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Toward Building a Human-Computer Coding Partnership: Using
Machine Learning to Analyze Short-Answer Explanations to

Conceptually Challenging Questions
Introduction

This NSF Grantee Poster Session paper describes work on an NSF-funded collaboration between
engineering education and machine learning researchers to automate the coding of short-answer
explanations written by students to conceptually challenging questions in mechanics and
thermodynamics [1], [2]. Concept questions, sometimes called ConcepTests [3], are challenging
multiple-choice questions that allow students to practice utilizing conceptual knowledge in new
scenarios. These questions have been used within multiple active learning strategies to promote
conceptual understanding and student engagement [4] - [11]. Furthermore, students can be asked
to write short-answer explanations justifying their answer choice. Written justifications have
been shown to improve student engagement and understanding and better prepare students for
small-group collaborative work and whole-class discussions [12], [13], [14]. Evaluating these
responses is helpful for instructors and researchers to understand student thinking; however, the
amount of information can be daunting.

Machine learning has been used in a variety of ways in education research. Work done to
evaluate student-constructed responses has included automatic scoring, text classification, or
pattern recognition of responses [15] - [20]. Various unsupervised and supervised learning
techniques have been used to do this, but transformer models have not been widely used to
analyze responses [21] - [26], even with their greater ability to analyze text. These methods have
allowed for improved assessment of student responses and motivated our interest in using
machine learning to analyze student explanations to concept questions.

To accomplish this goal, we collect written responses available from consenting students in
mechanics and thermodynamics courses through the Concept Warehouse (CW) [27], a web-
based online tool for active learning. These responses are then manually coded using emergent
and inductive coding approaches [28], [29], [30]. Finally, the written responses are also analyzed
using large language model (LLMs)-based coding methods like TS (Text-to-Text Transfer
Transformer) [31], OpenAl’s GPT-3, GPT-4 [32], Mixtral of Expert (MoE) [33], and ATLAS.ti
Al Coding [34].

In our overall project, we aim to answer the following research questions:

1. What ideas do students use to explain their reasoning when writing short answer
responses to conceptually challenging questions?

2. How well do transformer-based machine learning models replicate the human-coded
data?

3. For two isomorphic question pairs, how similar is the human coding of one question
relative to the other? How well do the machine learning models trained on the first
question’s explanations perform on the second question?

Our end goal is to create a generative Artificial Intelligence (AI) tool that can supplement the
CW and give instructors and researchers a way to understand patterns and trends in student



responses that reveal their conceptual thinking and reasoning. This poster paper will provide an
overview of our current progress in manually coding student responses and fine-tuning LLMs.

Background
Conceptually Challenging Questions and Short-Answer Explanations

We use the term concept questions to describe qualitative, multiple-choice questions that require
students to identify foundational concepts and then apply them in new situations. Concept
questions are sometimes called “ConcepTests” [3] and are a common type of clicker question
[35]. These concept questions are often used within active learning practices, like Peer
Instruction [3], to help students process conceptual knowledge and develop conceptual
understanding. Concept-based active learning has been shown to improve student performance
and help students develop conceptual understanding and problem-solving skills [4], [7], [36],
[37].

In addition to concept-based active learning, instructors can ask students to write short-answer
justifications for their answers to these conceptually challenging multiple-choice questions.
Writing short-answer responses has been shown to improve student confidence, chances of
picking a correct answer, and better prepares students for group and larger class discussions [12],
[13], [38], [39], [40]. Thus, asking students concept questions and writing short answer responses
has shown to be very beneficial to their learning; however, the large amount of written data can
be too much for instructors to manage effectively.

NLP in Education

Machine learning has been used in education research in a variety of ways [15] - [20], including
analyzing student writing and dialogue [41]. Various unsupervised and supervised machine-
learning methods have been used to assess student-constructed responses. For example,
unsupervised support vector machines (SVM) and logistic regression have been used to classify
text based on a human-coded rubric [15], [16], [42] - [45]. Additionally, supervised neural
networks have been used to analyze texts [21], [46] - [49].

The use of Transformer-based machine learning models [31], [50], [51], [52] in education
research is an emerging method and even more novel for analyzing short answer responses [21] -
[26]. For example, researchers have used BERT and RoBERTa [53] to automatically grade short
answers [25], [26]. These models have been used to critique arguments in student essays and
conduct essay scoring [22], [54]. Most of the earlier studies were focused on small encoder-only
Transformer models, and they did not experiment with sequence-to-sequence and state-of-the-art
decoder-only Large Language Models to assess students' written explanations in science
education. Based on this, we identify a need to apply Transformer-based machine-learning
models to automate coding and analysis of short answer explanations to conceptually challenging
questions. The benefits of automated coding would provide researchers and instructors a more
efficient way to analyze student responses. This work can also provide machine learning
researchers with a further understanding of handling limited labeled data.



Below, we describe how we have leveraged the generative capabilities for sequence-to-sequence
and larger decoder-only Transformer models to assess textual responses to conceptually
challenging engineering questions written by students. Specifically, we used GPT-3 [50] and
GPT-4 [32] via in-context learning and finetuned T5 [31] and Mixtral of Experts (MoE) [33] on
a manually coded dataset to automate the qualitative coding of the student narratives of
understanding.

Methods
Data Collection

Participants in this study are students who consented to have their responses to short-answer
concept questions used in research. Students are from a diverse array of two- and four-year
institutions, which include minority-serving institutions, community colleges, teaching-centered
universities, and R1 universities. Participating instructors are in varying research- and teaching-
focused faculty positions. Enrollment in these courses varies from 25 - 100 students.

All data was collected through the Concept Warehouse (CW) [27], a web-based active learning
tool. The CW serves as a content repository, a classroom response system to deliver content and
collect student responses, and a learning analytics tool that provides data to instructors and
researchers. We have collected and analyzed data on two different topics: mechanics and
thermodynamics. We are actively collecting data in mechanics, while the analysis of
thermodynamics responses comes from historical data collected in the tool. For the former
source, eight common statics and dynamics concept questions were selected to ask across all
institutions. The current common statics questions are related to the following topics:

e QI: Moment of Force
Q2: Trusses
Q3: Static Friction
Q4: Frames and Machines
QS5: Forces
Q6: 2-D Moments Concepts
Q7: 3-D Moments Concepts
Q8: Moment of Inertia

Instructors choose their preferred method for question delivery and often include, but aren’t
limited to, pre-class assignments, homework assignments, or in-class group work. In addition to
the question, instructors also ask students three follow-ups: short answer justification, confidence
rating, and question effectiveness, as shown in Figure 1. In the work involved in this project, we
focus on the analysis of the short answer justification follow-up to understand how students
utilize ideas to form narratives of understanding.



Which of the following best describes the force carried by the bar ED?

(D10 kN

(C)about one third of 10 kN
(Cabout one fifth of 10 kN
(_)approximately zero

Please explain your answer in the box below. Ex p I a n atl o n

A

Please rate how confident you are with your answer.

Confidence

substantially moderately neutral moderately substantially
unsure unsure confident  confident

@] @] @] @] @]

Please help us assess the effectiveness of this question by answering the items below: Qu eSt i o n

| understood what this question was asking.

strongly moderately neutral moderately strongly Effe ct i Ve n es S

disagree disagree agree agree

@] @] @] @] @]

Explain your response to the item above.

Trying to answer this question made me think deeply about course material.

strongly moderately neutral moderately strongly
disagree disagree agree agree

@] @] @] @] @]

Explain your response to the item above.

Figure 1. Example of a student's view of a question asked in this study. The question text and
figure are provided along with the multiple-choice options. Additionally, instructors utilized the
explanation, confidence, and question-effectiveness follow-ups.

For the mechanics data collection, we organized a Community of Practice [55], [56], which
brought together participating instructors twice a term to discuss the use of the common



questions and the implementation of the CW in their classrooms more broadly. During these
meetings, it was often decided if concept questions should be revised or if we wanted to focus on
a different concept question. Figure 2 shows an example of an activity done in a Community of
Practice session with instructors where short-answer responses written by students were
discussed amongst the group to evaluate what instructors and researchers could learn from them.

CW CT 6141 - Example Response #2

Each of the objects - the pipe and the solid eylinder - is rolling uphill along a rough surface with the same velocity vo and the
same angular velocity. The cylinders have the same mass and radius but different cross-sectional areas. Compare the distance

d that each object will travel before stopping

partially understood
the problem
statement - only
operate on a portion

of it
] got the key
concept Newton's 2nd
(MMOI), left Law? -->
i out all kinds of Connect to |
() The pipe travels farther up the hill
() The solid cylinder travels farther up the hill facts thoth --> connect to
(D) The pipe and cylinder travel the same distance up the hill alpha
Pipe has a larger |, lose more speed in rotation.
| (stiffness and .
strength), MMOI (in Losing more
Language motion) --> are they speed over
(terminology) differentiating this? time?
(=02 distance?
concept
issue?

Figure 2. Screenshot of interactive activity done during a Community of Practice meeting.

Our work has recently expanded to analyze short-answer explanations to conceptually
challenging questions in engineering thermodynamics. These questions test students on enthalpy
and entropy, two commonly challenging concepts [57].

Data Analysis: Qualitative Coding

Coding approaches have evolved throughout this project; however, the basis of our processes has
utilized a combination of a priori and emergent approaches [28], [29], [30]. Coding involved
generating an “ideal” response to implement aspects of a priori coding and thinking about how
students may use concepts in the question of interest. These preliminary ideas and other
emergent codes from written explanations were then iteratively refined to create a stable
codebook that described the resources students used to formulate a narrative of understanding.
We grouped these codes into three categories:

e Identification: The student identifies a concept or other piece of information.

e Comparison: The student compares a concept across two different system states.

e Inference: The student concludes about the system's state based on the information in

their response.



Data Analysis: Machine Learning

Analyzing short-answer responses was defined as a sequence labeling problem where the spans
of the students' responses were coded with manually coded labels. Instead of training the large
language model from scratch, we leveraged transfer learning via fine-tuning, and in-context
learning. In fine-tuning, we use a pre-trained model and train it further on the coded responses.
The pre-trained model is a language model that initially has undergone training on a large corpus
of free text. In in-context learning, we prompt the model with a few samples and task it to
generate the coded response for a new student response instance. We do not train the model in
in-context learning. We’ve utilized the following models throughout this work:

o TS5 (Text-to-Text Transfer Transformer): A sequence-to-sequence model that was
used to formulate a task into a text-to-text format and fine-tuned T5-base (220M
parameters) and T5-large (770M parameters) [31] with 20 to 240 manually coded
responses.

e GPT-3 and GPT-4: A transformer decoder model with 175B and more parameters
trained using a “causal” language modeling approach. We present the model with a
prompt consisting of an instruction, a few examples, and a new set of inputs. It then
outputs a coded response. GPT-4 [32] is an advanced version of GPT-3 [50] that is better
able to understand and generate natural language text.

e Mixtral of Expert (MoE): A 47B parameter model with eight distinct groups of
parameters called “experts.” For every token, the model chooses two out of eight experts
and combines their output additively. This results in 13 billion active parameters for each
token the model processes. It is a large decoder-only transformer-based language model
that we finetuned on the manually-coded dataset using Huggingface’s transformer library
[33], [58].

e ATLAS.ti AI Coding: An automated coding feature on the ATLAS.ti qualitative data
software that uses OpenAl to prompt qualitative coding [34].

To understand the effectiveness of the machine learning models, we compare model-generated
codes to human-written codes. We use an Exact Match metric to compare the model-predicted
coded response to the ground truth response, which involves counting the number of codes in the
model-generated responses that match exactly with the codes in manually coded responses. We
also compute Precision, Recall, and F1 scores for each model. Precision is the percentage of
correct model-generated codes relative to the total number. Recall is the percentage of human
codes that the model could generate correctly. The F1 score is the harmonic mean of precision
and recall. Additionally, since some models generate new codes to apply to responses, we
analyze those newly generated codes to see if they are reasonable to include in the codebook or
not applicable.

Qualitative Coding Challenges and Limitations

Manual coding to train models takes a substantial amount of time, and to improve credibility,
additional coders could be involved for the data described below. Additionally, students are on
different paths toward utilizing disciplinary concepts when writing responses, so some students
describe concepts with language closer to their everyday language. It is still important to capture



this within manual and automated coding as it can help instructors and researchers learn about
the cognitive resources and associated language used by students to describe challenging science
and engineering concepts. This is a challenge as human coders need to code all instances of
everyday language and disciplinary language associated with the same concept, and there are
usually a small number of samples within an already limited data set that have instances of
everyday language to describe disciplinary concepts.

Machine Learning Challenges and Limitations

In our study, we used LLMs, which are multi-layer neural networks with billions of parameters
trained on large amounts of free text. These models learn to predict the next word based on the
context, and for this reason, they also pick up biases present in the text on which they are trained.
For example, they might favor certain writing styles seen during training, potentially affecting
how they annotate student narratives. No identifiable information or protected attributes such as
gender or race are included in our training data, precluding the introduction of additional biases.
However, the biases associated with LLMs remain an issue to address. Rather than looking at the
machine as an authority, we look at it as a partner. That puts us in a better position to evaluate
biases, but with any collaborative project, there are some things that we will not be able to attend
to.

In addition to biases, creating effective prompts was also a challenge. Each machine learning
model requires a different input and output format for optimal performance. Therefore, one
challenge was to methodically design the input and output prompts, through repeated testing and
adjustments, specific to a given machine learning model.

Findings
In this section, we describe the findings of our work based on our activities as mentioned above.

ASEE 2022

Our first ASEE collaboration [1] investigated the use of a Text-to-Text Transformer (T5) [31]
and GPT-3 [50] to automate the coding of 290 short-answer explanations to a statics conceptual
question. This conceptual question, shown in Figure 3, asked students to calculate the force of
friction on a block after a pushing force was applied. A combination of a priori and emergent
coding methods was used to manually code the responses, where coders identified cognitive
resources students used to construct their narratives of understanding for this question. These

responses were then automatically coded by two large pre-trained generative sequence language
models: T5 [31] and GPT-3 [50].



Force P = 10 N is applied to the block of mass m =5 kg on a horizontal rough surface with f!s. = 0.3 and Mk = 0.25.

If g=9.81 m/s? , what is the force of friction on the block?

P ”s’“k
— /

O10N
0O12.26N

O147N
O451N

Please explain your answer in the box below.

Please rate how confident you are with your answer.

substantially moderately neutral moderately substantially
unsure unsure confident  confident

@) O @) @) @)

Figure 3. Concept question 5703 asks students to think about the force of friction on a block.

We found that T5 performed better than GPT-3, as the former would produce new codes not
present in the training examples, as shown in Table 1. Through this preliminary work, we found
potential for analyzing short-answer explanations using pre-trained text models like T5 [31] and
GPT-3 [50]. Table 1 shows the results of this work.



Table 1. GPT-3 and TS5 Model Performance on Concept Question 5703. Table reproduced from
[1].

# No. | Precision | Recall | F1 | Incorrect | Does not | Codes
correct of but make missed
codes | codes makes sense
sense
Ground 175 NA NA NA NA NA NA NA
truth
t5-base-1020 0 0 0 0 0 0 0 175
t5-base-f050 40 49 0.82 0.23 0.36 2 7 126
t5-base-f100 60 90 0.67 0.34 | 0.45 14 16 85
t5-base-f150 80 92 0.87 0.46 0.6 7 5 83
t5-base-200 93 126 0.74 0.54 | 0.62 19 14 49
t5-base-240 105 133 0.79 0.6 0.68 14 14 42
t5-large- 107 118 0.91 0.61 0.73 6 5 57
f150
gpt3- 89 189 0.47 0.51 0.49 52 48 -14
davinci-
Instruct
ASEE 2023

Our second ASEE collaboration [2] utilized unsupervised machine learning techniques to
analyze 160 short-answer responses to a mechanics conceptual question. As shown in Figure 4,
this question asked students to determine if a solid or hollow cylinder would make it to the top of
the ramp first. Similar manual coding processes were conducted as previously described [1].
Then, we used text summary, text modeling, and a Naive Bayes Classifier to understand how
common unsupervised machine learning techniques could be used to understand student
narratives of understanding in short-answer responses. Within this work, we began to integrate
principles of Linguistic Justice in our coding and machine learning processes. Linguistic justice
is a conceptual framework that aims to ensure that all have equitable access to political or social
life through language [59], [60]. To promote linguistic justice in our work, we established ideas
of involving a human-computer partnership that can work together to analyze student responses.




Each of the objects - the pipe and the solid cylinder - is rolling uphill along a rough surface with the same velocity vo and the
same angular velocity. The cylinders have the same mass and radius but different cross-sectional areas. Compare the distance
d that each object will travel before stopping.

a)o
—_—

(O The pipe travels farther up the hill
(OThe solid cylinder travels farther up the hill
(O The pipe and cylinder travel the same distance up the hill

Figure 4. The concept question was used in the preliminary work of this study.
ASEFE 2024

In this study, we shifted our focus to analyzing two related engineering thermodynamics concept
questions and using new LLMs. GPT-4, Mixtral of Expert (MoE), and ATLAS.ti were used to
analyze responses. Questions were manually coded and included an enthalpy of mixing questions
(1396 responses) and an entropy of mixing questions (1387 responses), shown in Figure 5. We
utilized coding processes similar to the previous two years to code the responses manually;
however, we began to integrate a resources-based framework into the overall analytical
framework [61], [62], [63]. Through comparison of these LLMs, we achieved an F1 score of
62% on the thermodynamics test set when MoE was trained on the thermodynamics training set.
Table 2 summarizes the various model performances on the thermodynamic combined test set
(which includes both enthalpy and entropy-balanced test samples) when trained on a combined
training set. GPT-4 achieved its highest F1 score of 48% on the test set, with entropy in-context
examples. When we trained MoE on the statistics training dataset and evaluated on the
thermodynamics test set, we observed an F1 score of 32%. ATLAS AI Interactive coding scores
lowest at an F1 score of 10%.



Consider 0.3 mol of gas A and 0.5 mol of gas B, that behave as ideal gases. When these two gases are mixed at constant T and
P, the enthalpy change of mixing is:

OAhpix >0
OAhpyix <0

(O You cannot tell unless you know Cp

Please explain your answer in the box below.

Consider 0.3 mol of gas A and 0.5 mol of gas B, that behave as ideal gases. When these two gases are mixed at constant T and
P, the entropy change of mixing is:

OBbsmix<0
OAsmix =0
(O You cannot tell unless you know Cp

Please explain your answer in the box below.

Submit B

Figure 5. Thermodynamics concept questions that were used in this study.

Table 2. Comparison of ground truth and model-generated responses on enthalpy and entropy

combined test set. The highest value is in bold.

Model No. of No. of | Precision | Recall F1
correct codes
codes
Ground truth No. of codes 1244
MOoE trained on Enthapy+Entropy 931 1746 0.53 0.75 0.62
datasets
MOoE trained on 917 1719 0.53 0.74 0.62
Enthalpy+Entropy+Statics
MokE trained on Enthalpy dataset 782 1670 0.47 0.63 0.54
MOoE trained on Entropy dataset 902 2459 0.37 0.73 0.49
MOoE trained on Statics dataset 383 1176 0.33 0.31 0.32
GPT4 (enthalpy examples as in- 522 981 0.53 0.42 0.47
context examples)
GPT4 (entropy examples as in- 570 1146 0.50 0.46 0.48
context examples)
ATLAS Al Interactive Coding 221 3094 0.07 0.18 0.10




In summary, this work found that MoE trained on a thermodynamics dataset achieved the highest
F1 score on both datasets. We also found that the entropy dataset is more challenging for MoE
and GPT-4 than the enthalpy dataset. Additionally, our study shows that the model can tackle
other tasks better when trained or prompted with examples from a more challenging dataset.

Implications and Future Work

This work contributes to machine learning in education research by showing that LLMs can be
utilized to analyze short-answer responses in the few-shot approach. As we plan to form a
human-computer partnership to create an Al assistant tool for the CW, we want to iterate our
qualitative coding and use of machine learning tools before we create and launch our final tool.
Regarding our qualitative coding, we have begun to integrate a resources-based framing [61],
[62], [63] into the coding scheme, which can help us further investigate how students use pieces
of knowledge in specific contexts. This will require more manual annotation of a few thousand
samples and fine-tuning a large language model (LLM) on this data. Regarding machine
learning, we formulated the problem in our study as a sequence labeling problem, where the
spans of the student responses are manually coded with labels. The Exact Match metric provides
some insight into the model's performance. However, as expected — and as our qualitative
analysis confirms — this metric falls short in cases where the model predicts codes that are
semantically similar, but not exact matches. In our study, we performed a manual qualitative
analysis to gain a better understanding of the models’ capabilities. In follow-up work, we expect
to shift to model-based evaluation metrics such as BERTScore [64] that can account for lexical
variation. The work highlighted above showed that LLMs can generalize to new student
responses to the same questions. We aim to extend this work to ensure that models can
generalize to new questions and generate response summaries.

Furthermore, we aim to create an Al assistant tool for the CW, which will be offered as a plugin
or a separate interface to the existing CW platform. The tool will annotate student responses,
capturing the student’s thinking process. The tool will allow the instructors to consolidate the
insights from student responses, generating reports and graphs to represent differences in
students’ thinking around a given concept question, which they can then use to inform their
teaching practices. Additionally, through this tool, researchers can further understand student
thinking by having coded student responses on a scale that is not possible with manual coding.
Through tool development, we aim to ensure that our qualitative coding and ML processes
account for disciplinary and everyday language in students’ responses. This can help us make the
tool a more inclusive generative Al tool that understands the various language students may use
to explain their thinking. In turn, instructors and researchers will be more aware of the diverse
language and thought patterns students use to wrestle with challenging concepts in the discipline.
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