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INTRODUCTION

In recent years, much work has been done in the study of infinite type hyperbolic manifolds,
hyperbolizable manifolds with non-finitely generated fundamental group. For example, lot of
work has gone into studying the mapping class group of infinite type surfaces, for example, [2,
3, 24]. Similarly, the first author has proven a hyperbolization result for a large class M? of infi-
nite type 3-manifolds, see [11]. The class M? is characterized by the fact thateach M € MP® hasan
exhaustion {M,};cy in which each M; is a compact, hyperbolizable 3-manifold with incompressible
boundary and such that each S € 7y(dM;) has genus at most g = g(M). The class of hyperbolic
3-manifolds we will look at, denoted by M§3, are manifolds that need to admit exhaustions by
7, -injective sub-manifolds. Thus, we allow M; C M; ., to have compressing disks in M;, and we
do not have any condition on the genus of the boundary components. However, we do need an
embedding U, M; < S* and we will assume that M € M5’ has no rank two cusps.

By work of Souto-Stover [31] and Cremaschi-Souto [13] and Cremaschi [10, 12] it is not hard to
build hyperbolizable infinite type 3-manifolds that are homeomorphic to Cantor set complements
in the 3-sphere S*. In particular, in [13], the manifold of Example 2 can be extended to be a Cantor
set complement showing, for example, how one can have a hyperbolizable Cantor set complement
in S* whose fundamental group is not residually finite.

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
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The flexibility to build hyperbolizable Cantor set complements in S is reminiscent of the fact
that most knots in S* are hyperbolic. For example, of the 1 701 936 knots with fewer than 16 cross-
ings, all but 32 are hyperbolic, see [18]. Moreover, Purcell-Souto [25] showed that if M & S* is a
one-ended hyperbolic 3-manifold of finite type without parabolics, then M is the geometric limit
of hyperbolic knot complements. This shows how, under the geometric topology, hyperbolic knots
are dense in the space of one ended-hyperbolic 3-manifolds admitting embeddings in S°.

The aim of the present work is to show a similar statement for hyperbolic 3-manifolds, not
necessarily of finite type, admitting an embedding in S°. As approximating manifolds, we will
use Cantor sets complements:

Theorem 2.6. Let M = H3/T be a hyperbolic 3-manifold, not necessarily of finite type, without rank
two cusps admitting an embedding 1 : M < S3. Then, there exists a sequence of Cantor sets C; C S,
i €N, such that:

(i) N;:=S3\ G, is hyperbolic N; ~ W3 /T;;
(ii) the N; converge geometrically to M.

As in [25], one can obtain hyperbolic Cantor set complements with small eigenvalues of the
Laplacian, arbitrarily large isometrically embedded balls, arbitrarily many short geodesics or sur-
faces with arbitrarily small principal curvatures.

1 | BACKGROUND
1.1 | Notation and conventions

All appearing 3-manifolds are assumed to be aspherical and orientable. We use = for homeomor-
phic. By S & M, we denote an embedding of S into M while S & M denotes an immersion. By
Z, » We denote an orientable surface of genus g with n boundary components. We say that a man-
ifold is closed if it is compact and without boundary. By 7,(M), we denote the set of connected
components of M, and unless otherwise stated we use I = [0, 1] to denote the closed unit interval.

Let M be an open manifold, by an exhaustion {M;};c We mean a nested collection of compact
sub-manifolds M; C int(M, ;) with U;cyM; = M. By gaps of an exhaustion {M,};cy, we mean the
connected components of M; \ M;_,. We will use C to denote the Riemann sphere.

1.2 | Some 3-manifold topology

We now recall some facts and definitions about 3-manifold topology. For more details on the topol-
ogy of 3-manifolds, some references are [16, 17, 19].

Let M be an orientable 3-manifold, then M is said to be irreducible if every embedded sphere S?
bounds a 3-ball B®. Given a connected properly immersed surface S & M, we say it is 77, -injective if
the induced map on the fundamental groups is injective. Furthermore, if S < M is embedded and
7, -injective we say that the surface S is incompressible in M. By the Loop Theorem [17,19]if S & M
is a two-sided surface that is not incompressible, we have that there is an embedded disk D C M
such that D = D n S and 0D is non-trivial in 7, (S). Such a disk is called a compressing disk.

An irreducible 3-manifold with boundary (M, dM) is said to have incompressible boundary if
every map of a disk: (D?,dD?) < (M, dM) is homotopic via maps of pairs into dM. Therefore, a
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manifold (M, M) has incompressible boundary if and only if each component S of M is incom-
pressible. We say that a 3-manifold M is atoroidal if any 7;-injective torus T C M is homotopic
into M.

Definition 1.1. We say that a 3-manifold M is hyperbolic, or hyperbolizable, if M =~ H?/T for
I' C PSL,(C) a discrete and torsion-free subgroup. The group T is called Kleinian.

In general, hyperbolic 3-manifolds that are not closed are open. We will make use of the follow-
ing convention:

If we say that a compact 3-manifold is hyperbolic, we mean the interior and if M is a finite type
hyperbolic 3-manifold, we use M to mean its compact manifold closure.

The above convention makes sense since by the Geometrization Theorem [20] and Tameness
Theorem [1, 5], any hyperbolic 3-manifold M with finitely generated fundamental group is home-
omorphic to the interior of a compact 3-manifold M such that M is irreducible, atoroidal and has
infinite fundamental group.

Given a hyperbolic 3-manifold M = H3 /T, the convex core CC(M) C M is the smallest subman-
ifold with convex boundary whose inclusion induces a homotopy equivalence to M. We say that
M = H3 /T is convex co-compact if CC(M) is a compact submanifold and we say that M is geomet-
rically finite if CC(M) has finite volume. Some reference for hyperbolic 3-manifolds are [4, 22, 23,
32].

We now prove a couple of topological Lemmas.

Lemma 1.2. Let M be a compact 3-manifold with boundary and let P C 0M be a collection of pair-
wise disjoint simple closed curves containing a pants decomposition of M. Let y;, 1 < i < n, be the
components of P and assume that every y; is 7, -injective in M. For 0 < g; < oo, 1 <i < n, let M’ be
the 3-manifold obtained by attaching thickenings of Z,, , to M by identifying regular neighbourhoods
inM of y; and 9% ;. Then, 6M " has incompressible boundary.

Proof. Without loss of generality, we can assume that M has connected boundary. Let (D, dD) be
a compressing disk for (M’,8M’"). By an isotopy of D, we can assume that D h U for U a regular
neighbourhood of P in M.

IfUND = @,wehavethatdD C dM \ P hence D iseitherin M or in some Zgi,l' If D C M, since
P contains a pants decomposition, it means that D is isotopic into P giving us a contradiction
with the fact that each component of 7 7, -injects in M. If D is contained in some X, ; X I we have
thatdD C X, | X4l but X, ; X I has no compressing disks in the I-bundle.

Therefore, we have that A :=D N U is a, non-empty, collection of essential arcs. Let D’ C D be
an innermost disk with respect to the arc system .A C D. Then, D’ N U has only one component
in dD’. Since P contains a pants decomposition, up to an isotopy of D, we obtain a disk in either
MorZ, | xIintersecting U in an essential arc a.

The disk D’ cannot be contained in = 4,1 X I because every compressing disk intersects 6, ; X I
in at least two components. If D’ C M, then 8D’ is decomposed into two arcs «, 8 with a an essen-
tial arc in U and f an essential arc in dM \ U. However, since P contains a pants decomposition
and U is a thickening of P, there cannot be such an essential . O

Our last preliminary topological lemma
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Lemma 1.3. Let M be a compact 3-manifold with non-empty boundary dM such that no component
of OM is a torus. Given, t : M < S* with handle-body complement H, we can find a pants decom-
position P of OM such that P is a disk-system for H and is 7t,-injective in M.

Proof. Let D be a disk system for H such that no disk D € D is separating in H. We now need
to show that the loops (~}(dD) are essential in M. If not, by the loop Theorem if y in (~1(dD) is
not 7z, -injective in M, then it bounds a disk D’. Let D be the disk of D corresponding to y. Then
S=Dy, D’ is an embedded 2-sphere in S3, and so it is separating. However, since each D is non-
separating in H C S, we get a contradiction. 1

Remark 1.4. In the setup of Lemma 1.2 and 1.3, we can take a disk system so that no pair is sepa-
rating in H and so that the manifold M’ of Lemma 1.2 has incompressible boundary and the JSJ
decomposition of M’ is given by the thickened surfaces we attach.

1.3 | Combination theorems

For the reader’s convenience, we now recall some Theorems dealing with glueings of Kleinian
groups, that is, hyperbolic 3-manifolds.

Theorem 1.5 [20], 4.97. Let G,, G, be Kleinian groups with fundamental domains D,, D, in
C such that: C\ D, C int(D;) and C \ D, C int(D,). Then, the group G generated by G, and G,
is Kleinian and isomorphic to G, * G,. Moreover, D :=D; N D, is a fundamental domain for G
onC.

Definition 1.6. LetT' C PSL,(C) be aKleinian group. Given a subgroup H C I', we say that B C €
is precisely invariant under H if H(B) C B and for all y € T\ H we have that y(B) N B = @.

Theorem 1.7 [20, 4.104]. Let G,, G, be a pair of Kleinian groups such that G; N G, = H, where H is
a cyclic subgroup. Let D; be fundamental domains for the actions of G on € j=1,2Let By, B, be

open disks in C such thatJ :=B, N B, = 3B, = 0B, is a topological circle. Suppose the following.

. Bj is invariant under H in Gj,j =1,2.

. Dj’. :=D;nGj(B;) € B, j=12

* D} N D, and D, N D), have non-empty interiors.

Then, the subgroup G C Isom(H?) generated by G,, G, is Kleinian and isomorphic to G, *y G,. If

G, G, are geometrically finite, then G is also geometrically finite. The quotient Q(G)/G is naturally
conformally equivalent to

Q(G; \ G1(B1))/G, U, Q(G, \ G4(B,))/ G,

where the gluing is along L = [J n Q(H)]/H. Any parabolic element in G is either conjugate to G, or
to G, or conjugate to an element commuting with a parabolic element of H.

T Such a disk system always exists and is even possible given a disk system D to surger it, by band sums, to get a new disk
system D’ that has no separating component.
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Similarly:

Theorem 1.8 [20, 4.105]. Let G, be Kleinian and H,, H, a pair of cyclic subgroups. Let D, be a
fundamental domain for the actions of G, on C. Let B,, B, be open disks in € and A € Isom(H3)
be a Mébius transformation such that AH,A~' = H,. This conjugation induces an isomorphism
@ : H; — H,. Suppose the following.

* Bj is precisely invariant under H; in G, j = 1,2.

* A(B;)NB, = @and A(0B;) N 3B, = J is a topological circle.
* gByNB, =g forall g € G,

* Dyn (€ \ Gy(B; U B,)) has non-empty interior.

Then, the subgroup G C Isom(H?®) generated by G, A is Kleinian and isomorphic to the HNN-
extension Gy .5, ., of Gy via . If G is geometrically finite, then G is also geometrically finite.
The quotient Q(G)/G is naturally conformally equivalent to

~ [[QGy) \ Go(By U B,)]/Gy,
where the identification is such that [J 0 Q(H,)]/H, is identified with [A~'(J) n Q(H,)]/H, via the
projection of A. Any parabolic element in G is either conjugate to G, or conjugate to an element
commuting with a parabolic element of H;, j = 1, 2.
Remark 1.9 (Parabolic amalgamation). Let z be a parabolic fixed point for the action of a Kleinian
group T corresponding to a 3-manifold M. By the Universal Horoball Theorem [22, 3.3.4], we can

always find an embedded horoball H in Q(T'). Therefore, by using the universal horoball, it is easy
to glue Kleinian groups I'; and I'; along a common parabolic group («).

2 | REDUCTION TO THE CONVEX CO-COMPACT CASE
We start by recalling a useful lemma about converging sequences of geometric limits.

Lemma 2.1. If M is the geometric limit of {M;};cy and each M; is the geometric limit of {N '}, <,
then M is the geometric limit of a sub-sequence {N} }, .

Proof. Consider the diagram

(M, p;) —— (M, p)

(N, a)
By geometric convergence in i, we have that VR > 0 : Ji such that Vi > i, we have embeddings

fi i Br(p),p) > WM;,p;)  fi (1+¢)-bilipschitz ¢ — 0

and similar statements for (N7, ') and (M;, p;).
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For each i, we have that f;(Br(p)) € Bg,,(p;) thus we have (1 + ¢ n)-bilipschitz embeddings
g @ Bgi.(p;) = (NI, q"). Therefore, the embeddings
1 i 1 1

ginofi : Br(p) = (N!',q!")
are (1 +¢,)(1 + ¢; ,)-bilipschitz. Thus, we can find a geometrically convergent sub-sequence. []
We now reduce the general case to the convex co-compact case.

Definition 2.2. We say that a 3-manifold M is in MSiIfM & S3is hyperbolic without rank two
cusps: M = H3 /T, T < PSL,(C) and M is either of finite type, that is, 7r; (M) is finitely generated or
M = U;yM; (as in the above sense) in which 7, (M;) < 7,(M). The last condition is equivalent
to, up to sub-sequence, 7;(M;) & m;(M; ).

Lemma 2.3. Let M = H3 /T be a hyperbolic 3-manifold, not necessarily of finite type and with T not
abelian, without rank two cusps, admitting an embedding 1 : M < S*. If M admits an exhaustion
by 7, -injective compact sub-manifolds, then there is a sequence of finite type hyperbolic 3-manifolds
with no parabolics (M;, p;) 3-manifolds with embeddings f; : (M;, p;) < S* such that (M;, p;) —
(M, p) geometrically.

Proof. Let subsets N; be 7;-injective sub-manifolds giving us an exhaustion of M, and letI'; C T’
be the corresponding Kleinian groups. Without loss of generality, we can assume that N; = N;;
so that I'; # I';,;. Then, I'; € T';,; and U;c\I'; = T. Then, we obtain the required sequence by

M;, p;) := (HS/Fi’ [0]>-

Since the N; are 7;-injective in M, they lift homeomorphically to the covers 7; : M; - M. By
Tameness [1, 5], we have that M; \ N; are product regions and so M; = int(N;). Hence, the M; also
embed in S3, concluding the proof. O

Proposition 2.4. Let M = H3?/T be a hyperbolic 3-manifold in MS. Then, there is a sequence of
convex co-compact hyperbolic 3-manifolds (M;, p;) with embeddings f; : (M;, p;) & S? such that
(M;, p;) — (M, p) geometrically.

Proof. We first deal with the case I'is abelian, hence of finite type. Any such Kleinian group can
be geometrically approximated by a classical Schottky group on two generators and we are done.

Let (M;, p;) be the sequence from Lemma 2.3. Since each M; has no Z? € 7,(M;) by the Strong
Density Theorem [30, 1.4], there is a collection of convex co-compact manifolds N; € AH(M;)
converging strongly to M;, moreover without loss of generality, by geometric convergence, we
can assume that for all n : N;'l =~ M;. By Lemma 2.1, we have a sub-sequence N Li that converges

geometrically to M. Moreover, since each N ;l is homeomorphic to M;, they admit embeddings

—i
fi N an_ s §3. D

Remark 2.5. The previous proposition is the only place in the paper in which we actually need the
exhaustion and the fact that we have no rank two cusps.
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2.1 | General proof assuming convex co-compact approximation

We now assume the following theorem, which we will prove in the next sections. The main step
will be a gluing argument that is done in Section 3.

Theorem 4.2. Let M = H3 /T be a convex co-compact hyperbolic 3-manifold admitting an embed-
dingt : M < S3. Then, there exists a sequence of Cantor sets C; C S3,i €N, such that:

(i) N; :=S3*\ C; is hyperbolic N; =~ W3 /T;;
(ii) the N; converge geometrically to M.

and prove:

Theorem 2.6. Let M = H3/T be a hyperbolic 3-manifold and let M € MS’. Then, there exists a
sequence of Cantor sets C; C S3,i € N, such that:

(i) N; :=S3*\ C; is hyperbolic N; =~ H3 /T;;
(ii) the N; converge geometrically to M.

Proof. By Proposition 2.4, we have a sequence of convex co-compact manifolds Ml- < S3 that con-
verge geometrically to M. By Theorem 4.2, each M; is approximated by Cantor set complements;
hence, by Lemma 2.1 M is approximated, geometrically, by Cantor set complements. O

3 | GLUING ARGUMENT

In this section, we will show how given M C S3 convex co-compact such that M C the complement
of M in S3, is a collection of handlebodies H we can extend the metric of M to a new 3-manifold
M’ such that M ¢ M’ C S? and H' :=(M’)€ is a collection of handlebodies such that H' ¢ H.
Moreover, each component of H contains at least two components of H’, and for h € 7,(H) and
h' € my(H") we have: diam(h') < % diam(h). By iterating this argument, we will build our hyper-
bolic Cantor set complements. The aim of this section is to show our main gluing argument:

Proposition 3.5. Let M be a convex co-compact hyperbolic manifold with the property that P C 0M
is a 7, -injective collection of pairwise disjoint simple closed curves. Let m :=|P| and let L € [0, o).
Then, there exists {g; :’; L With 1 < g; < oo such that we can extend the hyperbolic metric of M to a
convex co-compact manifold:

m
M; =M Up [ ]2, %1
i=1
with the property that:

(1) inZ, ; X1, the geodesic corresponding to P; has a collar of width at least L;
(2) if P contains a pants decomposition, then M; has incompressible boundary.

Before showing Proposition 3.5, we show that given a compact convex co-compact manifold M
embedding in S3, we can assume, up to geometric limit, that it has handle-body complement.
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Lemma3.1. Lett : M < S3 be a compact convex co-compact hyperbolic manifold. Then, by adding
a collection of I-handles H to M, we have an embedding!’ : M Uy H < S3, extending the metric, such

that S$3 \ /(M Uz H) is a collection of handlebodies and M Uz H is convex co-compact.

Proof. If (M)C is a collection of handlebodies, there is nothing to do. Otherwise, let N C (M)€
be a non-handlebody component. Let C = H, U Q be a minimal genus Heegaard splitting of N,
where H , is a genus g handlebody, and Q is a collection of 2-handles. Attaching a 2-handle P to

H, is equivalent to attaching a 1-handle P’ to m Thus, we get that by attaching all 1-handles
to t((M) we can make N a handlebody component. Therefore, there is a collection of 1-handles H
and an embedding /’ : M U H < §3 such that $3 \ /(M U; H) is a collection of handlebodies.

We now need to show that we can realize the above topological construction while extend-
ing the given hyperbolic metric on M = H?/T. This essentially follows from Ping-Pong Lemma
(Theorem 1.5). There are two cases depending on whether the 1-handle P is attached to
one or two boundary components of M. We will indicate by S; and S, these two boundary
componentss3.4.

Assume S; # S,. Let D, be a fundamental domain for the action of ' on C. Since I'is convex co-
compact I.D; has full measure and let F; :=C \ D;. Pick two points x; and x, in int(D;) N S; and
int(D;) N §2 respectively, and let h; € Isom™(H?), 1 € (0, ), be the loxodromic element with
fixed points x; and x, and translation length 4. Let D,(4) be the fundamental domain of (h;) and
F, :=C\ D,.Sinceas 1 — co:

Hausdorff Hausdorff
Dy(4) ——— C\ {x1, x5} Fy() — {x1, %5},

we get that there is 4 € (0, o) such that
D,(A) O F, D, D F,(4)

Then, by Theorem 1.5, T’ :=(T, h,) is discrete, isomorphic to I" * h; and H*/I" has the required
topological type.

If S, = S,, let D, and F, as before and pick x # y to be points in D; N S;. Then, by the same
reasoning as before, we can find h; such that I :=(T, h;) is discrete, isomorphic to T * h; and
H3 /T’ has the required topological type. O

We now define:

Definition 3.2. Let N be a geometrically finite 3-manifold, we say that the convex core of N is
homeomorphicto £ , X I if CC(N) has n rank 1 cusps, k funnels and there is a type-preserving

homeomorphism f : N — Zon X1

The next Lemma constructs a handlebody piece that will be attached to M via cyclic amalga-
mation, Theorem 1.7, along a peripheral loxodromic y. This particular construction produces a
rank-1 cusp that we will have to deal with later. The loxodromic element y and y-invariant disk
B C 3., H? in the statement will be obtained from M by taking an incompressible curve in M and

lifting a collar around it.
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FIGURE 1 Thedisks A, in the domain of discontinuity containing a lift of y. The shaded region is the ball B’

Lemma 3.3. Giveny € PSL,(C) loxodromic element and a closed y-invariant disk B C ., H?, then
there is a Schottky group extension of (y), I = Ty, such that:

(1) the limit set of T is included in B;
(2) the convex core of H3 /T is homeomorphic to £ 911 X [0, 1], where the boundary component of
X, 1,1 corresponds to y and the puncture to a rank-1 cusp.

Moreover, such group I can be taken so that y has a collar larger than any given constant.

Proof. Take B’ C B, a smaller region delimited by two y-invariant smooth arcs p,, p, joining the
fixed points of y. Furthermore, select a third y-invariant smooth path o C B’ so that A = B’ /(y)
is an annulus with boundary p; /(y) U p,/(y) and 7, representative embedded curve p/(y).

We would have to find F C B’ so that F is a fundamental region of A and p N F = pj, is con-
nected. To do this, denote by y, the fixed points of y. Consider a closed path 7 in the annulus
(0 W3 \{y,})/(y), such that 7 intersects each one of p/(y), p,/(¥), p,/{y) exactly once (and the
annulus A = B’ /(y) in a connected segment). Define F,, as the lift in 3, H* of the complement of
nin (84 H* \{y,})/(y). This makes F, a disjoint union of connected components, and the closure
of any of these components is a fundamental domain for (8., H* \{y,})/(y). Then one can verify
that F can be obtained by F := F, N B. Cover pr. by closed disks {A;}_y;<y in B, see Figure 1,
such that:

(1) A;, A, aretangentforall0 <i<4N —2,{p;. 1} =4, NA;
(2) A;nA; =@for|i—jl>2;
(3) A1 =7(Ay).
Iterate by powers of y to obtain, {A;};c7, a covering of p by disk in B such that:
1) A;, A, aretangentforalli € Z,{p; .1} = A; N A
(2) A;nA;=f@forli—jl>2
(3) Aipan = 7(A).
Select f; a Mobius map that sends the triple (3., H* \(4,), p;, p; 1) tothetriple (A;,,, Dit3, Div2)s

so that y o f;oy = f; 4y (make a priori such a selection). Furthermore, denote by a; = f;, b; =
fais1- Let T be the group generated by ay, by, ..., ay_1, by_1, 7 (also generated by ({a;, b;}icz,7))-
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Then by modifying the proof of Theorem 1.5, we can prove that I is a Kleinian group freely gener-
ated by ay, by, ..., ay_1, by_1, 7. Indeed, for a;, b; take fundamental domains as the complement
of the appropriate disks A;, and take F, as the fundamental domain for y. Taking any two of these
fundamental domains (and denoting them by D, D,), we have that D, D (C\ D,),D, D> (C\ D;)
rather than int(D;) D (C\ D,), int(D,) D (C \ D,), the latter as in Theorem 1.5. This is because of
the tangencies we consider. Nevertheless, if D denotes the intersection of all fundamental domains
and w is a nontrivial word generated by a, by, ..., dx_1, by_1, ¥, it follows that for any z € int(D)
we have w(z) ¢ D. This implies that I' is freely generated by a,, by, ..., ay_1, by_;, ¥ and that D is
a fundamental domain for I' in d_ H* = S2.

It remains to show that T is discrete. Take x € H* in the complement of all the half-spaces
bounded by the functions A;, intersected with a fundamental domain of y bounded by F,, (which
is the complement of two topological half-spaces). Take into consideration that all half-spaces
can be taken mutually disjoint. Then assume that there is a sequence {g,} C I so that g, (x) - x.
For any g, # id, we have that g, (x) belongs to one of the discarded half-spaces. Hence g, = id
for k sufficiently large, and from which we know that I is a Kleinian group. And since D is a
fundamental domain for I in ammﬁ = $2, it follows that the limit set of T is contained in B. This
is because the complement of {y)D is contained in B’.

Note that all the points of tangencies {p;} are identified with one another in the quotient by
T, where the element o = y[ay_1,by_1]; --- [@g, by] fixes p,. Moreover, a preserves the direction
tangential to the disks meeting at p,. In order to make « parabolic, we can make choices so that
Da,, hasnorm 1with respect to the standard S? metric. Take the loxodromic element c; with real
translation and fixed points p,, p;, so that the derivatives of ¢, at p,, p; are 171, 1, respectively.
We can choose then c;cq, instead of a,. The new choice c;oq, satisfies the same conditions as
a, and introduces a factor 4 twice while applying chain rule for Da, (once for c; at p; and once
for c;l at p,). Then by taking the appropriate value for A, we make a parabolic. We claim then
that such T' is geometrically finite with convex core homeomorphic to £, ; ; X [0, 1], where the
boundary component of £ ; ; corresponds to y and the puncture to the rank-1 cusp generated by
a. Indeed, we can select a smooth metric in D/T so that p, is a hyperbolic cusp. By taking the
Epstein envelope surface [14] of a sufficiently small multiple of the selected metric, we obtain a
finite volume core with convex boundary. Then I is geometrically finite. Finally, the boundary
of the core can be easily seen as X, ,, where y is a separating curve that divides the quotient
into components homeomorphic to X ; ;. From here we can see that the convex core of H3 /Ty
is homeomorphic to £ ; ; X [0, 1], where y corresponds to the boundary component of 2 ; ; and
the puncture to a rank-1 cusp.

As a final remark, observe that the collar around y gets bigger as we take the region B and the
disks A; smaller. O

We now start the first step of our main gluing construction:

Lemma 3.4. Let M be a convex co-compact hyperbolic manifold with the property that P C M isa
7, -injective collection of disjoint non-homotopic curves. Let n := |P| and let L € [0, c0). Then, there
exists { gi}»?:1 with 1 £ g; < oo such that we can extend the hyperbolic metric of M to a geometrically
finite manifold:

n

M =M Up HE%M x I
i=1

with the property that:
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FIGURE 2 Partial stage in which we glued a punctured torus to a X; ; ; X I along one y;. The rank 1 cusp C;
and accidental parabolic correspond to the node

1) = g1,1,1 X I has a rank one cusp corresponding to a boundary component of 2, , ;, and the other
boundary is glued to a component P; of P;
) inxz g91.1,1 X I, the geodesic corresponding to P; has a collar of width at least L.

Proof. Since each element P; in P is r;-injective, then it has a loxodromic element y; € 7,(M),
and a y;-invariant disk B, in the domain of discontinuity of M. By Lemma 3.3, there exist Schottky
group extensions I'y; with limit set in B; and collars around y; as large as we desire. Then by
Theorem 1.7, the manifold M’ = M’(L) with fundamental group generated by (7, (M), ,...Tg )
has the desired properties, provided that the groups {I'y } from Lemma 3.3 have all collars bigger
than L around the geodesics that each of them is extending. [l

We can now prove our main gluing step, where we will deal with the parabolics:

Proposition 3.5. Let M be a convex co-compact hyperbolic manifold with the property that P C 0M
is a 7, -injective collection of pairwise disjoint simple closed curves. Let m :=|P| and let L € [0, o).
Then, there exists {gi};'; , With 1 < g; < oo such that we can extend the hyperbolic metric of M to a
convex co-compact manifold:

m
M =M Up [[ 2, xI
i=1

with the property that:

1) inX g..1 X I the geodesic corresponding to P; has a collar of width at least L;
(2) if P contains a pants decomposition, then M; has incompressible boundary.

Proof. Start with the manifold M i coming from Lemma 3.4 and let C; be the rank 1 cusps cor-
responding to the X ; ; X I attached to y;. By applying Klein-Maskit combination (Theorem 1.7)
to universal horoballs to each rank 1 cusps, we attach a %, ; X I manifold. This gives us a new
manifold:

m

M =M Up ]_[Zgl“,1 x 1
i=1

in which the X, ; X I have an accidental parabolic §; corresponding to the remaining rank 1
cusp C; coming from the Klein-Maskit combination, see Figure 2.



HYPERBOLIC LIMITS OF CANTOR SET COMPLEMENTS IN THE SPHERE | 1115

Note that if P contains a pants decomposition, then, by Lemma 1.2, the manifold M i’ hasincom-
pressible boundary.

For each rank-1 cusp, we can find invariant tangent disk at the corresponding fixed point, by
cyclic amalgamation, see Remark 1.9, we can glue each rank-1 cusp onto itself to produce a geo-
metrically finite manifold with rank-2 cusps. Each cusp has an embedded cylinder toward each
of the two boundary components where it appears as an accidental parabolic.

Thus, we get manifolds:

m
M =M [ (zgiﬂ,l X1\ 8, x {1/2})
i=1

still extending the metric on M.

By Thurston’s Dehn Filling Theorem [4, 9 32], we have N € N such that for all n > N the man-
ifolds M 7 obtained from M; by doing %-Dehn Filling on every rank two cusp, see [21], are convex
co-compact. Moreover, by taking a larger N, if necessary, we can also assume that

m
mMu ] (zmm x 1),
i=1

where the homeomorphisms ¢, restrict to the identity on M and are induced by T}',‘., the nth Dehn

A~

IR

n
L

twist along §;, on 2 g+11 X I. Hence, for all L and n, the manifolds M f are convex co-compact and
have incompressible boundary by Lemma 1.2.
Finally, we have that

o~y oM~
ML y::o ML'

Thus, by definition of geometric convergence, by taking n large enough and some L’ > L, we can

assume that in M; := M Zl, all the geodesics corresponding to P have a collar of width at least L.

Hence, the manifold M; satisfies all the requirements of the proposition completing the proof. []

Corollary 3.6. Let M be a convex co-compact hyperbolic manifold with the property that P C oM
is a 7, -injective collection of pairwise disjoint simple closed curves. Letm :=|P|,p € CC(M),R > 0
and n € N there exists L = L(p, R, n) and

m
f 1 Ngcean) = Mup [| (zgiﬁ,l ><I>
i=1
such that f is (1 + %)—bi—Lipschitz.

Proof. Pick{L,},ey € R* suchthatL, / co.Build the manifolds M,, := M _asin Proposition 3.5.
It is easy to see that for any p € CC(M), by property (1) of Proposition 3.5, the sequence

geom

My, p) — (M, p)

giving us the desired result. O
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FIGURE 3 Nerve subdivision. The shaded ball B; is the thickening of an ¢; section whose diameter is less
than i diam(H)

We can now prove our iteration step. One of the main takeaways is that we can choose our
embeddings so that the diameter of the complement decays to O as we iterate the process, which
is necessary to obtain a Cantor set complement.

Proposition 3.7. Lett : M < S3 be an embedding of a compact irreducible manifold whose com-
plement is a collection of handlebodies H;, 1 < i < n. Then, by attaching a finite collection £ giaX I,
o h’

1 < h < n; to a collection of disks D; on 0H,, containing a disk system for H;, we obtain a new embed-
ding:

n
/. n; ) 3
Ny UpliZg 1 X1 &S
i=1

: !’
extending t such that (Lth1 s

bodies with m; > 2 and diam(J ;'n.) < % diam(H, ). Moreover, if int(M) = H? /T is convex co-compact
J

M ¥ )CH and H;\ u(uZ":lzg;-l’l) is a collection Ji, ... ’]in,- of handle-

given L > 0, we can extend the hyperbolic metric to M Ule U
has a collar of width at least L.

Zi_lz i 1 S0 that each attaching region
= Iy

Proof. Let T be the hyperbolic structure on M. It suffices to prove the statement for each handle-
body component H;, for the sake of notation, we will just refer to it as H. Let D be the disk system
coming from Lemma 1.3.

Take a nerve on the handlebody H so that in each ball component of H \ N,(D) we have a
trivalent vertex. By using copies of disks in D, we subdivide the nerve into sections ¢, ..., 7, so
that each ball component B,,,, 1 < m < x, has diameter less than }‘ diam(H), see Figure 3.

This gives us a collection of disks D’ C H containing a pants decomposition of dH. Moreover,
each component of D’ 7;-injects in M. Then, by applying Corollary 3.6 to (D’,dD’), we obtain a
hyperbolic 3-manifold M Uy _ X/ , extendingT.

‘We now construct the nested family of handlebodies obtained by successively attaching handles
to the curves homotopic to 0D’. We do this so that each section from 7, ..., Z, appear inside a
handlebody. To each disk D € 7,(D’), we attach g, 2-handles by drilling them from the adjacent
3-ball in an unknotted way so that they complement is a handlebody.

Each handlebody J,... ,J, is a thickening of an element of 7,...,#¢, with some handles
attached or drilled in. Moreover, we can do it so that the resulting handle is still close to the
corresponding element of ¢4, ..., Z,, and more importantly so that each complementary region’s
diameter is less than % diam(H). Since x > 3g(H) — 3 > 2, we complete the proof. O
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Remark 3.8. Note that we can make the resulting manifold of Proposition 3.7 boundary incom-
pressible by selecting a 77;-injective pants decomposition during the last iteration of the han-
dle attaching.

4 | PROOF FOR CONVEX CO-COMPACT
Before proving the main result, we prove the following key Proposition:

Proposition 4.1. Let (M, p) be a convex co-compact hyperbolic 3-manifold admitting an embedding
1 (M, p) & S3 with complement given by a collection of handlebodies H. Given R > 0, there exists
a Cantor set Cy C H such that S \ Cy is hyperbolizable and By(p) C S* \ Cg is 1 + e(R) bilipschitz
to the R-ball around p in M. Moreover, e(R) — 0 as R - oo.

Proof. Pick L > R and apply Proposition 3.7 to ¢ : M < S to obtain a new manifold N{‘ SO

that all new topology is at distance L > R from CC(M). We then reiterate this construction

using the same L. We thus obtain a collection of convex co-compact hyperbolic 3-manifolds
I ) . —L —L . 3 .

N,, admitting nested embedding N, C N, ., whose complement in S is a collection of han-

dlebodies H,, and whose direct limit Ngo is homeomorphic to the complement of a sub-set K

of $3.

Claim 1: The set K is a Cantor set so that N% = S\ (.

Proof of Claim:. To show that K is a Cantor set, we need to show that it is a compact, perfect, totally
disconnected metric space. Let C :=diam(H, ). By construction, it is easy to see that K = N, H,
where each H,, is a collection of handlebodies in which each component of H,, contains at least
two components of H, ;. Moreover, by Proposition 3.7, we have that for H a component of H,;:
diam H < 27"C so that K is a collection of points. Since each component of H, contains at least
two components of H,,; we see that K is also totally disconnected. Thus, being a closed sub-set
of a compact metrizable space, it is compact and metrizable as well. The fact of it being perfect is
also a straightforward consequence of the nesting construction. O

Claim 2: The Bi(p) C S* \ Cg is 1 + e(L) bi-lipschitz to the R-ball around p in M and e(L) — 0
asL — oo.

Proof of Claim:. This follows from Proposition 3.5. O
If R - o0, so does L, and the last claim of the Proposition is proven. [
We now finish the proof of the main result:

Theorem 4.2. Let M = H3 /T be a convex co-compact hyperbolic 3-manifold admitting an embed-
dingt : M & S3. Then, there exists a sequence of Cantor sets C; C S3,i €N, such that:

(i) N; :=S3\ G, is hyperbolic N; = W3 /T;;

(ii) the N; converge geometrically to M.
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Proof. By Lemma 3.1, we can assume that we have M; — M geometrically with embeddings ¢; :
Ml- — $3 such that li(Mi)C are handlebodies for every i. Then, by Lemma 2.1, it suffices to prove
the Theorem for such an M;.

Thus, let M be a convex co-compact hyperbolic 3-manifold with an embedding: : M — S that
has for complement a collection of handlebodies H = {H,, ... , H, }.

Choose any strictly increasing sequence R,,. By applying Proposition 4.1 to (M, p, R,,), we obtain
a sequence of Cantor set complements (S* \ C,, p, R,,) that geometrically converge to M, conclud-
ing the proof. O

Since, in particular, H> & S* we have Cantor sets complements N,, :=S* \ C,, and points p €
H? and p, € N,, such that

(N, Py) = (H, p)

geometrically. Thus, the balls of radius Bg(p) C H? can be (1 + ¢,,)-isometrically embedded in N,,.
In particular, this means that for large enough n the set of points of distance, say, % from p,, is

simply connected and so inj, (N,) > %. Since R was arbitrary, we obtain:

Corollary 4.3. For all R > 0, there exists a Cantor sets C C S3 such that S* \ C is hyperbolic and
there is a point p € S* \ C with injectivity radius at least R.

However, we do not necessarily know what the shape of the corresponding Cantor set is. More-
over, as in [25], one can obtain hyperbolic Cantor set complements with small eigenvalues of the
Laplacian, arbitrarily many short geodesics or surfaces with arbitrarily small principal curvatures.
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