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Excitations of quantum Ising chain CoNb2O6 in low transverse field: Quantitative description of
bound states stabilized by off-diagonal exchange and applied field
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We present experimental and theoretical evidence of novel bound state formation in the low transverse field or-
dered phase of the quasi-one-dimensional Ising-like material CoNb2O6. High-resolution single-crystal inelastic
neutron scattering measurements observe that small transverse fields lead to a breakup of the spectrum into three
parts, each evolving very differently upon increasing field. This can be naturally understood starting from the
excitations of the ordered phase of the transverse field Ising model, domain wall quasiparticles (solitons). Here,
the transverse field and a staggered off-diagonal exchange create one-soliton hopping terms with opposite signs.
We show that this leads to a rich spectrum and a special field, when the strengths of the off-diagonal exchange
and transverse field match, at which solitons become localized; the highest field investigated is very close to
this special regime. We solve this case analytically and find three two-soliton continua, along with three novel
bound states. Perturbing away from this novel localized limit, we find very good qualitative agreement with the
experimental data. We also present calculations using exact diagonalization of a recently refined Hamiltonian
model for CoNb2O6 and using diagonalization of the two-soliton subspace, both of which provide a quantitative
agreement with the observed spectrum. The theoretical models qualitatively and quantitatively capture a variety
of nontrivial features in the observed spectrum, providing insight into the underlying physics of bound state
formation.
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I. INTRODUCTION

The transverse field Ising chain (TFIC) is an important
model in condensed matter physics because it displays the
key paradigms of both a continuous quantum phase transi-
tion from an ordered phase to a quantum paramagnetic phase
as a function of field, as well as, in the ordered phase, of
fractionalization of local spin flips into pairs of domain wall
quasiparticles (solitons) [1]. The pure TFIC model can be
mapped to noninteracting fermions [2,3], which in the ordered
phase represent these solitons. However, a variety of different
additional subleading terms in the spin Hamiltonian, such as
a longitudinal field [4] or an XY exchange [5] can stabilize
two-soliton bound states. Here we explore a regime where
novel bound states can be stabilized by the interplay of applied
transverse field and off-diagonal exchange.

The material CoNb2O6 has been seen as a realization
of TFIC physics for over a decade [5–9]. Among the key
experimental observations is the qualitative change in the
nature of quasiparticles from domain walls in the ordered
phase to coherently propagating spin flips in the high-field
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paramagnetic phase. Moreover, a fine structure of bound
states has been observed just below the critical transverse
field, consistent with predictions for a universal E8 spec-
trum expected in the presence of a perturbing longitudinal
field, which in this case arises from mean-field effects of the
three dimensional magnetic order [5,9]. The crystal structure
is orthorhombic (space group Pbcn), with Co2+ ions with
effective spin-1/2 arranged in zigzag chains running along
the c axis, with dominant nearest-neighbor ferromagnetic
Ising exchange [see Fig. 1(a)]. At the lowest temperatures,
small three-dimensional interactions between chains stabilize
a ground state with ferromagnetic ordering along the zigzag
chains and with an antiferromagnetic pattern between chains
[10–14]. While the dominant magnetic physics in CoNb2O6
can be captured by a TFIC Hamiltonian, additional terms
in the Hamiltonian beyond the dominant Ising exchange are
needed to explain various features of the spectrum [5,15].
In particular, a staggered off-diagonal exchange term was
recently proposed on symmetry grounds and shown to re-
produce well the zero-field spectrum using density matrix
renormalization group numerics [15].

In this work, we present high-resolution single-crystal in-
elastic neutron scattering (INS) data as a function of low
to intermediate transverse field in the ordered phase. This
regime has also been explored by THz spectroscopy [16],
which probes the zone-center (Q = 0) excitations. The INS
data reveal a rich evolution of the magnetic spectrum with
increasing field: the spectrum splits into three parts with each

2469-9950/2023/108(18)/184417(15) 184417-1 Published by the American Physical Society

https://orcid.org/0009-0005-3551-6001
https://orcid.org/0000-0003-3628-0051
https://orcid.org/0000-0002-7086-4897
https://orcid.org/0000-0002-7769-9716
https://orcid.org/0000-0002-2377-2711
https://orcid.org/0000-0003-4493-8597
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.184417&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1103/PhysRevB.108.184417
https://creativecommons.org/licenses/by/4.0/


LEONIE WOODLAND et al. PHYSICAL REVIEW B 108, 184417 (2023)

(a)

(b)

(c)

FIG. 1. (a) A single zigzag chain in CoNb2O6. Blue spheres
represent Co2+ ions, red spheres O2− ions. The crystallographic unit
cell length along the chain direction, c, is indicated. (b) Ground
state and (c) excited state of a ferromagnetic Ising chain, obtained
by reversing a spin cluster in the center. Only the boundaries (solid
lines) cost energy, and they are the left and right solitons respectively.
A spin-flip neutron scattering process creates such a pair of left and
right solitons.

part behaving very differently. The top two parts are sharp
modes, with the top mode becoming progressively flatter and
the middle one progressively more dispersive in field, while
the lowest energy part is a continuum where the intensity
moves from bottom to top upon increasing field.

We seek to understand this rich behavior in terms of a
recently refined Hamiltonian model for CoNb2O6, which pro-
posed all relevant additional exchange terms down to 2% of
the Ising exchange [17]. We find that the experimental data
agree very well with the results obtained using numerical
exact diagonalization (ED) calculations for this full Hamilto-
nian, where interchain coupling effects are treated in a mean
field approximation. To obtain a physical understanding of the
spectrum, we start from a picture of soliton quasiparticles,
which hop due to both the applied transverse field and the
off-diagonal exchange. The competition between these hop-
ping effects leads to soliton hopping terms that alternate along
the two legs of the zigzag chain, resulting in two bands with
dispersions that are tuned by the applied field. The relevance
of a model with alternating hopping of solitons for explaining
features in THz spectroscopy data obtained on CoNb2O6 was
already mentioned in Ref. [16], where solitons were treated
as noninteracting. Here we take into account fully the interac-
tions between solitons as we find that this is crucial for a full
understanding of the observed spectrum. A spin-flip neutron
scattering process creates two-soliton excitations [Fig. 1(c)],
which interact via hard-core repulsion and various nearest-

neighbor interaction terms. We solve a minimal model in
the two-soliton subspace and find three continua and up to
three bound states depending on the values of the Hamiltonian
parameters. To understand the character of these bound states,
we first focus on the limit where solitons are localized due to
the hopping term on alternate bonds being zero, a theoretical
situation not previously explored. In this limit, novel bound
states arise due to hardcore repulsion. We then perturb away
from this limit in first order perturbation theory, obtaining
analytic expressions for the dispersions and intensities in INS,
which give strong qualitative agreement with the data. The
results indicate that this regime is indeed realized in CoNb2O6
at intermediate transverse field.

The rest of this paper is organized as follows: Sec. II
provides details of the inelastic neutron scattering experiments
while Sec. III introduces the model Hamiltonian and provides
a qualitative overview of the experimental results. In Sec. IV,
we solve the model Hamiltonian in first order perturbation
theory in the two-soliton subspace. In Sec. V, we provide a
physical picture of the spectrum by starting from the limit
where individual solitons are localized and perturbing around
this limit. Section VI contains our conclusions, and the appen-
dices give further technical details of the calculations.

II. EXPERIMENTAL DETAILS

Inelastic neutron scattering measurements of the mag-
netic excitations were performed on a large single crystal
(6.76 g) of CoNb2O6 grown using a floating-zone technique
[18] and already used in previous INS experiments [5]. The
magnetic field was applied along the crystallographic b di-
rection, which is transverse to the local Ising axis of all
the spins. The measurements were performed using the in-
direct geometry time-of-flight spectrometer OSIRIS at the
ISIS facility. OSIRIS was operated with PG(002) analyzers to
measure the inelastic scattering of neutrons with a fixed final
energy of E f = 1.82 meV as a function of energy transfer
and wave-vector transfer in the horizontal (h0l ) scattering
plane. Throughout this paper, we express the wave-vector
transfer in the inelastic neutron scattering experiments as
Q = (2πh/a, 0, 2π l/c) where (h, 0, l ) are expressed in re-
ciprocal lattice units of the orthorhombic structural unit cell,
with lattice parameters a = 14.1337 Å, b = 5.7019 Å, and
c = 5.0382 Å at 2.5 K [13]. The sample was attached to the
cold finger of a dilution refrigerator inside a vertical 7.5 T
cryomagnet and measurements were taken at a temperature of
0.1 K. The average counting time at each field was around 7
hours.

For each field, two sample orientations were measured
(c axis oriented in the scattering plane at 25◦ and 60◦ with
respect to the incident beam direction). Throughout this paper,
the data panels presented are a combination of data from these
two orientations, with the wave vector projected along the
chain direction l as the physics considered is one-dimensional.
The two orientations were chosen such that the projected l
values covered a large part of the Brillouin zone along the
chain direction. The INS data at one of the measured fields
[2.5 T, in Fig. 2(q)] was briefly reported in Ref. [15].

The data shown have had an estimate of the nonmagnetic
background subtracted off, and have then been divided by
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FIG. 2. Evolution of the INS spectrum and calculated spectrum for the full Hamiltonian in (3), as a function of applied magnetic field,
increasing from top to bottom. Columns left to right: Inelastic neutron scattering data ((a) adapted from Ref. [5]); Sxx as calculated by ED on 16
sites (8 unit cells) with periodic boundary conditions; Sxx as calculated by diagonalization of the two-soliton subspace (see Sec. IV B) on 100
sites (50 unit cells) with periodic boundary conditions; Sxx as calculated analytically by perturbing about the localized limit for λMF = 0 (see
Sec. V). In the right-most column, the hatched patches represent the two-soliton continua; in this approximation, the continua have no scattering
intensity except where the bound states overlap them and create a resonance. In each panel, color indicates Sxx , as defined in (1) and further
normalized by the total number of sites, on a linear scale indicated by the colorbar. The calculations have been convolved with a Gaussian of
0.067 meV FWHM (Full Width at Half Maximum) to mimic the estimated experimental resolution effects and calculated intensities are shown
in absolute units of meV−1. The intensities for the data in (e), (i), (m) and (q) have been multiplied by a common scale factor to bring them
visually into agreement with the corresponding calculations in column 2. The data in (a) come from a different experiment so a separate scale
factor was used for those intensities to bring them into agreement with those in (b).

the squared isotropic Co2+ magnetic form factor f 2(Q) and
by the neutron polarization factor. The latter was calculated
under the assumption that all inelastic scattering is in the
polarizations perpendicular to the Ising (z) axes and that the
dynamical structure factor satisfies Sxx(Q,ω) = Syy(Q,ω), an

approximation which is found to be valid to a large extent for
the model Hamiltonian (3) in the low transverse field regime.
Here,

Sxx(Q,ω) =
∑

λ f

|⟨λ f |Sx(Q)|GS⟩|2δ(Eλ f − h̄ω), (1)
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where the sum extends over all excited states |λ f ⟩ of energy
Eλ f relative to the ground state |GS⟩ and where Sx(Q) =∑

j exp(iQ · r j )Sx
j , with j running over all sites. Under the

above assumption, the wave-vector dependence of the neutron
polarization factor is

P (Q) = 1 +
( 2πh

a

)2
sin2 γ +

( 2π l
c

)2
cos2 γ

Q2 . (2)

Dividing the raw inelastic neutron scattering intensities by
P (Q) f 2(Q) then gives Sxx(Q,ω) up to an overall scale factor.
Equation (2) is appropriate for the experimentally observed
zero-field magnetic structure of CoNb2O6 and takes into ac-
count the two different chains per crystallographic unit cell
with Ising directions at an angle of ±γ to the c direction in
the ac plane. We have taken γ to be 30◦[13].

III. EVOLUTION OF THE MAGNETIC EXCITATIONS
WITH APPLIED FIELD

In this section, we first introduce the model Hamiltonian
and relate this to the zero field spectrum, introducing the con-
cept of two-soliton states. In applied field, the spectrum splits
into three components with different evolution in field. We
show in the following sections that this rich behavior can be
naturally understood in a picture of solitons with dispersions
tuned by the transverse field.

A. Model Hamiltonian

We use the single-chain Hamiltonian model for CoNb2O6
recently refined in Ref. [17]. It is convenient to write this in
three parts:

H = H1 + H2 + H3, (3)

where

H1 = J
∑

j

[
− Sz

jS
z
j+1 − λS

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)

+ (−1) jλyz
(
Sy

j S
z
j+1 + Sz

jS
y
j+1

)]
+

∑

j

hySy
j , (4)

H2 = J
∑

j

[
− λA

(
Sx

j S
x
j+1 − Sy

j S
y
j+1

)

+ λAFSz
jS

z
j+2 + λ

xy
AF

(
Sx

j S
x
j+2 + Sy

j S
y
j+2

)]
, (5)

and
H3 =J

∑

j

2λMF
(
⟨Sy⟩Sy

j − ⟨Sz⟩Sz
j

)
, (6)

and where z is the Ising direction (in the crystallographic ac
plane, defined as the direction of the moments in zero applied
field), y is parallel to the crystallographic b direction and x
completes a right-handed coordinate system.

This Hamiltonian, with parameter values in Table I, is a
refinement of the minimal model proposed in Ref. [15] and
was recently deduced using a simultaneous fit to the spectrum
in zero field, large transverse field, and large near-longitudinal
field [17]. One can regard H1 as the minimal Hamiltonian
needed to qualitatively reproduce all key features of the ex-
citation spectrum, while the terms in H2 are subleading and
are added in order to achieve quantitative agreement. This

TABLE I. Hamiltonian parameters used in (4)–(6), from Ref. [17].

J 2.48(2) meV
λS 0.251(6)
λyz 0.226(3)
gy 3.32(2)
λA −0.021(1)
λAF 0.077(3)
λ

xy
AF 0.031(1)

λMF 0.0158(2)

applies to both the data in Ref. [17] as well as data in low
transverse field presented here. Finally, H3 captures the effects
of the weak interchain interactions at a mean-field level. The
given form with a constant λMF > 0 applies throughout the
field range explored here (0 to 2.5 T ∥ b) as the magnetic
order pattern between chains does not change in this field
range [19] and as, for this magnetic structure, all the interchain
interactions that have a net contribution to the mean field are
Heisenberg-like [17]. The different signs in front of the Sy

j and
Sz

j terms reflect the fact that the Sy components of spins on
neighboring chains are parallel (polarized by the applied field
hy), whereas the Sz components are (spontaneously) aligned
antiparallel by the antiferromagnetic interchain interactions.

The dominant term in the model Hamiltonian is the first
term in H1, the nearest-neighbor ferromagnetic Ising ex-
change. The second term is a nearest-neighbor ferromagnetic
XY exchange term (λS), which causes single spin flips to
hop. The third term is a staggered off-diagonal exchange term
(λyz) which causes solitons to hop with a sign that alternates
along the legs of the zigzag chain. The transverse field term
(hy = gyµBBy) flips single spins; for a fixed number of domain
walls, this is equivalent to soliton hopping by one site. We
will show that the competition between these two one-soliton
hopping terms leads to a rich field-dependent spectrum.

The spectrum in zero field [Figs. 2(a) data and 2(b) calcu-
lation] can be qualitatively understood in terms of the minimal
Hamiltonian H1 + H3. A spin-flip neutron scattering event
creates a pair of solitons (domain walls) and for the pure
Ising chain, the energy is independent of the separation be-
tween these solitons [see Fig. 1(c)]. In the presence of the
staggered off-diagonal exchange (λyz), the solitons become
dispersive [15], resulting in a continuum of scattering in
energy-momentum space, covering a large energy extent near
l = 0. A longitudinal interchain mean field (H3) acts as an
effective linear potential confining the solitons into a series
of bound states, as seen in Fig. 2(a) near l = 0. The sharp
mode in the data near l = 1 is a two-soliton kinetic bound
state stabilized by the XY (λS) exchange [5].

The terms in H2 do not change the qualitative content of
the spectrum but are important for quantitative agreement with
the experimental data. The first term in H2 is an antisym-
metric diagonal nearest-neighbor exchange (λA). The second
and third terms are a next-nearest-neighbor antiferromagnetic
XXZ exchange (λAF and λ

xy
AF, respectively). The second term

is needed to account for the energy of the kinetic bound
state near l = 1 [5], while the first and third are needed to
explain the details of the dispersions seen in very high field
[17]. Figure 2(b) demonstrates that very good quantitative
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agreement has been achieved between the experimental zero-
field data and exact diagonalization calculations using the full
Hamiltonian (3).

B. Spectrum in small to intermediate transverse field

The key feature of the evolution of the spectrum as a
function of field, shown in the first column of Fig. 2, is the
break-up of the observable spectrum into three parts, each
evolving very differently upon increasing field. The top part,
which evolves out of the zero-field high-energy kinetic bound
state, is a sharp mode that becomes progressively flatter upon
increasing field and spreads out over the whole Brillouin zone.
In contrast, the middle part is dominated by a sharp mode
that becomes progressively more dispersive upon increasing
field and appears to trade intensity with the top mode. The
lowest energy part is dominated by a continuum spread, with
intensity moving from bottom to top upon increasing field.
All features and trends in the INS data are quantitatively
captured by exact diagonalization (ED) calculations using the
full Hamiltonian in (3) with the expectation values ⟨Sy⟩ and
⟨Sz⟩ in the mean-field term H3 calculated self-consistently;
these calculations are shown in the second column of Fig. 2.

The breakup of the spectrum in field is clearly illustrated
in Fig. 2(i) at 1 T. The lowest energy part of the spectrum
centered around 1.4 meV shows a set of excitations extending
over a broad energy range with clear sharp modes visible both
at the bottom and the top of this range. Those excitations are
clearly separated from another set of states centered around
2.25 meV with a clear sharp mode near 2.5 meV. At higher
energies still, there is the vestige of the zero-field kinetic
bound state near l = 1, now clearly separated from the rest
of the spectrum. All the observed features, both dispersions
and wave-vector dependence of intensities, are well captured
by the ED calculations in Fig. 2(j).

The 2.5 T data [Fig. 2(q)] shows even more contrasting
behavior between the different parts of the spectrum. The
sharp mode at the top of the low energy continuum now
extends all the way from the Brillouin zone center to l ≈ 0.6
and has gained in intensity compared to the continuum below
it. In the middle energy region, the sharp mode has become
strongly dispersive, with the middle continuum losing nearly
all its scattering intensity, and the top sharp mode has become
almost entirely flat and spread out over almost all of the
Brillouin zone. Again, all these features are well reproduced
in Fig. 2(r). The spectra at 0.5 T [Figs. 2(e) and 2(f)] and 1.5 T
[Figs. 2(m) and 2(n)] interpolate between 0, 1 and 2.5 T and
show the gradual evolution of the spectrum.

The ED calculations quantitatively capture every feature
and trend described above. We stress that the parameters used
in this calculation were not fit to the finite transverse field
data presented here, but are fixed to the values proposed in
Ref. [17]. This excellent agreement between data and calcu-
lation gives further support to the Hamiltonian proposed in
Ref. [17] and motivates our search for a physical picture of
the excitations. In the following sections, we will introduce
a picture of solitons on the zigzag chains and show that the
breaking up of the spectrum and very different evolution of
the different parts in field can be captured quantitatively and

understood phenomenologically in terms of solitons hopping
and bound state formation.

IV. TWO-SOLITON MODEL

In (4) to (6), all λ terms are ≪ 1 such that the dominant
term is the ferromagnetic Ising term. This means that it is
sufficient for our purposes to consider two-soliton excitations,
and neglect mixing with four-or-more-soliton excitations,
since those occur at much higher energy. More systematically,
we may write the Hamiltonian as

H = HIsing + V,

with HIsing denoting the Ising Hamiltonian, and V containing
all other terms in H. We now treat V as a perturbation of order
δ, and define a Schrieffer-Wolff transformation,

H′ = eSHe−S ,

with S† = −S . We require that

[H′,HIsing] = 0, (7)

i.e., that H′ conserves the number of solitons (domain walls).
By expanding S = S1δ + S2δ

2 + . . . , and enforcing (7) up
to order δn with n ∈ Z+, we obtain a systematic perturbative
series for the effective Hamiltonian within subspaces with a
fixed number of solitons. Up to lowest order in δ, we arrive at

H′ ≈ HIsing + Vconserv =
∑

i!0

PiHPi, (8)

with Vconserv denoting the soliton number conserving terms in
V , and Pi standing for the projector to the sector with exactly
i solitons. We have verified that the second order terms, ∼δ2,
are negligible compared to this leading contribution.

Relying on these insights, we now start by considering the
effect of the effective Hamiltonian (8), first on a single soli-
ton, and then within the two-soliton sector. We focus on the
minimal Hamiltonian H1 + H3, yielding a good qualitative
understanding of the spectrum, and leave the discussion of
H2 to Appendices. We further assume that the most important
contribution from the mean field interchain coupling H3 is a z
magnetic field,

H3 ≈ −hz

∑

j

Sz
j, with hz = 2JλMF⟨Sz⟩ ≈ JλMF,

assuming ⟨Sz⟩ = 1/2. For convenience, we define the uncon-
ventional raising and lowering operators,

S±
j = Sy

j ∓ iSx
j , (9)

which obey the usual commutation relations. Note that this
is equivalent to performing the calculations in a spin basis
rotated by π/2 around the z axis, obtained via the canonical
transformation Sx

j → −Sy
j and Sy

j → Sx
j in H.

A. Action of the Hamiltonian on a single soliton

In this section, we consider the spectrum of deconfined
solitons under the Hamiltonian H1 projected to the single
soliton sector. The confining mean field H3 will be introduced
in Sec. IV B, where we discuss the spectrum in the two-soliton
sector.
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Let us define the “left” soliton state, a single domain wall
at the link ( j − 1, j), separating up spins on the left and down
spins on the right,

| j⟩L =
∣∣· · · ↑↑↑ j−1↓ j↓↓ · · ·

〉
. (10)

Here, the arrows indicate the eigenstates of Sz
j with eigenval-

ues ±1/2. We now consider the action of the Hamiltonian H1
on this state, term by term.

(1) Ising exchange. The single soliton state | j⟩L is an
eigenstate, with excitation energy ϵ0 = J/2 above the ground
state.

(2) XY exchange λS. This term flips two adjacent spins in
opposite directions. Acting on | j⟩L, it creates two additional
domain walls by flipping the spins at sites j − 1 and j, and
can therefore be dropped.

(3) Transverse field hy. This term flips a single spin,

Vy = hy

2

∑

j

(S+
j + S−

j ),

where we have used the unconventional raising and lowering
operators (9). To conserve the number of solitons when acting
on | j⟩L, the flipped spin must be either at j or j − 1,

P1Vy| j⟩L = hy

2
(| j + 1⟩L + | j − 1⟩L ).

Therefore the transverse field gives rise to a nearest-neighbor
hopping term for the domain wall.

(4) Staggered off-diagonal exchange λyz. Similarly to the
transverse field hy, this term results in a single spin flip,

Vyz = Jλyz

2

∑

j

(−1) j (S+
j + S−

j )
(
Sz

j+1 − Sz
j−1

)
.

Here, the operator S+
j + S−

j can flip the spin at site j if and
only if the spins on sites j + 1 and j − 1 are opposite, due to
the factor Sz

j+1 − Sz
j−1. Therefore Vyz yields spin flip processes

confined to domain walls. We find

P1Vyz| j⟩L = Jλyz

2
(−1) j+1(| j + 1⟩L − | j − 1⟩L ),

a hopping term similar to the effect of the field hy, but with a
different sign structure across links.

To obtain the spectrum of this hopping Hamiltonian, we
write a Schrödinger equation for the soliton. We define the
state

|ψL⟩ =
∑

j′
ψL( j′)| j′⟩L,

where ψL( j) = L⟨ j|ψ⟩ is the wave function of the soli-
ton. Using the expressions derived for P1H1| j⟩L above, the
Schrödinger equation,

L⟨ j|H1|ψL⟩ = ω ψL( j),

can be rewritten as
1
2

∑

(=±1

(hy + (−1) jJλyz()ψL( j − () =
(

ω − J
2

)
ψL( j).

This equation describes a staggered hopping of solitons, with
hopping amplitudes

h± = 1
2 (hy ± Jλyz ) (11)

alternating on even/odd bonds.

Since H is invariant under translations by two lattice sites,
we can use the following Bloch ansatz:

ψL(2p + σ ) = ψLσ eikpc, with σ = 0, 1.

where k = 2π l/c is the soliton momentum. In the following,
we will interchangeably use the symbols k and l when refer-
ring to momentum along the chain direction, with the only
difference that k is in absolute units whereas l is in reciprocal
lattice units. In the above equation, the coefficients ψLσ dif-
ferentiate between the even and odd sublattices, reflecting the
two-site unit cell of the Hamiltonian. From now on, we will
reserve the index p for labeling the unit cells, whereas j will
be used as a label of lattice sites. With this convention, the
Schrödinger equation reduces to

(h+e−ikc + h−)ψL1 =
(

ω − J
2

)
ψL0,

(h+eikc + h−)ψL0 =
(

ω − J
2

)
ψL1,

yielding a pair of bands, ω±, with bonding / antibonding
orbitals

(
J
2

− ω±

)2

= (h+e−ikc + h−)(h+eikc + h−)

= h2
+ + h2

− + 2h+h− cos kc. (12)

Importantly, the dispersion vanishes if h+ = 0 or h− = 0. In
these limits, the hopping amplitude vanishes either on odd or
on even bonds, and the domain wall can only move between
two sites, giving rise to flat localized bands, as previously
noted in [16]. This localized limit will serve as a convenient
starting point for perturbative considerations in Sec. V, allow-
ing us to obtain a simple qualitative picture for the evolution
of the INS spectrum with magnetic field hy.

Above we considered a single “left” soliton, describing a
domain wall with up spins on the left and down spins on
the right. Another type of domain wall excitation is a “right”
soliton, separating a domain of down spins on the left from up
spins on the right,

| j⟩R = | · · · ↓↓↓ j−1↑ j↑↑ · · · ⟩.

The arguments described above can be repeated for right soli-
tons, with the only difference being that the hopping induced
by λyz is of opposite sign compared to the case of left solitons.
This interchanges the hopping amplitudes h+ and h− in the
Schrödinger equations, but leaves the dispersion (12) unal-
tered. Therefore both solitons become localized at the same
special magnetic field hy.

B. Solution of the Hamiltonian in the two-soliton subspace

We now turn to the spectrum of the effective Hamil-
tonian within the two-soliton subspace. In Sec. IV A, we
obtained two distinct soliton dispersions, ω±, describing
bonding/anti-bonding orbitals. Therefore we expect three
continua in the two-soliton subspace, arising from the pairings
(ω+,ω+), (ω+,ω−), and (ω−,ω−). However, the solitons in-
teract, due both to hard-core repulsion and to nearest-neighbor
soliton-soliton interactions encoded in H1. Moreover, the full
Hamiltonian also includes a confining z magnetic field, H3,
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yielding an attractive interaction between the two solitons in
a pair. Below, we take into account all of these effects by
considering H1 + H3 projected to the relevant subspace with
P2 and show that a full understanding of the spectrum cannot
neglect these interactions.

Assuming hz > 0, the relevant low energy excitations cor-
respond to a single domain of down spins inserted into a
background of up spins. Therefore it is convenient to use the
following basis, with a “left” soliton on the left and a “right”
soliton on the right,

| jL, jR⟩ = | · · · ↑↑ jL−1↓ jL · · · ↓ jR−1↑ jR↑ · · · ⟩,
with jL < jR. Similarly to the procedure followed in
Sec. IV A, we can derive a Schrödinger equation within the
two-soliton subspace by considering the effect of P2H1 and
H3 on the basis states.

The transverse field hy and staggered off-diagonal ex-
change λyz again give rise to hopping terms for the left and
right solitons, with a correction term arising for nearest-
neighbor solitons jR = jL + 1 due to hardcore repulsion,

P2Vy| jL, jR⟩ = hy

2

∑

(=±1

′
(| jL + (, jR⟩ + | jL, jR + (⟩),

and

P2Vyz| jL, jR⟩ = Jλyz

2

∑

(=±1

′
(((−1) jL | jL − (, jR⟩

− (−1) jR | jL, jR − (⟩).

Here
∑′ denotes a restricted summation constrained to valid

basis states, by dropping the unphysical terms | jL + 1, jR⟩ and
| jL, jR − 1⟩ for neighboring solitons jR = jL + 1.

Besides these familiar terms, two new types of contri-
butions arise compared to the single soliton case. The XY
exchange term,

VS = −JλS

2

∑

j

(S+
j S−

j+1 + S−
j S+

j+1),

gives rise to a nearest-neighbor interaction term between soli-
tons,

P2VS| jL, jR⟩ = −JλS

2
δ jR− jL,1

∑

(=±1

| jL − (, jR − (⟩.

This term shifts the center of mass coordinate of the soliton
pair by one lattice site, without changing the relative co-
ordinate jR − jL. Finally, the magnetic field hz leads to an
attractive potential between the left and right soliton,

H3| jL, jR⟩ = hz( jR − jL )| jL, jR⟩.
Based on these relations, we construct the two-particle

Schrödinger equation for the wave function *( jL, jR) defined
through

|*⟩ =
∑

jL< jR

*( jL, jR)| jL, jR⟩.

Relying on translational invariance for the center of mass
coordinate, it is convenient to write

*(2pL + σL, 2pR + σR) = eikc(pL+pR )/2+(k)
σLσR

(pR − pL ),
(13)

with pL/R labeling the two site unit cells, σL/R = 0, 1 dis-
tinguishing the even and odd sublattices and c(pL + pR)/2
being the position of the center of mass of the soliton pair.
For a fixed center of mass momentum k, we obtain cou-
pled equations for +(k)

σLσR
(n), defined on the half line n ! 0

with boundary conditions +(k)
00 (0) = +(k)

11 (0) = +(k)
10 (0) = 0.

We present more details on the numerical solution of these
equations in Appendix A.

The two-soliton Schrödinger equation derived above yields
a spectrum consisting of three continua and three bound
states across a wide range of parameters, see Appendix C.
As mentioned above, the origin of the three continua can be
understood as due to the three different ways of combining the
two bands of solitons into two-soliton continua. The origin
of the bound states, which we term ε bound states to avoid
confusion, will be explored in the following section, Sec. V.

Before turning to the detailed study of the ε bound states,
we conclude this section by deriving a formula for the INS
spectrum within the two-soliton model, showing that the dom-
inant contribution stems from the three bound states. To this
end, we approximate the ground state |GS⟩ appearing in the
dynamical structure factor Sxx, Eq. (1), as the ground state of
the Ising Hamiltonian, |GS⟩ ≈ | . . . ↑↑↑ . . . ⟩. Acting with the
spin operator Sx(k) creates a soliton pair. Using the unconven-
tional raising and lowering operators S±

j = Sy
j ∓ iSx

j , we can
write the resulting state as

Sx(k)|GS⟩ ≈ − i
2

∑

j

eik jc/2| j, j + 1⟩,

where k = 2π l/c is the soliton pair center of mass momen-
tum. By substituting the eigenstates |λ f ⟩ with the solutions of
the two-soliton Schrödinger equation constructed above, we
arrive at the overlaps

|⟨λ f |Sx(k)|GS⟩|2 ∼
∣∣+(k)

01 (0) + +(k)
10 (1)

∣∣2
. (14)

Therefore the ε bound states, which we will show to have
a large weight on the configurations with nearest-neighbor
domain walls, give the dominant contribution to the dynamical
spin structure factor (1).

The INS intensity as calculated above is shown in the third
column of Fig. 2. The calculation uses the full Hamiltonian
with the same parameters as in the ED calculations, except
that the spin vector expectation value ⟨S⟩ = (0, 0, 1/2) is as-
sumed fixed, rather than using a self-consistent value. This is
a good approximation since even at 2.5 T, the self-consistent
value as calculated by ED is ⟨S⟩ = (0,−0.150, 0.473). The
agreement between the observed spectrum and the model is
still quantitative—all features and trends are captured—but
not quite as strong as for the exact diagonalization calculation.
For instance, there is a small overall energy shift, most visible
by comparing Figs. 2(r) and 2(s); in the latter, energies are
shifted to lower values. However all key features are well
reproduced at all measured fields.

To gain more insight into the structure and magnetic field
dependence of this INS signal, we examine the ε bound states
in the next section, by relying on a perturbative argument
around the localized limit h− = 0.
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V. THE LOCALIZED LIMIT

As derived in Sec. IV A, the staggered off-diagonal ex-
change λyz and the transverse field hy in the leading order
Hamiltonian H1 lead to hopping terms of opposite sign for the
solitons. A particularly interesting situation arises when these
terms are matched, such that h− = 0, resulting in localized
single solitons. This localized limit serves as a convenient
starting point for perturbative considerations, shedding light
on the structure and magnetic field dependence of the ε bound
states, as well as the three two-soliton continua. First, in
Sec. V A, we set h− = 0, and study the two-soliton spectrum,
in particular, the nature of the two-soliton bound states. We
then examine the effect of a small nonzero delocalizing term
h− in Sec. V B. Predictions for the evolution of the INS spectra
with decreasing transverse field hy, and comparisons of these
to the experimental data, are discussed in Sec. V C. For most
of this section, we focus on the leading order Hamiltonian H1,
with a brief comment about the mean field H3 at the end of the
section.

A. Localized limit h− = 0

For simplicity, we start by setting λS = 0 as well, and
only keep the staggered off-diagonal exchange λyz and the
transverse field hy. We will discuss the effect of the nearest-
neighbor exchange λS later. Under these simplifications, a
left soliton can hop between the two sites of a unit cell p,
2p ↔ 2p + 1, with rate h−, whereas it hops between neigh-
boring unit cells p − 1 and p, through sites 2p − 1 ↔ 2p, with
rate h+, see Fig. 3(a). For h− = 0, we obtain the following
eigenstates with energies ω±,

|p⟩±L ≡ 1√
2

(|2p − 1⟩L ± |2p⟩L ), ω± = J
2

± h+,

symmetric and antisymmetric under the inversion exchang-
ing the even and odd sublattices, respectively. For a right
soliton, the role of h− and h+ is interchanged, leading to
symmetric/antisymmetric eigenstates localized within a sin-
gle unit cell p,

|p⟩±R ≡ 1√
2

(|2p⟩R ± |2p + 1⟩R), with ω± = J
2

± h+.

Relying on these observations, we can construct the lo-
calized two-soliton eigenstates by considering a left soliton
confined to sites 2p − 1 and 2p, and a right soliton on 2p′ and
2p′ + 1. For p′ > p, the solitons do not interact, and we obtain
the eigenstates

|p⟩−L ⊗ |p′⟩−R , with energy ω−− = J − 2h+,

1√
2

[
|p⟩+L ⊗ |p′⟩−R ± |p⟩−L ⊗ |p′⟩+R

]
, with ω+− = J,

|p⟩+L ⊗ |p′⟩+R , with ω++ = J + 2h+.

The eigenvalue ω+− = J is doubly degenerate, and the eigen-
states were chosen to be symmetric/antisymmetric under
inversion. We now construct delocalized eigenstates with a

(a)

(b)

FIG. 3. Soliton hopping in the localized limit. (a) In the case
of well separated solitons, they can hop independently, with each
soliton hopping between two sites with matrix element h+. (b) When
solitons are in adjacent unit cells, hopping is constrained by hard-
core repulsion between solitons.

well defined center of mass momentum k as follows:

|n, k⟩± = 1√
N

∑

cells,p

eikc(2p+n)/2|p⟩±L ⊗ |p + n⟩±R ,

|n, k⟩0
± = 1√

2N

∑

cells,p

eikc(2p+n)/2(|p⟩+L ⊗ |p + n⟩−R

±|p⟩−L ⊗ |p + n⟩+R
)
, (15)

with N denoting the number of unit cells, and n ! 1. These
eigenstates correspond to the three two-soliton continua aris-
ing from the different pairing of bonding / anti-bonding
orbitals. In the localized limit considered here, we obtain
highly degenerate flat bands at energies J ± 2h+ and J , re-
flected by the free index n standing for the relative coordinate
between the left and right solitons.

Placing the left soliton to sites 2p − 1 and 2p, and the right
soliton to 2p′ and 2p′ + 1 with p = p′ gives rise to interaction
through hardcore repulsion, see Fig. 3(b). In this case, the
eigenstates can be obtained by diagonalizing a 3 × 3 matrix
acting on the three allowed configurations, yielding

|ε±, p⟩ = 1
2

(|2p − 1, 2p⟩ + |2p, 2p + 1⟩

±
√

2|2p − 1, 2p + 1⟩),

|ε0, p⟩ = 1√
2

(|2p − 1, 2p⟩ − |2p, 2p + 1⟩),
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FIG. 4. Dispersions and intensities as a function of wave vector and energy at different stages of perturbation away from the purely localized
limit. The x axis is momentum in reciprocal lattice units, l = kc/(2π ), vertical axis is energy relative to J . In each panel, color indicates Sxx ,
as defined in (1) and further normalized by the total number of sites, on a linear scale indicated by the colorbar; black lines represent ε bound
states while gray hatched patches represent continua. The calculated intensities have been convolved with a Gaussian of FWHM 0.033J and
are shown in absolute units of 1/J . In all panels, h+ = 0.2J . In (a)–(d) the calculation uses the perturbative regime of Sec. V. (a) Bound states
and continua are both dispersionless for h− = 0 and λS = 0. (b) For finite λS , bound states become dispersive but continua remain flat and
highly degenerate. (c) Band inversion occurs between the top two bound states ε+ and ε0 for JλS > 2

√
2h+/3 (see Appendix D), resulting in

modes labeled ε1,2, such that ε1 inherits the structure of the state ε0 close to l = 0 and l = 1 while retaining the character of ε+ elsewhere, with
ε2 showing the opposite behavior. This is reflected by the change in intensity distribution from (b) to (c) near l = 0, 1. (d) Continua become
dispersive for finite h−. (e) Same as (d), but calculated using the full two-soliton model in Sec. IV, which predicts hybridization between the
lowest two bound states, ε2 and ε−, and the continua they overlap.

with energies ε± = J ±
√

2h+ and ε0 = J . The correspond-
ing momentum eigenstates form nondegenerate flat bands
[Fig. 4(a)] given by

|εα, k⟩ = 1√
N

∑

cells,p

eikpc|εα, p⟩, for α = ±, 0. (16)

These states are the origin of the ε bound states found through
the numerical solution of the two-soliton Schrödinger equa-
tion in Sec. IV.

We now consider the effect of a weak symmetric exchange
λS , while keeping h− = 0. As discussed in Sec. IV, this term
only affects nearest-neighbor solitons by shifting the center of
mass coordinate. Therefore the three continua, (15), with soli-
tons residing in different unit cells are not affected. In contrast,
the symmetric exchange acts nontrivially on the bound states
(16), inducing an energy shift calculated perturbatively as

εα −→ εα (k) ≈ εα + ⟨εα, k|VS |εα, k⟩,

yielding dispersive bands

ε±(k) = J ±
√

2h+ − JλS

4
(1 + cos kc),

ε0(k) = J + JλS

2
(1 + cos kc). (17)

The full spectrum of the localized limit h− = 0, with weak
symmetric exchange λS is illustrated in Fig. 4(b), showing the
three highly degenerate flat continua, and the three dispersive
ε bound states, which become delocalized by λS . Note that in
CoNb2O6, λS is large enough that the dispersion causes the ε0
and ε+ bands to cross, leading to band inversion. This effect
is discussed quantitatively in Appendix D and illustrated in
Fig. 4(c). The band inversion further suppresses the dispersion
of the top mode, as well as mixing the character of the two
bands.

B. Effects of weak delocalizing hopping h−

As shown above, the localized limit h− = 0 provides re-
markable insight into the structure of the two-soliton spectrum
obtained near to this limit. We can gain a more detailed un-
derstanding of the evolution of the spectrum with decreasing
transverse field by considering the effect of a weak delocaliz-
ing hopping term h− perturbatively. The first important effect
of h− ̸= 0 is lifting the high degeneracy of the three continua
and broadening these bands. Secondly, a finite h− can mix the
ε bound states constructed in the previous section with the
continua in k regions where they overlap in energy.

We first explore the first effect, by focusing on the continua,
and applying degenerate perturbation theory within each band
separately. We note that for weak h− and λS , the bottom and
top bands remain well separated from the ε bound states.
Assuming also λS ≫ h−, the middle continuum overlaps with
the middle bound state only in the vicinity of k = π/c, see
Fig. 4(d). Therefore our treatment of neglecting the hybridiza-
tion between the continua and the ε bound states is justified in
the limit of weak couplings h+ ≫ λS ≫ h−, apart from the
case of the middle band in the vicinity of k = π/c. While the
experimental parameters lie outside of this well controlled re-
gion, we will demonstrate below that a first order perturbative
expansion grants valuable insight into the evolution of the INS
spectra for the whole range of applied transverse fields.

Denoting the hopping term by Vh− , we find that the matrix
elements between the single soliton eigenstates of the local-
ized limit are

±
α ⟨p′|Vh− |p⟩±α = ±h−

2
(δp′,p+1 + δp′,p−1), α = L, R. (18)

Up to first order in perturbation theory, the energy shifts of
the three continua can be evaluated by considering the matrix
elements of Vh− between the two-soliton eigenstates of the
localized limit, (15), within each band separately. Relying on
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the relations (18), we obtain for the top and bottom bands

±⟨n′, k′|Vh− |n, k⟩± = ±δk,k′ h− cos
(

kc
2

)
(δn,n′+1 + δn,n′−1).

For a fixed center of mass momentum k, this equa-
tion corresponds to an effective nearest-neighbor hopping
Hamiltonian for the relative coordinate n, with hopping ampli-
tude ±h− cos(kc/2), subject to the hardcore constraint n > 0.
Therefore, for the bottom and top bands, we find the spectrum

ωσσ = J + 2σ

(
h+ + h− cos

(
kc
2

)
cos

(qc
2

))
, σ = ±1,

with approximate unnormalized eigenstates

|q, k⟩± ∼
∑

cell separation,
n>0

sin
(qnc

2

)
|n, k⟩±.

Here, k is the total momentum of the soliton pair and q is
the relative momentum of the two solitons, and the factor
sin(qnc/2) reflects hardcore repulsion n > 0. Thus the weak
hopping h− broadens the bands, most strongly around k = 0,
but the high degeneracy still persists at k = π/c, see Fig. 4(d).

Turning to the middle continuum, we have to calculate
four types of matrix elements between the two-soliton states
|n, k⟩0

±. We obtain

0
−⟨n′, k′|Vh− |n, k⟩0

+ = 0
+⟨n′, k′|Vh− |n, k⟩0

−

= δk,k′ i h− sin
(

kc
2

)
(δn′,n+1 − δn′,n−1),

0
−⟨n′, k′|Vh− |n, k⟩0

− = 0
+⟨n′, k′|Vh− |n, k⟩0

+ = 0.

We can now calculate the broadening of this band by diago-
nalizing this matrix within a given total momentum sector k.
We find that the eigenstates in the middle band remain at least
twofold degenerate everywhere, yielding the spectrum

ω+− = J − 2h− sin
(

kc
2

)
sin

(qc
2

)
,

with approximate unnormalized eigenstates

|q, k⟩0
1 ∼

∑

cell separation,
n>0

(eiqcn/2 − e−i(qc/2+π )n)|n, k⟩0
ξ (n),

|q, k⟩0
2 ∼

∑

cell separation,
n>0

(eiqcn/2 − e−i(qc/2+π )n)|n, k⟩0
ξ (n+1),

with ξ (n) = ± for n even/odd, and q again standing for the
relative momentum. Thus the middle band remains highly
degenerate around k = 0, but it is broadened away from this
point, most strongly around k = π/c.

We note that these dispersions of the continua can be un-
derstood based on the single-soliton spectrum as given in (12).
In the limit of small h−, (12) becomes

ω± = J
2

± (h+ + h− cos kc). (19)

The three continua constructed above correspond to the
three different types of soliton pairs. Denoting the individual

solitons’ momenta by k1 and k2, we obtain the energies

ω++ = J + 2h+ + h−(cos k1c + cos k2c)

= J + 2h+ + 2h− cos
(

kc
2

)
cos

(qc
2

)
,

ω−− =J − 2h+ − h−(cos k1c + cos k2c)

= J − 2h+ − 2h− cos
(

kc
2

)
cos

(qc
2

)
,

ω+− = J + h−(cos k1c − cos k2c)

= J − 2h− sin
(

kc
2

)
sin

(qc
2

)
,

with total wave vector k = k1 + k2 and relative momen-
tum q = k1 − k2, in accordance with the expressions derived
above.

The second important effect of the hopping h− is mixing
the ε bound states with the continua where they overlap in
energy. This mixing is manifested in a broadening of the INS
signal, as shown in Fig. 4(e).

C. Comparison with INS data

We conclude this section by describing the INS intensity
predicted by these perturbative arguments. In the localized
limit h− = 0, the continua (15) have no overlap with nearest-
neighbor soliton pairs | j, j + 1⟩ so do not contribute to the
overlap (14) and to the resulting INS spectrum. The ε bound
states (16), on the other hand, have the property that

⟨ε±, k|Sx (k)|GS⟩ = −i
√

N
eikc/2 + 1

4
,

⟨ε0, k|Sx(k)|GS⟩ = −i
√

N
eikc/2 − 1

2
√

2
,

following from comparing (16) to (13). Therefore the differ-
ent bound states contribute differently to the INS spectrum
Sxx(Q,ω). This structure is inherited by the bound states away
from the limit h− = 0.

In the absence of band inversion (JλS < 2
√

2h+/3), the
three bound states can be labeled by ε±,0, such that the bot-
tom and top modes ε± yield strong signals in the vicinity of
l = 0 and are suppressed near l = 1 [note that l = kc/(2π )],
whereas the middle band ε0 behaves in the opposite way, see
Fig. 4(b). If λS is large enough for band inversion to occur, the
top and middle bands acquire new labels ε1,2, with ε1 retaining
the structure of ε+ around l = 0.5 but inheriting the character
of ε0 around l = 0 and l = 1, and the reverse holding for
ε2. This results in a transfer of intensity between the top two
bound states in the vicinity of l = 0 and l = 1. That is, the top
mode is strong at l = 1 and weak at l = 0, and this is opposite
to the middle band [Fig. 4(c)].

For small but finite h−, the lowest ε bound state mode ε−,
which is strong around l = 0 in the limit h− = 0, is pushed
into the bottom continuum due to the strong broadening of the
continuum with h−. The mixing between these states leads
to a signal smeared out across a larger range of energies.
Similarly, the middle bound state mode mixes with the middle
continuum around l = 0.5, smearing and eventually almost
completely washing out the signal, see Fig. 4(e). However,
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for λS large enough to lead to band inversion, the top mode
does not hybridize with the continuum around l = 1, even
for large h−. This is because the upper continuum consists
of states that are even under exchange of the even and odd
sublattices, whereas the bound state ε0 is odd, shedding light
on the remarkably sharp INS spectrum of the top state around
l = 1, even far from the localized limit h− = 0. That is, the top
mode ε1 is sharp at all fields in Fig. 2 in the data (first column)
and in the calculation (third column), even though there are
regions where it overlaps with states originating from the top
continuum, as illustrated in Fig. 2, last column.

This right-most column of Fig. 2 shows the INS intensity
as calculated in this section, using the same parameters as
for the middle two columns but with no longitudinal mean
field (H3 = 0). Comparing Figs. 2(t) and 2(p) with 2(q) and
2(m) respectively, it is seen that the above description is in
remarkable qualitative agreement with the experimental re-
sults in large fields 2.5 and 1.5 T. The agreement is especially
good at 2.5 T [compare Figs. 2(s) and 2(t)], which is close
to the localized limit. This agreement is strongly supportive
of the model presented in this section, especially given that
the model is relatively simple and completely analytically
tractable. At lower fields, the agreement is expected to be
less good as the solitons are now more delocalized and so a
perturbative treatment around the localized limit is expected
to be less quantitatively accurate. Nevertheless, several key
trends are still reproduced: in particular, the top mode ε1 is
captured at all fields, the middle mode ε2 is captured down to
1 T, and the lowest mode ε− is captured down to 1.5 T.

The calculations in the right-most column of Fig. 2 include
the effect of band inversion on the top two bound states, as
well as the terms in H2, as explained in Appendix D. We note
that the full Hamiltonian also contains a z magnetic field, H3,
changing the nature of the continua. This term introduces a
linear confinement, splitting the continua into confinement
bound states, which cannot be captured in this calculation.
Despite these important effects, the tightly bound ε bound
states remain relatively unaffected by the confinement, and
the qualitative predictions for the INS spectra presented in
this section still hold, see Appendix C. We note that, at first
order, a finite longitudinal mean field (H3) would be expected
to increase the energies of all the ε-bound states, which would
bring the calculated dispersions in the right-most column
of Fig. 2 into closer agreement with the experimental data
(left-most column).

VI. CONCLUSIONS

We investigated the spectrum of the Ising chain material
CoNb2O6 as a function of low to intermediate transverse
field in the ordered phase using inelastic neutron scattering
experiments. We compared the measured spectrum to
predictions based on a recently refined Hamiltonian
containing all relevant subleading terms beyond the dominant
Ising exchange and found strong quantitative agreement.

We then sought a physical picture of the excitations. We
found that by restricting the Hilbert space to the two-soliton
subspace at first order in perturbation theory, very good
agreement between the calculation and experiment was
still achieved. The resulting spectrum in general has three
continua and three bound states, of which only the bound
states contribute significant weight to the inelastic neutron
scattering intensity. In order to understand the character of
the bound states, we considered the localized limit, in which
the soliton hopping term on alternate bonds is zero. This
occurs when the applied field matches the strength of the
off-diagonal exchange. We found that the bound states in
this limit are of two solitons in adjacent unit cells, stabilized
by hard-core repulsion leading to a change in delocalization
energy. The bound states survive well away from the localized
limit, suggesting that this picture has a broader domain of
validity than might initially be expected. Using this physical
picture, we have been able to gain both qualitative and
quantitative understanding of the low energy spectrum of
CoNb2O6 in the low transverse field ordered phase.

Access to the data will be made available from Ref. [20].

ACKNOWLEDGMENTS

L.W. acknowledges support from a doctoral studentship
funded by Lincoln College and the University of Oxford.
I.L. acknowledges support from the Gordon and Betty Moore
Foundation through Grant No. GBMF8690 to UCSB and
from the National Science Foundation under Grant No. NSF
PHY-1748958. D.P. acknowledges support from the Engi-
neering and Physical Sciences Research Council Grant No.
GR/M47249/01. L.B. was supported by the NSF CMMT
program under Grant No. DMR-2116515, and by the Simons
Collaboration on Ultra-Quantum Matter, which is a grant from
the Simons Foundation (651440). R.C. acknowledges support
from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme
Grant Agreement No. 788814 (EQFT). The neutron scattering
measurements at the ISIS Facility were supported by a beam-
time allocation from the Science and Technology Facilities
Council.

APPENDIX A: SOLUTION OF THE TWO-SOLITON
SCHRÖDINGER EQUATION

In this Appendix, we present more details on the derivation
and numerical solution of the two-soliton Schrödinger equa-
tion constructed in Sec. IV. Using the action of P2H1 and H3
on the basis states, the Schrödinger equation,

⟨ jL, jR|H1P2 + H3|*⟩ = ω*( jL, jR),

yields

1
2

∑

(=±1

′
[(hy + ((−1) jL Jλyz )*( jL − (, jR) + (hy − ((−1) jR Jλyz )*( jL, jR − ()]

− JλS

2
δ jR− jL,1

∑

(=±1

*( jL − (, jR − () + hz( jR − jL )*( jL, jR) = (ω − 2ϵ0)*( jL, jR).
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Here ϵ0 = J/2 is the energy cost of a single domain wall, and
∑′ stands for a constrained summation restricted to the physical

domain of *( j′L, j′R), j′L < j′R. Introducing the center of mass momentum k, and rewriting this equation in terms of +(k)
σLσR

(n)
according to (13), with n labeling the distance between two-site unit cells, leads to

h+e−ikc/2+(k)
10 (n + 1) + h−+(k)

10 (n) + h−e−ikc/2+(k)
01 (n − 1) + h++(k)

01 (n) + 2nhz+
(k)
00 (n)

= (ω − 2ϵ0)+(k)
00 (n), n ! 1,

h−+(k)
00 (n) + h+eikc/2+(k)

00 (n − 1) + h−e−ikc/2+(k)
11 (n − 1) + h++(k)

11 (n) + hz(2n − 1)+(k)
10 (n) − JλS δn,1 cos

(
kc
2

)
+(k)

01 (n − 1)

= (ω − 2ϵ0)+(k)
10 (n), n ! 1,

h+e−ikc/2+(k)
11 (n + 1) + h−+(k)

11 (n) + h++(k)
00 (n) + h−eikc/2+(k)

00 (n + 1) + hz(2n + 1)+(k)
01 (n) − JλS δn,0 cos

(
kc
2

)
+(k)

10 (n + 1)

= (ω − 2ϵ0)+(k)
01 (n), n ! 0,

h−+(k)
01 (n) + h+eikc/2+(k)

01 (n − 1) + h++(k)
10 (n) + h−eikc/2+(k)

10 (n + 1) + 2nhz+
(k)
11 (n)

= (ω − 2ϵ0)+(k)
11 (n), n ! 1,

with boundary conditions +(k)
00 (0) = +(k)

11 (0) = +(k)
10 (0) = 0.

This set of equations can be solved numerically by truncating
them at a large maximal distance between the solitons, nmax
or by using periodic boundary conditions on a finite ring. By
defining the vector

!(k) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+(k)
01 (0)

+(k)
00 (1)

+(k)
11 (1)

+(k)
10 (1)

+(k)
01 (1)

+(k)
00 (2)

+(k)
11 (2)
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we obtain a matrix equation, allowing us to determine the low
energy spectrum.

APPENDIX B: EFFECT OF SUBLEADING TERMS H2 IN
THE TWO-SOLITON PICTURE

In this Appendix, we briefly discuss the correction terms to
the two-soliton Schrödinger equation derived in Appendix A
arising from the subleading couplings in H2. We examine the
action of H2 term by term. Throughout, we use the unconven-
tional raising and lowering operators as defined in (9).

We first consider the antisymmetric nearest-neighbor cou-
pling,

VA = JλA

2

∑

sites, j

(S+
j S+

j+1 + S−
j S−

j+1), (B1)

raising or lowering two neighboring spins. Projected to the
single-soliton subspace, this term moves the soliton by two
sites,

P1VA| j⟩L = JλA

2
(| j − 2⟩L + | j + 2⟩L ).

In the two-soliton region, we obtain a next-nearest-neighbor
hopping term for the left and right solitons, whenever per-
mitted by the hardcore constraint jR > jL. Applying the
representation (13), we get the following contribution to
the left hand side of the Schrödinger equation for (ω −
2ϵ0)+(k)

σLσR
(n),

JλA cos
(

kc
2

)[
+(k)

σLσR
(n + 1)

+
(
1 − δn,0 − δn,1

(
1 − δσL,0δσR,1

))
+(k)

σLσR
(n − 1)

]
.

The perturbation

V xy
AF =

Jλ
xy
AF

2

∑

sites, j

(S+
j S−

j+2 + S−
j S+

j+2) (B2)

flips a pair of next-nearest-neighbor spins in opposite di-
rections. Acting on a single soliton, V xy

AF| j⟩L always leaves
the single soliton subspace. In the presence of two solitons,
| jL, jR⟩, however, we get a nonvanishing short range contribu-
tion for jR " jL + 2,

P2V
xy

AF| jL, jR⟩ =
Jλ

xy
AF

2

∑

(=±1

(δ jR, jL+1 | jL + 2(, jR + 2(⟩

+ δ jR, jL+2 | jL + (, jR + (⟩).

This term shifts the center of mass coordinate by ±2 or ±1
sites for a spin down domain of length jR − jL = 1 and jR −
jL = 2, respectively. In the Schrödinger equation, it leads to
the following four extra contributions on the left-hand side:

Jλ
xy
AF cos(kc)+(k)

01 (0) ←− (ω − 2ϵ0)+(k)
01 (0),

Jλ
xy
AF cos(kc)+(k)

10 (1) ←− (ω − 2ϵ0)+(k)
10 (1),

Jλ
xy
AF

1 + e−ikc

2
+(k)

11 (1) ←− (ω − 2ϵ0)+(k)
00 (1),

Jλ
xy
AF

1 + eikc

2
+(k)

00 (1) ←− (ω − 2ϵ0)+(k)
11 (1).
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Finally, the effect of the perturbation

VAF = JλAF

∑

sites, j

Sz
jS

z
j+2 (B3)

is to lower the energy of all states relative to the fully aligned
(ground) state. This term is diagonal in the two-soliton basis
| jL, jR⟩, yielding an energy shift depending on the size of
the spin down domain. If there is only a single spin flip,
jR − jL = 1, only two antiferromagnetic bonds are satisfied,
whereas if there are two or more spin flips, jR − jL ! 2, four
antiferromagnetic bonds are satisfied, i.e.,

VAF| j, j + 1⟩ = −JλAF| j, j + 1⟩,
VAF| j, j + 2⟩ = −2JλAF| j, j + 2⟩,

where only the energy difference between the excited state
and the ground state has been kept. These considerations lead
to the energy shift

ω − 2ϵ0 −→ ω − 2ϵ0 + JλAF, if 2n + σR − σL = 1,

ω − 2ϵ0 −→ ω − 2ϵ0 + 2JλAF, if 2n + σR − σL > 1,

on the right hand side of the Schrödinger equation for
+(k)

σLσR
(n).

APPENDIX C: BOUND STATES IN THE TWO-SOLITON
SPECTRUM

In this Appendix, the two-soliton spectrum in various
regimes is briefly discussed. The left column of Fig. 5 shows
the two-soliton spectrum as a function of field for the minimal
Hamiltonian H1. In this case, the spectrum consists of three
continua and three bound states, whose origins are discussed
in Sec. V, at every nonzero field. The right hand column of
Fig. 5 shows the same calculation for the full Hamiltonian
H1 + H2 + H3, where H3 is the confining mean field. In this
case, the mean field splits the continua into a series of con-
finement bound states, but the ε bound states are left mostly
intact, because they are tightly bound.

APPENDIX D: BOUND STATE INVERSION AND MATRIX
ELEMENTS OF H2 IN THE LOCALIZED LIMIT

In this Appendix, we consider the spectrum near the local-
ized limit, h− = 0, obtained when the transverse field satisfies
hy = Jλyz. When 3JλS/(2

√
2) > h+, as is the case for the

experimentally relevant parameters, the top two ε bound state
modes cross each other, so we must use degenerate pertur-
bation theory within the subspace of these top two modes to
calculate the resulting spectrum.

The unperturbed bound states and their energies are given
in (16). In the following, we consider the effects of various
other terms in the Hamiltonian in (4) to (6), starting with the
second term in H1. We consider the matrix elements between
the two highest energy modes (|ε+, k⟩ and |ε0, k⟩) for the
perturbation

VS = −JλS

2

∑

sites, j

S+
j S−

j+1 + S−
j S+

j+1.

FIG. 5. Eigenstates of the two-soliton Hamiltonian as a function
of wave vector and energy at different fields, increasing from top
to bottom. In each panel, states with the character of the ε bound
states have been highlighted in black. These states have been identi-
fied by being well separated from other states in energy, or, where
they overlap with other states, by having high INS intensity and
discarding regions with strong hybridization. Left column: solution
of H1. Three continua and three bound states can be seen at every
nonzero field. ε1, ε2, and ε− are defined in Appendix D. Right col-
umn: solution of H = H1 + H2 + H3. This comparison illustrates
the key effect of H3, i.e., the presence of a longitudinal mean field:
all continua are split into confinement bound states, but the ε bound
states are left essentially intact. This column is to be compared with
the third column of Fig. 2, which shows the intensities under the same
conditions.

This perturbation allows single spin flips to
hop by one site. The diagonal matrix elements
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are

⟨ε+, k|VS|ε+, k′⟩ =−JλS

4
(1 + cos kc) δk,k′ ,

⟨ε0, k|VS|ε0, k′⟩ =+JλS

2
(1 + cos kc) δk,k′ ,

and are consistent with the expressions given in Sec. V. Within
the degenerate subspace, off-diagonal matrix elements are

⟨ε0, k|VS|ε+, k′⟩ = iJλS

2
√

2
sin(kc) δk,k′

and Hermitian conjugate. Eigenvalues and eigenvectors are
then obtained by direct diagonalization, with the dynamical
correlations Sxx obtained from the eigenvectors as described
in Sec. V C. We term the resulting modes ε1 and ε2.

We also derive the matrix elements of the next nearest-
neighbor terms in H2. Consistent with the considerations
above, we only keep the diagonal matrix elements between
bound states of the same type, as well as the off-diagonal
matrix elements between the middle and top modes ε0 and
ε+, which show a strong mixing at the experimental param-
eters. The effect of the perturbation VAF, (B3), is to lower
the energy of all states relative to the fully aligned (ground)
state. However, as discussed in Appendix B, this energy shift
is different for states with a single spin flip compared to states
with at least two spin flips, corresponding to two and four
satisfied antiferromagnetic bonds, respectively. This leads to
matrix elements

⟨ε+, k|VAF|ε+, k′⟩ = ⟨ε−, k|VAF|ε−, k′⟩ = − 3
2 JλAFδk,k′

⟨ε0, k|VAF|ε0, k′⟩ = −JλAFδk,k′

⟨ε0, k|VAF|ε+, k′⟩ = 0.

This perturbation also shifts the energies of all the continua by
−2JλAF.

The effect of the perturbation V xy
AF, (B2), is to hop single

spin flips by two sites. This leads to matrix elements

⟨ε+, k|V xy
AF|ε+, k′⟩ = ⟨ε−, k|V xy

AF|ε−, k′⟩ =
Jλ

xy
AF

2
cos(kc)δk,k′

⟨ε0, k|V xy
AF|ε0, k′⟩ = Jλ

xy
AF cos(kc)δk,k′

⟨ε0, k|V xy
AF|ε+, k′⟩ = 0.

To first order, this perturbation vanishes when acting on the
continua. However, it mixes the continua with the bound
states.

The interchain mean field term, H3, is

Vz = −hz

∑

sites, j

Sz
j

under the approximation that ⟨S⟩ = (0, 0, 1/2). The effect of
this term on the bound states is determined by the matrix
elements

⟨ε+, k|Vz|ε+, k′⟩ = ⟨ε−, k|Vz|ε−, k′⟩ = 3
2 hzδk,k′

⟨ε0, k|Vz|ε0, k′⟩ = hzδk,k′

⟨ε0, k|Vz|ε+, k′⟩ = 0.

The effect of this term on the continua is to confine the
soliton pairs into a series of bound states; this effect cannot
be captured within the current picture.

Finally we note that the first term in H2, VA, (B1), vanishes
when projected to the subspace of bound states, since this term
causes solitons to hop by two sites at a time. To understand the
effect of this term on the continua, we note that VA, a hopping
term to a neighboring unit cell, shifts the single soliton disper-
sion relations as

ω± −→ ω± + JλA cos(kc).

In contrast to the effect of the hopping h−, VA induces the same
shift in the energies of bonding / antibonding orbitals. As a
result, this perturbation leads to the same energy change for
the three continua,

ωσ,σ ′ −→ ωσ,σ ′ + JλA[cos(k1c) + cos(k2c)]

= ωσ,σ ′ + JλA cos
(

kc
2

)
cos

(qc
2

)
,

for σ, σ ′ = ±, with total and relative momenta given by k =
k1 + k2 and q = k1 − k2, respectively.

Alternatively, these spectra can be obtained by applying
first order perturbation theory around the localized limit, sim-
ilarly to the analysis of the hopping h− presented in the main
text. To this end, we first evaluate the effect of VA on the states
|n, k⟩ constructed in Sec. V B. We find

±⟨n′, k′|VA|n, k⟩± = 0
±⟨n′, k′|VA|n, k⟩0

±

= JλA cos
(

kc
2

)
(δn′,n+1 + δn′,n−1)δk,k′ ,

corresponding to an effective nearest-neighbor hopping
Hamiltonian for the relative coordinate n, with hopping ampli-
tude JλA cos(kc/2), subject to the hardcore constraint n > 0.
For the top and bottom continua, the hopping amplitude due
to Vh− is also real, so the |q, k⟩± states constructed in Sec. V B
are also eigenstates of VA and the change in the energies is

±⟨q, k|VA|q, k⟩±
±⟨q, k|q, k⟩±

= 2JλA cos
(

kc
2

)
cos

(qc
2

)
.

For the middle continuum, we consider the effect of Vh− + VA
on the plane wave

∑

n

eiqcn/2(|n, k⟩0
+ + |n, k⟩0

−).

We find that the perturbation corresponds to an effective
nearest-neighbor hopping Hamiltonian for the relative coordi-
nate n, with complex hopping amplitude t = JλA cos(kc/2) +
ih− sin(kc/2) = t ′ + it ′′ = |t |eiϕ . This yields the dispersion

ωA
+− = J + 2|t | cos

(qc
2

+ ϕ
)

= J + 2t ′ cos
(qc

2

)
− 2t ′′ sin

(qc
2

)

= J − 2h− sin
(

kc
2

)
sin

(qc
2

)

+ 2JλA cos
(

kc
2

)
cos

(qc
2

)
.
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The eigenstates satisfying the hardcore repulsion boundary
condition at n = 0 can be obtained by noting that the plane
wave with relative momentum q is degenerate with the plane
wave with relative momentum −q − 4ϕ/c. Mixing these
plane waves leads to the unnormalized eigenstates satisfying
the hardcore constraint,

∑

cell separation,
n>0

(eiqcn/2 − e−i(qc/2+2ϕ)n)(|n, k⟩0
+ + |n, k⟩0

−).

For the plane wave
∑

n

eiqcn/2(|n, k⟩0
+ − |n, k⟩0

−),

the effect of Vh− + VA corresponds to an effective nearest-
neighbor hopping Hamiltonian for the relative coordinate
n, with complex hopping amplitude t∗, such that the argu-
ment above applies with ϕ → −ϕ. Thus the effect of the
perturbation VA is to add 2JλA cos(kc/2) cos(qc/2) to the

energies of all continua, as anticipated based on the single
soliton dispersion relation. We also note that the argument
above yields the following two degenerate eigenstates in the
presence of Vh− but without VA, i.e., for ϕ = π/2,

∑

n>0

(eicq±n/2 − e−i(cq±/2+π )n)(|n, k⟩0
+ ± |n, k⟩0

−),

with q+ − q− = π . The eigenstates constructed in the main
text are the symmetric / antisymmetric combinations of these
eigenstates.

For λA < 0 and h− > 0 such as is found experimentally,
the perturbation VA leads the top continuum to narrow and the
bottom continuum to broaden, and the middle continuum to
broaden around what would otherwise be the nodes. The plots
in the right-most column of Fig. 2 include the effects of all
terms in H1 and H2, but not H3 since it is not possible to
include the effects of this last term on the continua in this
framework.
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