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In various applications of multi-robotics in disaster response, warehouse management,
and manufacturing, tasks that are known apriori and tasks added during runtime need
to be assigned efficiently and without conflicts to robots in the team. This multi-robot
task allocation (MRTA) process presents itself as a combinatorial optimization (CO)
problem that is usually challenging to be solved in meaningful timescales using typical
(mixed)integer (non)linear programming tools. Building on a growing body of work in using
graph reinforcement learning to learn search heuristics for such complex CO problems,
this paper presents a new graph neural network architecture called the Covariant Attention
Mechanism (CAM). CAM can not only generalize but also scale to larger problems than that
encountered in training, and handle dynamic tasks. This architecture combines the concept
of Covariant Compositional Networks used here to embed the local structures in task
graphs, with a context module that encodes the robots’ states. The encoded information is
passed onto a decoder designed using Multi-head Attention mechanism. When applied to a
class of MRTA problems with time deadlines, robot ferry range constraints, and multi-trip
settings, CAM surpasses a state-of-the-art graph learning approach based on the attention
mechanism, as well as a feasible random-walk baseline across various generalizability and
scalability tests. Performance of CAM is also found to be at par with a high-performing
non-learning baseline called BiG-MRTA, while noting up to a 70-fold improvement in
decision-making efficiency over this baseline.

Keywords: Multi-Robot Task Allocation, Dynamic Tasks, Reinforcement Learning, Graph

Neural Networks

1 Introduction

Multi-robot task allocation (MRTA) is the process of efficiently
assigning tasks to autonomous robots, particularly in complex oper-
ations with numerous tasks and time constraints. Considerations in
MRTA encompass factors such as robot capabilities, task require-
ments, communication constraints, and overall mission goals. This
paper focuses on conflict-free MRTA problems optimizing metrics
such as task completion Y% and overall effort [1]. The work draws
motivation from applications with high tasks-to-robot ratios, time-
sensitive tasks, and dynamic task emergence, including on-demand
last mile delivery [2], disaster response (search and rescue, relief
delivery, etc.) [3-6], critical infrastructure inspection or service
restoration [7], reconnaissance [8], warehouse management [9], and
manufacturing & job shop scheduling [10-12]. MRTA methods
can also be applied to transportation fleet planning and coordination
of other physical multi-agent systems [13—15]. In such applications,
operations with tight task deadlines and dynamic tasks necessitate
a fast and generalizable decision-making process, making longer
horizon planning suboptimal and potentially risky.

1.1 Conventional methods for MRTA. In this paper, we focus
on a specific class of MRTA problems that belong to the Single-task
Robots, Single-robot Tasks (SR-ST) category as defined by [1, 16].
According to the iTax taxonomy [1], these problems belong to the
In-schedule Dependencies (ID) category. A feasible and conflict-
free task allocation assigns each task to only one robot [3]. These
MRTA problems can be formulated as Integer Linear Programming
(ILP), mixed ILP, or Integer Non-Linear Programming (INLP)
problems, depending on the application’s criteria functions [17, 18].
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When tasks are defined by location, the MRTA problem becomes
analogous to the Multi-Traveling Salesmen Problem (mTSP) [19]
and its generalized version, the Vehicle Routing Problem (VRP)
[20]. Existing solutions to mTSP and VRP [21, 22] address similar
characteristics relevant to MRTA, such as tasks with time deadlines
and multiple tours per vehicle, with applications in operations
research and logistics [23, 24]. ILP-based mTSP formulations and
solution methods have been adapted to task allocation problems
in the multi-robot domain [25]. Although ILP-based approaches
can theoretically provide optimal solutions, the NP-hard nature of
SR-ST problems [26, 27] leads to rapidly increasing computational
effort as the number of robots and tasks grows [18, 28]. For
instance, for the SR-ST problem considered in this paper, the
cost of solving the exact integer programming formulation of the
problem scales with O(n3m2h2), where n, m, and h represent the
number of tasks, the number of robots, and the maximum number
of tours per robot, respectively [3]. As a result, most practical
online MRTA methods, including auction-based methods [29, 30],
bigraph matching methods [3, 31, 32], and metaheuristic-based
methods [33-35], use heuristics for solving the problem. In some
of these cases, optimality gaps are reported for smaller test cases
by comparing with exact optimization (e.g., INLP) solutions.

Most existing works on task allocation that address dynamic
tasks consider a smaller number of tasks, typically < 200, and do
not demonstrate adequate scalability. For example, [36] introduces
an algorithm for dynamically allocating tasks to multiple agents
under time window constraints and task completion uncertainty,
however, the maximum number of tasks considered is 200 and
provides no evidence for scalability. The Bipartite graph match-
ing algorithm introduced in [3] has also demonstrated its use for
dynamic tasks, however, does not scale well computationally for
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larger-sized problems. The auction-based approach proposed in
[37] reported results for scenarios with less than 50 tasks.

1.2 Learning over Graphs. Recently, Graph Neural Networks
(GNN) based learning approaches are getting popular for solving
Combinatorial Optimization (CO) problems e.g., TSP, VRP, Max-
Cut, Min-Vertex, and MRTA [38—48]. One of the main benefits of
learning-base methods over traditional methods (such as metaheuris-
tic algorithms, market-based approaches, graph matching, etc,.) is
that learning-based methods can be implemented to newer classes
of problems with minimal expert tuning as long as the reward for-
mulation captures the problem’s gal effectively and trained properly,
whereas the traditional non-learning-based methods require tedious
reformulation and redesign of some heuristics.

Unlike normal Neural Networks, GNNs have the innate ability to
capture both the Euclidean features (such as location information,
capacity, and task deadline), along with categorical features such
as task type (if it’s heterogeneous tasks), and also has the ability
to capture structural information of the task neighborhood. A
majority of the existing works on GNNs for CO problems have
the following drawbacks: 1) The problems considered are too
simple and exclude common real-world factors such as resource
and capacity constraints [38, 40, 41, 44]). 2) Considers problems
with smaller number of tasks/locations and robots/agents (< 100
tasks and 10 robots) [45, 49], with their scalability remaining
unclear. 3) Lack of generalization to larger-sized problems (than
used for training) without the need to retrain. The third capability
is particularly important for a real-world MRTA problem, such as
multi-robot flood response, where it is often impossible to always
retrain for scenarios of different sizes as compared to the training
scenarios, due to the large-training time as well as the computational
expense. To address these above-mentioned gaps, we propose a
new learning-based framework with the ability to generalize to
solve for large-sized MRTA problems (SR-ST) with commonly
considered constraints — involving up to 1000+ tasks and 200+
robots — and generalize across even problem scenarios larger than
those encountered in training without the need to re-train. Notable
related recent developments are discussed below.

The use of sequence-to-sequence models, e.g., pointer net-
works and attention mechanism, to learn policies for combina-
torial optimization problems in graph space using experiences
over episodes [38, 41] has become popular over the last few years.
Kool et al. [38] implemented an attention mechanism encoder-
decoder policy and REINFORCE algorithm for solving a wide
variety of combinatorial optimization problems as graphs, with the
primary contribution being the approach’s flexibility across mul-
tiple problems using the same hyperparameters. Wang et al. [50]
demonstrated that learning can produce faster solutions than stan-
dard exact methods for multi-robot scheduling problems. However,
the problem sizes examined in that work and similar studies [45]
were limited to 5 robots and 100 tasks, considering only temporal
constraints. In this paper, we investigate larger problems, encom-
passing up to 1000 tasks and 200 robots, and address additional
complexities such as task deadlines, robot ferry range constraints,
payload capacity constraints, and multiple routes.

We implement a reinforcement learning (RL) approach to gen-
erate MRTA solutions, with the main computing effort being on
the offline learning part, and the learned policy being deployed in
real-time during operation. In order to enable generalizability and
scalability to the RL approach, we introduce a new GNN-based
policy architecture that combines attention mechanism with an
enhanced encoding network (embedding layers), where the latter
is particularly designed to capture local structural features of the
graph in an equivariant manner. The embedding layer is a variation
of Covariant Compositional Networks (CCN), introduced by [S1].
CCN was initially developed to predict molecular properties by
learning the local structural information of molecules. The choice
of this embedding is inspired because of the following properties: i)
operates on an undirected graph; ii) uses receptive field and aggre-
gation functions based on tensor product and contraction operations,
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which by virtue of being equivariant leads to a permutation- and
rotation-invariant embedding; and iii) provides an extendable repre-
sentation, i.e., an n-th order tensor representation that can extend to
multi-level networks (e.g., combining function, motion, and com-
munication of robots or vehicles). Compared to other promising
GNN encoders that have been used to promote generalizability in
MRTA [47] or related combinatorial optimization problems [52],
CCN differs in how it ensures covariance to permutations [51],
e.g., in the ordering of nodes in a task graph. We implement a
simpler variation of the CCN architecture since the exact original
network was found to be computationally burdensome for learning
with sequential decision-making. The new proposed policy called
Covariant Attention Mechanism (CAM) consists of a CCN-based
encoder and an Attention Mechanism-based decoder. We implement
the attention-based decoder for CAM as proposed in [38, 53].

1.3 Contributions. The primary contributions of this paper
can be summarized as: 1) Formulating the SR-ST class of MRTA
problems with a dynamic task space and robots with range and
payload constraints as a Markov Decision Process or MDP over
graphs with the multi-robot state information embedded as the
context portion of the policy model, such that the policy for selecting
tasks can be learned using an RL approach; this is motivated by
our prior work in [47, 54]. 2) Design a GNN-based policy network
with an encoder-decoder architecture, with the encoder being based
on covariant compositional networks (CCN), whose embedding
capabilities significantly improve generalizability and scalability to
larger task graphs and multi-robot teams. 3) An attention-based
decoder (inspired by [38, 47]) for sequential decision-making, and
specifically extend it to a multi-agent CO setting.

The proposed CAM architecture is evaluated on a representative
MRTA problem that involves coordinating a team of unmanned
aerial vehicles (UAVs) to time-efficiently deliver flood relief. In
this regard, the capability to handle dynamics tasks, where new
tasks that appear while the operation is ongoing, thus leading to a
dynamic task graph, is a major new milestone compared to other
related architectures in our prior work [47]. The results of this
case study demonstrate how CAM outperforms the state-of-the-
art attention-based method AM [38], in terms of scalability and
convergence, thereby emphasizing the encoder’s effectiveness.

The remainder of the paper is organized as follows: Section 2
defines the MRTA problem and its formulation as an MDP over
graphs. Section 3 presents our proposed new GNN architecture.
Section 4 describes simulation settings and different case studies.
Results are discussed in Section 5.

2 MRTA: Problem Definition and Formulations

The MRTA problem is defined as the allocation of tasks and
resources among several robots that act together without conflict
in the same environment to accomplish a common mission. The
optimum solution (decision) of the MRTA problem is a sequence
of tasks for each robot that do not conflict with each other and max-
imizes the mission outcome (e.g., the fraction of tasks completed)
or minimizes the mission cost (e.g., total distance traveled), subject
to the robots’ range and capacity constraints. Multiple trips are
allowed for each robot, with intervening visits to the depot where
they fully regain capacity (payloads) and range (battery). In our
prototypical application, every task has a location and requires a
relief package to be delivered by a robot. We consider the packages
to be of the same size and weight, and every robot has a maximum
payload capacity, i.e., the number of packages that can be carried.

Here, the following assumptions are made: 1) All robots are
identical and start/end at the same depot; 2) There are no environ-
mental uncertainties; 3) The location (x;, y;) of task-i and its time
deadline 7; are known to all robots; 4) Each robot can share its
state and its world view with other robots; and 5) There is a depot
(Task-0), where each robot starts from and visits if no other tasks
are feasible to be undertaken due to the lack of available range or
lack of payloads, or when there are no active tasks remaining; at
the depot, robots recharge instantaneously via battery swap and
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reload packages to full capacity. Each tour is defined as departing
from the depot, undertaking at least one task, and returning to the
depot; 6) Motivated by the multi-UAV relief delivery problem, tasks
are considered to be instantaneous, which means that reaching the
waypoint associated with a task completes that task; 7) The shared
workspace (environment) used by the robots is deterministic and
fairly large compared to the robot body length, hence lower-level
motion planning (including collision avoidance) is straight-forward
— the cost of travel between any two locations implicitly accounts
for this, without using an explicit motion planning effort in this
paper; moreover, time of arrival at any location becomes a simple
exact computation.

Subject to these assumptions, the MRTA problem is considered
to be a type of combinatorial optimization problem that can be
modeled in graph space. The optimization formulation of MRTA
is discussed in Section 2.1. In order to learn policies that yield
solutions to this CO problem, we express the MRTA problem as a
Markov Decision Process (MDP) over a graph in section 2.2.

2.1 MRTA as Optimization Problem. This MRTA problem
is adopted from [3]. The exact solution to the MRTA problem can
be obtained by formulating it as an integer nonlinear programming
(INLP) problem. For a problem with N tasks and N, robots, the
objective of this INLP can be summarily expressed as:

min frost = ¥ — u()e % (1)

completed <

i =1, if <71
Nsyccess = Z ni {Th -0 tl; . !
iG[l,N] n; =V, otherwise

¥ = (N = Nsuccess) /N

1 ify=0
0 otherwise

u(y) ={

N,
dy =) d* (V2 N)
i=1

Here, 7; is the time deadline of task i, Tl.completed is the time at

which task i is completed, and they are used to compute the number
of tasks completed in a mission, namely Ngyccess- The term d}oml
represents the total traveled distance by robot-i during the entire
mission (could involve multiple trips by the robot).

The term dy, is the scaled averaged distance traveled by the robots

in the team over the mission, where the division by V2N serves as
the scaling and averaging factor; here V2 represents the maximum
possible distance between any two points in a normalized 1 X 1 area
where tasks and depot are located. Here, we craft the objective
function to be minimized, fiost (Eq. 1), such that it emphasizes
maximizing the task completion %, i.e., 100x the number of tasks

completed divided by the total number of tasks in that scenario.

This objective function varies in the range (-1, 1]; the function
Jeost < 0, if all tasks are completed, and feost > 0, if the completion
rate is lower than 100%. The second term in feos iS active only
in the former case, and accounts for the scaled travel cost of the
robots.

The primary constraints considered in this INLP formulation
of the concerned class of MRTA problems include: 1) conflict
resolution, where no two robots can choose the same task; 2) the
total distance traveled by any robot during a trip should be less than
its maximum range subject to battery capacity; and 3) the number
of tasks selected/completed by a robot during a trip should be less
than or equal to it maximum payload capacity Cmax. A detailed
mathematical formulation of these ILP constraints and related others
can be found in [3]. Note that, here we use a slightly different
objective/cost function (one that is nonlinear) compared to that in
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[3] to better reflect the generalized setting for the class of MRTA
problems with ferry range, payload capacity, and task-deadline
constraints.

2.2 MDP over a Graph. Building on the formulation in [47],
the MRTA problem is considered to involve a set of nodes/vertices
(V) and a set of edges (E) that connect the vertices to each other,
which can be represented as a complete graph § = (V, E). Each
node represents a task, and each edge connects a pair of nodes.
Let € be a weight matrix where the weight of the edge (w;; € Q)
represents the cost (e.g., distance traveled) incurred by a robot to
take task-j after completing task-i. For MRTA with N tasks, the
number of vertices and the number of edges are respectively equal
to N and N(N — 1)/2. Node i is assigned a 3-dimensional feature
vector denoting the task location (x;,y;) and time deadline, i.e.,
0; = [xi,yi,7;] where i € [1,N]. Here, w;; can be computed as

wij = \/(xi —Xj)z + (y;i — yj)z, where i, j € [1,N].

The MDP is defined in a decentralized manner for each individual
robot, to capture its task selection process. This can be expressed
as a tuple < 8, A, P4, R >. The components of the MDP can be
defined as State Space (S): A robot at its decision-making instance
uses a state s € 8, which contains the following information: 1) the
current mission time, 2) its current location, 3) its remaining ferry-
range (battery state), 4) the number of packages it is carrying, 5) the
planned (allocated) tasks of its peers, 6) the remaining ferry-range
of its peers, 7) the number of packages each peer robot is carrying,
and 8) the state of the task space. A task is considered active if its
deadline has not passed and if the task is not completed. The state
of tasks contain the location, the time deadline, and the task status
— active (not selected yet and deadline hasn’t passed), completed
(already selected or completed by a robot), and missed (i.e., the
deadline has passed, without ever being selected). Here we assume
that each robot can broadcast its information to its peers without the
need for a centralized system for communication, as aligned with
modern communication capabilities [45]. Action Space (A): The
set of actions is represented as A, where each action a is defined
as the index of the selected task, {0, ..., N} with the index of the
depot as 0. The task O (the depot) can be selected by multiple
robots, but the other tasks are allowed to be chosen once if they are
active (not completed or missed tasks). P,(s’|s,a): A robot by
taking action a at state s reaches the next state s’ in a deterministic
manner (i.e., deterministic transition model is defined). Reward
(R): The reward function is defined as —feost and is calculated
when there are no more active tasks, meaning all tasks have either
been completed or their deadline has passed. Transition: The
transition is an event-based trigger conditioned on a robot reaching
its selected task or the depot (if selected). Unlike the scenarios
with static tasks, the state transition in scenarios with dynamically
generated tasks is stochastic — this is due to the possibility of new

tasks to randomly appear during the mission. If T? is the set

active
is the set of active tasks at

of active tasks at time step ¢ and T7*!

active
time step 7 + 1, then T2*! ¢ 97 |
active active

3 Covariant Attention-based Neural Architecture

To operate on the MDP defined over graphs in Section 2.2, the
policy architecture needs to represent each node as a continuous
vector, preserving its properties as well as the structural information
of the neighborhood of that node.

Before describing the technical components of our proposed
Covariant Attention Mechanism, the so-called CAM neural architec-
ture, we provide an illustration (Fig. 1) and a summary description
here of how this policy architecture is used by robots or agents
during an SR-ST operation. The CAM model for task allocation is
executed by each robot just when it reaches its current destination
(task location or depot), in order to decide its next task or destination.
Since full observability is assumed across the multi-robot team and
the policy-model execution time is almost negligible, the current
setup is agnostic to whether the online CAM model is executed
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Deployment of an MRTA policy using CAM architecture. a) Robot-1 at ¢;. b) Robot-2 at ¢1; here, the CAM

output for the previously selected task (task 2 in (b)) is set as 0.

centrally off-board or on-board each robot. As an example, Figure 1
illustrates how a robot-1 and robot-2 use the CAM policy model
to choose a task at two different decision-making instances (¢ = fy
and ¢ = t1). Here, the inputs to the CAM model include 1) the task
graph information, i.e., the properties of all the tasks/nodes d; and
the computed weight matrix Q, 2) the current mission time, 3) the
state of robot-r, and 4) the states of robot-r’s peers. The CAM
model then generates the probability of selecting each available
task as its output. A greedy strategy of choosing the task with
the highest probability is used here, which thus provides the next
destination to be visited by that robot. It should be noted that the
probability values for completed tasks and missed tasks (i.e., whose
deadlines pass before being selected by any robots) are set at 0.

Figure 2 shows the detailed architecture of CAM. As shown
in this figure, the CAM model consists of three key components,
namely: Context, Encoder, and Decoder. The context includes
the current mission time, the states of robot-r, and the states of
robot-r’s peers. The state of a robot consists of its destination x, y
coordinates and the available range p. The encoder and decoder
components are further described below.

3.1 CCN-inspired Node Encoder. For learning over graphs,
the performance of the trained model depends mostly on the ability
of the Graph Neural Network (GNN) to transform all the required
node information into a feature vector or tensor. For our case, apart
from the node properties, some of the features that are essential
include a node’s local neighborhood information and permutation
invariance. The latter ensures insensitivity to the indexing of
tasks or nodes. Using a node’s local neighborhood information
which consists of its association with its local neighbors during
training is more beneficial than considering the association with
the entire graph, for generalizing to unseen nodes as demonstrated
by frameworks such as GraphSAGE [55], thus enabling the GNN
to generalize for problems with a larger number of nodes without
the need to re-train. The encoder represents the properties of each
graph node (preserving its structural information) into a continuous
feature vector of dimension demped, Which is fed to the decoder.
Each node i here has three properties which are the x-coordinate (x),
y-coordinate (y), and the time deadline (7) of the task. The proposed
formulation and architecture can however be readily applied to
problem scenarios with a greater number of task node properties.
Note that our encoding mechanism can also be extended to a
probabilistic scenario, for example where an estimated deadline
7 follows a probability distribution, which is likely in a disaster
response type operation. The encoding for each node should include
its properties and its positional association with its neighboring
nodes.

We implement a simpler variation of CCN [51]. We determine
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the nearest k neighbors of a node i, expressed as N; — this is
also called the receptive field of node i based on the positional
coordinates (x and y). The first step is to compute a feature vector
by linear transformation for each node i. To encode the node
properties, we do a linear transformation of d; to get a feature
vector Fy, for alli € [1,N], i.e., Fy, = del.T +by.

Here W9 e R%mbedX3 s the weight matrix, by € RémbeaXl jg
the bias vector, and 6; = [x;, y;, 7;]. For effective decision-making,
we also need to preserve the structural information. Therefore we
define a matrix F;:f as given below.

ng = Concat(Fdj), JjeN; 2)

where the Concat operation concatenates all the Fy, vectors (V) €
N;) into a matrix of size |N;| X demped, With || being the cardinality

operator. We compute a matrix F’ l.N (as shown in Eq. 3), which we
believe captures the association of a node with its local neighbors

(one-hop neighbors) in terms of the node properties. This is
equivalent to the message passing operation in [51].
FN =wN(FY — Fg) + 0N 3)

Here WN € RémbeaXdembed pN g Réembeax ] Fl.N captures the
similarity of node properties of neighboring nodes (N) to that of
node i. For every node, its initial embedding and the neighborhood
node embeddings are concatenated, similar to the tensor stacking
operation in [51]. This concatenation is followed by an aggregation
operation, which results in the final node embeddings, as given by

F; = Aggregate(Wf(Concat(Fid, FiN)) +by) (€))

Here, Wy € Rembed X dembed by € R%mbeax1  Thys finally we
get an embedding F; for each node, where F; € Réembed X1 Here,
Wd, by, WN, bN, Wy, and bf are learnable weights and biases.
The Aggregate function is the summation across all the columns
of a matrix. This summation along with the relative difference
in node properties, as in Eq. 3, preserves permutation-invariance
and the structural properties of the graph. Structural properties
refer to node similarities (or property closeness) in neighborhoods
of the graph. Note that, these operations make the encoded state
w.r.t. a given node insensitive to the order of the neighboring
nodes, and thus the overall state space becomes independent of
the indexing of tasks or to graph rotations (the latter promotes
generalizability). Equations 2, 3, and 4 represent a single layer of
encoding. Multiple layers of encoding can be performed with the
output of the previous layer being the inputs to equations 2 and 3
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taking decision. The biases are omitted for ease of representation.

in the next layer. More layers can be beneficial when learning the
structure of larger task graphs; however, this comes at the cost of
a greater number of training parameters often leading to greater
training costs and memory requirements.

Compared to the CapAM method introduced in our prior work
on MRTA [47], a key difference in the policy architecture is the
choice of encoder in this paper. In CapAM, the encoder is based
on Graph Capsule convolutional Networks (GCAPCN) [56], while
in CAM here, the encoder is based on Covariant Compositional
Networks (CCN) [51]. Both types of encoder networks perform the
two fundamental GNN operations which are message passing and
aggregation. In GCAPCN, the message passing is performed by
matrix multiplication of the graph Laplacian with the feature matrix,
and aggregation is based on a convolution operation. In contrast,
with CCN, the message passing is based on the relative feature
difference of the higher dimensional projections of a node and its
neighboring nodes, which is premised to improve the steerability
of node activation [51]; here aggregation is a simple summation.

3.2 Attention-based Decoder. The main objective of the de-
coder is to use the information from the encoder and the current
state as context or query, and thereof choose the best task by cal-
culating the probability value of getting selected for each (task)
node. In this case, the first step is to feed the embedding for each
node computed by the encoder as key-values (K, V). The key K
and value V for each node are computed by two separate linear
transformations of the node embedding obtained from the encoder.
The next step is to compute a vector representing the current state,
also known as the context (as shown in the bottom left of Fig. 2).
The context for the multi-head attention (MHA) layer in this exper-
iment consists of the following seven features: 1) Time elapsed; 2)
Available range of the robot taking decision; 3) Current location of
robot taking decision; 4) Current destination of other robots; and 5)
Available range for other robots. These context parameters are all
concatenated to a single vector of length g, which then undergoes
a linear transformation to get a vector of length dempeq also called
the query Q. Figure 2 illustrates the structure of the decoder.

Now the attention mechanism can be described as mapping the
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query (Q) to a set of key-value (X, V) pairs. The inputs, which
are the query (Q) is a vector, while X and V are matrices of size
dembed X N (since there are N nodes). The output is a weighted
sum of the values V, with the weight vector computed using the
compatibility function expressed as:

Attention(X, V, Q) = softmax(Q7 K //dembed) VT ()

Here h; is the dimension of the key of any node i (k; € X). In
this work, we implement a multi-head attention (MHA) layer in
order to determine the compatibility of Q with K and V. The MHA
implemented in this work is similar to the decoder implemented in
[38, 47, 53]. As given in [53], the MHA layer can be defined as:

MHA(X,V, Q) = Wga X (Concat(head; ... heady,)) + bymua
(6)
where the Concat operator concatenates the attention heads into a
single vector. Here, Wyiga and byiga are respectively the learnable
weights and biases for linear transformation of the concatenated
attention heads.
Here head; = Attention(X,V, Q) and A, is the number of heads,
which is set as 8 in this paper.
The output from MHA undergoes a linear transformation (Fig.
2) which is then multiplied with another linear transformation of
the node embeddings, resulting in the logits for the nodes. Based
on the logits, the final logsoftmax layer outputs the probability
values (p;, i = 1,2,...,N) for all the nodes. Here, the next
task to be done by the given robot is then chosen based on a
greedy approach — the node with the highest probability is chosen,
ie., select j, where p; > p; Vi # j. During the decision-
making instance of a given robot, out of all the available tasks,
we mask the infeasible tasks by setting their probability as 0, i.e.,
pi =0, if i € Tjpfeas; this is achieved by setting logits of the masked
nodes as —oo. Particular to the given robot taking decision, the set
of infeasible tasks (Tjpfeas) includes: 1) any task that has already
been selected and/or completed by a robot in the team, aka inactive
tasks; 2) any task that was never selected by any robot but whose
deadline has passed, aka missed tasks; 3) any active task that has
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not been selected/completed but whose deadline will pass before
the given robot can reach that task; and 4) any task whose distance
from the current location of the given robot and distance from the
depot sums up to a value greater than the remaining range of the
given robot (related to its remaining battery). Note that only in the
case of a deciding robot that is currently at the depot, we also mask
the depot by setting its probability to zero; in all other cases, the
probability of choosing the depot is > 0.

3.3 Context. Asdiscussed in Section 3.2, for a robot » deciding
its next task, the context portion consists of 1) Time elapsed #; 2)
Available range of the robot taking decision p;; 3) The current
number of packages carried by the robot ¢;; 5) Current location
of robot taking decision (x,, y,); 6) Current destination of other
robots (xp,yp,Y p € Py); 7) Available range for other robots
(op,Y p € Pr); 8) The current number of packages carried by each
of the peers (cp,V p € P;), where P, represents the peers of robot
r. Here, features 2, 3, and 4 represent the current state of the robot
taking the decision, while features 5, 6, and 7 represent the states
of the peer robots. The context feature vector can be computed as

Q = Wq x Concat(t,Qr,Qp,) + bg @)
where,
0r =Wg, X([xra)’r’Pr])‘*'er (®)
and
Op, =Zpep, Wp, X ([xp,yp,ppl) +bp, 9

In the above equations, O, and Qp, are learnable vectors respec-
tively representing the state of the robot taking decision and the state
of the peer robots. The ’Concat’ operation in Eq. 7 concatenates ¢,
Q and Qp, into a single vector. Here, Wo, W, and Wp, are the
respective learnable weights of the linear transformations, while
bg, bg,, and bp, are the respective biases. The dimensions of O
and Op, is demped. and the length of the final feature vector Q is
also defined as deppeg- The summation aggregation operation in
Eq. 9, makes the context vector agnostic to the number of robots.

3.4 Learning Framework. The CCN-inspired encoder and
attention-based decoder, detailed in Sections 3.1 and 3.2, utilize
learnable weight matrices. Supervised learning methods for matrix
learning are impractical due to the high computational complexity
of the exact I(N)LP solution process, scaling with O (n3m2h?) for
the ILP formulation of the MRTA problem. To address this, we
employ a reinforcement learning algorithm. This work utilizes
a simple policy gradient method (REINFORCE) with a greedy
rollout baseline, facilitating a comparison with [38]. Each epoch
involves a training set and a validation set. The training set used for
training the model 8¢ 4, and the validation set used for updating
the baseline model Hgg are described in Section 4.1. Samples
from these sets consist o%graphs as defined in Section 2.2.

Algorithm 1 outlines the training algorithm. In algorithm 1,
the function GenerateScenarios(N, Nyj) generates a set of Ny
training samples (denoted as D) and a set of N,; validation samples
(denoted as Dy;). Each sample is randomized in terms of the
properties of the tasks, namely location and time deadline. The
location and deadlines are randomly sampled following a uniform
distribution within bounds that are defined in Section 4.1). For
scenarios with dynamically generated tasks, we consider a birth
time for the tasks that are sampled following a distribution defined
later in Section 5.3. The function SampleBatch(Dy, B) picks a
random selection of B samples out of the set Dy;. The function
Simulation(8, D;) simulates the generic i-th task scenario D; with
the robots using the policy 6, and outputs the total cost of the
scenario and the actions taken by the robots.

The policy, defined in accordance with Eq. 1, guides the behavior
of robot r — returning to the depot (a = 0) if constraints aren’t met,
or selecting the task with the highest probability using the CAM
network in a greedy approach, as depicted in Fig. 1.
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Algorithm 1 Training Algorithm

Input: Ng: Number of epochs, Nj,: Number of batches, B: Batch size, Ny: Training data size,
Nyj: Validation data size.

1: 6caMRL - CAM-RL

2: H&IM-RL - Baseline CAM-RL

3: for epoch = 1..Nepoch do
4: Dy, Dy « GenerateScenarios ( Ny, Nyp)
5 Np < | Nu/B]

6: for step = 1..N}, do
7.
8
9

Dy  SampleBatch(Dyr, B) {Dyp: Batch Training Dataset}

abl, fclgg‘l « CalculateCost( HleAll(/I-RL‘ Dirv)
: a, feost < CalculateCost(6CAM-RL » Dtr,b)
10 VL — £ 2B (fosi — FBL ) log softmax (a)
11: Ocam-RL — Apam(V L, 6caM-RL)
12: end for

. ,BL (BL BL
130 ag™ fiodw CarrL> D)

14: a, feost « CalculateCost(8cAM-RL> Dvi)
15 it (S fBL S Mg D) A (TTest(ay. aBE) > €) then

1 Jeost,i i=1
16: 08k R < fcamRL
17: end if
18: end for
19: CalcuateCost Procedure:
20: fori = 1..|D| do
21: a;, foost,i < Simulation(6, D;)
22: a—aUag
23: Jeost — Jeost U feost,i
24: end for
25: return a, foost

« CalculateCost(

3.4.1 Simulation and Framework Settings. The "Python" 3.7
and the 64-bit distribution of "Anaconda 2020.02" are used to imple-
ment the MRTA approaches. The environment, training algorithm,
and the evaluation of the trained model, are all implemented in
Pytorch-1.5 for CAM and baselines. The training based on Pytorch
is deployed on two GPUs (NVIDIA Tesla V100) with 16GB RAM.

4 Case Studies and Competing Approaches

We design and execute a set of numerical experiments, which is
further described in sub-section 4.1, to investigate the performance
of our proposed learning-based algorithm over graph space (CAM)
and compare it against four different approaches: 1) an extended ver-
sion of a state-of-the-art graph learning-based algorithm proposed
by [38], so-called attention-based mechanism (AM) approach; 2)
a recent bipartite graph matching approach called BiG-MRTA [3],
which has been shown to outperform other online methods for
solving the concerned class of MRTA problems; 3) a myopic base-
line called Feasibility-preserving Random-Walk (Feas-RND) that
takes randomized but feasible actions, i.e., avoiding conflicts and
satisfying other problem constraints [3]; and 4) a Integer Non-linear
Programming solver that is suitable for offline application, and used
here to compute the optimality gaps over the smaller problems
(involving 50 tasks). The Feas-RND method, on the other hand,
provides a baseline that AM and CAM should clearly surpass in
performance (cost function), in order to demonstrate that meaning-
ful task selection policies are being learned, as opposed to simply
mapping random feasible actions. The comparative approaches are
described in more detail later in this section. The codes for this
paper as well as the supplementary materials (Appendices A, B, C,
and D) can be found in [57].

4.1 Design of Experiments & Learning Procedures. To train
the proposed CAM method, we define an MRTA case study with
varying numbers of UAVs and 200 tasks, namely flood victim
locations to be served. A synthetic 2D environment with 1 sq. km
area is used for this purpose, with the time deadline of tasks varied
from 0.1 to 1 hour. The UAVs are assumed to have a range of
Ay =4 km, a payload capacity of 5 packages, i.e., Cpax=5, and
a nominal speed of 10 km/h. Results obtained on this problem
settings would readily scale to larger areas encountered in real-
world settings, as long as UAV’s nominal speed and ranges are
proportionately scaled (e.g., most Group 1, < 20 Ib, UAVs can
typically fly above 100 km/hr [58]). We assume an instantaneous
battery swap is provided at the depot location, which is used when
UAVs return to the depot since they are running low on battery.
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It is important to note that the flood victim application is used
here merely for motivation, and the CAM architecture is in no way
restricted to this application, but can rather solve problems in the
broad (important) class of capacity/range-constrained and timed
task-constrained SR-ST problems. Moreover, even the policies
learned here for CAM demonstration on the described case settings
can generalize to related SR-ST problems with up to 1,000 tasks,
which represents a fairly large MRTA problem domain in reference
to the related literature in the multi-robotics domain.

To perform training and testing of the learned model, we proceed
as follows: Training Phase: We use a policy gradient reinforcement
learning algorithm REINFORCE with rollout baselines for learning
the optimal policy. The learnable parameters in this architecture
include all the weights in the encoder and the decoder. The training
is carried out for a total of 100 epochs. Each epoch consists of
10,000 random training samples, which are evaluated and trained
in batches of 100 samples.

Testing Phase: In order to provide a statistically insightful
evaluation and comparison, the methods are tested on different
cases involving varying numbers of tasks and robots, with each
case having 100 random test scenarios. The randomization of the
task properties across samples or scenarios is drawn from the same
uniform probability distribution for both the training and testing
phases. The training and test settings and the modifications to AM
for MRTA are given in Section 5.1. We further implement the
trained model in scenarios where tasks are dynamically generated.
By this, we demonstrate the ability of our method to be trained on
simple static scenarios/tasks, with the capability to be implemented
on a more complex mission where scenarios/tasks are dynamically
generated during the mission.

4.2 Baselines. BiG-MRTA: The BiG-MRTA algorithm [3]
is an online method based on the construction and maximum
weighted matching of a bipartite graph. BiG-MRTA [3] uses a novel
combination of bipartite graph construction, an incentive model
to assign edge weights in the bigraph, and maximum weighted
matching (based on the Karp algorithm [59]) over the bigraph to
allocate tasks to robots. This method has been developed as an
online solver for SR-ST type MRTA problems, where tasks have
deadlines, new tasks could appear during the mission, and robots
are subject to range and payload constraints.

AM: The attention-based mechanism (AM) reported by [38] has
been shown to solve a few different classes of single-agent/robot
combinatorial optimization problems. To be able to implement the
AM method for the MRTA problems studied here, the AM method
is adapted as i) The node properties that are defined in Section 2.2
are used in AM; ii) The context for the attention mechanism is
modified to be the same as that used for CAM; and iii) The cost
function used for training is changed to that in Eq. 1. The number
of attention heads for the encoder is set at 8, with 3 layers of
encoding. The node embedding length is set at 128.

Integer Non-Linear Programming: The MRTA problem is
formulated as an Integer Non-Linear Programming (INLP), based
on [3]. Unlike the other baseline methods, the INLP solution (exact
optimization) will consist of the sequence of tasks assigned to each
robot at the start of the mission, given a scenario, without including
any dynamic tasks (since the optimal assignment then needs to be
re-done). The complete formulation consisting of the objective
function and the constraints are discussed in the Appendix A in
[57]. We use the Gurobi solver in Python to run the optimization,
which uses the Branch and Bound method for solving INLP. The
INLP solutions are generated only for scenarios with the number
of tasks N = 50, since larger problems become computationally
intractable for the exact INLP process. To generate the solution
for every scenario in the N = 50 case, a run time of 25 mins is
allowed to INLP. It is possible that in some cases, the INLP does
not converge to an optimal solution, or even fails to find a feasible
solution, within this allowed run-time.
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5 Results and Discussion

In this section, we first analyze the training convergence for
CAM and AM, followed by the generalizability analyses, scalability
analyses, and computing time analysis. We then perform an ablation
study on the encoder and the decoder of CAM to highlight their
contributions. These stated analyses are all performed on problems
with only static tasks fixed at the start of the mission. Subsequently,
we implement the trained CAM and AM models in scenarios with
dynamically generated tasks. All of the above analyses are backed
by statistical tests to establish (at least 5%) statistical significance in
comparisons of the performance of CAM to the baseline methods.

5.1 Learning
Curve. In  order
to compare the
convergence of the
proposed CAM
method with that of

Table 1 Training algorithm settings
for CAM and AM.

DETAILS VALE
the AM approach, | | |
we run both meth- ALGORITHM REINFORCE
ods with similar BASELINE Rorrour
settings as given Erocus 100
. # OF TASKS 200
in Table 1, and

1 heir 1 . TRAINING SAMPLES 10000
plot their learning BASELINE SAMPLES 1000
curve (Convergence OPTIMIZER ADAM
history), which is LEARNING STEP SIZE 0.0001
shown in Fig. 3. TRAINING FREQUENCY | 100 SAMPLES

As seen from this
figure, the AM
method’s cost function stagnates after 14 epochs. On the other
hand, the CAM method experienced a steady improvement in its
cost function value throughout the training period until epoch 91.
The CAM method converges to a cost function value of -0.330
compared to a much poorer cost function value of 0.108 achieved
by AM. This could be attributed to the direct implementation of
the transformer network [53], which was designed for machine
translation and thus consists of multiple layers of Multi-head
attention. In contrast, our CAM model uses simple linear
transformations of the node properties and their relative differences
in local neighborhoods to better capture structural information.

0.2

Cost function value
| I I
o o o o o
w N = (@] =

CAM
AM
0 20 40 60 80 100
Epochs

Fig. 3 Training history of CAM and AM for 200 tasks.

5.2 Generalizability and Scalability analysis of CAM. In
this paper, generalizability refers to the performance of the trained
model on unseen test scenarios that involve the same (or lower)
number of tasks as in the scenarios used for training; and where
the test and training scenarios are drawn from the same probability
distribution over task locations and deadlines. Here, generalizability
is analyzed on test scenarios with the number of tasks fixed at 50
and 200, drawn from the same distribution over the 2D space, and
the number of robots fixed at 5 and 40. In this paper, scalability
refers to the performance of the trained model over test scenarios
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with higher (and increasing) numbers of tasks and robots than those
encountered in the scenarios used for training. Here, we analyze
scalability by evaluating the CAM and AM models on test scenarios
with the number of tasks fixed at 500 and 1000, and the number
of robots fixed at 50 and 100. The task-to-robot ratio is however
kept the same across the generalizability and scalability analysis
cases, in order not to introduce another control factor affecting the
numerical experiments.

To measure and compare performance, we use two metrics:
1) Average cost function (Eq. 1): This metric accounts for the
completion rate of tasks and the total traveled distance, averaged
over the set of test scenarios; and 2) Average computing time:
This measures how long each method takes to compute the entire
solution during runtime, averaged over the test set. From a statistical
perspective, the number of tasks, the number of robots, and the
method are considered as the independent variables, while the
task completion rate and the cost are considered as the dependent
variables. Therefore we first perform a Multivariate Analysis of
Variance (MANOVA) to determine if the independent variables have
an effect on the dependent variables. Test values are reported in
Table 5 in Appendix B [57]. This process is followed by the Analysis
of Variance (ANOVA) to determine if the independent variables
have an effect on the cost. The corresponding test values are
reported in Table 8 in Appendix C [57]). The ANOVA test suggests
that the above factors have an influence. Hence, we performed
a pairwise T-test (table 11 in Appendix D [57]) to compare the
baseline methods to CAM on the different scenarios characterized
by the number of tasks and the number of robots. The p-values
from these tests suggest that there is a significant difference between
the cost obtained by CAM compared to baseline methods for all
scenarios.

Generalizability: Figures 4(a), 4(c), and 4(e) show the cost
function (the lower the better) obtained by each method for the
unseen test with 50, 100 and 200 tasks. The corresponding task
completion rates are shown in Figs. 4(b), 4(d), and 4(f). A cost
function value of less than 0 indicates that 100% task completion
has been achieved and only the distance contributes to the cost, as
seen from the objective function in Eq. 1. Note that, among the
tested scenarios in the 50-task-5-robot and 50-task-10-robot cases,
for 5/100 scenarios and 53/100 scenarios, respectively, the INLP
solver could not find feasible solutions within the allowed maximum
run time. Results reported for INLP in Figs. 4(a) and 4(b) reflect
only those scenarios for which at least a feasible solution was
found by the solver within the allowed maximum run time. From
Figs. 4(a) and 4(b), CAM demonstrates 100% task completion in
almost all scenarios and outperforms all the other methods. For
50-task-10-robots, INLP demonstrates a comparable performance
to CAM, however, INLP has a larger variance compared to CAM
and also takes significantly more computing time — 25 mins for
INLP as compared to .16 seconds by CAM (Table 2). Note that
since the INLP process is clipped at 25 mins of maximum run time,
it is not necessarily achieving converged optimal solutions, which
is responsible for the poorer-than-expected median performance
(in both cases) and variance (in 10 robot case) across the 50-task
scenarios for INLP. Theoretically, given enough time and computing
resources, exact solutions to the INLP should outperform all other
methods.

In light of the above observation, to provide an empirical under-
standing of the worst-case optimality gap of CAM, we compute
the average performance difference between CAM and INLP in the
worst 5% of scenarios for the 50-task-5-robot and 50-task-10-robot
cases — i.e., the average of 5 scenarios that have the highest value of
Cost(CAM) - Cost(INLP). It was found that CAM has an averaged
optimality gap of 0.16 and 0.36 in the 5% worst-case scenarios
for the 50-task-5-robot and 50-task-10-robot settings, respectively.
However, even in these worst-case scenarios, CAM reported the
same task completion % as the INLP, thus showing that the opti-
mality gap is mainly attributed to a relative larger distance travelled
by robots when using the CAM policy.

For 100-tasks-20-robots scenarios, CAM clearly outperforms all
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the competing methods in terms of median cost and median task
completion %. The relative performance for all the methods for
scenarios with 200 tasks, as shown in Fig. 4(e) and 4(f), is similar to
that of 100 tasks. Only in one case (20-robot-200-task), Big-MRTA
performs comparable to that of CAM. Overall, across scenarios
with different numbers of tasks and robots, we therefore observe
from Fig. 4 that the relative performance of the methods follows
roughly the same order (from best to worst) — CAM, Big-MRTA,
AM and FeasRND. The ability of CAM to clearly outperform the
state-of-the-art graph learning baseline, AM (Fig. 4), demonstrates
that encoding choices in the CAM architecture provide a better
representation of task space.

For scenarios with 100-tasks-10-robots and 200-tasks-20-robots,
(Figs. 4(c), 4(d), and 4(e), 4(f), respectively), CAM experiences a
noticeably higher variance in cost performance even though only
a marginal increase in variance is observed with respect to task
completion %. This is because there are several scenarios (42
out of 100 in the 100-tasks-10-robots case, and 61 out of 100 in
the 200-tasks-20-robots case) where CAM is not able to achieve
100% task completion; and the noted variance is an artifact of the
objective function (fost in Eq. 1) being discontinuous about the
point where ¢ = 0.

Scalability: To investigate the scalability of the learned model,
we use a new set of unseen test scenarios with greater numbers of
tasks and robots compared to that encountered during the training of
CAM and AM,; training used only 200-tasks scenarios. Figures 5(a)
and 5(c) show the performance of the trained model of CAM and the
competing methods in terms of the cost function (lower the better)
for four large case studies, involving 500-tasks-50-robots, 500-tasks-
100-robots, 1000-tasks-100-robots, and 1000-tasks-200-robots. For
each case, 100 randomly generated scenarios are used for statistical
analyses. The corresponding task completion rate performances
are shown in Figs. 5(b) and 5(d). It can be observed from these
figures that CAM clearly outperforms AM and the feasible random
baseline. Its comparison to BiG-MRTA is mixed, which is however
not surprising given that BiG-MRTA with its incentive function
tuned for this flood response case study is arguably one of the
strongest methods in the literature for this particular MRTA problem.
As seen from Fig. 5, BiG-MRTA slightly outperforms CAM for
the 500-tasks-50-robots case, while for the other cases, CAM and
BiG-MRTA have comparable performance, with CAM having a
higher standard deviation compared to BiG-MRTA. However, when
computing time is considered, the advantages of learned policies
such as in CAM, compared to graph matching approaches such as
BiG-MRTA, become apparent and are discussed later.

Lastly, similar to the 100-tasks-10-robots scenarios in the gen-
eralizability analyses (Fig. 4(c)), we observe a high variance for
500-tasks-100 robots and 1000-tasks-200 robots cases here. This
is again because there is a significant number of scenarios with
100% task completion and those without (27 out of 100), that
considered together leads to larger performance variance due to the
discontinuous nature of the cost function, as explained earlier.

Computing time (Training and Execution) Based on the epoch
information in Section 4.1, the average time to complete a training
epoch for the learning-based methods CAM and AM is found to be
19.50 minutes, i.e., ~11.7 seconds per sample scenario on average.
Tables 2 and 3 provide the scenario-averaged measurements of
computing time needed by each method for generating solutions
during testing. It can be observed from these tables that the learned
policies (CAM and AM) take 0.14 s to 20 s to compute the entire
MRTA solution (sequence of tasks assigned to each robot), as the
number of tasks grows from 50 to 1000. In comparison, while
BiG-MRTA’s computing time is comparable for small cases (with
50-100 tasks), for 200-task cases it is 4x slower, and for the largest
case of 1000-tasks, BiG-MRTA is over 70x slower than CAM and
AM. This run-time performance advantage of CAM can be critical
to success in time-sensitive multi-robot operations, such as disaster
response and warehouse operations.
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Fig. 4 Generalizability analysis on unseen test cases: 100 sample scenarios are tested for each #tasks/#robots case.

Table 2 Generalizability: Task size (up to 200) and num-
ber of robots (up to 40). Average computation time in
seconds. Lower the better.

# of #of Avg. Computing Time in seconds
Tasks Robots BiG-MRT. Feas-RND AM M INLP
50 5 0.21 0.5 0.14 0.14 1500
10 0.20 0.3 0.15 0.16 1500
100 10 0.8 1.2 0.33 0.32 -
20 1.21 0.8 0.34 0.34
20 4.72 1.9 1.34 1.21
200 40 8.37 1.1 1.43 1.40

Table 3 Scalability: Task size (up to 1000) and number of
robots (up to 200). Average computation time in seconds.
Lower the better.

# of # of Avg. Computing Time in seconds

Tasks Robots BiG-MRTA Feas-RND AM CAM

500 50 69.3 4.20 4.23 4.31
100 1353 2.6 4.29 4.71

1000 100 595.4 8.7 19.22 19.05
200 1420 5.40 20.00 20.03

It is important to point out that decision-making promptness
for any online method can however be also affected by imperfect
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communication, e.g., latency or wireless range constraints, espe-
cially if robots are made to wait for the latest information on the
state of peer robots or on new tasks appearing during mission.
Alternatively, if decisions are taken without waiting, [3] has shown
that performance degradation can occur due to conflicting decisions
by robots — i.e., a robot i choosing a task that has been recently
selected by another peer robot j, but information from robot j
has not yet reached robot i when the latter is taking its decision.
CAM and other learning-based approaches can be expected to also
experience similar performance loss trend. Potential solutions to
this issue could include consideration of a partially observable
MDP or POMDP formulation of the problem to train CAM. Hence,
extending the simulation environment to implement communication
latency or range-based constrained communication, and exploring
the training of CAM under this changed environment both with the
current MDP or a new POMDP formulation are critical directions
of future work on CAM-based MRTA.

5.2.1 Ablation studies. We performed two ablation studies on
CAM to understand the importance of the novel encoder (based
on Covariant Compositional Networks or CCN) and the decoder
(adopted from the attention mechanism or AM). In the first ablation
study, the CCN-based encoding is replaced with simple feedforward
layers, with the decoder remaining the same. In the second ablation
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Fig. 5 Scalability analysis on unseen test cases involving greater numbers of tasks and robots than in training: 100

sample scenarios are tested for each #tasks/#robots case.

study, the AM-based decoder is replaced by a simple feedforward
network. It should be noted that the node embedding length
(dembed), 1s the same for all the cases.

Encoder ablation: The policy model with the encoder ablated
is called CAME,.,.. Here the node encoding is performed using:

Fgq. =Wl +b, (10)

Fi=WFEy +bp 1)
where, d; = [x;,y;, 7], Vi € V. wd, wr, b, and b are learnable
weights and biases, where W¢ € RémbeaX3  p, ¢ Refembeax]
and WF € RéembedXdembed  pp € R%mbeaX!  The decoder for
CAME,.,. is the same as that of CAM.

Decoder ablation: The policy model with the decoder ablated
is called CAMp,.,., which takes in the node embeddings and the
context information and computes the output probabilities using:

PAY = 50 frmax ([P, ..., PACY), 12)

PA = LeakyReLU(W9Concat(F;, Q)T + byec), where i € V

Here, W9 and by are learnable weights and biases, where W9 €
RN X2dembea and by, € RVX1. F; Vi € V are the node embeddings
from the encoder, and Q € R%mbed js the context vector. The
encoder for CAMp,.,. is the same as that of CAM.

Both the ablated versions of the CAM model are trained on the
MRTA-Multi-UAV flood response problem in Section 4, using the
parameters in Table 1. They are tested on the same test scenarios
as that used for CAM, AM, and BiG-MRTA earlier, involving
varying numbers of tasks and robots. Test results are shown in Fig.
6). We performed statistical tests similar to the ones in section
5.2. We first performed a MANOVA (Table 6 in Appendix B [57]),
then an ANOVA with cost being the dependent variable (Table
9 in Appendix C [57]), followed by pairwise T-test (Table 12 in
Appendix D [57]). The p-value of the pairwise T-test suggests
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that there is a significant difference between the mean of CAM
compared to the ablated CAME,.,. and CAMp,.,. models, for all
the studied cases.

As can be seen from Fig. 6, the performance of both CAME,.,.
and CAMp,.,. is significantly poorer compared to CAM, in terms of
the cost function. The performance drop is more for scenarios with
a relatively lower number of robots. We found that with the encoder
ablated, CAME,.,. suffered up to 35% drop in task completion rate
compared to CAM. With the decoder ablated, CAMp,.,. suffered
up to 17% drop in task completion rate compared to CAM. These
results support the choice of the special CCN-based encoder and
MHA-AM decoder portions of the proposed graph neural network
for MRTA. It is also observed that particularly for the larger task
scenarios, the performance drop is greater with encoder ablation
than with decoder ablation, which shows that the encoder contributes
more significantly to the scalability to unseen test scenarios with a
larger number of tasks.

5.3 MRTA with dynamically generated tasks. One of our
hypotheses in this work is that using local neighborhood information
for a node instead of merely considering the entire graph, can lead
to more meaningful node representations shared by tasks graphs
of different sizes. This capability is posited to be also beneficial
when dealing with MRTA operations where new tasks get generated
as the mission is ongoing since even though the task graph keeps
changing in this case, they are expected to be composed of shared
local neighborhood structures. To further test this hypothesis
we implement the CAM architecture on MRTA problems where
new tasks are introduced during the mission based on the same
probability distribution from which the pre-mission task graph is
drawn in any scenario. The deadline for the new tasks is such that
it is greater than the time elapsed at which the task is introduced
during the mission. The mission starts with 7" number of tasks
and R robots and as the mission progresses, D number of tasks
are introduced and dynamically added at different times before
the end of the mission. When a new task is introduced, its node
representation is computed on the go using the encoder (Section 3.1),
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Fig. 6 Ablation analysis comparing the cost of CAM model with two other versions of CAM model with the encoder
and decoder respectively ablated (CAMg,.. and CAMp, ). Lower the better.

and the embedding of all the other nodes is re-computed to account
for the changed local neighborhoods.

5.3.1 Test Scenarios with Dynamic Tasks. Note that the same
CAM and AM models that are trained previously over static task
spaces are used here, to demonstrate the unique generalizability
of these GNN-based policies without the need for retraining over
dynamic task spaces. Testing on dynamic task spaces is performed
for MRTA problems with the number of tasks N varying from 100
to 500 and the number of robots varying from 10 to 50. In each of
these # tasks/# robots cases, ¢y = 25% of the N tasks are made
available at the start of the mission and the remaining 75% tasks are
added dynamically between the elapsed times of 0.1 to 0.3 hours.

5.3.2  Performance Analysis on Dynamic Tasks:. In these dy-
namic task cases, Fig. 7 respectively show the box plots of the cost
and task completion rate achieved by CAM, AM, and BiG-MRTA
over the testing scenarios. To assess the statistical significance of
the results, similar to the case studies in Section 5.2 and 5.2.1, we
first performed a MANOVA (Table 7 as given in Appendix B [57]),
then an ANOVA with cost being the dependent variable (Table 10
as given in Appendix C [57]), followed by pairwise T-test (Table
13 as given in Appendix D [57]).

Figure 7 shows that CAM clearly outperforms AM in all cases
with dynamic tasks. With the exception of the 50-robot-500-task
case, CAM also provides a better median cost performance com-
pared to BiG-MRTA (which is notable in the literature for its
particular ability to handle dynamic tasks). It is however worth
highlighting again that for such large (500-task) problem scenarios,
BiG-MRTA is noticeably slower in computing the task decisions.
The task completion rates of CAM and BiG-MRTA are mostly
comparable across all the cases. These observations thus provide
strong evidence for the suitability of CAM for MRTA problems with
dynamic tasks. Compared to the other methods, CAM illustrates a
higher variance in cost performance across about half of the cases
reported in Fig. 7, which is again attributed to the discontinuous
nature of the cost function, as discussed before. However, the
robustness of CAM is still observable when the task completion
rate is considered, as seen in Fig. 7.

Table 4 shows the computing time of the three methods per
decentralized decision taken by a robot, averaged over all decisions
taken by all robots during a mission, and further averaged over
all mission scenarios under each # tasks/# robots case. Given the
presence of dynamic tasks, computing time per task decisions is
more reflective of the online or real-time computing burden. In
this regard, the computing times of CAM, AM, and BiG-MRTA
are comparable for cases with a smaller number of tasks, whereas,
for the large 500-task cases, BiG-MRTA takes about 4 — 5x more
computing time compared to CAM.

Journal of Computing and Information Science in Engineering

Table 4 Dynamic task cases: Computing time in seconds
per decision by a robot, averaged across all decisions by
all robots in all sample scenarios under each # tasks/#
robots case. Lower the better.

# of # of Avg. Computing Time in seconds

| Tasks | Robots CAM BiG-MRTA AM
100 10 0.004 0.004 0.006

20 0.006 0.006 0.005

200 20 0.010 0.013 0.010

40 0.010 0.014 0.007

500 50 0.051 0.230 0.020
100 0.050 0.330 0.018

6 Conclusion

In this paper, we developed a new graph neural net (GNN) based
policy architecture called Covariant Attention Mechanism or CAM,
to perform multi-robot task allocation in operations involving tasks
with time deadlines, dynamically added tasks, and robots with
constrained flight range and payload capacity. This new architecture
incorporates an encoder based on covariant compositional network
(CCN) embedding and a decoder based on an attention mechanism.
The encoder choice was premised on the ability to provide permuta-
tion invariant embedding that also captures the local neighborhood
structures in large task graphs, while the decoder choice was based
on the ability to produce sequential decisions in terms of task
selection probabilities. A simple RL algorithm was implemented to
train the parameters of this encoder-decoder type CAM architecture.
To compare the performance of the proposed CAM method, a state-
of-the-art attention mechanism approach (aka AM) was extended
to the multi-agent setting. Other comparative methods tested in-
clude a recent best-performing (for the concerned problem type)
online MRTA method called BiG-MRTA, a myopic random-walk
baseline called Feas-RND, and Integer Non-linear Programming
with clipped overall computing time. A multi-UAV flood response
mission context was considered for testing and performance was
analyzed in terms of the task completion rate and a cost value
that also includes the total distance traveled by the team of robots
over any mission scenario, with 100 unseen scenarios considered
under each test case. CAM outperformed BiG-MRTA (with few
exceptions), AM, and Feas-RND for most of the test scenarios
by achieving a better cost function value. CAM was also able to
achieve a high task completion rate for problems that were larger in
size than those used during training. The learned CAM policy has
shown to be also significantly faster in computing task decisions
compared to BiG-MRTA. The ablation study on the encoder along
with CAM’s performance superiority over AM provided strong
evidence regarding the benefits of the CCN, attributed to better
capture of local task neighborhoods. The performance of CAM
over AM, and its favorable comparison to BiG-MRTA (considering
both task completion rate and computing time) readily extended to
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Fig. 7 Dynamic task cases: Cost performance analyses of CAM, AM, and BiG-MRTA on unseen MRTA test cases with

dynamic tasks (75% of tasks added during operations).

scenarios with dynamic tasks as well.

In its current form, the CAM model makes a greedy choice based
on the predicted task selection probabilities. To allow a better bal-
ance between exploration/exploitation, an epsilon greedy approach
could be explored in the future. In addition, the current design
of the task graph and robot context embeddings in CAM assumes
that both tasks and robots are homogeneous, communication is
perfect (i.e., without latency or dropouts), and the shared workspace
is relatively large or not crowded — these do not necessarily fully
capture the complexities in applications such as robotic construction
and disaster response. Hence, in future work, investigating the abil-
ity to handle a heterogeneous and partially observable task graph
and agent space, and adopting a joint solution to multi-robot task
allocation and motion planning, could provide further insights into
the potential for such GNN-based approaches to replace or augment
legacy non-learning-based approaches in real-world multi-robot
applications.
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