control approaches are standard control
strategies for robots such as admittance control, using user input at
a force sensor to command a desired velocity for an end-effector or
joint [20–22], and impedance control, governing the output force of
the robot’s motions based on the relationship between the current
and desired states of the robot [23–25]. Human-aware control ap-
proaches center around calculating exoskeleton action to coordinate
vailable online 13 October 2023
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with the user’s musculoskeletal behavior. This includes both Elec-
tromyography (EMG) and model-based approaches. EMG approaches
use sensor measurements of muscle activity to govern when to activate
the exoskeleton’s assistance. The simplest method of this is direct EMG-
to-Torque control, where the measured muscle effort on a human
joint causes the corresponding exoskeleton joint to activate with a
proportional assistive torque, scaled by some gain [26]. Model-based
approaches use a necessarily simplified model of the human’s muscu-
loskeletal system to calculate joint torques and control the exoskeleton
to respond accordingly. This varies in complexity from merely estimat-
ing the joint torque to better perform human to exoskeleton joint torque
scaling, as in the EMG-to-torque case [27], to optimization methods
that minimize the human muscle efforts during activity via the action
of the exoskeleton [28]. There are also approaches that combine the
model-based and robotic control strategies [29]. More sophisticated
robot control algorithms have been applied to assist exoskeletons in
considering unknowns of human state and intention, such as optimal
control [30], adaptive control [31], and LQR [32]. These established
exoskeleton control strategies, however, are still limited in scope and
are not flexible enough to be applied to uncertain situations with chang-
ing objectives [3,18]. There is a distinct need for improved control
approaches for powered exoskeletons that features greater cooperation
between the human and robot.

One field of Human-Robot-Interaction (HRI) concerned with im-
proved human–robot cooperation is shared control, which focuses on
how a human and robot can jointly control a system. Many approaches
do this by mapping lower-dimensional human commands to higher-
dimensional control inputs to a robot [33]. Alternately, in [34] the
authors defined an approach to dynamically allocate different roles
between a cobot and its’ human partner while trying to accomplish
a shared task. This, along with an ‘‘agreement indicator’’, allows the
cobot to employ its’ own controller when the cobot and human are
successfully cooperating, and allows the human to act more freely
when they are not. This and other shared control approaches are
primarily implemented on robot arms and have not been extended to
powered exoskeletons, which are more dynamically coupled than other
cooperative robots. The only known similar approach is in [27], where
a changing ‘fictitious gain‘ balanced a human-behavior-based controller
with a robotic impedance controller for scaling the amount of joint
torque assistance. Another approach to improved human-exoskeleton
cooperation is shown in [28], where EMG input is used, not as direct
EMG-to-torque control, but rather as learning feedback for a pre-
designed adaptive controller. This controller can adapt to the user’s
objectives to the point of off-loading all user muscle effort to accom-
plish the repetitive task. Inversely, in [33] a user directly controls
an assistive robot, while the robot infers the task that the human is
attempting to accomplish. When the human presses a button, the robot
switches to autonomous control and completes the inferred task. These
approaches show the effectiveness of different roles for exoskeleton-
human system controllers but are not dynamically allocated roles like
the shared control approaches. The importance of measuring and adapt-
ing to human acceptance of shared control with a physically coupled
robot has been highlighted as one of the three main pillars of physical
human–robot interaction [35]. Therefore, we seek to create a shared
autonomy control framework for powered exoskeletons that dynami-
cally balances direct human-input and exoskeleton-autonomous control
in response to the human’s actions during operation. The specific gaps
found in the scientific literature are:

• Powered exoskeleton controllers that can provide assistance in
accomplishing a task directly.

• Incorporation of the shared control approaches of explicitly de-
fined roles for the human and robot in powered exoskeleton
control.

• Empowering the exoskeleton controller with knowledge of when
its’ objectives do not match the user’s and the ability to fully
offload the effort required to accomplish the task when the ob-
2

jectives do match. o
To address this gap we start by implementing a Whole-Body-Control
(WBC) approach. WBC is the go-to strategy for controlling highly
dynamic rigid-body systems. It works by setting up a quadratic pro-
gramming (QP) optimization problem with the linear instantaneous
equations of motion of the system in order to accomplish multiple,
overlapping control tasks at the same time. This control approach was
originally developed for humanoid robots, such as our previous work
with THOR [36], or the famous MIT Atlas [37]. WBC has been lever-
aged to realize many complex behaviors, from straight-leg walking [38]
to teleoperation of a humanoid robot by a human user [39]. WBC can
be applied to a variety of systems as well, including parallel-structured
robots [40], assistive robots [41], and our prior work with powered
exoskeletons [42].

With this WBC, we propose a Shared Autonomy control framework
to address the needed improvements in powered exoskeleton control.
This framework separates the behavior of a human–robot system into
feedback-based and human-autonomous controllers. It uses a measure
of how well the exoskeleton’s control objectives match the human’s
objectives to balance the different controllers in the WBC. The specific
contributions are:

• Separate human-based and feedback-based controllers in a mod-
ifiable framework that can shift the required autonomy during
repetitive task completion.

• Propose a new, positive-power, human-based controller for direct
task assistance from the exoskeleton.

• Introduce ‘‘acceptance’’ as a measure of how well the exoskele-
ton’s control objectives match the human’s objectives.

• Define a learning method to update the exoskeleton control ob-
jectives to match the human’s task objectives.

The framework results in the novel capability of the exoskeleton to
perform the task autonomously, without any human effort needed,
once it has learned the objective from the user, while still being
able to switch back to human control when required. We foresee the
application of this control framework in occupational exoskeletons,
allowing for increased assistance in accomplishing partially unknown,
repetitive tasks, as make up a high proportion of industrial applications.
Additionally, by instilling a give-and-take between the authority and
knowledge of the human and the robot into the controller itself, this
approach is able to generate more complex human–robot interactions,
which widens the potential applications of the field in the future.

This paper is structured as follows: Section 2 will give an overview
of the human–robot system. Section 3 will present the mathematical
model of the robot and the background of the controller. Section 4
lays out the design of the WBC controller. Section 5 presents the
details of the Shared Autonomy framework. Section 6 presents the
xperimental implementation of the controller and its’ results. Section 7
s the conclusion.

. System overview

The system we are using is an upper-body powered exoskeleton. Un-
er feedback-based control the exoskeleton acts as a high-intervention
evice, guiding the user to pre-planned motions. Under human-based
ontrol, the exoskeleton acts as an assistive device while accomplish-
ng a task. The upper-body exoskeleton we use consists of a pair of
rounded 5-DoF robot arms designed by Sarcos Robotics [11], shown in
ig. 1(a) . Mass properties, joint limits, and link lengths were obtained
rom Sarcos to create an open kinematic chain model of the exoskeleton
hat is used by the controller. The exoskeleton is fixed to a stationary
tand so that its’ weight is not borne by the user. The exoskeleton
ontains multiple microcontrollers that provide processing and joint
ontrol for each joint-link pair. To operate the exoskeleton, a user
tands inside the exoskeleton with their back fixed to the back-plate

f the exoskeleton and their hands on the handles. These handles are
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Fig. 1. (a) 10-DOF Empty Powered Exoskeleton with each joint highlighted by coordinate systems (z-axis is joint axis). Left back shoulder joint not pictured. (b) Powered
Exoskeleton during use. Handles through which the user interacts are shown highlighted in red, with the FT sensor that measures interaction in green. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
attached to each end-effector of the robot and are equipped with a 6-
Degree Of Freedom (DOF) Force-Torque sensor. All interaction forces
between the exoskeleton and the user are measured and used as control
inputs. This exoskeleton is different than many others in that it does not
attach to the human’s arm anywhere other than the handles. This means
that there can be a mismatch of joint position and link length between
the human and exoskeleton without a problem. This also enables the
exoskeleton to generate forces at its’ end-effector without loading the
human’s arm at all. A helmet and chestpad are worn as PPE while
operating this prototype exoskeleton.

The exoskeleton controller is designed using two sets of open-
source software. IHMC Open Robotics Software (ORS) contains the
WBC and additional modeling and control algorithms for humanoids
and exoskeletons [43]. IHMC Simulation Construction Set (SCS) is a
cross-platform simulation and analysis environment, developed in Java,
and equipped with tools for modeling robots and testing their con-
trollers [44]. ORS also contains tools for real-time thread applications,
hich is necessary for consistent controller and communication time
teps [45]. The high-level modeling, control, and simulation run on
desktop PC, which communicates to the joint micro-controllers over
ocket communication.

.1. Hierarchical control approach

The total control approach for this powered exoskeleton is separated
nto two parts, high-level and low-level control [46,47], as explained
n Fig. 2. The high-level control uses WBC to achieve the exoskeleton’s
arious control objectives. These objectives, referred to as tasks, are
rbitrary functions of the robot state and equations of motion. On
umanoid robots, these tasks consist of things like dynamic balance,
oot pose control, pelvis orientation, arm configuration control, and
nteraction force control. The dynamics of this exoskeleton are simpler,
s it has a fixed base, so the WBC is instead used to share autonomy
etween the exoskeleton and the user during operation. This WBC con-
ists of two main tasks: the user’s control objective, which is set through
nstantaneous force input at the end effector, and the exoskeleton’s
utonomous task control, which is designed prior to operation. The
utput of the high-level control is desired torques for the exoskeleton
o realize at each joint that would generate the desired motions. The
xoskeleton also comes with joint controllers that run on the microcon-
rollers within the exoskeleton. These are current controllers that track
esired torque commands at every joint and communicate joint states
3

o a high-level controller.
Fig. 2. Multi-level control approach showing the high-level control planning motions
via joint torques, and the low-level current control tracking those desired torques.

Fig. 3. Schematic diagram of the exoskeleton. Joint coordinate systems are highlighted,
matching Fig. 1(a). The purple outline is where a user would stand and the green dots
represent the handles the user would hold onto. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

3. Mathematical formulation

In this section we present the mathematical representation of the
robotic system presented above, the derivation of the Whole-Body-
Controller used here, and the combination of both to output the desired
torques required for control. As illustrated in Fig. 3, the exoskeleton
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can be modeled as a fixed-base system of rigid bodies with 𝑛 actuated
degrees of freedom (DoF). Each DoF has a coordinate system attached
such that positive joint rotation and joint torque is about the 𝑧-axis. We
define the vector of joint variables q and the vector of joint torques 𝝉
as

q ∈ R𝑛, 𝝉 ∈ R𝑛. (1)

Using Featherstone inverse dynamics algorithms [48], the standard
equation of motion for a robot or any system of rigid bodies can be
efficiently found and written as

H(q)q̈ + C(q, q̇)q̇ + G(q) = 𝝉 +
∑

𝑐
J𝑇e we. (2)

Here H ∈ R𝑛×𝑛 is the mass-inertia matrix, C ∈ R𝑛×𝑛 is the Coriolis
matrix, G ∈ R𝑛 is the gravity-matrix, 𝑐 is the number of external contact
points in the rigid body system, Je ∈ R6×𝑛 is the jacobian of the external
contact points in the inertial frame, and we ∈ R6 is the external contact
wrench at each point.

3.1. Whole body control

WBC is an approach for controlling highly dynamic rigid-body
systems by setting up a quadratic optimization problem with the linear
instantaneous equations of motion (Eq. (2)) to control the system to
accomplish multiple, overlapping control tasks at the same time. A
task is a specific control objective to be accomplished. There are many
different kinds of tasks, but all tasks can be encoded as achieving a
desired task velocity

v𝑘 = J𝑘q̇, (3)

and a corresponding task acceleration

v̇𝑘 = J̇𝑘q̇ + J𝑘q̈, (4)

where J𝑘 is the task Jacobian. Here 𝑘 = 1, 2...𝑛T and 𝑛T is the number
of tasks. For each task, a task controller

v̇𝑘,des = 𝝅𝑘(q, q̇), (5)

is designed to give the desired acceleration. This controller 𝝅𝑘 can be
designed using any arbitrary strategy. This means that each task is
defined as the desired rate of change of some value v𝑘, and the task
Jacobian J𝑘 is the mapping from the joint variables to the task value.
These tasks can be joint accelerations, spatial acceleration of certain
points such as end-effectors, or any other measure that can be encoded
as a desired acceleration.

To include each task in a WBC, a quadratic cost function is defined
for each task that relates the actual and desired task accelerations

𝐽𝑘 = ‖C𝑘(v̇𝑘,des − v̇𝑘)‖2

= ‖C𝑘(𝝅𝑘(q, q̇) − J̇𝑘q̇ − J𝑘q̈)‖2, (6)

Where C𝑘, is a weighting matrix (usually diagonal) that gives task
prioritization. These tasks are combined into a total WBC cost-function

𝐽 =
𝑛𝑇
∑

𝑘=1
𝐽𝑘 + 𝝀𝑇q̈ ||q̈||

2, (7)

where 𝝀q̈ ∈ R𝑁 is a vector of weights penalizing the effort, and ||q̈||2
is a vector of squared joint acceleration magnitudes. This cost function
𝐽 can be minimized using the joint accelerations q̈ as the optimization
variables, and subject to a single inequality constraints: the upper and
lower bounds on joint positions q and q̄. These can be defined as

q ≤ q + 𝑇 q̇ + 1
2
𝑇 2q̈ ≤ q̄ (8)

here 𝑇 is a time constant that governs how abruptly the joints shall
void their range of motion limits. If the total cost function (7) is
inimized to 0, each controller would be perfectly implemented. This
s only the case for non-overlapping tasks. In most cases, including
his paper, there are overlapping tasks and constraints so the mini-
ization implements each controller to the greatest extent that it can,
ighlighting the importance of the task prioritization matrices.
4
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.2. Optimization problem formulation

To solve this optimization problem, the cost function (7) and con-
traints need to be written in a standard form to input the problem
nto a standard optimization solver. The standard form of a Quadratic
rogramming problem is

min
q̈

1
2
q̈𝑇q̈ + f𝑇 q̈

subject to: Aineqq̈ ≤ bineq.
(9)

o achieve this, each task cost-function (6) is stacked into task matrices

=
⎡

⎢

⎢

⎣

𝝅1(q, q̇)
…

𝝅𝑛T (q, q̇)

⎤

⎥

⎥

⎦

, J̄ =
⎡

⎢

⎢

⎣

J1
…
J𝑛T

⎤

⎥

⎥

⎦

, ̇̄J =
⎡

⎢

⎢

⎣

J̇1
…
J̇𝑛T

⎤

⎥

⎥

⎦

, (10)

such that the total cost function (7) can be written as

𝐽 = ‖C(b − ̇̄Jq̇ − J̄q̈)‖2 + 𝝀𝑇q̈ ||q̈||
2, (11)

where the block-diagonal, composite task-prioritization matrix is

C =
⎡

⎢

⎢

⎣

C1 0
⋱

0 C𝑛T

⎤

⎥

⎥

⎦

. (12)

To write the composite cost-function (11) in the standard form (9),
it is rewritten as

𝐽 = ‖C(b − ̇̄Jq̇ − J̄q̈)‖2 + 𝝀𝑇q̈ q̈

= ((b − J̇q̇)𝑇 − q̈𝑇 J𝑇 )C𝑇C((b − ̇̄Jq̇) − J̄q̈) + 𝝀𝑇q̈ q̈

= (b − ̇̄Jq̇)𝑇Q(b − ̇̄Jq̇) + q̈𝑇 J̄𝑇QJ̄q̈ + 𝝀𝑇q̈ q̈ − 2(b − ̇̄Jq̇)𝑇QJ̄q̈

=  + 1
2
q̈𝑇q̈ + f𝑇 q̈

Where:  = (b − ̇̄Jq̇)𝑇Q(b − ̇̄Jq̇),  = 2J̄𝑇QJ̄ +𝜦q̈, (13)

f𝑇 = −2(b − ̇̄Jq̇)𝑇QJ̄.

Here 𝜦q̈ = diag(𝝀q̈). Note that  is a constant here, and so need not be
included in the following minimization:

min
q̈

𝐽 −  = min
q̈

1
2
q̈𝑇q̈ + f𝑇 q̈. (14)

In the above derivation, the squared task-prioritization matrix is

Q = C𝑇C =
⎡

⎢

⎢

⎣

C𝑇1 C1 0
⋱

0 C𝑇𝑛TC𝑛T

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Q1 0
⋱

0 Q𝑛T

⎤

⎥

⎥

⎦

, (15)

where Q𝑘 is the squared task-prioritization for the 𝑘th task.
Finally, any inequality constraint is to be written in the form

Aineqq̈ ≤ bineq. The upper and lower bounds on joint positions (8) can
be written in the form
[

−I𝑛
I𝑛

]

q̈ ≤

[

−(q − q − 𝑇 q̇) 2
𝑇 2

(q̄ − q − 𝑇 q̇) 2
𝑇 2

]

. (16)

he resulting optimization problem can be solved with any readily
vailable QP solving algorithm. Once the optimization has a solution
̈ ∗ the joint torques can be recovered from the inverse dynamics:

= H(q)q̈∗ + C(q, q̇)q̇ + G(q) −
∑

𝑒
J𝑇𝑒 w𝑒. (17)

hese torques are then commanded to the exoskeleton joint controllers
o realize the desired motion.

. Controller design

In this section, we present the choice of tasks included in our WBC
roblem, as well as the associated task controllers. With WBC, the com-
lexity of this choice of task usually arises from under-actuated robots
ith multiple limbs and many interaction points. For this exoskeleton,
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Fig. 4. Diagram of the structure of the full controller.
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the dynamics are not as complex, as it is a fixed base system of rigid
bodies. Instead, the complexity arises from the control application. In
this case, there are two competing control objectives for the robot:
following all user inputs with human-based control, and achieving its’
own learned task objectives with feedback-based control. Therefore the
exoskeleton is operated with three WBC tasks active, a human-based
task, a feedback-based task, and a supporting privileged position task.
To illustrate the application within a WBC as well as the flexibility
of the shared autonomy framework, we present two possible human-
based tasks that are interchangeable. These tasks are integral to the
full controller structure shown in Fig. 4. This Figure also shows the
ntegration into the Shared Autonomy Framework, which is explained
n more detail in Section 5.

.1. Feedback-based task: PD trajectory tracking

Any exoskeleton-autonomous control objective can be represented
s a WBC task. Here, a trajectory tracking task is used. For the WBC,
he trajectory is treated as a series of positions at any timestep given
y the trajectory p = 𝜼(𝑡), with the derivatives also available. The task
ontroller regulates displacement between the end effector position 𝒙ee
and the desired position p. We define a task-space position feedback
control law for the end effector to track a desired trajectory. The
proportional–derivative (PD) controller for the desired end effector
acceleration is

𝒙̈ee,des = 𝑘r (p − 𝒙ee) + 𝑏r (ṗ − 𝒙̇ee), (18)

where 𝑘r and 𝑏r are gains. The corresponding WBC task is

𝝅2 = 𝒙̈ee,des, J2 = Je, (19)

where Jee is the end effector jacobian. The overall cost function of the
task is

𝑅(q̈) = 𝐽r = ‖Cr (p̈ + 𝑘r (p − 𝒙ee) + 𝑏r (ṗ − 𝒙̇ee) − J̇eq̇ − Jeq̈)‖2, (20)

where Cr ∈ R𝑁𝑥𝑁 and 𝑁 = 3 for considering linear force and motion
r 𝑁 = 6 when also considering moment and rotational motion.

.2. Human-based task: Positive power

The positive power task controls the exoskeleton to instantaneously
ncrease the power the robot and human are outputting together. It
5

a

is similar to admittance control, but instead of realizing an output
velocity, it tracks a desired output acceleration at the end-effector
of the robot 𝒙̈𝑒. The end effector is fixed relative to the point that
he user applies an input force 𝒇 𝑒. The desired acceleration output is
roportional to this force input

̈ ee,des = 𝑘e𝒇 e, (21)

where 𝑘e is the force-to-motion scaling gain. The Task for this controller
is then

𝝅1 = 𝑘e𝒇 e, J1 = Jee, (22)

where Jee is the Jacobian of the end effector. The overall cost function
of the task is

𝑃 (q̈) = 𝐽e = ‖Ce(𝑘e𝒇 e − J̇eeq̇ − Jeeq̈)‖2, (23)

where Ce ∈ R𝑁𝑥𝑁 and 𝑁 = 3 for considering linear force and motion
or 𝑁 = 6 when also considering moment and rotational motion.

4.3. Alternative human-based control task: Force output

To explore the performance of positive power control we compare it
to force output control, which is an alternative control approach similar
to approaches for augmentation exoskeletons [7]. In this control task,
a desired wrench at an end-effector is controlled to be a scaled output
of the input wrench,

we,des = 𝑘𝑓𝒇 e, (24)

where 𝑘𝑓 is the force input to force output scaling gain. Here the goal is
to produce a larger force at the end effector than the user does, thus the
exoskeleton does more work. This task, however, cannot be included
in the WBC approach in the same way as the other tasks. Instead, the
optimization problem is first solved for desired joint accelerations, q̈∗,
with any other active tasks. Then the inverse dynamics of the system
(Eq. (17)) can be used to find the desired output torque that would
ealize this output wrench.

= H(q)q̈∗ + C(q, q̇)q̇ + G(q) −
∑

𝑒
J𝑇e we,des. (25)

n this way the robot is attempting to move the end effector at a desired
cceleration while producing a desired output force. These objectives,
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however, are conflicting. Instead of being balanced by the optimization,
the objectives are balanced by how much force is being exerted on the
end effector from the environment. The expected cooperation would be
less.

4.4. Privileged position task

In addition to the two autonomy tasks, there is a third task. The
upper body exoskeleton arms are redundant manipulators, meaning in
certain states the arms could generate an end effector output force or
motion in multiple ways. Therefore, there could be multiple similar
solutions to the QP problem. To address this potential issue, we define a
privileged position task, which will provide guidance to the QP problem
in which solution to choose if there are multiple possibilities. This task
consists of a set of privileged joint positions qd, and a joint-space PD
controller for the desired joint acceleration

q̈d = 𝑘q(qd − q) − 𝑏qq̇, (26)

that tracks the privileged joint positions, with gains 𝑘q and 𝑏q. The
privileged joint positions are defined as a known, safe position for the
exoskeleton to be in. The WBC task is

𝝅3 = q̈d, J3 = I𝑛. (27)

The overall cost function of the task is

𝐾(q̈) = 𝐽k = ‖Ck (𝑘q(q − qd) + (𝑏qq̇ − q̈))‖2, (28)

where C𝑘 ∈ R𝑛𝑥𝑛 is the weighting matrix. Weighting this task much less
than the other tasks in the QP problem will bias all solutions towards
the given set of privileged joint positions, without interfering with the
other objectives. A properly chosen set of privileged joint positions can
improve the safety of the system by biasing all solutions towards a safe
and comfortable position for a user.

5. Shared autonomy

We present a shared autonomy framework for balancing human and
exoskeleton autonomy while accomplishing a task. The objective of
the framework is to allow the exoskeleton to assist in accomplishing a
task directly rather than just assisting in specific motions. This includes
empowering the robot to accomplish the task autonomously once it
knows the specific objectives of the task. Two additions are needed
for this, a way for the exoskeleton to learn the task objectives that the
user knows, and a way of knowing when its’ internal task objectives
are wrong and need to be updated. The former is done on a task-by-
task basis, and the latter is done with a measure of acceptance. This
acceptance is used as an additional weight in the WBC for the human
and exoskeleton autonomous tasks.

5.1. Acceptance

Acceptance is an estimated value of how much the user accepts the
exoskeleton’s internal control objectives as matching their own task
objectives. The acceptance is measured as an integral of the force input
into the robot at each end effector, and is a scalar value on the interval
[0, 1]. It is a measure of the amount of physical effort that the user is
exerting over time to control the robot, and is expected to correlate
with the cognitive workload or ‘‘cost’’ for controlling the movement.
At zero acceptance, it is assumed the exoskeleton does not know the
task objective, and so is operated under the human control input task.
At full acceptance, the exoskeleton operates fully autonomously and
does not follow the human’s inputs. This happens when the user is
no longer inputting force into the handles to correct the exoskeleton’s
motions towards the user’s objectives. Operating at an intermediate
acceptance value results in shared control autonomy between the user
and exoskeleton through the balance of the WBC tasks. Conceptually,
6

the acceptance 𝛼(𝑡) is an integral of the recent effort put forth by the b
user to correct the robot. As such it is measured by setting the derivative
of the acceptance proportional to the force measured from the user

𝛼̇(𝑡) = 𝜆
𝛽
‖𝒇 𝑒‖ − 1, (29)

where 𝜆 is a learning rate, and 𝛽 is a normalization value. This normal-
ization value is set such that when the magnitude of the force input
is greater than the value, the acceptance increases, and when it is less
the acceptance decreases. Both 𝜆 and 𝛽 can be tuned. Additionally, the
acceptance is practically bounded within the interval [0.1, 1] such that
the exoskeleton can have full autonomy, but its’ task will never fully
be overridden by the user so it can keep indicating to the user what its’
objectives are.

The acceptance is added to the WBC problem as an adjustment to
the weights of the control tasks. The overall cost function (7), rather
than being written as a simple sum of the task costs, becomes

min
q̈

𝛼𝑅(q̈) + (1 − 𝛼)𝑃 (q̈) +𝐾(q̈) + 𝝀𝑇𝑞 ||q̈||
2. (30)

This weighting can also be implemented in the standard form of the
optimization problem by simply scaling the task weighting matrices
(15) by the acceptance

Q =
⎡

⎢

⎢

⎣

(1 − 𝛼)Qe 0 0
0 𝛼Qr 0
0 0 Qk

⎤

⎥

⎥

⎦

. (31)

.2. Task learning

To demonstrate the application of the Shared Autonomy control
pproach, it is applied to a trajectory tracking task, though a learning
ethod can be implemented for any type of control task. For the
rajectory tracking task shown in Section 4.1, we conceptualize the
ser’s objective as to move the exoskeleton’s end-effector such that it
ollows a desired trajectory 𝝓(𝑡) defined on a period 𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ]. The
rajectory task is assumed to be repetitive, with the same goal trajectory
(𝑡) each cycle. The feedback-based task is to follow a desired trajectory
(𝑡). The exoskeleton’s learning objective is to converge the control
rajectory to the human’s desired trajectory

𝑗 (𝑡) → 𝝓(𝑡), (32)

here 𝑗 = 0, 1,… is the cycle number. Each desired trajectory is defined
y 𝑛𝑝 way-points. The learning procedure is to begin with an initial
esired trajectory 𝜼1(𝑡). When it does not match the user’s objective,
he user exerts force to direct the exoskeleton. This both causes the
cceptance to decrease so the user can perform their desired task under
heir own autonomy, and moves the exoskeleton from its’ initial desired
rajectory. When this happens, the exoskeleton updates its’ desired
rajectory for the next cycle based on this user-corrected motion.
There are two ways for the learning to occur. The first is trajectory

irect overwrite, in which the trajectory that is to be tracked in the next
ycle is set to match the realized trajectory from this cycle

𝑗+1(𝑡𝑘) = 𝒙ee(𝑡𝑘) 𝑗, 𝑘 = 1, 2,… , 𝑛𝑝, (33)

t a time-step 𝑡𝑘 associated with each trajectory way-point, within the
eriod of cycle number 𝑗. The second learning method is trajectory soft-
pdate. With this strategy, the desired autonomous trajectory is updated
owards the achieved trajectory, scaled by the acceptance measure

𝑗+1(𝑡𝑘) = 𝛼𝜼𝑗 (𝑡𝑘) + (1 − 𝛼)𝒙ee(𝑡𝑘) 𝑗, 𝑘 = 1, 2,… , 𝑛𝑝. (34)

t full acceptance the exoskeleton will operate autonomously and will
ot update its’ objectives. At zero acceptance the exoskeleton will
ct fully under human autonomy and will act like direct overwrite.
he soft-update strategy performs better, as it makes the final learned
rajectory more robust to both disturbances from the environment and
rror in low-level control tracking.
Overall, the final expected behavior of the system is that the user
egins to use the exoskeleton, which knows what type of task must be
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Fig. 5. User performing the trajectory tracking task with the exoskeleton. Only the left
arm is active for testing. View is of the YZ Plane in the task-space.

accomplished, and therefore which WBC task to use, but does not know
the exact objectives (desired end-effector positions). The user begins
to command the robot under full human autonomy to accomplish the
task. As it does so, the exoskeleton learns the user’s objective. The
user has to correct the exoskeleton less, so the acceptance increases
until eventually the exoskeleton is operating fully autonomously, ac-
complishing the same task the user was. When the acceptance is high,
and the exoskeleton is operating autonomously, the total effort required
of the human will be lower. Without having to focus on operating
the exoskeleton, the user is freed to spend more effort on observing
the environment, planning, and other higher-level decisions related to
their task. At any time the user can exert more force to correct the
exoskeleton’s autonomous performance of the task, either for small
adjustments of priority or for fully changing the task. In this way the
user’s effort is only high when directing the exoskeleton to achieve a
new objective or respond to the environment.

6. Results and discussion

To Illustrate the operation of the controller we implemented the
Shared Autonomy framework on the trajectory tracking task with the
Sarcos Upper-Body Powered Exoskeleton. Fig. 4 shows the diagram of
the final controller structure. All trials are done with only linear motion
and force tasks, not moment or angular motion. All trials are done with
only the left arm active in order to simplify this validation experiment.
The right arm could be operated under an identical controller, or a
new task controller could be designed for bimanual manipulation, but
it is left dormant here. Additionally, all trials are done with no load on
the end-effector to test achieving of desired motions. The privileged
position is defined as the zero position for all the joints, shown in
Fig. 3, except for the elbow, which is at 90◦. We begin by validating
the functionality of both the human-based and feedback-based tasks
independently. Then the full framework is implemented to show how
it achieves the desired outcomes. Fig. 5 shows the exoskeleton during
operation along with the trajectory tracking task.

6.1. Feedback-based control

To validate the feedback-based control task, the exoskeleton is
operated with only this task active and no human input. This matches
7

the shared autonomy case where the acceptance is 𝛼 = 1. The trajectory
Table 1
Variance of the end-effector position while repeatedly tracking a stationary trajectory.
Total travel is the total distance moved during the cycle, while total variance is
the difference between the actual end-effector trajectory in the final cycle and each
previous cycle, integrated over the cycle. The percent variance is the amount of variance
compared to the total distance traveled.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Total Travel (m) 2.35 2.33 2.34 2.33 2.38
Total Variance (mm) 37 14 13 14.3 0
Percent Variance 1.57% 0.60% 0.55% 0.62% 0.0%

Table 2
Task Weighting Values for the Various Task Implementations.

𝐐e 𝐐r 𝐐k

Human-Based Control Only - Positive Power 100 ⋅ 𝐈3 0 ⋅ 𝐈3 5 ⋅ 𝐈3
Human-Based Control Only - Force Output 0 ⋅ 𝐈3 0 ⋅ 𝐈3 5 ⋅ 𝐈3
Feedback-Based Control Only 0 ⋅ 𝐈3 1200 ⋅ 𝐈3 5 ⋅ 𝐈3
Shared Autonomy 100(1 − 𝛼) ⋅ 𝐈3 1000𝛼 ⋅ 𝐈3 5 ⋅ 𝐈3

given is a triangle in the 𝑦𝑧 frame, a forearm’s width in the 𝑥 direction
from the base of the robot. The gains for the PD controller are 𝑘r =
175 and 𝑏r = 12. These gains were tuned through experimentation to
provide small or no oscillations during tracking, so as not to cause any
unexpected motions for a user. The trade-off for this is longer settling
times and higher tracking error. The task weights are given in Table 2.
The desired trajectory and the accuracy of the tracking task are shown
in Fig. 6.

The desired trajectory is tracked successfully, with the exoskeleton
repeating the same trajectory over and over, even if it is not perfectly
accurate. The variation between the 5 trajectory cycles shown in this
trial are given in Table 1. The total variance between cycle 𝑖 and 𝑗 is
defined as

𝑣𝑖,𝑗 = ∫

𝑡𝑓

𝑡𝑜
‖𝒙ee,𝑖(𝑡) − 𝒙ee,𝑗 (𝑡)‖𝑑𝑡. (35)

From these results it can be seen that the variance between the trajec-
tory tracked in each cycle is very small compared to the total distance
traveled in the cycle. The tracking error over the trial averages to
𝑒avg = 0.0193 m, which comes from the fact that the PD controller for
trajectory tracking does not have a feed-forward or integral term to
drive its error to zero. As it is, these results show that the feedback-
based task works, shows close to accurate tracking, and is repeatable
so that the human can depend on the exoskeleton to do the same thing
without variation if it is in autonomous mode.

6.2. Human-based control

To demonstrate the performance of the human-based control, trials
of operating the exoskeleton were done with no feedback-based control
task, as if acceptance were always 𝛼 = 0. This was done with both the
Positive Power Task and Force Output Task approaches for comparison.
Under Positive Power the force to motion gain is ke = 1.1. Under Force
Output the force to force gain is kf = 4.0. The privileged position task
is the only active WBC task in this mode. The relative weights for each
task is given in Table 2. During the trials, the user was allowed to
move about freely. During this time they moved randomly at high and
low speeds, and tried to track an approximate triangle trajectory. The
actions are not exactly synced between the positive power and force
output task trials, but occur in the same window of 1 min. Details of
the exoskeleton motion are shown in Fig. 7. The first observation is that
increased exoskeleton input forces correlate with increased velocities.
The instantaneous power shown is

𝑃 = 𝒙̇ee ⋅ 𝒇 e, (36)

which is a measure of how well the exoskeleton’s output motion

correlates with the user’s intention communicated though the force
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Fig. 6. (a) Desired and actual trajectory of the exoskeleton’s end-effector under feedback-based control only. (b) Accuracy of the tracking task through this motion. Dotted black
ines indicate the beginning of each cycle.
Fig. 7. User input force magnitude, left-arm end-effector velocity magnitude, instantaneous power over time, and a measure of the effort efficiency during free motion under
the human-based task controller. For clarity, data is plotted under a moving average filter 333 time steps or 1 s. Data between trials is not synchronized as motions were not
performed at the same rate.
s
a
p
t
v
p
a
m
i
w
h
e

𝐸

input. During the Positive Power Task the average power is 𝑃PP,avg =
.74 Nm∕s and the power is positive in 75.1% of timesteps. During the
orce Output Task the average power is 𝑃FO,avg = 1.31 Nm∕s and the
ower is positive in 56.9% of timesteps. This is under the influence of
oisy velocity and force sensor reading. On average, the positive instan-
aneous power indicates that the human-based task works to generate
xoskeleton motions that follow the human’s input directly, and thus
ill fulfill its role in the shared autonomy framework. Additionally,
he higher average power and correlation percentage of the positive
ower task indicates that the task succeeds in its aim, increasing the
ower output towards the action the user wishes to take and therefore
ncreasing the cooperation of the exoskeleton and the user.
To examine the power behavior further, it must be considered along

ith the magnitude of the Force and velocity. From Fig. 7, it can be
8

een that often the force output task requires a higher force input to
chieve a similar or smaller resulting velocity compared to the positive
ower task. This is true in 40.0% of timesteps, while the reverse,
he positive power task requiring a larger force for lesser resulting
elocity, is only true in 9.0% of timesteps. This indicates that the
ositive power task also requires less effort from the user to achieve
desired motion. The varying magnitudes of force and velocity can
ake it harder to compare the performance of the two tasks, but it
s still desired to compare how well both are performing. Therefore,
e introduce an additional measure of how well the exoskeleton and
uman cooperate during human-based control, referred to as ‘effort
fficiency’. This measure

=
𝒙̇ee ⋅

𝒇 e , (37)

‖𝒙̇ee‖ ‖𝒇 e‖
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Fig. 8. Trajectory behavior during operation with the shared autonomy framework. (a) Highlights the taught trajectory 𝜼1(𝑡) and the final triangle trajectory 𝜼7(𝑡) = 𝜙𝑡𝑟𝑖(𝑡) while
showing each trajectory in between. (b) Shows the transition between the last triangle trajectory and first square trajectory. (c) Highlights the first 𝜼8(𝑡) and last square trajectory
𝜼20(𝑡) = 𝜙𝑠𝑞𝑢(𝑡).
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is the dot product of the unit vectors representing the direction of the
force and velocity; essentially a non-dimensional measure 𝐸 ∈ [0, 1]
indicating how well the robot and human are acting together. For both
tasks, this is shown in Fig. 7. The percentage of time that the effort
efficiency is positive is the same as the power, however, the fact that
the measure is normalized allows it to be better compared between
the two tasks. The average efficiency is 𝐸PP,avg = 0.278 for the positive
power task and 𝐸FO,avg = 0.125 for the force output task. On average, the
positive power task has a higher effort efficiency than the force output
task does, and specifically this is true in 66.5% of timesteps. This new
measure for exoskeleton control supports the claim that the positive
power task generates more cooperation between the human and robot.

6.3. Shared autonomy control

After validating the performance of the individual control tasks,
the shared autonomy framework combining them was implemented.
Fig. 5 shows the user operating the exoskeleton. The controller gains
used match the individual task implementations, with the task weights
shown in Table 2. For measuring the acceptance, the learning rate is
set 𝜆 = 1.0, and the normalization force value is 𝛽 = 33 N. To begin
the shared autonomy, the exoskeleton is initialized with a user-taught
trajectory 𝜼1(𝑡). Then, operating with the soft-update strategy, the user
attempts to track a simple desired trajectory 𝝓(𝑡). The user starts with a
triangle trajectory, similar to the trajectory tracking task in Section 6.1.
The user corrects the exoskeleton continuously to adjust the trajectory
over time from the initial until it converges from the initial trajectory
𝜼1(𝑡) to one they accept. Then, to test the responsiveness of the shared
autonomy framework, the desired trajectory 𝝓(𝑡) changes to be a square
over the same period. The human begins to correct the trajectory to
follow a square instead of a triangle and is able to do so quickly. After
converging to an acceptable square trajectory, the acceptance increases
once more as the human gives autonomy back to the exoskeleton
to follow the taught square trajectory on its’ own. Fig. 8 shows the
9

t

trajectory behavior throughout this trial, while Table 3 gives the details
of these trajectories varying over time.

For analysis purposes, the desired triangle trajectory 𝝓𝑡𝑟𝑖(𝑡) is set
to be the final tracked triangle trajectory 𝜼7(𝑡). Similarly, the desired
square trajectory 𝝓𝑠𝑞𝑢(𝑡) is set to be the final tracked square trajectory
𝜼20(𝑡). During trajectories 1–7, when a triangle is being tracked, it can
be seen in the decreasing variance from 𝝓𝑡𝑟𝑖(𝑡) that the trajectories
slowly converge to be closer to the desired. The acceptance begins high
after the first trajectory, decreases initially due to the human exerting
effort to correct the trajectory, and then increases again back up to
𝛼 = 1.0 as the trajectory approaches the desired triangle trajectory.
When the desired trajectory changes to the square in trajectory 8,
the exoskeleton responds immediately to the user’s inputs, decreasing
the acceptance and adjusting the tracked motion. We then see the
same behavior twice more, of the acceptance decreasing while the
user corrects the trajectory, and then increasing back to 1.0 once it
has reached an acceptable trajectory. This happened twice in this case
because the user settled to one trajectory, 𝜼9(𝑡), first and then continued
to learn towards the final square trajectory 𝜼20(𝑡). It can be seen that in
trajectories 6–7 and trajectories 18–20, once full acceptance has been
reached, the exoskeleton repeats the same trajectory autonomously, as
intended. The variance from the previous trajectory becomes as small
as that between the trajectories under only feedback-based control. All
together, the behavior displayed here verifies that the shared autonomy
framework works to accomplish its’ objective: allowing an exoskeleton
to operate with less effort from the user while still being responsive to
correction when the user’s task objective changes.

Achieving the intended behavior, we look closer at the dynamics
of the WBC that realizes it. Fig. 9 shows performance of the controller
hrough the same trial. The figure first shows the tracking error of the
hree control tasks, not scaled by optimization weights or acceptance.
ue to the tuned gains, the privileged position task has the smallest
rror, while the exoskeleton and human-based tasks have similar values
or tracking error. It was found that having the feedback-based task

uned to have a slightly higher error was more effective for operation.
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F

Fig. 9. The performance of the WBC over the course of the trial. The task error is the cost function associated with the feedback-based (FB, Eq. (18)), human-based (HB, Eq. (21)),
nd privileged position (PP, Eq. (26)) task controllers. The scaled task errors are scaled by the acceptance, as in Eq. (30). The power output at the end-effector matches Eq. (36).
or clarity, data is plotted under a moving average filter of 167 time steps or 0.5 s.
Table 3
End-effector trajectories during Shared Autonomy. Variance is from each trajectory to the initial trajectory 𝜼1(𝑡), the previous
trajectory 𝜼𝑖−1(𝑡), the last triangle trajectory 𝝓𝑡𝑟𝑖(𝑡), or the last square trajectory 𝝓𝑠𝑞𝑢(𝑡).

Cycle # Total Var. From Var. From Average Var. From Var. From
Travel (m) 𝜼1(𝑡) (mm) 𝜼𝑖−1(𝑡) (mm) acceptance 𝝓𝑡𝑟𝑖(𝑡) (mm) 𝝓𝑠𝑞𝑢(𝑡) (mm)

1 2.454 0 0 0.00 1205 –
2 2.444 1562 1562 0.98 436 –
3 2.497 1571 243 0.55 522 –
4 2.465 1335 362 0.37 283 –
5 2.363 1235 202 0.86 96 –
6 2.346 1216 84 1.00 23 –
7 2.338 1205 23 1.00 0 –
8 2.645 1433 573 0.50 – 937
9 2.658 1358 399 0.20 – 846
10 2.517 1138 369 0.73 – 532
11 2.544 1137 104 1.00 – 476
12 2.544 1171 309 0.51 – 646
13 2.470 1154 265 0.18 – 642
14 2.349 1058 221 0.47 – 437
15 2.400 1052 135 0.41 – 365
16 2.240 1005 158 0.46 – 231
17 2.166 1014 170 0.95 – 71
18 2.144 1006 56 1.00 – 29
19 2.141 1011 26 1.00 – 12
20 2.120 1011 12 1.00 – 0
10
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However, scaling these two tasks by the acceptance, as in Eq. (30),
results in a closer balance between the two tasks. When acceptance is
high, the error for the feedback-based task is dominant as the human-
based task is negligible. The reverse is true when acceptance is low.
A higher error here means that the WBC will prioritize tracking that
task, and thus realize the behavior seen in Fig. 8. This is supported
by the instantaneous power from the user, shown in Fig. 9, which is
much higher when acceptance is low. This shows that the exoskeleton
is successfully switching from tracking its’ own trajectory with little
variance when acceptance is high, to better cooperation with the user
in accomplishing the task when acceptance is low.

For simplicity, in this trial we operated the shared autonomy frame-
work with a learning rate of 𝜆 = 1.0 and a normalization force value
of 𝛽 = 33 N. These parameters are set relatively arbitrarily to show
that the framework works, but it was found that changes in these
parameters can drastically change the human’s experience of operating
the exoskeleton. Based on how the framework works, when a user
wants to make a change in the exoskeleton’s motion, they need to exert
a large force at first to decrease the acceptance such that they can take
authority. This is helpful because the small interaction forces that the
user inputs while holding onto the handles of the robot, even when the
exoskeleton is operating autonomously, do not decrease the acceptance
or effect the functioning of the robot. However, the large force to ‘‘take
control’’ does make it harder to start to direct the robot.

Lowering the normalization value 𝛽 decreases this threshold for
correcting the exoskeleton. For example, when we operate the same
Shared Autonomy trial with 𝛽 = 22 N, the user experience was that it
ook much less force to take authority back from the exoskeleton. A
igher normalization value makes the exoskeleton require more force
nd be less responsive. The learning rate affects this too, but the users
emarked more on the speed of acceptance change with a varied 𝜆
ather than the amount of force required. With a higher learning rate
= 1.25 it was found that the acceptance changed much quicker and
here was a higher proportion of time with acceptance at its minimum
r maximum values rather than at an intermediate, shared autonomy
alue. With a lower learning rate 𝜆 = 0.75, the acceptance changed
lower and the user had to be more conscious of the time it takes for
he acceptance to increase once the exoskeleton has learned the proper
bjectives. In one trial with 𝛽 = 22 N and 𝜆 = 0.75, an instability
n the behavior was discovered where the lower learning rate slowed
he acceptance changing, which required the user to maintain motions
onger for the exoskeleton to learn. This was coupled with the lower
ormalization value such that a lower force input would correct the
xoskeleton. However, the same force that changes the acceptance
s used in the human-based task, so lower inputs will command less
otion to the end effector, and thereby allowing the feedback-based
ask to be more dominant than the user wishes, especially if the
cceptance is increasing slowly. Higher corrective forces will command
ore motion from the human-based task, but will then decrease the
cceptance more, restarting the correction cycle. This is just an example
f how a poor selection of parameters can negatively impact the user’s
xperience. A parameter search or optimization is very hard to do as
he proper tuning is also dependent on the user’s behaviors and will
ikely vary between different individuals. A more thorough user study
ill be necessary to explore these interaction dynamics between the
ontroller and the user.
The observed behavior of the system where a user must exert a

arge force to ‘‘take control’’ back from the exoskeleton is also key
o the contribution of the shared autonomy framework. This force
s not dedicated to the task completion, but rather to communicate
he user’s intention to the controller. This is a categorical difference
rom other exoskeleton controllers, because most controllers focus on
aking powered exoskeletons as intuitive and transparent as possible.
nstead, here we propose a controller that the user must interact with
irectly, essentially including an interpretation layer with the controller
11

hat chooses how to respond to the user’s input. This interaction and
communication between the human and controller is complex, and it
highlights the complex interaction between the independent agents of
any powered exoskeleton and the human using it. Shared Autonomy, as
presented here, provides the beginnings of a framework for separating
these robot and human control interests and actions. Separating them
is the first step towards controllers that allow a human and powered
exoskeleton to cooperate in better ways.

7. Conclusion

In this paper we presented a Shared Autonomy framework that de-
composes the behavior of a user operating a powered exoskeleton into
a feedback-based and a human-based task. We use Whole-Body-Control
as the approach to implementing these overlapping control objectives
at the same time. We introduce ‘acceptance’ as a measure of how well
the human’s and exoskeleton’s objectives match, as well as an approach
for the exoskeleton to learn the human’s objectives for the specific task
of trajectory tracking. We present task-based positive power control
as the human-based control approach both as an improvement on the
state-of-the-art in multi-joint powered exoskeleton control, and as it is
better able to be implemented in the WBC approach.

The framework’s functionality is validated by implementation on a
upper-body powered exoskeleton. Due to the complexity of the human–
robot interaction, the necessary next step in understanding the resulting
behavior of the framework is to conduct a thorough user study to
examine it. This study will focus on not just the effect of parameters
on performance, but also the ergonomic and cognitive experience of
operating the exoskeleton. These types of effects of powered exoskele-
ton control are seldom explored. Overall, however, the results shown
so far already indicate that the shared autonomy framework functions
as intended. Tracking of desired trajectories is not perfect, but perfect
performance is never reached with human-in-the-loop control. The
ability to sense the environment, synthesize information, and make de-
cisions to adjust during operation makes the inclusion of the framework
worth the decrease in control accuracy. The framework augments these
strengths by allowing the controller to be relied upon for assistance
in completing repetitive tasks directly, rather than simply providing
physical assistance in certain motions. Finally, in this work, a no-load
trajectory tracking task was the only task implemented in the shared
autonomy framework. Future work will include implementing more
tasks, including a load-lifting task and a bimanual manipulation task.
To implement any new task, we must only implement an autonomous
controller to accomplish the type of task, and a learning method for
the exoskeleton to infer the user’s task objectives. With these two steps,
the presented control framework can be implemented for any industrial
task or controller.
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