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Abstract

Let � be a hyperbolic 3-manifold with no rank two

cusps admitting an embedding in �3. Then, if� admits

an exhaustion by �1-injective sub-manifolds there exists

Cantor sets �� ⊆ �
3 such that �� = �3 ⧵ �� is hyper-

bolic and �� → � geometrically.
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INTRODUCTION

In recent years, much work has been done in the study of infinite type hyperbolic manifolds,

hyperbolizable manifolds with non-finitely generated fundamental group. For example, lot of

work has gone into studying the mapping class group of infinite type surfaces, for example, [2,

3, 24]. Similarly, the first author has proven a hyperbolization result for a large class� of infi-

nite type 3-manifolds, see [11]. The class� is characterized by the fact that each� ∈� has an

exhaustion {�
}
∈ℕ inwhich each�
 is a compact, hyperbolizable 3-manifoldwith incompressible

boundary and such that each � ∈ �0(��
) has genus at most g = g(�). The class of hyperbolic

3-manifolds we will look at, denoted by �3 , are manifolds that need to admit exhaustions by

�1-injective sub-manifolds. Thus, we allow�
 ⊆ �
+1 to have compressing disks in�
 , and we

do not have any condition on the genus of the boundary components. However, we do need an

embedding ∪
∈ℕ�
 ↪ �3 and we will assume that� ∈�3 has no rank two cusps.

By work of Souto–Stover [31] and Cremaschi–Souto [13] and Cremaschi [10, 12] it is not hard to

build hyperbolizable infinite type 3-manifolds that are homeomorphic to Cantor set complements

in the 3-sphere �3. In particular, in [13], the manifold of Example 2 can be extended to be a Cantor

set complement showing, for example, howone can have a hyperbolizable Cantor set complement

in �3 whose fundamental group is not residually finite.

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
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The flexibility to build hyperbolizable Cantor set complements in �3 is reminiscent of the fact

that most knots in �3 are hyperbolic. For example, of the 1 701 936 knots with fewer than 16 cross-

ings, all but 32 are hyperbolic, see [18]. Moreover, Purcell–Souto [25] showed that if� ↪ �3 is a

one-ended hyperbolic 3-manifold of finite type without parabolics, then� is the geometric limit

of hyperbolic knot complements. This shows how, under the geometric topology, hyperbolic knots

are dense in the space of one ended-hyperbolic 3-manifolds admitting embeddings in �3.

The aim of the present work is to show a similar statement for hyperbolic 3-manifolds, not

necessarily of finite type, admitting an embedding in �3. As approximating manifolds, we will

use Cantor sets complements:

Theorem 2.6. Let� ≅ ℍ3∕Γ be a hyperbolic 3-manifold, not necessarily of finite type, without rank

two cusps admitting an embedding � ∶ � ↪ �3. Then, there exists a sequence of Cantor sets 
 ⊆ �
3,


 ∈ ℕ, such that:

(i) �
 ∶=�
3 ⧵ 
 is hyperbolic�
 ≅ ℍ

3∕Γ
;

(ii) the�
 converge geometrically to�.

As in [25], one can obtain hyperbolic Cantor set complements with small eigenvalues of the

Laplacian, arbitrarily large isometrically embedded balls, arbitrarily many short geodesics or sur-

faces with arbitrarily small principal curvatures.

1 BACKGROUND

1.1 Notation and conventions

All appearing 3-manifolds are assumed to be aspherical and orientable. We use ≅ for homeomor-

phic. By � ↪ �, we denote an embedding of � into � while � ↬ � denotes an immersion. By

Σ
g ,� we denote an orientable surface of genus g with � boundary components. We say that a man-

ifold is closed if it is compact and without boundary. By �0(�), we denote the set of connected

components of�, and unless otherwise stated we use � = [0, 1] to denote the closed unit interval.

Let� be an open manifold, by an exhaustion {�
}
∈ℕ we mean a nested collection of compact

sub-manifolds�
 ⊆ int(�
+1) with ∪
∈ℕ�
 = �. By gaps of an exhaustion {�
}
∈ℕ we mean the

connected components of�
 ⧵ �
−1. We will use ℂ̂ to denote the Riemann sphere.

1.2 Some 3-manifold topology

Wenow recall some facts and definitions about 3-manifold topology. Formore details on the topol-

ogy of 3-manifolds, some references are [16, 17, 19].

Let� be an orientable 3-manifold, then� is said to be irreducible if every embedded sphere �2

bounds a 3-ball�3. Given a connected properly immersed surface � ↬ �, we say it is�1-injective if

the inducedmap on the fundamental groups is injective. Furthermore, if � ↪ � is embedded and

�1-injectivewe say that the surface � is incompressible in�. By the LoopTheorem [17, 19] if � ↪ �

is a two-sided surface that is not incompressible, we have that there is an embedded disk  ⊆ �

such that � =  ∩ � and � is non-trivial in �1(�). Such a disk is called a compressing disk.

An irreducible 3-manifold with boundary (�, ��) is said to have incompressible boundary if

every map of a disk: ("2, �"2) ↪ (�, ��) is homotopic via maps of pairs into ��. Therefore, a
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manifold (�, ��) has incompressible boundary if and only if each component � of �� is incom-

pressible. We say that a 3-manifold � is atoroidal if any �1-injective torus # ⊆ � is homotopic

into ��.

Definition 1.1. We say that a 3-manifold � is hyperbolic, or hyperbolizable, if � ≅ ℍ3∕Γ for

Γ ⊆ PSL2(ℂ) a discrete and torsion-free subgroup. The group Γ is called Kleinian.

In general, hyperbolic 3-manifolds that are not closed are open.We will make use of the follow-

ing convention:

If we say that a compact 3-manifold is hyperbolic, we mean the interior and if � is a finite type

hyperbolic 3-manifold, we use� to mean its compact manifold closure.

The above convention makes sense since by the Geometrization Theorem [20] and Tameness

Theorem [1, 5], any hyperbolic 3-manifold� with finitely generated fundamental group is home-

omorphic to the interior of a compact 3-manifold� such that� is irreducible, atoroidal and has

infinite fundamental group.

Given a hyperbolic 3-manifold� ≅ ℍ3∕Γ, the convex core ��(�) ⊆ � is the smallest subman-

ifold with convex boundary whose inclusion induces a homotopy equivalence to�. We say that

� ≅ ℍ3∕Γ is convex co-compact if ��(�) is a compact submanifold and we say that� is geomet-

rically finite if ��(�) has finite volume. Some reference for hyperbolic 3-manifolds are [4, 22, 23,

32].

We now prove a couple of topological Lemmas.

Lemma 1.2. Let� be a compact 3-manifold with boundary and let  ⊆ �� be a collection of pair-

wise disjoint simple closed curves containing a pants decomposition of ��. Let $
 , 1 ⩽ 
 ⩽ �, be the

components of  and assume that every $
 is �1-injective in�. For 0 < g
 < ∞, 1 ⩽ 
 ⩽ �, let�′ be

the 3-manifold obtained by attaching thickenings ofΣ
g
 ,1

to� by identifying regular neighbourhoods

in� of $
 and �Σg
 ,1
. Then, ��′ has incompressible boundary.

Proof. Without loss of generality, we can assume that� has connected boundary. Let ( , � ) be

a compressing disk for (�′, ��′). By an isotopy of  , we can assume that  ⋔ * for * a regular

neighbourhood of  in ��.

If* ∩  = ∅, we have that � ⊆ �� ⧵  hence is either in� or in someΣ
g
 ,1

. If ⊆ �, since

 contains a pants decomposition, it means that � is isotopic into  giving us a contradiction

with the fact that each component of �1-injects in�. If is contained in some Σ
g
 ,1

× � we have

that � ⊆ Σ
g
 ,1

× �� but Σ
g
 ,1

× �� has no compressing disks in the �-bundle.

Therefore, we have that ∶= ∩ * is a, non-empty, collection of essential arcs. Let  ′ ⊆  be

an innermost disk with respect to the arc system  ⊆  . Then,  ′ ∩ * has only one component

in � ′. Since  contains a pants decomposition, up to an isotopy of  ′, we obtain a disk in either

� or Σ
g
 ,1

× � intersecting * in an essential arc ..

The disk ′ cannot be contained inΣ
g
 ,1

× � because every compressing disk intersects �Σ
g
 ,1

× �

in at least two components. If ′ ⊆ �, then � ′ is decomposed into two arcs ., / with . an essen-

tial arc in * and / an essential arc in �� ⧵ *. However, since  contains a pants decomposition

and * is a thickening of  , there cannot be such an essential /. □

Our last preliminary topological lemma
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Lemma 1.3. Let� be a compact 3-manifold with non-empty boundary �� such that no component

of �� is a torus. Given, � ∶ � ↪ �3 with handle-body complement 4, we can find a pants decom-

position  of �� such that  is a disk-system for4 and is �1-injective in�.

Proof. Let  be a disk system† for 4 such that no disk  ∈  is separating in 4. We now need

to show that the loops �−1(�) are essential in �. If not, by the loop Theorem if $ in �−1(�) is

not �1-injective in�, then it bounds a disk  ′. Let  be the disk of  corresponding to $. Then

� =  ∪$  
′ is an embedded 2-sphere in �3, and so it is separating. However, since each is non-

separating in 4 ⊆ �3, we get a contradiction. □

Remark 1.4. In the setup of Lemma 1.2 and 1.3, we can take a disk system so that no pair is sepa-

rating in �4 and so that the manifold�′ of Lemma 1.2 has incompressible boundary and the JSJ

decomposition of�′ is given by the thickened surfaces we attach.

1.3 Combination theorems

For the reader’s convenience, we now recall some Theorems dealing with glueings of Kleinian

groups, that is, hyperbolic 3-manifolds.

Theorem 1.5 [20], 4.97. Let 51, 52 be Kleinian groups with fundamental domains  1,  2 in

ℂ̂ such that: ℂ̂ ⧵  2 ⊆ int( 1) and ℂ̂ ⧵  1 ⊆ int( 2). Then, the group 5 generated by 51 and 52
is Kleinian and isomorphic to 51 ∗ 52. Moreover,  ∶= 1 ∩  2 is a fundamental domain for 5

on ℂ̂.

Definition 1.6. Let Γ ⊆ :�;2(ℂ) be a Kleinian group. Given a subgroup4 ⊆ Γ, we say that� ⊆ ℂ̂

is precisely invariant under4 if 4(�) ⊆ � and for all $ ∈ Γ ⧵ 4 we have that $(�) ∩ � = ∅.

Theorem 1.7 [20, 4.104]. Let51,52 be a pair of Kleinian groups such that51 ∩ 52 = 4, where4 is

a cyclic subgroup. Let  > be fundamental domains for the actions of 5> on ℂ̂, > = 1, 2. Let �1, �2 be

open disks in ℂ̂ such that ? ∶=�1 ∩ �2 = ��1 = ��2 is a topological circle. Suppose the following.

∙ �> is invariant under4 in 5> , > = 1, 2.
∙  ′

>
∶= > ∩ 5>(�>) ⊆ �> , > = 1, 2.

∙  ′
1
∩  2 and  1 ∩  

′
2
have non-empty interiors.

Then, the subgroup 5 ⊆ Isom(ℍ3) generated by 51, 52 is Kleinian and isomorphic to 51 ∗4 52. If

51, 52 are geometrically finite, then 5 is also geometrically finite. The quotientΩ(5)∕5 is naturally

conformally equivalent to

Ω(51 ⧵ 51(�1))∕51 ∪; Ω(52 ⧵ 52(�2))∕52

where the gluing is along ; = [? ∩ Ω(4)]∕4. Any parabolic element in5 is either conjugate to51 or

to 52 or conjugate to an element commuting with a parabolic element of4.

† Such a disk system always exists and is even possible given a disk system to surger it, by band sums, to get a new disk

system′ that has no separating component.
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Similarly:

Theorem 1.8 [20, 4.105]. Let 50 be Kleinian and 41, 42 a pair of cyclic subgroups. Let  0 be a

fundamental domain for the actions of 50 on ℂ̂. Let �1, �2 be open disks in ℂ̂ and B ∈ Isom(ℍ3)

be a Möbius transformation such that B41B
−1 = 42. This conjugation induces an isomorphism

C ∶ 41 → 42. Suppose the following.

∙ �> is precisely invariant under4> in 50, > = 1, 2.
∙ B(�1) ∩ �2 = ∅ and B(��1) ∩ ��2 = ? is a topological circle.
∙ g�1 ∩ �2 = ∅ for all g ∈ 50.
∙  0 ∩ (ℂ̂ ⧵ 50(�1 ∪ �2)) has non-empty interior.

Then, the subgroup 5 ⊆ Isom(ℍ3) generated by 50, B is Kleinian and isomorphic to the HNN-

extension 50 ∗C∶41→42 of 50 via C. If 50 is geometrically finite, then 5 is also geometrically finite.

The quotientΩ(5)∕5 is naturally conformally equivalent to

∼ ∕[Ω(50) ⧵ 50(�1 ∪ �2)]∕50,

where the identification is such that [? ∩ Ω(42)]∕42 is identified with [B
−1(?) ∩ Ω(41)]∕41 via the

projection of B. Any parabolic element in 5 is either conjugate to 50 or conjugate to an element

commuting with a parabolic element of4> , > = 1, 2.

Remark 1.9 (Parabolic amalgamation). Let E be a parabolic fixed point for the action of a Kleinian

group Γ corresponding to a 3-manifold�. By the Universal Horoball Theorem [22, 3.3.4], we can

always find an embedded horoball4 inΩ(Γ). Therefore, by using the universal horoball, it is easy

to glue Kleinian groups Γ1 and Γ2 along a common parabolic group ⟨.⟩.

2 REDUCTION TO THE CONVEX CO-COMPACT CASE

We start by recalling a useful lemma about converging sequences of geometric limits.

Lemma 2.1. If� is the geometric limit of {�
}
∈ℕ and each�
 is the geometric limit of {�
�


}�∈ℕ,

then� is the geometric limit of a sub-sequence {��F�
}�∈ℕ.

Proof. Consider the diagram

By geometric convergence in 
, we have that ∀H > 0 ∶ ∃
H such that ∀
 ⩾ 
H we have embeddings

L
 ∶ (�H(M), M) ↪ (�
 , M
) L
 (1 + N
)-bilipschitz N
 → 0

and similar statements for (��


, O�


) and (�
 , M
).
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For each 
, we have that L
(�H(M)) ⊆ �H+N
 (M
) thus we have (1 + P
,�)-bilipschitz embeddings

g
�


∶ �H+N
 (M
) → (��



, O�


). Therefore, the embeddings

g
�

 ◦L
 ∶ �H(M) → (��
 , O

�

 )

are (1 + N
)(1 + P
,�)-bilipschitz. Thus, we can find a geometrically convergent sub-sequence. □

We now reduce the general case to the convex co-compact case.

Definition 2.2. We say that a 3-manifold� is in�3 if� ↪ �3 is hyperbolic without rank two

cusps:� ≅ ℍ3∕Γ, Γ ⩽ :�;2(ℂ) and� is either of finite type, that is, �1(�) is finitely generated or

� = ∪
∈ℕ�
 (as in the above sense) in which �1(�
) ↪ �1(�). The last condition is equivalent

to, up to sub-sequence, �1(�
) ↪ �1(�
+1).

Lemma 2.3. Let� ≅ ℍ3∕Γ be a hyperbolic 3-manifold, not necessarily of finite type and with Γ not

abelian, without rank two cusps, admitting an embedding � ∶ � ↪ �3. If� admits an exhaustion

by �1-injective compact sub-manifolds, then there is a sequence of finite type hyperbolic 3-manifolds

with no parabolics (�
 , M
) 3-manifolds with embeddings L
 ∶ (�
 , M
) ↪ �3 such that (�
 , M
) →

(�, M) geometrically.

Proof. Let subsets �
 be �1-injective sub-manifolds giving us an exhaustion of�, and let Γ
 ⊆ Γ

be the corresponding Kleinian groups. Without loss of generality, we can assume that �
 ≄ �
+1
so that Γ
 ≠ Γ
+1. Then, Γ
 ⊊ Γ
+1 and ∪
∈ℕΓ
 = Γ. Then, we obtain the required sequence by

(�
 , M
) ∶=
(
ℍ3

/
Γ
 , [0]

)
.

Since the �
 are �1-injective in�, they lift homeomorphically to the covers �
 ∶ �
 → �. By

Tameness [1, 5], we have that�
 ⧵ �
 are product regions and so�
 ≅ int(�
). Hence, the�
 also

embed in �3, concluding the proof. □

Proposition 2.4. Let � ≅ ℍ3∕Γ be a hyperbolic 3-manifold in �3 . Then, there is a sequence of

convex co-compact hyperbolic 3-manifolds (�
 , M
) with embeddings L
 ∶ (�
 , M
) ↪ �3 such that

(�
 , M
) → (�, M) geometrically.

Proof. We first deal with the case Γ is abelian, hence of finite type. Any such Kleinian group can

be geometrically approximated by a classical Schottky group on two generators and we are done.

Let (�
 , M
) be the sequence from Lemma 2.3. Since each�
 has no ℤ
2 ∈ �1(�
) by the Strong

Density Theorem [30, 1.4], there is a collection of convex co-compact manifolds �
� ∈ B4(�
)

converging strongly to �
 , moreover without loss of generality, by geometric convergence, we

can assume that for all � ∶ �
� ≅ �
 . By Lemma 2.1, we have a sub-sequence �


�

that converges

geometrically to �. Moreover, since each �
�

is homeomorphic to �
 , they admit embeddings

L
 ∶ �



�

→ �3. □

Remark 2.5. The previous proposition is the only place in the paper in which we actually need the

exhaustion and the fact that we have no rank two cusps.
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2.1 General proof assuming convex co-compact approximation

We now assume the following theorem, which we will prove in the next sections. The main step

will be a gluing argument that is done in Section 3.

Theorem 4.2. Let� ≅ ℍ3∕Γ be a convex co-compact hyperbolic 3-manifold admitting an embed-

ding � ∶ � ↪ �3. Then, there exists a sequence of Cantor sets 
 ⊆ �
3, 
 ∈ ℕ, such that:

(i) �
 ∶=�
3 ⧵ 
 is hyperbolic�
 ≅ ℍ

3∕Γ
;

(ii) the�
 converge geometrically to�.

and prove:

Theorem 2.6. Let � ≅ ℍ3∕Γ be a hyperbolic 3-manifold and let � ∈�3 . Then, there exists a

sequence of Cantor sets 
 ⊆ �
3, 
 ∈ ℕ, such that:

(i) �
 ∶=�
3 ⧵ 
 is hyperbolic�
 ≅ ℍ

3∕Γ
;

(ii) the�
 converge geometrically to�.

Proof. By Proposition 2.4, we have a sequence of convex co-compact manifolds�
 ↪ �3 that con-

verge geometrically to�. By Theorem 4.2, each�
 is approximated by Cantor set complements;

hence, by Lemma 2.1� is approximated, geometrically, by Cantor set complements. □

3 GLUING ARGUMENT

In this section,wewill showhowgiven� ⊆ �3 convex co-compact such that�� , the complement

of� in �3, is a collection of handlebodies 4 we can extend the metric of� to a new 3-manifold

�′ such that � ⊊ �′ ⊆ �3 and 4′ ∶=(�′)� is a collection of handlebodies such that 4′ ⊊ 4.

Moreover, each component of 4 contains at least two components of 4′, and for ℎ ∈ �0(4) and

ℎ′ ∈ �0(4
′) we have: diam(ℎ′) ⩽ 1

2
diam(ℎ). By iterating this argument, we will build our hyper-

bolic Cantor set complements. The aim of this section is to show our main gluing argument:

Proposition 3.5. Let� be a convex co-compact hyperbolicmanifold with the property that ⊆ ��

is a �1-injective collection of pairwise disjoint simple closed curves. LetV∶= || and let ; ∈ [0,∞).
Then, there exists {g
}

V

=1

with 1 ⩽ g
 < ∞ such that we can extend the hyperbolic metric of � to a

convex co-compact manifold:

�; ∶=� ∪

V∐


=1

Σ
g
 ,1

× �

with the property that:

(1) in Σ
g1,1

× �, the geodesic corresponding to 
 has a collar of width at least ;;

(2) if  contains a pants decomposition, then�; has incompressible boundary.

Before showing Proposition 3.5, we show that given a compact convex co-compact manifold�

embedding in �3, we can assume, up to geometric limit, that it has handle-body complement.
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Lemma 3.1. Let � ∶ � ↪ �3 be a compact convex co-compact hyperbolicmanifold. Then, by adding

a collection of 1-handles4 to�, we have an embedding �′ ∶ � ∪� 4 ↪ �3, extending themetric, such

that �3 ⧵ �′(� ∪� 4) is a collection of handlebodies and� ∪� 4 is convex co-compact.

Proof. If �(�)� is a collection of handlebodies, there is nothing to do. Otherwise, let � ⊆ �(�)�

be a non-handlebody component. Let � = 
g
∪ W be a minimal genus Heegaard splitting of �,

where 
g
is a genus g handlebody, and W is a collection of 2-handles. Attaching a 2-handle : to

4
g
is equivalent to attaching a 1-handle :′ to �(�). Thus, we get that by attaching all 1-handles

to �(�) we can make � a handlebody component. Therefore, there is a collection of 1-handles 4

and an embedding �′ ∶ � ∪ 4 ↪ �3 such that �3 ⧵ �′(� ∪� 4) is a collection of handlebodies.

We now need to show that we can realize the above topological construction while extend-

ing the given hyperbolic metric on � ≅ ℍ3∕Γ. This essentially follows from Ping-Pong Lemma

(Theorem 1.5). There are two cases depending on whether the 1-handle : is attached to

one or two boundary components of �. We will indicate by �1 and �2 these two boundary

componentss3.4.

Assume �1 ≠ �2. Let 1 be a fundamental domain for the action of Γ on ℂ̂. Since Γ is convex co-

compact Γ. 1 has full measure and let X1 ∶= ℂ̂ ⧵  1. Pick two points Y1 and Y2 in int( 1) ∩ �̃1 and

int( 1) ∩ �̃2 respectively, and let ℎ\ ∈ Isom+(H3), \ ∈ (0,∞), be the loxodromic element with

fixed points Y1 and Y2 and translation length \. Let 2(\) be the fundamental domain of ⟨ℎ\⟩ and
X2 ∶= ℂ̂ ⧵  2. Since as \ → ∞:

 2(\)
Hausdorff
^̂̂ ^̂ ^̂ ^̂→ ℂ̂ ⧵ {Y1, Y2} X2(\)

Hausdorff
^̂^̂ ^̂ →̂ {Y1, Y2},

we get that there is \ ∈ (0,∞) such that

 2(\) ⊃ X1  1 ⊃ X2(\)

Then, by Theorem 1.5, Γ′ ∶=⟨Γ, ℎ\⟩ is discrete, isomorphic to Γ ∗ ℎ\ and ℍ3∕Γ′ has the required
topological type.

If �1 = �2, let  1 and X1 as before and pick Y ≠ ` to be points in  1 ∩ �̃1. Then, by the same

reasoning as before, we can find ℎ\ such that Γ
′ ∶=⟨Γ, ℎ\⟩ is discrete, isomorphic to Γ ∗ ℎ\ and

ℍ3∕Γ′ has the required topological type. □

We now define:

Definition 3.2. Let � be a geometrically finite 3-manifold, we say that the convex core of � is

homeomorphic to Σ
g ,b,� × � if ��(�) has � rank 1 cusps, b funnels and there is a type-preserving

homeomorphism L ∶ �
≅
→̂ Σ

g ,b,� × �.

The next Lemma constructs a handlebody piece that will be attached to � via cyclic amalga-

mation, Theorem 1.7, along a peripheral loxodromic $. This particular construction produces a

rank-1 cusp that we will have to deal with later. The loxodromic element $ and $-invariant disk

� ⊆ �∞ ℍ
3 in the statement will be obtained from� by taking an incompressible curve in �� and

lifting a collar around it.
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F IGURE 1 The disks ∆
 in the domain of discontinuity containing a lift of $. The shaded region is the ball �
′

Lemma 3.3. Given $ ∈ :�;2(ℂ) loxodromic element and a closed $-invariant disk� ⊆ �∞ ℍ
3, then

there is a Schottky group extension of ⟨$⟩, Γ = Γ�, such that:

(1) the limit set of Γ is included in �;

(2) the convex core of ℍ3∕Γ is homeomorphic to Σ
g ,1,1 × [0, 1], where the boundary component of

Σ
g ,1,1 corresponds to $ and the puncture to a rank-1 cusp.

Moreover, such group Γ can be taken so that $ has a collar larger than any given constant.

Proof. Take �′ ⊆ �, a smaller region delimited by two $-invariant smooth arcs e1, e2 joining the

fixed points of $. Furthermore, select a third $-invariant smooth path e ⊆ �′ so that B = �′∕⟨$⟩
is an annulus with boundary e1∕⟨$⟩ ∪ e2∕⟨$⟩ and �1 representative embedded curve e∕⟨$⟩.
We would have to find X ⊆ �′ so that X is a fundamental region of B and e ∩ X = eX is con-

nected. To do this, denote by $± the fixed points of $. Consider a closed path f in the annulus

(�∞ ℍ
3 ⧵{$±})∕⟨$⟩, such that f intersects each one of e∕⟨$⟩, e1∕⟨$⟩, e2∕⟨$⟩ exactly once (and the

annulusB = �′∕⟨$⟩ in a connected segment). Define X0 as the lift in �∞ ℍ3 of the complement of
f in (�∞ ℍ

3 ⧵{$±})∕⟨$⟩. This makes X0 a disjoint union of connected components, and the closure
of any of these components is a fundamental domain for (�∞ ℍ

3 ⧵{$±})∕⟨$⟩. Then one can verify
that X can be obtained by X ∶= X0 ∩ �. Cover eX by closed disks {∆
}−�⩽
⩽� in �′, see Figure 1,

such that:

(1) ∆
 , ∆
+1 are tangent for all 0 ⩽ 
 ⩽ 4� − 2, {M
+1} = ∆
 ∩ ∆
+1;

(2) ∆
 ∩ ∆> = ∅ for |
 − >| ⩾ 2;
(3) ∆4�−1 = $(∆0).

Iterate by powers of $ to obtain, {∆
}
∈ℤ, a covering of e by disk in � such that:

(1) ∆
 , ∆
+1 are tangent for all 
 ∈ ℤ, {M
+1} = ∆
 ∩ ∆
+1;

(2) ∆
 ∩ ∆> = ∅ for |
 − >| ⩾ 2;
(3) ∆
+4� = $(∆
).

SelectL
 aMobiusmap that sends the triple (�∞ ℍ
3 ⧵(∆̊
), M
 , M
+1) to the triple (∆
+2, M
+3, M
+2),

so that $−1◦L
◦$ = L
+4� (make a priori such a selection). Furthermore, denote by F
 = L4
 , k
 =

L4
+1. Let Γ be the group generated by F0, k0, … , F�−1, k�−1, $ (also generated by ⟨{F
 , k
}
∈ℤ, $⟩).
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Then by modifying the proof of Theorem 1.5, we can prove that Γ is a Kleinian group freely gener-

ated by F0, k0, … , F�−1, k�−1, $. Indeed, for F
 , k
 take fundamental domains as the complement

of the appropriate disks ∆
 , and take X0 as the fundamental domain for $. Taking any two of these

fundamental domains (and denoting them by  1,  2), we have that  1 ⊃ (ℂ ⧵  2),  2 ⊃ (ℂ ⧵  1)

rather than int( 1) ⊃ (ℂ ⧵  2), int( 2) ⊃ (ℂ ⧵  1), the latter as in Theorem 1.5. This is because of

the tangencieswe consider. Nevertheless, if denotes the intersection of all fundamental domains

and l is a nontrivial word generated by F0, k0, … , F�−1, k�−1, $, it follows that for any E ∈ int( )

we have l(E) ∉  . This implies that Γ is freely generated by F0, k0, … , F�−1, k�−1, $ and that  is

a fundamental domain for Γ in �∞ℍ
3 = �2.

It remains to show that Γ is discrete. Take Y ∈ ℍ3 in the complement of all the half-spaces

bounded by the functions ∆
 , intersected with a fundamental domain of $ bounded by X0 (which

is the complement of two topological half-spaces). Take into consideration that all half-spaces

can be taken mutually disjoint. Then assume that there is a sequence {gb} ⊆ Γ so that gb(Y) → Y.

For any gb ≠ 
o, we have that gb(Y) belongs to one of the discarded half-spaces. Hence gb = 
o

for b sufficiently large, and from which we know that Γ is a Kleinian group. And since  is a

fundamental domain for Γ in �∞ℍ
3 = �2, it follows that the limit set of Γ is contained in �. This

is because the complement of ⟨$⟩ is contained in �′.

Note that all the points of tangencies {M
} are identified with one another in the quotient by

Γ, where the element . = $[F�−1, k�−1], … [F0, k0] fixes M0. Moreover, . preserves the direction

tangential to the disks meeting at M0. In order to make . parabolic, we can make choices so that

 .M0 has norm 1 with respect to the standard �2metric. Take the loxodromic element p\ with real

translation and fixed points M2, M3, so that the derivatives of p\ at M2, M3 are \
−1, \, respectively.

We can choose then p\◦F0 instead of F0. The new choice p\◦F0 satisfies the same conditions as

F0 and introduces a factor \ twice while applying chain rule for  .M0 (once for p\ at M3 and once

for p−1
\

at M2). Then by taking the appropriate value for \, we make . parabolic. We claim then

that such Γ is geometrically finite with convex core homeomorphic to Σ
g ,1,1 × [0, 1], where the

boundary component of Σ
g ,1,1 corresponds to $ and the puncture to the rank-1 cusp generated by

.. Indeed, we can select a smooth metric in  ∕Γ so that M0 is a hyperbolic cusp. By taking the

Epstein envelope surface [14] of a sufficiently small multiple of the selected metric, we obtain a

finite volume core with convex boundary. Then Γ is geometrically finite. Finally, the boundary

of the core can be easily seen as Σ2g ,0,2, where $ is a separating curve that divides the quotient

into components homeomorphic to Σ
g ,1,1. From here we can see that the convex core of ℍ3∕Γ�

is homeomorphic to Σ
g ,1,1 × [0, 1], where $ corresponds to the boundary component of Σg ,1,1 and

the puncture to a rank-1 cusp.

As a final remark, observe that the collar around $ gets bigger as we take the region � and the

disks ∆
 smaller. □

We now start the first step of our main gluing construction:

Lemma 3.4. Let� be a convex co-compact hyperbolic manifold with the property that ⊆ �� is a

�1-injective collection of disjoint non-homotopic curves. Let � ∶= || and let ; ∈ [0,∞). Then, there
exists {g
}

�

=1

with 1 ⩽ g
 < ∞ such that we can extend the hyperbolic metric of� to a geometrically

finite manifold:

�′
; ∶=� ∪

�∐


=1

Σ
g
 ,1,1

× �

with the property that:
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γi

F IGURE 2 Partial stage in which we glued a punctured torus to a Σ3,1,1 × � along one $
 . The rank 1 cusp �

and accidental parabolic correspond to the node

(1) Σ
g1,1,1

× � has a rank one cusp corresponding to a boundary component of Σ
g1,1,1

, and the other

boundary is glued to a component 
 of  ;

(2) in Σ
g1,1,1

× �, the geodesic corresponding to 
 has a collar of width at least ;.

Proof. Since each element 
 in  is �1-injective, then it has a loxodromic element $
 ∈ �1(�),

and a $
-invariant disk �
 in the domain of discontinuity of�. By Lemma 3.3, there exist Schottky

group extensions Γ�
 with limit set in �
 and collars around $
 as large as we desire. Then by

Theorem 1.7, themanifold�′ = �′(;)with fundamental group generated by ⟨�1(�), Γ�1 , … Γ��⟩
has the desired properties, provided that the groups {Γ�
 } from Lemma 3.3 have all collars bigger

than ; around the geodesics that each of them is extending. □

We can now prove our main gluing step, where we will deal with the parabolics:

Proposition 3.5. Let� be a convex co-compact hyperbolicmanifold with the property that ⊆ ��

is a �1-injective collection of pairwise disjoint simple closed curves. LetV∶= || and let ; ∈ [0,∞).
Then, there exists {g
}

V

=1

with 1 ⩽ g
 < ∞ such that we can extend the hyperbolic metric of � to a

convex co-compact manifold:

�; ∶=� ∪

V∐


=1

Σ
g
 ,1

× �

with the property that:

(1) in Σ
g
 ,1

× � the geodesic corresponding to 
 has a collar of width at least ;;

(2) if  contains a pants decomposition, then�; has incompressible boundary.

Proof. Start with the manifold �′
;
coming from Lemma 3.4 and let �
 be the rank 1 cusps cor-

responding to the Σ
g
 ,1,1

× � attached to $
 . By applying Klein–Maskit combination (Theorem 1.7)

to universal horoballs to each rank 1 cusps, we attach a Σ1,1 × � manifold. This gives us a new

manifold:

�′′
; ∶=� ∪

V∐


=1

Σ
g
+1,1

× �

in which the Σ
g
+1,1

× � have an accidental parabolic q
 corresponding to the remaining rank 1

cusp �
 coming from the Klein–Maskit combination, see Figure 2.
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Note that if contains a pants decomposition, then, by Lemma 1.2, themanifold�′′
;
has incom-

pressible boundary.

For each rank-1 cusp, we can find invariant tangent disk at the corresponding fixed point, by

cyclic amalgamation, see Remark 1.9, we can glue each rank-1 cusp onto itself to produce a geo-

metrically finite manifold with rank-2 cusps. Each cusp has an embedded cylinder toward each

of the two boundary components where it appears as an accidental parabolic.

Thus, we get manifolds:

�̂; = � ∪

V∐


=1

(
Σ

g
+1,1
× � ⧵ q
 × {1∕2}

)

still extending the metric on�.

By Thurston’s Dehn Filling Theorem [4, 9 32], we have� ∈ ℕ such that for all � > � the man-

ifolds �̂�
;
obtained from �̂; by doing

1

�
-Dehn Filling on every rank two cusp, see [21], are convex

co-compact. Moreover, by taking a larger �, if necessary, we can also assume that

�̂�
; ≅ � ∪

V∐


=1

(
Σ

g
+1,1
× �

)
,

where the homeomorphisms C� restrict to the identity on� and are induced by r�$

, the �th Dehn

twist along q
 , on Σg
+1,1
× �. Hence, for all ; and �, the manifolds �̂�

;
are convex co-compact and

have incompressible boundary by Lemma 1.2.

Finally, we have that

�̂�
;

gstV
⟶
�→∞

�̂;.

Thus, by definition of geometric convergence, by taking � large enough and some ;′ > ;, we can

assume that in�; ∶= �̂
�
;′
all the geodesics corresponding to  have a collar of width at least ;.

Hence, themanifold�; satisfies all the requirements of the proposition completing the proof. □

Corollary 3.6. Let� be a convex co-compact hyperbolic manifold with the property that  ⊆ ��

is a �1-injective collection of pairwise disjoint simple closed curves. LetV∶= ||, M ∈ ��(�), H > 0
and � ∈ ℕ there exists ; = ;(M, H, �) and

L ∶ �H(��(�)) ↪ � ∪

V∐


=1

(
Σ

g
+1,1
× �

)

such that L is (1 + 1

�
)-bi-Lipschitz.

Proof. Pick {;�}�∈ℕ ⊆ ℝ
+ such that ;� ↗∞. Build themanifolds�� ∶=�;�

as in Proposition 3.5.

It is easy to see that for any M ∈ ��(�), by property (1) of Proposition 3.5, the sequence

(��, M)
gstV
⟶ (�,M)

giving us the desired result. □
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F IGURE 3 Nerve subdivision. The shaded ball �> is the thickening of an �> section whose diameter is less

than 1

4
diam(4)

We can now prove our iteration step. One of the main takeaways is that we can choose our

embeddings so that the diameter of the complement decays to 0 as we iterate the process, which

is necessary to obtain a Cantor set complement.

Proposition 3.7. Let � ∶ � ↪ �3 be an embedding of a compact irreducible manifold whose com-

plement is a collection of handlebodies4
 , 1 ⩽ 
 ⩽ �. Then, by attaching a finite collection Σg


ℎ
,1 × �,

1 ⩽ ℎ ⩽ �
 to a collection of disks 
 on �4
 , containing a disk system for4
 , we obtain a new embed-

ding:

�′ ∶ �

�⋃


=1

∪
�

ℎ=1

Σ
g


ℎ
,1 × � ↪ �3

extending � such that �′(∪
�

ℎ=1

Σ
gℎ ,1
) ⊆ 4
 and 4
 ⧵ �

′(∪
�

ℎ=1

Σ
g


ℎ
,1) is a collection ?



1
, … , ?
V


of handle-

bodies withV
 ⩾ 2 and diam(?


V>
) ⩽ 1

2
diam(41). Moreover, if int(�) ≅ ℍ

3∕Γ is convex co-compact

given ; > 0, we can extend the hyperbolic metric to�
⋃�

=1 ∪

�

ℎ=1

Σ
g


ℎ
,1 so that each attaching region

has a collar of width at least ;.

Proof. Let Γ be the hyperbolic structure on�. It suffices to prove the statement for each handle-

body component4
 , for the sake of notation, we will just refer to it as4. Let be the disk system

coming from Lemma 1.3.

Take a nerve on the handlebody 4 so that in each ball component of 4 ⧵ �N() we have a

trivalent vertex. By using copies of disks in , we subdivide the nerve into sections �1, … ,�x so

that each ball component �V, 1 ⩽ V ⩽ x, has diameter less than 1

4
diam(4), see Figure 3.

This gives us a collection of disks ′ ⊆ 4 containing a pants decomposition of �4. Moreover,

each component of ′ �1-injects in�. Then, by applying Corollary 3.6 to (′, �′), we obtain a

hyperbolic 3-manifold� ∪�
ℎ=1

Σ
gℎ ,1

extending Γ.

We now construct the nested family of handlebodies obtained by successively attaching handles

to the curves homotopic to �′. We do this so that each section from �1, … ,�x appear inside a

handlebody. To each disk  ∈ �0(
′), we attach gℎ 2-handles by drilling them from the adjacent

3-ball in an unknotted way so that they complement is a handlebody.

Each handlebody ?1, … , ?x is a thickening of an element of �1, … ,�x with some handles

attached or drilled in. Moreover, we can do it so that the resulting handle is still close to the

corresponding element of �1, … ,�x, and more importantly so that each complementary region’s

diameter is less than 1

2
diam(4). Since x ⩾ 3g(4) − 3 > 2, we complete the proof. □
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Remark 3.8. Note that we can make the resulting manifold of Proposition 3.7 boundary incom-

pressible by selecting a �1-injective pants decomposition during the last iteration of the han-

dle attaching.

4 PROOF FOR CONVEX CO-COMPACT

Before proving the main result, we prove the following key Proposition:

Proposition 4.1. Let (�, M) be a convex co-compact hyperbolic 3-manifold admitting an embedding

� ∶ (�, M) ↪ �3 with complement given by a collection of handlebodies. Given H > 0, there exists

a Cantor set�H ⊆  such that �3 ⧵ �H is hyperbolizable and �H(M) ⊆ �
3 ⧵ �H is 1 + s(H) bilipschitz

to the H-ball around M in�. Moreover, s(H) → 0 as H → ∞.

Proof. Pick ; > H and apply Proposition 3.7 to � ∶ � ↪ �3 to obtain a new manifold �;
1
so

that all new topology is at distance ; > H from ��(�). We then reiterate this construction

using the same ;. We thus obtain a collection of convex co-compact hyperbolic 3-manifolds

�;� admitting nested embedding �
;

� ⊆ �
;

�+1 whose complement in �
3 is a collection of han-

dlebodies 4� and whose direct limit �
;
∞ is homeomorphic to the complement of a sub-set y

of �3.

Claim 1: The set y is a Cantor set so that �;∞ ≅ �3 ⧵ H.

Proof of Claim:. To show thaty is a Cantor set, we need to show that it is a compact, perfect, totally

disconnected metric space. Let � ∶=diam(41). By construction, it is easy to see that y = ∩�∈ℕ4�
where each 4� is a collection of handlebodies in which each component of 4� contains at least

two components of 4�+1. Moreover, by Proposition 3.7, we have that for 4 a component of 4�:

diam4 ⩽ 2−�� so that y is a collection of points. Since each component of 4� contains at least

two components of 4�+1 we see that y is also totally disconnected. Thus, being a closed sub-set

of a compact metrizable space, it is compact and metrizable as well. The fact of it being perfect is

also a straightforward consequence of the nesting construction. □

Claim 2: The �H(M) ⊆ �
3 ⧵ �H is 1 + s(;) bi-lipschitz to the H-ball around M in� and s(;) → 0

as ; → ∞.

Proof of Claim:. This follows from Proposition 3.5. □

If H → ∞, so does ;, and the last claim of the Proposition is proven. □

We now finish the proof of the main result:

Theorem 4.2. Let� ≅ ℍ3∕Γ be a convex co-compact hyperbolic 3-manifold admitting an embed-

ding � ∶ � ↪ �3. Then, there exists a sequence of Cantor sets 
 ⊆ �
3, 
 ∈ ℕ, such that:

(i) �
 ∶=�
3 ⧵ 
 is hyperbolic�
 ≅ ℍ

3∕Γ
;

(ii) the�
 converge geometrically to�.
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Proof. By Lemma 3.1, we can assume that we have�
 → � geometrically with embeddings �
 ∶

�
 → �3 such that �
(�
)
� are handlebodies for every 
. Then, by Lemma 2.1, it suffices to prove

the Theorem for such an�
 .

Thus, let� be a convex co-compact hyperbolic 3-manifold with an embedding � ∶ � → �3 that

has for complement a collection of handlebodies = {41, … ,4�}.

Choose any strictly increasing sequenceH�. By applying Proposition 4.1 to (�, M, H�), we obtain

a sequence of Cantor set complements (�3 ⧵ �, M, H�) that geometrically converge to�, conclud-

ing the proof. □

Since, in particular, ℍ3 ↪ �3 we have Cantor sets complements �� ∶=�
3 ⧵ � and points M ∈

ℍ3 and M� ∈ �� such that

(��, M�) → (ℍ3, M)

geometrically. Thus, the balls of radius �H(M) ⊆ ℍ
3 can be (1 + N�)-isometrically embedded in��.

In particular, this means that for large enough � the set of points of distance, say, H
2
from M� is

simply connected and so 
�>M� (��) ⩾
H

2
. Since H was arbitrary, we obtain:

Corollary 4.3. For all H > 0, there exists a Cantor sets  ⊆ �3 such that �3 ⧵  is hyperbolic and

there is a point M ∈ �3 ⧵  with injectivity radius at least H.

However, we do not necessarily knowwhat the shape of the corresponding Cantor set is. More-

over, as in [25], one can obtain hyperbolic Cantor set complements with small eigenvalues of the

Laplacian, arbitrarilymany short geodesics or surfaces with arbitrarily small principal curvatures.
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