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T, in the diabatic diquark model: Effects of D*D isospin
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T, is an isoscalar 4-quark state with mass lying barely below the D**DP threshold, and several times

further below the D**D threshold. It allows both dimeson molecular and elementary diquark-antidiquark

(cc)(itd) substructures. The diabatic generalization of the adiabatic approximation within the Born-
Oppenheimer formalism rigorously incorporates the mixing of such elementary eigenstates with states
corresponding to two-particle thresholds. We examine the separate influence of the two D*D isospin
channels and find that the influence of D** D is larger than that of D**D* but not overwhelmingly so, and
that T/, contains an O(10%) (cc)(itd) component. We then explore the variation of these results if the
isospin breaking between the dimeson thresholds is varied, and also the sensitivity of our results to variation

of the mixing-potential parameters.
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I. INTRODUCTION

Even among the >60 heavy-quark exotics already
observed, the state T, discovered by LHCb [1,2] stands
out as unique. First, it is the only exotic state observed to
date with open heavy flavor (ccitd). It lies only a few
hundred keV below the D*TDP threshold, and it has the
smallest width of any hadron that decays strongly through
non-Okubo-Zweig-lizuka-suppressed modes (the only
available open-charm channels being D*D%z° and its
discovery mode D°D®z™"). Its measured parameters are [3]

my: = 3874.83 £ 0.11 MeV,
myrs —mp+ —mpo = =270 £ 60 keV,
[ =410+ 170 keV. (1)

In comparison, the famous y.;(3872) [or X(3872)] lies at
almost the same mass, extremely close to the D*OD°
(= D*°DY) threshold, but has a larger width, chiefly due
to its hidden-charm content permitting charmonium decays
[J/w, y.1(1P), and y(2S) modes being observed to date],
as well as open-charm decays [D°D°z° and D*°D°]:
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m)m(3872> = 3871.65 £ 0.06 MCV,
m, 3872) — Mpo —mpo = —40 £ 90 keV,
F){ (3872) = 1190 + 210 keV. (2)

cl

In both cases, the isospin partner to the dimeson thresh-
old nearest to the resonance lies somewhat higherl:

(mpo + mp+) = (mpes + mpp) = 1411 £ 0.034 MeV,
(mp- + mp+) — (mpo + mpe) = 8.234 +0.034 MeV.
(3)

The difference is significantly smaller for the 7', case than
the y.1(3872) case, suggesting that the structure of T,
is more strongly influenced than y.(3872) by isospin-
dependent dimeson threshold effects, while y.;(3872) has
significant coupled-channel charmonium decay effects
(indicated by its larger decay width) that are suppressed
for T, a point first clearly stated and explored in Ref. [4].

Both T, and y.,(3872) are isoscalar states; searches for
isospin (charge) partners (Refs. [2] and [5,6], respectively)
yield no significant signals. However, y.(3872) is
observed to decay to (indeed, was discovered in [7]) the
channel J/ywr*n~. The I = 0y, (3872) has J*€ = 11+ [8]
and hence G = C(—1)! =+, while the I =0 J/y has
JP€ =17~ and hence G = —. Then, by C conservation in
strong decays, the 7"z~ pair (G = +) must have C = —,

n calculating these values, we have used the three best-
determined independent mass splittings [3] among the D)
mesons:  (mp+ —mpo) = 4.822(15) MeV,  (mp-+ —mpo) =
145.4258(17) MeV, and (mpo — mp) = 142.014(30) MeV.
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and hence I = 1; thus, y.(3872) exhibits some isospin-
violating decay modes. For T, J* = 17 is heavily favored
due both to the S-wave quantum number of the D**D°
threshold pair and to the absence of a signal in the D*D°
channel (since two 0~ mesons cannot form a 17 in any
partial wave).

While the dimeson pairs D*°D? and D**D° in their S
waves naturally provide the J¥ = 1%, I =0 quantum
numbers proven or heavily favored for y.(3872) and
T/, respectively, these composite quasimolecular combi-
nations do not represent the only natural substructure
capable of explaining the states. In addition, the diquark
combinations (cq);(¢g); and (cc)s(id); (color triplets
being the most attractive diquark combination) each nat-
urally produce a spectrum of states that includes J* = 17,
These “elementary” diquark combinations (in contrast to
the composite dimeson components) provide a natural
alternative component for the full states.”

The complete spectrum of purely elementary diquark
combinations (Qq)3(Q §);» where Q denotes a heavy
quark, has been studied in the context of the dynamical
diquark model [9-14]. A key ingredient of this model is
the presence of configurations in which the diquark states
do not always instantaneously reorganize into dimeson
(07)(Qq) combinations, which in this model is realized
through components of the 4-quark configuration for which
the relative momentum of the (Qgq) and (Q g) diquarks is
larger than that within either diquark. Each heavy quark
0,0 then serves to nucleate a spatially localized diquark
quasiparticle (due to its small Fermi momentum), thus
producing a configuration that can be distinguished from a
dimeson pair.

In contrast, for (Q,0,)(g,g,) combinations like those
relevant to 7., the mechanism of nucleating the (g,3,)
diquark using a heavy quark is no longer available. In this
case, long-established phenomenology [15], as well as
more recent lattice simulations [16], assert that the (itd);
diquark in its “good” S =0, L =0, I = 0 channel is the
most tightly bound of all the possibilities, while the (cc)3
diquark (antisymmetric in color) is not only compact due to
the small Fermi momentum of the two heavy quarks, but
in its ground state has S = 1 and L = 0 (i.e., is symmetric
in spin and space) in order to satisfy Fermi statistics.
Assuming lastly that the ground state of the (cc)(itd)
combination also occurs in a relative S-wave between the
diquarks, then the state has the unique quantum numbers
JP =17, I =0, exactly as appears to be true for T,.

Numerous calculations performing coupled-channel
analyses of exotic hadrons appear in the literature, includ-
ing for T}. Analyses including both molecular and

And of course, the conventional charmonium state Xc1(2P)
can contribute to y.(3872)—an added complication for this
state.

elementary components for 7. include Refs. [4,17-23].
In this work, we first consider T}, as an elementary
(cc)3(itd)y state initially interacting through a color-triplet
static potential—i.e., using the Born-Oppenheimer (BO)
approximation—and then employ the rigorous diabatic
formalism [24] that generalizes the adiabatic formalism
inherent in the BO approximation, in order to include the
effects of coupled dimeson channels on the state. The
diabatic approach was applied for the first time in hadronic
physics to treat exotic heavy-quark hadrons as mixtures of
quarkonium with dimeson states in Ref. [25], and later as
mixtures of diquark-antidiquark states with dimeson states
in Ref. [26]. Very recently, the diabatic formalism was
generalized [27] to incorporate the combined effects of
channels with distinct dimeson quantum numbers (in
particular, spin).

In the case of T, the most important thresholds are of
course the two isospin channels D**D° and D**D™, but a
complete analysis would also include their heavy-quark
spin partner D**D*0, approximately 140 MeV higher. In
this initial study, only the lower channels are included, as
our goal is to determine the separate effect of each of these
channels on the structure of the state. That is, we analyze
the effect of not only the nearest D** D threshold, but also
the effect of its D**D* isospin partner about 1.4 MeV
higher. As noted above, T, provides a cleaner laboratory
than y.;(3872) for examining the effects of isospin break-
ing, and we study its consequences both for the observed
value of isospin breaking, and also parametrically as this
number is varied.

This paper is organized as follows. In Sec. II we
discuss the diquark configuration relevant to 7. and other
(010,)(g13-) states in the BO approximation. Section III
presents a brief review of the diabatic formalism in its
original form for hadrons, while Sec. IV presents improve-
ments to the formalism designed to incorporate distinct
spin and/or flavor dihadron thresholds. In Sec. V we
analyze the T, system in the diabatic formalism including
both D**D° and D*°D* channels, and in Sec. VI we
present our conclusions and indicate directions for further
improvements.

II. DIQUARK MODEL FOR T4

As noted in the Introduction, the state 7},—assuming the
confirmation of its 7 =0, J* = 1" quantum numbers—
admits two natural substructures to accommodate its
valence-quark ccitd content: as a D*D molecule (possibly
with an admixture of D*D*), and as a bound state of a
compact color-3 (cc) diquark and a good (color 3, I = 0,
S = 0) (ad) antidiquark. While the extreme proximity of
the D** D threshold [Eq. (1)] is quite suggestive of this
dimeson substructure, it does not rule out the possibility of
a significant diquark component. Moreover, even a small
diquark component in the T, state does not indicate that

034033-2



T.. IN THE DIABATIC DIQUARK MODEL: EFFECTS ...

PHYS. REV. D 110, 034033 (2024)

the diquark structure is unimportant; as shown in the
diabatic formalism in Refs. [26,28] to be discussed in
Sec. 111, a (cq)(¢ g) diquark structure (where ¢ is a light
quark) with / =0 can easily serve as a “seed” for
generating the famous y.,(3872) that lies so close to the
D*ODO threshold [Eq. (2)].

Indeed, the best corroborating evidence for the presence
of a significant (cc)(it d) component with a good diquark
would be the absence of a prominent state in a channel that
relies upon a light diquark with “bad” quantum numbers,
such as (it d) with § = 1 or I = 1:i.e., T{, with J* = 2% or
a TH" partner; or of a strange analog such as the charge-2
(cc)(55). Since both phenomenology [15] and recent lattice
calculations [16] indicate a bad-to-good light-diquark mass
difference of at least 200 MeV, then no additional 7. states
much below 4100 MeV should arise under the assumptions
of this model.’ Additional experimental evidence for this
conclusion is provided by the Belle Collaboration, which as
yet has seen no evidence for DF DY or DiT D+ resonances
in T(1S) or Y(2S) decays [30].

Another way to visualize the exceptional nature of the
state T}, is by examining the full ground-state multiplet
of tetraquark states in a diquark-antidiquark (5-6)
picture. Self-conjugate [(Qq)(Q g)] states produce the
spectrum [10,31]

JPE =011 X = |05, 05)o, Xo =15, 15)0s

1
JPC =1t X, =—(|15,05), + 105, 15),),
=5 (15.05), + 105, 15))

1
JPC =17 Z = —([15,05); = [05. 13)y).

V2
Z' = |14 15),

JPC - 2++: X2 = |15, 1('5>2 (4)
Here, the 5(5) spin is denoted by s;5(s3), and the total state
spin is designated by the outer subscript. In the present

|
V(r)= {

This expression, when restricted to b = 0, is the textbook
result obtained from applying Gauss’ law to a uniform-
density sphere in the 1/r potential of electrostatics or
gravity. The analysis of the confining (b # 0) part of the
potential is slightly more complicated, since in that case the
potential at a given value of r depends upon the effects of
sources both inside and outside the sphere of radius r. One
finds, interestingly, that the strength of the Coulomb term
decreases outside the sphere for any value of R.

(") L b,

2 2 b

_a_
2R3

*For a differing view, see Ref. [29].

case, 6 = (cc)(g,g,) states are not self-conjugate, and
therefore the C-parity quantum number is lost. Further-
more, we have seen that § = (cc) in its ground state gives
ss = 1; and since in addition the good diquark 6= (iid)
has s3 = 0, then all states in Eq. (4) disappear except for the
first components of X; and Z, which coalesce to leave a
single J¥ = 17 state.

The Introduction also notes that the dynamical diquark
model in its original form is not applicable for doubly
heavy open-flavor hadrons like 7', because one of the two
quasiparticle components (here, 8) lacks a heavy quark, and
hence the system has no typical configuration in which the
8 and 6 components can be described as spatially separated.
In fact, the most natural diquark picture for 7'/, much more
closely resembles hadrocharmonium [32,33], in which the
heavy quarks form a compact nucleus embedded within
the light-quark cloud, except that for T/, the “nucleus” is
color-3, and § is color- 3. Directly using a 3 — 3 interaction
such as the Cornell potential [34,35],

V(r) = (5)

a
——+ br,
-

or a lattice simulation of the potential between two heavy
colored sources [36-39], is highly questionable in the
current circumstances. Instead, here we model the state by
supposing that the potential of Eq. (5) is valid for pointlike
sources, and then treat the diquark (cc) as pointlike, but
regard the light diquark (d) as a sphere with uniform
density for 0 < r < R, with R given by its root-mean-

square radius <r2>él{ 421) obtained from phenomenology or

lattice simulations. (Of course, one could choose to model 5
using any other specific wave-function profile.) With this
modification, r indicates the position of (cc) with respect to
the center of the (& d) wave function, and the full potential
in this case is then straightforward to compute:

r>R

s

(6)

(r*—10R*r —15R*), r<R.

The general form for the elementary 5-6 potential used in
this work is the same as in Refs. [26,28],

(r) (7)

and uses lattice-determined values [40] of @, o, and V:

Vss

a
—;—i—dr-i-Vo—f—mg—I—mg,

a=0.053 GeV - fm,
o = 1.097 GeV/fm,
Vo = —0.380 GeV.
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Of course, the parameters a, b of the original Cornell
potential [Eq. (5)] are directly replaced in the current
potential Eq. (7) with a, o, respectively, and the specific

value listed for V, is only taken as a starting point for fits.

1/2
(ud)

resort to results from phenomenology, QCD sum rules, or
lattice calculations. Values of m, are broadly consistent;
listing results from three papers that provide uncertainties,
we find m(,q = 640 £ 60 MeV [41] (QCD sum rules);
694 + 22 MeV [42] and 690 + 47 MeV [43] (lattice).
For definiteness, we use the last (most recent) of these
determinations, which employs an unquenched simulation.

As for values of diquark masses and (r?),/7, one may

Values of (rz)zi 5) are less commonly presented; here we

start with the estimate of 0.6 fm presented in a rather recent
lattice simulation [16]. Lastly, values of m . vary widely;
here one finds results such as 3510 £ 350 MeV [44] (QCD
sum rules); 3306.2 MeV [45] and 3136 &+ 10 MeV [46]
(phenomenology). Due to this large spread, here we simply
use the measured mass value of T to fit for m(cc), and then

1/2

study the results as the parameters 2,4, () (uaty A0 M)

are varied.

Lastly, note that the (id) diquark itself contains no
heavy quarks, but its mass is nevertheless substantially
larger than Agcp (and indeed is about the same as that of a
pair of constituent light quarks in a typical phenomeno-
logical quark model). For the purposes of these calcula-
tions, we treat (izd) as a heavy—but not pointlike—source
in the BO approximation. In order for the BO formalism to
be relevant here, the light degrees of freedom (d.o.f.)
associated with the potential V(r) must be able to adjust
quickly to changes in the configuration of the heavy
sources (cc) and (id). We take as evidence for this
criterion to be satisfied that typical values of the potential
V(r) for the state must be small compared to m,,), and
we find explicitly that this requirement is satisfied in our
calculations.

We note that our calculation is certainly not the first to
model T, using diquarks, nor even the first to use the BO
approximation for such a tetraquark. For example, Ref. [47]
treats T, analogously to a H, molecule in the BO
approximation with all 4 quarks initially dynamical, and
performs a variational calculation to obtain the BO poten-
tial and hence the eigenvalue spectrum. In our calculation,
the diquarks (cc), (itd) are introduced as quasiparticles,
with (@ d) having a definite spatial extent comparable to the
value noted in Ref. [47], but the size of (cc) is irrelevant
for us. Furthermore, we do not include hyperfine interactions
between the diquarks, since by our argument above the
diquarks in T}, occur in uniquely specified spin states. The
innovations of this work include the explicit incorporation of
dimeson thresholds within the BO approach, as well as the
derivation of an interaction [Eq. (6)] that describes inter-
actions between the diquarks when they spatially overlap.

III. THE DIABATIC FORMALISM

The modeling of an exotic 4-quark hadron solely by a 66
pair interacting through a potential V(r), such as in the
context of the BO approximation, intrinsically neglects the
effects of coupling to dimeson thresholds. A coupled-
channel formalism is clearly required if one wishes to
incorporate this important dynamical source. While
coupled-channel calculations are nothing new in the liter-
ature, they can often seem rather ad hoc in their imple-
mentation. The BO approximation, however, possesses a
rigorous generalization called the diabatic formalism that
has become a standard, textbook approach in the context of
atomic and molecular physics [24]. It was first applied in
the context of hadronic physics relatively recently [25], in
order to study the coupling of heavy quarkonium to exotic
hadrons with the same JP¢ quantum numbers. The first
introduction of 66 degrees of freedom coupled to the
dimeson thresholds followed in Ref. [26]. The diabatic
formalism was generalized to perform direct studies of the
scattering amplitudes in which the quarkonium-like states
appear in Ref. [48] for QQ states, and in Ref. [28] for 56
states. Calculations of mass shifts and strong decay widths
induced by the couplings to the dimeson thresholds were
investigated for QQ states in Ref. [49] and for &6 states in
Ref. [50]. Since the diabatic approach is described in all of
these papers, here we present only a brief summary.

One begins with a Hamiltonian for a system of two
heavy color sources interacting through light fields:

2

P
H = Kpeavy + Hijgne = Do + Hijgpy- )
heavy

Here, Hyyp, contains both the light-field static energy and
the heavy-light interaction. Defining r as the separation
vector for the heavy-source pair (with corresponding
eigenstates |r)) and |&;(r)) as the ith eigenstate of Hjgp
with eigenvalue E;, one may expand the solutions to the
corresponding Schrodinger equation as

W)= [amwmlae). (o)

While this expansion already suggests the decoupling
separation of the BO approximation between heavy and
light d.o.f., it still can be used in the general case. The set
{|&;(r))} forms a complete, orthonormal basis for the light
d.o.f. at any given r, but configuration mixing can be
permitted at distinct values of r: (&;(r')[&(r)) #0 in
general, even for j # i. The full BO approximation then
consists of two assumptions: (i) the light d.o.f.’s in a given
(ith) eigenstate instantaneously (adiabatically) adapt to
small changes r' #r in the heavy-source separation:
(&i(r)|&;(r)) ~ 1 (the adiabatic approximation); and (ii) at
comparable r, 1’ values, distinct light-field eigenstates do
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not appreciably mix: (&;(r’)|&;(r)) ~ O for j # i, the single-
channel approximation.

The rigorous generalization of the BO approximation to
allow for the lifting of these assumptions is called the
diabatic formalism [24]. One introduces a free parameter ry
and rewrites the expansion of the solution Eq. (10) as

W =X [an@milae).

Exploiting the completeness of the basis {|&;(ry))} for any
specific value r, inserting the expansion Eq. (11) into the
Schrodinger equation for the Hamiltonian Eq. (9), and
projecting onto (£;(ry)|, one obtains

n? .
Z [—2—M§j,~V2 + Vji(r.rg) — Ei8;; | i(r.rg) = 0. (12)
The key development is the introduction of the diabatic
potential matrix V j;, defined as
Vji(l'» ry) = <§j(r0)|Hnght|§i(r0)>- (13)

The parameter r, may be chosen as any source separation
that gives a value of energy lying far from a potential-
energy level crossing, in which case the states |&;(r,)) are
unambiguously identified with pure, unmixed configura-
tions identifiable with a single value of i. Meanwhile, Hi;gp,
still references the original source separation r.

Starting with an initial configuration of unmixed 66
states and then introducing dimeson states, the diagonal
elements of V represent the static light-field energy V5
associated with a pure 86 state (V;;), followed by the
potentials Vi iy :V;{I{Mz’ j=12,...,N, of the N

corresponding dimeson thresholds (M, M,)Y). The
explicit form of the potential matrix then reads

1
V@ Vi@ - vl
1 1
Via®) Vi )
V= ; . (14)
(N) (N)
Vmix (I‘) VM1M2 (l')

Note that we neglect direct mixing terms between any two
dimeson configurations by setting the suppressed elements
to zero. Furthermore, for simplicity we set each pure
dimeson energy to equal the free energy of the state:

v ) -1y =M+ MY (15)

although one could of course introduce explicit direct inter-
actions between different dimeson configurations (j),

or between the two mesons (M(lj ),A_/Iz)(f) within any such
configuration.

IV. DISTINCT DIABATIC THRESHOLDS

Until very recently, all applications of the diabatic
approach to heavy-quark hadrons have assumed that each
dimeson channel coupling to the elementary (QQ or 86)
state has the same functional form and the same coupling.
In the 66 example,

(i) 12
; A 1Ves(r) =Ty 1]
|V£n2x<r>|—5exp{—§ MLt (16)

A2

specifically using the same value of A and A for all
channels. Of course, this ansatz falls short of elementary
expectations even in the heavy-quark limit, where channels
composed of various hadron pairs (e.g., DD vs DD*) must
differ not only in the mass of the channel (incorporated

through T;;)] i,)» butalso in the spin states of the component

hadrons. The formalism for implementing this improve-
ment was developed in Ref. [27], and while its original
form refers to QQ states for which heavy-quark CP is a
good quantum number, it can also be applied to QQ states
such as T}, for which only the P eigenvalue of the heavy-
quark pair is a good quantum number.

One of the essential ingredients for incorporating spin
dependence into the diabatic formalism is the specification
of the overlap of the elementary state with dimeson inter-
polating operators carrying the same quantum numbers. In
practice, these overlaps are obtained via a Fierz reordering
of (QOI'1q)(gl>Q) operators, where I'; are Dirac structures,
into the form (QI";Q)(gl%q). In the original analysis of
Ref. [27], the most interesting (QT";¢)(QI',g) operators are
those that have the same quantum numbers as pure (QI"; Q)
configurations, and hence mix with heavy quarkonium.
On the other hand, 86 configurations, already possessing
(OI'q)(QI'5g) structure, present additional opportunities
for nonzero overlaps with (QI';¢)(gI'>»Q) operators [51].

In the present case of open heavy flavor, and specifically
for the 17 state T, we require a Fierz reordering of the
simplest 17 current J¥ one can construct for (cc)(itd). The
explicit form of this operator, as well as its decomposition
in terms of 1% (&ic)(dc) operators, first appeared in
Ref. [52], and is presented explicitly in the Appendix.
Significantly, although the current J# is not a scalar, the
derivation of its Fierz reordering directly uses the original
Fierz reordering theorem in its proof.4 The relevant current
and the subset of its couplings to interpolating operators
with the quantum numbers of a (07)(17) dimeson pair, as
seen from Eq. (AS), reads

*We thank Z.-G. Wang for this insight.
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o 1 i}
JH(x) = elikeimn ]C-}"‘ijz (diy®dS — d iy us)

5 —% (@ir°Q)(@r"Q) + \%(am)(w). (17)

Noting that the bilinears in the last line of this expression
for Q = c¢ provide the simplest interpolating operators for
meson pairs D’D*T and D*D*’, respectively, one may
immediately construct the relevant interaction matrix G(r)
of Ref. [27] [from which, as seen below, the diabatic

potential matrix V(r) is derived], where the row/column
indices follow the ordering (cc)(iid), D°D**, D*D*:

Vicoyma —%Q(r) + %g(r)

G(r)=| —9(r) A, 0 . (18)
+59(r) 0 Ay

The function ¢(r) is defined as the universal string-break-
ing transition amplitude between the 56 and dimeson states.
The latter states are assumed not to have direct transition
couplings amongst themselves, and indeed each dimeson
state is assumed to behave as a free-particle pair, apart from
its 5-0 coupling V.. Specifically, the constants Ay
are defined as the mass thresholds (mpo + mp-+) and
(mp+ + mp), respectively, measured with respect to their
I = 0 combination:

1 1
E(mD0+mD+)+5(mD*O+mD*+), (19)

which equals 3875.70 £ 0.05 MeV. Therefore,

1
Au = (mDO - mD+) —E(mD*O - mD*Jr) = _Ad’ (20)

N[ =

which, using the experimental values given in Footnote 1, is
A, =—-0.705 £ 0.017 MeV, (21)

precisely —% times the first combination in Eq. (3). The
combination A, breaks both isospin symmetry and heavy-
quark spin symmetry. Thus, parametrically

my—m,

Au X AQCD (22)

c

However, the interaction matrix G(r) does not in general
equal the full diabatic potential matrix V(r) appearing in
the diabatic Schrodinger equation, Eq. (12). The motion
of the heavy sources introduced by departures from the
static BO limit leads to the mixing of configurations with
different heavy-source quantum numbers, as we now
discuss.

In the cases investigated in Ref. [27], the light degrees of
freedom by themselves are assumed to carry the trivial BO
quantum numbers 2;, which means a zero-spin projection
along the axis of the heavy sources (X), positive parity for
reflections in a plane containing this axis (¢ = +), and
light-source CP eigenvalue # = +, which is denoted by
“g.” In the present case of QQiid, its open-flavor quantum
numbers mean that the state is not a C eigenstate, neither in
total nor just in its heavy or just in its light components.
Nevertheless, the analysis of Ref. [27] remains valid upon
identifying #n eigenvalues for the heavy sources as those of
P alone, rather than CP. In particular, the configuration
for the heavy degrees of freedom (here, the QQ pair) is
specified as 4,, where 4 is the projection of heavy-source
spin (including sign) along a chosen quantization axis Z,
which is not in general the same as the axis t defined by the
heavy sources in the BO limit.

This mismatch between two natural axis choices—which
one may denote as ‘“‘space-centered” versus “body-
centered” axes, is the origin of the distinction between
the interaction matrix G(r) and the diabatic potential
matrix V(r). The relation between them is derived in
Ref. [27] to be

s: £ J
v (r) = /(26 + 1)(2¢ + 1 '
oot = VarnEe oy (7 L)

sp T
: G (r). 23
(% e 3

Here, unprimed and primed variables refer, respectively, to
initial (row) and final (column) states labeled by i), and
carry spin s, ; the partial wave is labeled by orbital angular
momentum ), which combines with s;0 to give the total
angular momentum J for the state; and large parentheses
indicate Wigner 3j symbols.

Under the assumption that the heavy sources interact
via a central potential, the usual separation of variables in
spherical coordinates also introduces the centrifugal term
in the effective potential for specific total J© quantum
numbers:

(¢ +1
V{,?/,z,,,ﬂ(’) = V?,'ij’,f,ﬂ(r) + 6, 10sp 7(2yr2 ) , (24)

where y is the reduced mass of the (cc)(iid) pair.

The specific case of the J& = 17 T, is quite trivial in
this formalism. J =1, of course; and since we only
consider (cc)(izd) and DD* components, then i) merely
labels the (cc)(izd) state and the two isospin states D'D**,
D*D*® in the order indicated by Eq. (18), so that
§1 = s, = 53 = 1; and the (cc) diquark is pure spin-1 with
no internal orbital excitation, so that A = +1,0,—1 and
7 = +. The 070~ DD state (~140 MeV lower than T,
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is forbidden from coupling to 17 in any partial wave due to
parity conservation; and in this work we neglect the
coupling to the combination D**D** (~140 MeV higher
than T,), which allows s =0,1,2 (aswell as 4 = £2 for
the dimeson components), and thus would render Eq. (23)
rather more complicated than for the current case. In fact,
while it is straightforward to evaluate the sum in Eq. (23)
term by term, in this case the calculation is especially
simple because all components have the same value of s,
which implies that the same interaction matrix G(r) =
G**(r) in Eq. (18) appears for each of 1 = +1,0, —1; thus,
G:rl/1 (r) may be taken outside the sum in Eq. (23). The
remaining sum may be rewritten using a completeness
relation for 3 symbols [53]:

Z(h J2 j3><j1 2 j'3>
s my mp njy m; mp m'3

1 L
:m(sjg,jgdm,mgé(‘]lv.]%J3>7 (25)

where the third § factor is the triangle-rule constraint. Using
the invariance of 3j symbols under cyclic permutations of
their columns [53] and imposing the constraint s; = s;
(unique to this case), the sum in Eq. (23) becomes

Z(] S f)(] S £/>
—\-2 2 0)\=2 2 o0
1

=———06,00(J,5;,7), 26
2f_|_1ff( 5:,C) (26)

and, suppressing i) indices, Eq. (23) dramatically sim-
plifies to

VEL(r) = GTH(1r)8, p6(1.1,€) = G(r), »8(1,1.¢),
(27)

so that the interaction matrix G(r) in Eq. (18) equals the
diabatic matrix V(r) in this particular case. Even though
partial waves £ =0, 1,2 are allowed, they combine in a
very compact manner. The key ingredient in this simpli-
fication is the absence of distinct couplings for different
values of 4, since only one dimeson spin combination (in
two isospin channels) occurs; the case of including D*0D**
would be more involved.

V. ANALYSIS

As discussed in Sec. II, the new parameters introduced
by the novel nature of a diabatic dynamical-diquark 7'
state are the Vg3 parameter R [Eq. (6)] indicating the
spatial extent of the “good” diquark 6= (itd) as well as its
mass my = m,y, and the doubly charmed diquark mass
mg = m,.. Additionally, one requires the mixing-potential

[Eq. (16)] parameters A, A introduced by the diabatic
formalism [25,26]. Following the practice of previous
works, we set

A = po, (28)

where the string-tension parameter ¢ takes the same value
as in Eq. (8), and p is a free parameter indicating the
width of the mixing potentials. We first assume that the
previous (p, A) pair retrieved in Ref. [28] from fitting to
the Particle Data Group-averaged y ., (3872) mass [Eq. (2)],

p =0.165 fm,

A =0.295 GeV, (29)
is appropriate for use in fitting R and m,,. to obtain the
experimental 7'}, mass. We later relax this assumption and
fit to (p, A) as well.

Our first finding is that the modified potential Eq. (6),
no longer being singular as » — 0, becomes too shallow
to reproduce the experimental 7, mass using the
lattice-determined potential parameters of Eq. (8) and
any reasonable value for m,.. However, one may note
that the eigenvalue my+ has an almost direct dependence

on the combination m,. + V|, since m,; << m.. Thus, we
introduce an additional offset for the R > 0 case,
Ay, = —0.150 GeV:

V(r) = V(r) +Ay,. (30)
so that, using V|, from Eq. (8),
Vo= Vo + Ay, = =0.530 GeV. (31)
With this modification, we find that the pair

R =04 fm,
Mee = 3.0260 GeV, (32)

produces the experimental value as given in Eq. (1),
mr+ = 3874.83 MeV, (33)
and the full content of this eigenstate is

86: 9.84%,

D**D": 65.57%,
DD*: 24.59%. (34)
Since the entire range encompassing my+ and the two
thresholds is very narrow (<1.7 MeV), we see that even

the relatively small mass difference —2A, between the
D**D° and D**D™ thresholds [Eq. (3)] is enough to allow
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FIG. 1.
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Content of the normalized T7, eigenstate associated with free dimeson configurations D**D° and D*°D™ as a function of the

isospin-breaking parameter A, [Eq. (20)] for potential parameters given in Egs. (29), (31), and (32). The isospin-averaged threshold
mass [Eq. (19)] is held fixed. Additionally, we fit quadratic curves to each component separately for A,, < 0 [which contains the physical
point, represented by a dashed vertical line, from which agreement can be seen with the results in Eq. (34)] and for A, > 0.

D**D° to dominate. This clear demonstration of isospin
symmetry breaking can also be directly explored by
allowing the value of A, to vary. In Fig. 1, we show that
adjusting A, from —0.705 to 0 MeV brings the difference
between D°D*+ and D**D™ content to zero quadratically
in A,, the two meeting at around 44%. Notably, this
modification also relaxes the overall dominance of the
dimeson thresholds on the state content, allowing for the 56
content to rise to a maximum of about 11%, as seen in
Fig. 2. Of course, any change in A, while holding other
parameters fixed [particularly, the isospin-averaged thresh-
old of Eq. (19)] directly changes the eigenvalue my-, as
seen in Fig. 3.

Figure 1 also illustrates an interesting effect expected
from the diabatic formalism: The resonance mass eigen-
value (here, my+) prefers to stay closer to the lower
threshold, rather than reattaining a special affinity to the
particular threshold (D**DP) to which it is closest at the
physical point. Moreover, the distance of the eigen-
value below the thresholds is maximal (about 700 keV)
when isospin breaking vanishes (A, = 0) and the thresh-
olds coincide. Lastly, at larger values of isospin breaking
(|A,] > 1.3 MeV, where the DD* thresholds differ by
more than 2.6 MeV), mrs rises above the lower thresh-
old, and the T/, width would be expected to increase
dramatically.

Although Figs. 1-3 are almost perfectly (anti)symmetric
about A, = 0, one may note asymmetries about this point,

especially in the quadratic fits in Fig. 1, which have explicit
discontinuities at A, = 0. These jumps originate from the
fact that the physical point A, = —0.705 MeV is special:
i.e., the mass eigenvalue my+ (and thus the potential
parameters) is initially fitted at this value, and only then
is A, varied. While the quadratic fits of Fig. 1 are
discontinuous at A, = 0, the content for each dimeson
component is seen to vary smoothly through this point. For
a more quantitative description of this asymmetry, we fit to
the functional form aA2 + bA, + ¢ and for each dimeson
component, providing the fit parameters (a, b, ¢) (which
have units of MeV~—(219) respectively):

DD+ (A, < 0): (—0.0623, —0.3651, 0.4289),
D*D*(A, > 0): (+0.0744, -0.3397,0.4412),
D°D*(A, < 0): (+0.0698, +0.3268,0.4404),
DOD*(A, > 0): (=0.0569,+0.3507,0.4282). (35)

As suggested above, one may use my+ as a fixed starting
point, and allow the diabatic parameters p and A to be fit as
well. In doing so, T, may be used as a laboratory to
explore the relationships of the relevant diabatic dynamical-
diquark parameters. Since fitting to the full parameter space
of (R,m..Ay,,p,A) using the single-state T/. allows
many solutions, we have performed multiple experiments
by holding some parameters constant and varying others.
Using the determination of (R, m...) from Eq. (32), we vary
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FIG.2. Content of the normalized T, eigenstate associated with the 56 configuration as a function of the isospin-breaking parameter
A, [Eq. (20)], using the same potential parameters and isospin-averaged mass as in Fig. 1. The dashed vertical line again represents the
physical point, from which agreement can be seen with the results in Eq. (34)].

3.8775 A

3.8770 A

3.8765 -

3.8760 -

E [GeV]

3.8755 A === Ay= —0.705 MeV

3.8750 A

3.8745

S PR NSy A ———

3.8740 4
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FIG. 3. The mass eigenvalue my as a function of A, using the same potential parameters and isospin-averaged mass [Eq. (19)] as in
Figs. 1 and 2. The dimeson threshold energies are included for reference. The dashed vertical line again represents the physical point,
from which agreement with the measured values in Egs. (1) and (3) can be obtained.

(Ay,.p,A). We find that a value of Ay = —0.150 GeV  for this Ay value, we observe a quadratic relationship
allows for the largest set of (p, A) pairs that successfully fit ~ between (p, A) fit values, as shown in Fig. 4. Clearly,
the my+ (hence its usage in the initial fit above), with a  the ability to freely vary such phenomenologically critical
steep dropoff in the space of suitable (p, A) pairs, whether ~ parameters as p, A across such a wide range and still
one increases or decreases Ay, . Within the (p, A) subspace  obtain equivalent fits shows that a separate, precision
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FIG. 4. Pairs of diabatic-potential parameters p, A [Egs. (16), (28)] that give equivalent fits to the experimental value of my= [Eq. (D],
fixing Ay, = —0.150 MeV [Eq. (31)]. Also presented is a quadratic fit to the results.

determination of the parameters from lattice QCD would
have a significant impact on the understanding of near-
threshold states, as discussed in Refs. [25,26].

VI. CONCLUSIONS

We have performed the first study of the open-charm
state T/, in the diabatic generalization of the Bomn-
Oppenheimer approximation. In particular, the 7. sub-
structure is dominated by its extreme proximity to the
D*+ DO threshold, but it also lies not much further below
the D**D* threshold, and in addition permits a (cc)(itd)
diquark-antidiquark (66) component. As expected [and in
analogy to a similar situation for y.;(3872) with the
D*DY + D°D*0 threshold], we find the mass eigenstate
to consist overwhelmingly (>90%) of dimeson compo-
nents, but the D**D* component is nevertheless more than
1/3 as large as the D** D° component that lies almost atop
my+ . Moreover, the elementary 56 component persists in
both cases at a level of nearly 10%, providing a significant
short-distance component to the wave function of both T,
and y.(3872).

The two states nevertheless differ in key respects.
xc1(3872) has several known decay channels to charmo-
nium, which of course cannot occur for the open-charm
T+. But the two D*D (or D*D) isospin-partner decay
modes are much more closely spaced for T}, than for
x¢1(3872), making T a superior laboratory for studying
isospin breaking in 4-quark states. We have used this
feature to compute how all 3 T, components: D*TDO,

D**D7, and &6, change as the isospin-breaking mass
difference mp-+po — mpop+ is adjusted. We find that the
56 component is fairly stable (between 5-11%) over a large
range of this difference, with its maximum occurring close
to the isospin-symmetric point. Since we have fixed the
measured value of my. at the specific physical value of
isospin breaking, a small asymmetry corresponding to
exchanging the D**D° and D**D* components arises.
Nevertheless, we conclude that the dominant parameter
determining both the variation of the 66 state content and
the eigenvalue my+ appears to be the magnitude of the
isospin-breaking mass difference.

We have noted above that the particular modeling of the
T/, system in this paper requires a very simple diabatic
potential matrix, because we neglected the more distant
D**D*0 threshold. Incorporating this threshold, which
requires the use of a more involved spin-dependent for-
malism, is one key direction of future research. Indeed,
properly including spin dependence in the diabatic poten-
tial matrix has not yet been performed in the hidden-charm
sector of this model, and constitutes its own set of projects
still to be carried out. We have also noted that if the good
(d) diquark is in fact an essential component of 7,, then
this state likely has no nearby multiplet partners, unlike the
case of the hidden-charm multiplet containing y.,(3872),
Z.(3900), Z.(4020), and presumably several other states.
In several ways, the state T, provides an ideal laboratory in
which to test different diabatic hypotheses with a minimum
of complications.
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APPENDIX: FIERZ REORDERING
OF ISOSCALAR DIQUARK-ANTIDIQUARK
VECTOR CURRENT

For an arbitrary fermion field y, define its charge-
conjugate form in the usual manner:

we(x) = Gy, (A1)

where C is the charge-conjugation Dirac matrix, which has
the properties

CyrC™! = —pHT, Cl=Ccl=C=-C=-C".
(A2)
From these relations also follows:
#(x) = y'(x)C. (A3)

The Hermitian interpolating operator for the good
(spin-0, isoscalar, color-triplet) light diquark (izd) is [15]

iy’ d; — djiy’uf), (A4)

1
€ijk7§(

where i, j, k are color indices.

Let J#(x) be the simplest current for creating a J© = 17
state with flavor quantum numbers QQiid, with the light
quarks being in the good diquark configuration of Eq. (A4).
Then it is a straightforward (but lengthy) exercise to apply
the conventional Fierz reordering to the Qg and ¢ Q¢ field
pairs to obtain

JH(x) = €lkeim Oy O — (yiy dy — iy us)

ﬂ
(aiy>Q)(dy*Q) +

(diy’ Q)(ay* Q)

Sl

(uQ)(dy” °0) —%(EIQ)(W?SQ)

(20" Q) (dr,° Q) + = (@™ Q) (a,1°Q)

(" y°Q)(dy, Q) — —=(do*y> Q) iy, Q).
(AS)

+

mmmmw
sl- %)

The tetraquark state thus couples naturally not only to
dimeson pairs with quantum numbers (07)(17), but also
to (01)(17), (2%)(1"), and (27)(17). Moreover, the
(pseudo-)tensor bilinear operators in the final line of
Eq. (A5) can also serve as interpolating operators for
vector particles, which is how the overlap with (17)(17)
pairs (such as D*D* for T.) occurs in this formalism.

Analogous Fierz reorderings between diquark-
antidiquark and dimeson scalar operators, as would appear
in Lagrangians, are presented in Appendix of Ref. [54].
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