EPiC Series in Computing Sl
omputing

Volume 100, 2024, Pages 408-425

Proceedings of 25th Conference on Logic for Pro- m
gramming, Artificial Intelligence and Reasoning (‘\

Sometimes Hoarding is Harder than Cleaning:
NP-hardness of Maximum Blocked-Clause Addition

Bernardo Subercaseaux ®

Carnegie Mellon University
Pittsburgh, PA, USA
bersub@cmu.edu

Abstract

Adding blocked clauses to a CNF formula can substantially speed up SAT-solving,
both in theory and practice. In theory, the addition of blocked clauses can exponentially
reduce the length of the shortest refutation for a formula [17,19]. In practice, it has
been recently shown that the runtime of CDCL solvers decreases significantly for certain
instance families when blocked clauses are added as a preprocessing step [10,22]. This
fact is in contrast to, but not in contradiction with, prior results showing that Blocked-
Clause Elimination (BCE) is sometimes an effective preprocessing step [14,15]. We suggest
that the practical role of blocked clauses in SAT-solving might be richer than expected.
Concretely, we propose a theoretical study of the complexity of Blocked-Clause Addition
(BCA) as a preprocessing step for SAT-solving, and in particular, consider the problem of
adding the maximum number of blocked clauses of a given arity k to an input formula F'.
While BCE is a confluent process, meaning that the order in which blocked clauses are
eliminated is irrelevant, this is not the case for BCA: adding a blocked clause to a formula
might unblock a different clause that was previously blocked. This order-sensitivity turns
out to be a crucial obstacle for carrying out BCA efficiently as a preprocessing step. Our
main result is that computing the maximum number of k-ary blocked clauses that can be
added to an input formula F' is NP-hard for every k > 2.

1 Introduction

Redundant clauses (with respect to a formula F') are defined by the fact that their addition
or removal does not affect the satisfiability of F. Nonetheless, adding or removing redundant
clauses can still dramatically affect how hard it is in practice to determine whether F is sat-
isfiable or not. Indeed, CDCL-based solvers often alternate between adding redundant clauses
(which can make future deductions easier) and removing redundant clauses (which makes the
formula smaller). Figure 1 shows an execution of the Kissat solver [4], and illustrates how re-
dundant clauses fluctuate throughout the solving process, sometimes reaching 80% of the total
clauses.

As checking for redundancy is a computationally expensive task in general (the empty clause
is redundant with respect to a formula F' if and only if F' is unsatisfiable!), significant attention
has been centered around particular forms of redundancy that can be efficiently checked [23].

N. Bjgrner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 408-425

http://orcid.org/0000-0003-2295-1299

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

In this paper we focus on blocked clauses, a particular form of redundant clauses introduced
by Kullman in 1999 [19]. A definition of blocked clauses based on resolution is presented
in Section 3, but for now consider the following;:

Definition 1 (Preliminary definition). A clause C' is blocked with respect to a formula F' on a
literal £ € C if every clause C’ € F' containing £ also contains a literal, different from £, whose
negation is in C'.

Importantly, blocked clauses are redundant [19], and their purely syntactical definition allows
us to efficiently check whether a clause is blocked with respect to a formula F. As a result,
given a formula F' it is possible to efficiently eliminate some, or even all, blocked clauses from
it. This process is known as Blocked-Clause Elimination (BCE) [15], and can be used as a
preprocessing step in modern SAT-solvers such as CaDiCal [3], although we remark that BCE
is turned off by default. The efficiency of running BCE relies not only on clause blockedness
being an efficiently checkable property, but also on the fact that the order in which blocked
clauses are eliminated is irrelevant, a property known as confluence [15]. In this article, we will
study Blocked-Clause Addition (BCA), the converse of BCE. In a nutshell, we will use the lack
of confluence of BCA to derive hardness results. In particular, our main result is the following:

Theorem (Informal statement). For any k > 2, given a formula F, it is NP-hard to compute
the largest set of k-ary blocked clauses that can be added to F.

1520 : :
—— Irredundant
—— Redundant
g)}
3 1t 8
=
(5]
o
3
8
=}
2 05/ 1
z n A L
M =
0 | | | | | | |
0 50 100 150 200 250 300 350

Kissat output step

Figure 1: Evolution of the number of redundant and irredundant clauses over a 2-minute run
of the Kissat solver [4]. The notion of redundancy used by Kissat corresponds to RUP [18]. The
specific instance used for this plot is publicly available at https://pastebin.com/K6AnWuVx.

Organization. Section 2 discusses in more detail the role of blocked clauses in (Max)SAT-
solving, showing that both BCE and BCA can be helpful depending on the particular appli-
cation. Then, Section 3 presents the definitions required to state Maximum Blocked Clause
Addition as a computational problem whose complexity can be analyzed. In Section 4 we intro-
duce BC graphs, the directed graphs that capture the relevance of the order in which blocked
clauses can be added to an input formula F. Next, Section 5 presents a partial characterization
of BC graphs, describing classes of graphs that can arise as BC graphs. We leverage that char-
acterization to derive hardness results in Section 6, and also show that counting the number of

409

https://pastebin.com/K6AnWuVx

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

models for a blocked set is #P-hard, thus answering an open question of Heule and Biere [2,12].
Section 7 presents a simple approximation algorithm that achieves a 1/6é-factor of the maximum
number of binary blocked clauses that can be added to a formula. Then, Section 8 provides
further insight into BC graphs for £ > 4. Finally, we present concluding remarks and open
problems in Section 9.

2 Should they Stay or Should they Go?

The seminal paper of Kullmann [19, Lemma 8.10] showed that there are unsatisfiable formu-
las for which the addition of blocked clauses, even without any new variables, exponentially
reduces the length of the shortest resolution refutation. However, when introducing BCE as
a general preprocessing technique, Jarvisalo et al. [15, Section 4] remarked that despite the
theoretical results of Kullmann, running BCE often resulted in shorter and easier formulas in
practice. Reality seems to be more nuanced, as recent empirical evidence has revealed. In 2023,
Subercaseaux and Heule determined the packing chromatic number of the infinite square grid
through SAT-solving, and found that adding merely 85 blocked clauses to large formulas pro-
vided significant improvements in runtimes and proof sizes [22, Table 3]. Moreover, Fleury and
Kaufmann recently showed that BCE was detrimental in 12 out of 15 SAT competitions (2009—
2023) [10, Table 1]. We remark that the results reported by Fleury and Kaufmann also suggest
that BCA can be beneficial: if the runtime for 7'\ BLOCKEDCLAUSES(F') was longer than for F,
that means that taking G := F'\ BLOCKEDCLAUSES(F'), and G’ := GUBLOCKEDCLAUSES(F),
the runtime for G’ was shorter than for G, and it is easy to show that any blocked clause w.r.t.
F is a blocked clause w.r.t. G, which implies that G’ is indeed a potential result of running
BCA over G.

Why should blocked clauses go? A simple argument for BCE is that as a rule of thumb,
smaller encodings are more efficient. Given that most SAT solvers iterate over clauses in their
main loop, each iteration becomes faster if the number of clauses is reduced. In simple words,
any clause that is not helping the solving process must be hurting it. A concrete example
in which BCE significantly improved runtimes is the Pythagorean Triples problem, where it
removed roughly 50% of the (occurring) variables and 20% of the clauses [14].

Why should we add more? The main reason for adding blocked clauses is that they can
help the solver make deductions. We have referred already to theoretical evidence [19] and
empirical evidence [10,22], but we will now discuss a self-contained example illustrating the
power of adding blocked clauses. Consider the MINIMUMVERTEXCOVER problem, in which the
input is an undirected graph G = (V, E) and an integer k£ > 0, and the question is to decide
whether there is a set S C V such that |S| < k and for every edge {u,v} € E at least one of
u or v is in S. A direct encoding for this problem consists of creating variables x, for every
vertex v € V, representing whether v € S or not, and then constructing the formula F":

(xy V xy), forevery edge {u,v} €FE (Covering Constraints)

/\ (\/ %) (Cardinality Constraints)

XCV,|X|=k+1 \ ueX

Now consider the following graph G, depicted in Figure 2.
Then observe that the following clauses are blocked w.r.t. F: (Z1VZ3), (T2 VT3), (TeVZ7). If
these clauses are added to F', then most solvers are quickly able to deduce that (1 Va2)A(T1VT2)

410

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

@ 2 (5) 6

Figure 2: Tlustration of the graph G used in the example for the MINIMUMVERTEXCOVER
problem.

imply that Z7 = x. As the literal x7 does not appear in any other clauses, the solver can
assign x7 = 0,29 = 1 without loss of generality, which leads to eliminatating the variable x;
and the clauses containing it (Equivalent Literal Substitution [13]). This simplification would
be performed over all vertices of degree 1, therefore implying the solver would have quickly
deduced a well-known Vertex Cover preprocessing technique: “get rid of all vertices of degree
1 and add their neighbors to the cover” [1,9].

3 Preliminaries

We start by introducing some notation and definitions required to formally state the problem
at hand. First, we understand a clause as a non-tautological disjunction of literals, which we
identify in turn with a set of literals that does not contain both ¢ and ¢ for any literal ¢. Given
two clauses A = (a1 Vas V... Va,) and B = (by Vb V...V by,), we use notation AV B for
the clause (a1 Vag V...a, Vb Vba V...by). As a single literal matches our definition of a
clause, the previous notation will be used as well for the disjunction of a literal and a clause,
identifying {¢} with ¢. Moreover, we identify CNF formulas with sets of clauses.

Definition 2 (Resolvent). Given clauses C; = £V C’ and Cy = £V C"”, we define the resolvent
of C1,C4 according to £ as C1 ®, Cy :=C' Vv C".

Definition 3 (Blocked literal/clause). A literal ¢ blocks a clause C; = £V C with respect to!
a formula F when for every clause Cy € F of the form ¢V C”, the resolvent C; ®;,Cy = C'V C"
is tautological (i.e., contains complementary literals). In such a case we say C' is blocked on ¢
w.r.t. F'; and also simply that C' is blocked w.r.t. F.

The following proposition follows directly from the previous definition and will be used
throughout the paper.

Proposition 1 (cf. Heule and Biere [12]). If G C F and a clause C' is blocked w.r.t. F, then
C is blocked w.r.t. G.

From Definition 3 and Proposition 1 it follows that BCE, the process of eliminating all
blocked clauses from an input formula F, can be performed in polynomial time [15]. This
paper is centered around BCE’s opposite, blocked-clause addition (BCA), the preprocessing
technique introduced by Kullman [19].

Definition 4 (BCA). Given a formula F', and a sequence of distinct clauses I' = (I'y,...,T',)
over the variables of F', we say I is valid for blocked-clause addition (BCA) on F', which we
denote by F' ~»p T, if each clause I'; is blocked w.r.t. FU{T'; | j € {1,...,i—1}}.

1We will use abbreviation w.r.t. from now on.

411

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

We now have the notation and definitions required to state the computational problems at
the heart of this paper, followed by our main result.

PROBLEM: k-BCA

INPUT: A formula F and an integer .

OUTPUT: Yes if there is a sequence I' of ¢ clauses of arity k over
the variables of F' such that F' ~p I', and No other-
wise.

Our main result, listed next, implies that blocked-clause addition is computationally hard
to maximize.

Theorem 2. k-BCA is NP-complete for every k > 2.

We remark that the NP-hardness of k-BCA does not directly imply the NP-hardness of %'-
BCA for k¥’ > k. Indeed, we will have to explicitly prove a technical lifting lemma in Section 6
to show that this is the case.

4 BC Graphs and Related Problems

Given a formula F', we denote by BC(F) the set of clauses that are blocked w.r.t. F' and use
only variables from F'. Moreover, we denote by BCy(F') the restriction of BC(F') to clauses of
arity k. Naturally, not all clauses in BC(F") can belong to a valid BCA sequence on F', as adding
a clause C7 € BC(F) can make a clause Co € BC(F') not blocked anymore. For example, if
F = (z1 Vx2) A (22 V 23), then C; = (21 VT3) € BC(F) and Cy = (T7 V Tz) € BC(F), but Cs
is not blocked w.r.t. F'U{C;}. The following definitions capture the phenomenon at hand.

Definition 5 (Prevention). Given a formula F, and two clauses C1,Cy € BC(F'). We say the
addition of C; prevents the addition of Cy when Cy ¢ BC(F U {C4}). We denote by C; ~+, C5
the fact that C; prevents the addition of Cs.

Definition 6 (BC graph). Given a formula F', we define its BC graph Ggc(r) as the directed
graph with vertex-set BC(F), and directed edges C1 — Ca when Cy ~+, Cy. Naturally, Ggc, (r)
denotes the subgraph induced by BCy(F).

An example of a BC graph is illustrated in Figure 3. In order to prove Theorem 2 we will
only consider BC sets where each clause is blocked on exactly one literal.

Definition 7 (Singly-blocked clauses). A clause C' is singly blocked w.r.t. a formula F if there
is exactly one literal ¢ such that C' is blocked on ¢ w.r.t. F.

Remark 1. In the context of singly-blocked clauses, prevention can be seen more easily by the
following characterization. If C is singly blocked on £ w.r.t. F', then C3 ~~, Cj if and only if
{ € Cy and Cy ®y C5 is not tautological.

Note that the definition of BCA does not require that the clauses in the sequence I' to
be singly blocked; we will show that, even in formulas where every clause in their BC set is
singly blocked, the BCA problem is NP-hard, which will imply the general hardness. Let us
immediately see why we consider singly-blocked clauses.

Lemma 3. Given a formula F, and a sequence of singly-blocked clauses C1, . .., Cy from BC(F),
we have I ~p (C1,...,C) if and only if (C;,C;) € E(Gpery) for every 1 <i < j <t.

412

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

Formula F

(21 vV 73)
(:L‘3 \/LL‘4)
(T5 V 24)
(z1VT2)
(x1 Vaa Vg VTs) 1
(1 Vg Vas)
(1 V 72)
(xoa Va3V ey VTs)
(z3 V Tq)
(r3VTqV T5)

Figure 3: Illustration of the BC graph restricted to k = 2 for a formula F'. Directed cycles have
been colored, and notice that edges that belong to multiple directed cycles receive the colors
corresponding to all of them. A feedback vertex set of size 1 is colored in light orange, thus
implying by Lemma 6 that there is a valid 2-BCA sequence of length 7 — 1 =6 for F.

Proof. For the forward direction assume F ~»p (C1,...,Ct) and let 1 <14 < j < t. By definition
of ~~ g, the clause C} is blocked w.r.t. FU{C1,...,C;,...,C;j_1}, from where using Proposition 1
we deduce that C; is blocked w.r.t. F'U{C;}, and thus (C;, Cj) € E(Gpc(r))-

For the backward direction we assume (C;, Cj) € E(Gpc(ry) for every 1 <i < j < ¢ and then
proceed inductively. The base case F' ~»p (C1) is immediate as Cy € BC(F'). For the inductive
case, assume F ~»p (C1,...,Cj_1), and let us show that F' ~»p (C4,...,Cj_1,C;). Using
the inductive hypothesis it only remains to show that C; is blocked w.r.t. FU{C1,...,Cj_1}.
As Cj is singly blocked on a literal ¢(C;) w.r.t F, it only remains to show that C; is blocked
on ¢ wr.t. {Ci,...,C;_1}. Assume, expecting a contradiction, that C; is not blocked w.r.t.
{C1,...,Cj_1}. Then, there must be a clause C; € {Ci,...,C;_1} such that C; contains
£(C;) and C; ®¢(c,) Cj is not tautological. This implies, by Remark 1, that C; ~», C}, which
contradicts the assumption that (C;, C;) € E(Gpc(r))- O

Example 1. For an example illustrating what could happen without the “singly-blocked”
restriction, consider the following scenario:

o F:= (331\/3;‘2\/333)/\(1'1\/3372\/1'4)-
[} Cl

71V T3 V Ty) is blocked on all 1,75 and T4 w.r.t. F.

.C3

= ()

o (5 := (T1 Va2V x3) is blocked on x5 and x3 w.r.t. F.
:= (1 VT3 V T3) is blocked on z1, T3, and T3 w.r.t. F.
=

o (4 T3 V T3 V xy4) is blocked on all 73,73 and x4 w.r.t. F.

e Neither Cs, C3 nor Cy prevent Cf.

(4 is blocked on Ty w.r.t. FU{C2,Cs}, but is not blocked w.r.t. F'U{C3,C3,Cy4}.

413

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

In this scenario, the prevention relation is not enough to properly capture valid sequences for
BCA, as neither C5, C3 nor C4 can prevent C; but their union does. This is due to C; being
blocked on multiple literals, as it is only when each of such literals is no longer blocked that Cy
as a whole is no longer blocked. This can be achieved by the set {Cs, C3,Cy4}, but not by any
clause C; alone.

Next, we show that BCA corresponds naturally to a graph problem when every clause in
BC(F) is singly blocked. Given a directed graph G = (V, E), we say a sequence vy, ..., v, of
its vertices is undominated if for every 1 < ¢ < j < n we have (v;,v;) ¢ E. In other words, a
sequence S is undominated when there are no edges going “forward” in S. This leads to the
following computational problem.

PROBLEM: UNDOMINATEDSEQUENCE

INPUT: A directed graph G = (V, E), and an integer ¢ > 1.

OUTPUT: Yes if there is a sequence S = vy,...,v; € V! such
that for every 1 < ¢ < j < ¢ we have (v;,v;) € E.
No otherwise.

Lemma 4. Given a formula F, an integer t > 1, and an integer k > 2 such that every clause
in BCy(F) is singly blocked, we have that (F,t) is a Yes-instance of k-BCA if and only if
(GBc,(F),t) s a Yes-instance of UNDOMINATEDSEQUENCE.

Proof. Immediate from Lemma 3. O

To make progress now, we will require another problem over directed graphs. Consider the
following problem, proven to be NP-hard in Karp’s seminal paper [16].2

PROBLEM: FEEDBACKVERTEXSET

INPUT: A directed graph G = (V, E), and an integer ¢t > 1.

OUTPUT: Yes if there is a set of ¢ vertices S C V such that their
removal (including the edges touching them) leaves
G without directed cycles. No otherwise.

In general, we will say that a subset S C V is a feedback vertex set of G if G[V(G) \ S] is
acyclic. It turns out that UNDOMINATEDSEQUENCE and FEEDBACKVERTEXSET are comple-
mentary problems, as the next lemma shows.

Lemma 5. Given a directed graph G and a subset S of its vertices, the following statements
are equivalent: (i) there exists an undominated sequence Og consisting of an ordering of the
elements of S, (i) G[S] is acyclic, (i) V(G)\ S is a feedback vertex set of G.

Proof. To prove that (i) implies (ii), assume Og = v1,...,v|g| is an undominated sequence,
and let < be the total order over S defined by v; < v; <= i > j. By the definition of
undominated sequence, every edge (v;,v;) € E(G[S]) must hold that ¢ > j, and thus v; < v,.
This implies that G[S] is a subgraph of (S,<), and given (S5,<) is an acyclic graph as it
corresponds to an order, we conclude that G[S] is acyclic. To see that (ii) and (iii) are equivalent,
note that S = V(G) \ (V(G) \ S). Finally, to prove that (ii) implies (i), assume G[S] is

2We remark that although some authors refer to FEEDBACKVERTEXSET as a problem over undirected graphs,
and use something like DIRECTEDFEEDBACK VERTEXSET for the version over directed graphs, we adhere to Karp’s
initial presentation, which is over directed graphs.

414

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

acyclic, and therefore it has a topological ordering m = v1,...,v|5, which by definition of
topological ordering implies that all edges (v;,v;) € E(G[S]) have i < j. By reverting «
into Og = v,..., U\IS| through the transformation v := v|g|—;4+1, we obtain an undominated
sequence, as now all edges (v;,v}) € E(G[S]) have i > j. O

Combining Lemma 4 and Lemma 5, we immediately have the following.

Lemma 6. Given a formula F', an integer t > 1, and an integer k > 2 such that every clause
in BCy(F) is singly blocked, we have that (F,t) is a Yes-instance of k-BCA if and only if
(GBey(r), IV(Gae,(r))| — 1) is a Yes-instance of FEEDBACKVERTEXSET.

Proof. Using Lemma 4 it suffices to show that Ggc, (r) has an undominated sequence of length
(at least) ¢ if and only if it has a feedback vertex set of size |V (Ggc, (r))| —t. Indeed, if Ggc, ()
has an undominated sequence O of length ¢, and we denote Sp := {v € V(Ggc,(r)) | v € O},
then O is an ordering of So and by Lemma 5 we have that V(Ggc, (r)) \ So is a feedback vertex
set of Gc, (), whose length is exactly |V (Ggc,(r))| —t. The other direction is immediate by
using Lemma 5 again. O

It is known that FEEDBACKVERTEXSET can be solved in polynomial time for restricted
classes of graphs, which in turn implies that UNDOMINATEDSEQUENCE can also be solved in
polynomial time for those classes, and therefore that BCA can be solved in polynomial time
as long as Ggc(p) belongs to any of said classes. The ISGCI project [7] lists over 600 such
classes of graphs. Furthermore, we remark that efficient parameterized algorithms deciding in
time n®() . f(t) whether a directed graph G has a feedback vertex set of size at most ¢ are
well-known [6], which implies that on formulas F' where all but a small number of clauses of
BC(F) can be added in a BCA sequence, then such a sequence can be computed efficiently.

On the other direction, however, we cannot yet use the hardness of FEEDBACKVER-
TEXSET (or of UNDOMINATEDSEQUENCE) to show hardness for k-BCA; such a reduction
would require taking a directed graph F' as input and then constructing a formula Fg such
that BCy(Fg) = G. Unfortunately, not all directed graphs can arise as BC graphs. Next,
in Section 5, we will study the class of graphs that can arise as BC graphs, showing that it is a
rich enough class to derive hardness results.

5 Characterization of BC Graphs

In this section, we provide a partial characterization of BC(F'); graphs, which will be used
to derive complexity results. First, we attack the case of k = 2, which requires the following
definition.

Definition 8 (k-subdivision). For a positive integer k > 2, the k-subdivision of a graph G
(directed or undirected) consists of replacing every edge (u,v) € E(G) by a path of length &
from w to v.

An example of the 2-subdivision of a directed graph is illustrated in Figure 4.

Lemma 7. Given any graph G which is the 2-subdivision of a graph H, one can compute in
polynomial time (w.r.t. |G|) a formula F' such that Ggc,(ry = G2, and moreover, every clause
in BGy(F) is singly blocked.

3To be fully precise, we mean that Gpc(r) is isomorphic to G, as the vertices of Gpc(r) are clauses, whereas
G is an arbitrary graph. For the purpose of this paper we will not make this distinction.

415

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

(2) ‘9 (2) |l
@ ﬁ @< o
(O —=) O% 20
Figure 4: Example of the 2-subdivision of a graph G.

Proof. Let G = (Vg, Eg) be the 2-subdivision of a graph H = (Vg, Eg). Then, we create
variables x,, for every u € Vg, and a variable w,, for every u € Vy. For every u € Vy, create
the clause C,, := (z, V). Note now that for every edge (u,v) € Eg, there is exactly one vertex
w € Vg such that (u,w), (w,v) € Eg. We thus can a create well-define clause W, ,, := (w, V)
for every edge (u,v) € Fg. We will construct F' so that

BCo(F) = {Cy | u € Vi) U{Wu | (u,v) € Exr}.

To achieve this, we create two new variables y and z, and then add the following sets of clauses
to the formula F:

1. (zy-clauses) For every vertex u € Vi, add to F the clauses (x,, V y), (x4 V7).

3.

-
2. (wy-clauses) For every vertex u € Vi, add to F' the clauses (wy, V y), (wy, V7).
(yz-clauses) Add to F' the clauses (y V 2),(y VZ), (@ V 2), (7T V Z).

(

4. (zw-clauses) For every vertex u € Vi, add to F the clause (T V w,).

5. (out-clauses) For every vertex u € Vi, if v1,...,v,, are the out-neighbors of u, then add
to F the clause (Wy V y, V ...V 2y,). Naturally, if u had out-degree 0, the resulting
clause will simply be (wy,).

First, observe that every clause C,, indeed belongs to BCy(F') as C,, is blocked on z,,, which
can be seen as the only clauses in F' where x,, appears are the zw-clauses, and their resolvent is
tautological by construction. Similarly, every clause W, ,, belongs to BCy(F') as W, ,, is blocked
on w, due to the out-clauses. We now claim that there are no other clauses in BCo(F'). Indeed,
let C' € BCy(F') be arbitrary, and then see how the following steps prove that C' = C,, for some
vertex u or W, ,, for some edge (u,v) € Ey.

1. The clause C cannot be blocked on y, as otherwise C'®, (7 V z) being tautological would
imply Z € C, but then C ®, (¥ V Z) being tautological would imply z € C, which is a
contradiction. Similarly, C' cannot be blocked on g, Z, or z.

2. The clause C' cannot be blocked on T, for any u € Vy, as otherwise C' Qz— (x,, V y) being
tautological would imply 7 € C, but then C ®z (x,, V 7) being tautological would imply
y € C, which is a contradiction.

416

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

3. The clause C' cannot be blocked on Wy for any u € Vi, as otherwise C Qg (w,, V y) being
tautological would imply 7 € C, but then C Qg (w,, V7) being tautological would imply
y € C, which is a contradiction.

4. From the previous steps, we either have that C' is blocked on x,, for some v € Vg, or on
w,, for some u € V.

5. If C is blocked on z,, then because of the xw-clauses, we have that C' must contain Wy,
and thus C = C,, given |C| = 2. Note that C,, is singly blocked due to step 3.

6. If C is blocked on w,, then given that |C| = 2, there is another literal £ € C. Because of
the out-clause for u, we have that ¢ must be one literal of the form =z, for some v that is
an out-neighbor of u, and thus C' = W, ,,. Note that W,, , is singly blocked due to step 2.

We have proved that BCo(F) = {Cy | u € Vg U {Wy, | (u,v) € Eg}, and thus [BCo(F)| =
|Vi|. Note now that every edge e in Eg corresponds to either (u,w) or (w,v) with w & V.
If e = (u,w), and its associated edge in Ey is (u,v), then by Remark 1 we have C\, ~, W, ,.
Similarly, if e = (w,v), and its associated edge in Ey is (u,v), then e we have by Remark 1
that W, , ~, C,. We thus have that the mapping ¢ : Vg — BCy(F') determined by

pla) = Wyw, if a= (u,v) for some e = (u,v) € Vg \ Vu,

{C’u, if a = u for some u € Vg,
is an isomorphism between Gc,(r) and G, and thus concludes the proof.
O

We now prove a technical lemma that extends the previous characterization to every k > 3.
We will use the following definition.

Definition 9 (Minimally blocked). We say a clause C' is minimally blocked w.r.t. a formula F
if C is blocked w.r.t. F' and for every literal ¢ € C, the clause C'\ {¢} is not blocked w.r.t. F.

Remark 2. Every clause C' € BCy(F)) for a formula F' constructed as in Lemma 7 is minimally-
blocked.

Lemma 8 (Lifting). If C is a class of graphs such that for any graph G € C one can compute
in polynomial time a formula F' such that Ggc,(ry = G and every clause in BCy(F') is both
singly blocked and minimally blocked, then for any graph G € C one can compute in polynomial
time a formula F' such that G, ,(ry = G, with every clause in BCyy1(F") also being singly
blocked and minimally blocked.

Proof. We can assume that k > 2, as if k = 1 then Gpc, (F) is a collection of isolated vertices
and the result is trivial. Let G € C be a graph satisfying the hypotheses of the lemma. As
a first step, the hypotheses allow us to construct in polynomial time a formula F' such that
Gc,(r) = G. For each clause C' € BCy(F), we use notation £(C') for the only literal £ € C' such
that C is blocked on ¢ w.r.t. F. Now, let y and z be new variables that are not present in F.
With these, we can construct F’ by the following procedure:

1. (F-clauses) Add to F’ every clause of F.

2. (yz-clauses) Add to F’ the clauses (y V 2),(y VZ), (W V 2), (T V Z).

417

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

3. (Lifting clauses) Add to F’ the clauses (¢ VgV Z),({ VgV z) for any literal £ that occurs
in F' or whose negation occurs in F'.

Note immediately that this construction takes polynomial time, and thus we only have to focus
on correctness. Before the details, let us give a high-level overview of the proof. We will prove
that BCy41(F’) consists exactly of the clauses of the form C' := (C V y) for C € BCy(F).
Intuitively, the lifting clauses will force y to be in any clause C’ € BCyy1(F”). From there and
the fact that no clause can be blocked on y w.r.t. in F’ because of the yz-clauses, we will derive
that Cy ~», Co wr.t. F if and only if (C1 Vy) ~, (Ce Vy) wrt. F'. This will imply that
GBc,., (r) and Gpg, (r) are isomorphic, the desired result. Let us now proceed with the proof,
starting with an almost trivial but useful fact.

Fact 1. If a clause C is blocked on a literal £ w.r.t. F', then the clause Cy V Cs is also blocked
on ¢ w.r.t. F for any clause Cs.

Proof of Fact 1. Follows immediately from the fact that Cy @, C" C (Cy V C2) @, C’, where C’
is any clause containing /. O

With this, we are ready to prove one direction of the characterization of BCyy1(F").

Claim 1. For every C € BCy(F) we have (C'Vy) € BCyxy1(F”)

Proof of Claim 1. Tt suffices to argue that (C'Vy) is blocked w.r.t. all (i) F, (ii) the yz-clauses,
and (iii) the lifting clauses. For (i), this follows by C' being blocked w.r.t. F' and Fact 1. For
(ii), this follows from the fact that ¢(C) € {y,7, z,Z}, as the variables y, z do not occurr in F,
and for (iii), observe that (C'V y) ®¢c) (((C) V7 V Z) is tautological as it contains both y and

¥, and the same applies to (C'V y) @) (U(C) VYV 2). O

Before we show the second and harder direction, we will another simple fact about blocked
clauses. For any clause C, and formula F, let C'| z denote the clause C restricted to the variables
of F.

Fact 2. Let F' be any formula and let C be a clause that is blocked w.r.t. F on a literal £ € Clg.
Then C| z is also blocked on £ w.r.t. F.

Proof of Fact 2. Let C' be any clause in F that contains ¢, and let C* := C \ Clz. By
hypothesis, we have that C'®, C” is tautological, and as C ®, C' = C* V (Clz ®, C'), we have
that C* V (Clp ®¢ C") is tautological. This implies in turn that (Clz ®¢ C”) is tautological,
since the set of variables of C* is disjoint from that of C|; and that of C’. We thus conclude
that C' z is blocked on £ w.r.t. F. O

Claim 2. Every clause C' € BCyy1(F") is of the form C' = (C V y) for some C € BCy(F).
Moreover, C’ is minimally blocked w.r.t. F’, and singly blocked on ¢(C), the same literal on
which C' is singly blocked w.r.t. F.

Proof of Claim 2. Let C’ be an arbitrary clause in BCyy1(F’). By the same argument as
in Lemma 7 we have that C’ cannot be blocked on either ¥,7%, z, or Z. Then, let us see that
y € C'. Indeed, let £ be any literal such that C’ is blocked on £ w.r.t. F’. Given that by the
previous argument ¢ ¢ {y,7,2,%}, we have that C’ ®; ({ V¥ V Z) must be a tautology. This
implies in turn that either y € C’ or z € C’. But by repeating the same argument with respect
to C' ®, (V7 V z) we obtain that either y € C’ or Z € C’, from where it follows that y € C".
We thus have that C’ is of the form C” V y, with £ € C”.

418

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

Using Fact 2, we have that C'] is blocked on ¢ w.r.t. F, and as C'] C C”, we have that
C" is blocked on £ w.r.t. F.

Let us now see that neither z nor Z can belong to C”. Indeed, assume expecting a contra-
diction that z € C" (the analysis for Z is analogous). Now, let C” := C' V 2, and as £ # z,
we have ¢ € Ct. Because ¢’/ = CT Vv 2V y is blocked on ¢ w.r.t. F, we have by Fact 2 that
C'|p is blocked w.r.t. F, and as C'}.p C CT|, we deduce that CT| is blocked on £ w.r.t. F.
Note that |CT| = k — 1, and thus |C’T¢F| < k — 1. Then, adding literals of F' to C't], until we
obtain a clause C* € BCy(F) of size k produces a contradiction, since C* will be blocked on
¢ w.rt. F (Fact 1), while CT], is a strict subset of C* that is also blocked on ¢ w.r.t F, thus
contradicting the minimality of C*. We thus deduce that neither z nor z belong to C”.

We now verify that C’ = (C” V y) is minimally blocked w.r.t. F’. Indeed, assume expecting
a contradiction that CT is a proper subset of C’ that is blocked w.r.t F’. As any clause in
BC(F’) must contain y by the argument above, we have CT = (C# Vv y) for some C* C C”.
Using Fact 1 and Fact 2 we obtain that C* is blocked w.r.t. F', which contradicts the minimality
of " € BCk(F).

Similarly, if C’ were not singly blocked on ¢(C"), given that C’ cannot be blocked on y, we
would have that C" is not singly blocked w.r.t. F', contradicting the hypothesis of C"" € BCy(F")
being singly blocked. O

We now claim the desired graph isomorphism.

Claim 3. We have that Cy ~», Cs, with Cq,Cy € BCy(F), if and only if (Cy V y) ~, (C2 Vy)
in F’.

Proof of Claim 3. We will use Remark 1 for both directions. For the forward direction, assume
Ci ~»p Cy. Then, given that Cs is blocked on ¢(C3) w.r.t. F', we have that £(Cs) € C; and
that no literal | € Cy with [# ¢(C) has [€ C;. This implies that (C1 V y) ~, (Ca V y), as
{(Cy) € (Cy Vy). The backward direction follows from the fact obtained in Claim 2 stating
that (Cy V y) is blocked w.r.t. F' on £(C2), the only literal on which Cy is blocked w.r.t. F.
Indeed, if (C7 V y) ~, (C2 V y), we have £(Cy) € Cy, and no literal [€ Cy with [# ¢(C3) has

1 € Oy, from where Remark 1 directly implies C; ~p Co. O

Combining Claim 1, Claim 2, and Claim 3, we get the desired isomorphism between Ggc, ()
and Ggg, ., (r'), where the conditions of single-blockedness and minimal-blockedness are verified
in Claim 2. Given the construction of F’ from F takes polynomial time, we conclude the
proof. O

6 Hardness Results

In this section we prove that k-BCA is NP-hard for every k > 2. As a first step, we will show
that the FEEDBACKVERTEXSET problem is no less hard for 2-subdivision graphs, which arise
thanks to Lemma 7.

Proposition 9. FEEDBACKVERTEXSET is NP-hard when restricted to 2-subdivision graphs.

Proof. The reduction is directly from FEEDBACKVERTEXSET over general directed graphs. Let
G = (V,E) be an arbitrary directed graph, and ¢ > 1 and integer. Then, let Gy be the
2-subdivision of G. We have that V(G3) = V(G) U{v | e € E}, and

E(G2) = {(ve, u), (u, ve) [€ = (u,v) € E}.

419

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

Note that G is bipartite under L := V(G),R := {v. | e = (u,v) € E}. Clearly, if C is a
directed cycle in G, then its 2-subdivision C” is a directed cycle in G3. Conversely, we claim
that if C is any directed cycle in Gg, then C is the 2-subdivision of a directed cycle C’ in G,
which we denote by f~1(C). Indeed, let C' = (v1,v2,...,v,) be a directed cycle in Gy. Let
v; € C be such that v; € L. Then, let J = {i,i+2,i+4,...,i+2n}, and as

(vj,v(j+2)%2) c E(G), V] c J,

we have that ¢’ = f~1(C) = {vju, | j € J} € C is a directed cycle in G. Now, if G has a
feedback vertex set S of size t, then S is also a feedback vertex set of G2, as otherwise if we
assume expecting a contradiction that there is a directed cycle C' such that C' NS = &, then
f7HC)NS =2 as f~1(C) C O, thus implying that C is present in G\ S, which contradicts
S being a feedback vertex set. On the other hand, let S be a feedback vertex set of size ¢ in
G5. We claim that from S we can easily construct a feedback vertex set S’ for G5, but such
that S’ C V(G). For this, it is enough to replace every vertex v, in S corresponding to an
edge e = (u,v) by u. Indeed, if C is a directed cycle in Go, we must have that SNC # @. If
u € SN C for some vertex u, then u € S’ as well, and thus G5 \ S’ also avoids C. Otherwise,
ve € SN C for some edge e = (u,v), and thus v € S’, which also implies that G2 \ S” avoids C.
As this is true for every directed cycle C in Ga, we concldue that S’ is a feedback vertex set of
G5. Moreover, we clearly have |S’| = |S| = ¢t. By the argument above, we have that S’ is also
a feedback vertex set for GG, and thus we conclude the proof. O

We now have all the ingredients to prove our main result, stating that k-BCAis NP-hard.

Proof of Theorem 2. The reduction is from FEEDBACKVERTEXSET over 2-subdivision graphs,
proved NP-hard in Proposition 9. Let G = (V, E) be a 2-subdivision graph, and let (G,t) be
an instance of FEEDBACKVERTEXSET. By Lemma 7, we can construct in polynomial time a
formula F' such that Ggc,(ry = G. Next, using Lemma 8 exactly (kK — 2) times, we obtain
a formula F’ such that Ggc,(py = G. Given k is fixed, this takes polynomial time. Then,
using Lemma 6, (G, t) is a Yes-instance of FEEDBACKVERTEXSET if and only if (F”, |[V(G)| —t)
is a Yes-instance of k-BCA. As the reduction has been carried out in polynomial time, this
concludes the proof. O

We finish the section by addressing a conjecture of Heule and Biere [12]. It is well-known
that if I' = (I'y,...,T",) is a valid sequence for BCA on a formula F', then Fr:=T71 A... AT,
is always satisfiable [12], but can we count the number of satisfying assignments of FT in
polynomial time? Heule and Biere conjectured a positive answer, and this conjecture was
mentioned again by Balyo et al. [2]. Unfortunately, it turns out that this is not the case.

Proposition 10. Counting the number of satisfying assignments of a formula Fr is #P-hard.
Equivalently, counting the number of satisfying assignments of a blocked set (see [12]) T is
#P-hard.

Proof. Tt is well-known that counting the number of vertex covers of a graph G is #P-hard [20].
We reduce from this problem by defining F' as an empty formula, and letting

Iy = /\ (g V Xy).

{uv}EE(G)

Note that I' is indeed a valid sequence for BCA on F, as all clauses in Fr are trivially blocked
w.r.t F, and there are no preventions between clauses of FT since all literals are positive.

420

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

Clearly each distinct satisfying assignment of FT corresponds to a distinct vertex cover of G,
which implies that the number of satisfying assignments of Fr is equal to the number of vertex
covers of GG, and thus the result follows. O

7 Approximation Algorithms

In this section we prove that, at least for £ = 2, the BCA problem is inside the APX complexity
class. This is in sharp contrast with FEEDBACKVERTEXSET, which does not admit constant
factor approximation algorithms unless P = NP [8,11]. To be precise, given an input formula
F, we denote by OPT(F') the maximum number of binary blocked clauses that can be added
to F'. Then, for an algorithm ALG computing valid BCA-sequences, we denote by ALG(F')
the length of the valid BCA-sequence output by ALG on input F. We say that ALG is a
p-approximation algorithm for the 2-BCA problem if, for every input formula F', we have
ALG(F) > p- OPT(F). Before we jump into the proof, note that as opposed to the hardness
reesults presented in Section 6, we cannot focus now only on singly-blocked clauses, but rather
a positive result must hold for any formula F'.

Theorem 11. The 2-BCA problem admits a 1/6-approzimation algorithm that runs in poly-
nomaal time.

Proof. Let F be an input formula with variables x1, ..., z,. We will split BCy(F') into 6 sets:

S1 = {Cis blocked on z; w.rt. F|C = (x; Vzj;)}, (1)
Sy = {Cis blocked on 7; w.rt. F | C = (Z; VIT;)}, (2)
Sz = {C'is blocked on z; w.r.t. F|C = (z; VT;) with i < j}, (3)
Sy = {Cisblocked on z; w.r.t. F|C = (z; VT;) with i > j}, (4)
Ss = {Cis blocked on 7; w.rt. F' | C = (z; Vz;) with i < j}, (5)
S¢ = {Cis blocked on 7; w.rt. F'|C = (z; V ;) with i > j}. (6)

Note that this sets can clearly be computed in polynomial time. We now claim that it suffices
to output the largest of these sets. Because Z?zl |Si| = |BCa(F)| we have max?_, |S;| >
1|BC2(F)|. Let us now show that each of the graphs Ggc, () [S;] is acyclic. First, it is easy to see
that Ggc,(r)[S1] and Gge, (r)[S2] are acyclic, as they in fact contain no edges (recall Remark 1).
Let us now show that G, (r)[S3] is acyclic, as the remaining cases are analogous. By Remark 1,
any edge C1 — Cy in G, (r)[S3] must correspond to

Cq = (131 \/TJ) ~p (J?j \/ﬁ) =: (s,
where by definition 4 < j and j < k. Therefore, any cycle C; — Cy — -+ — Cyy, in Gc,(7)[S3]
must correspond to a sequence
(@3 VT;) ~p (2 VTR) ~p Tk V) ~wp - ~p (Bme1 V Tn) ~wp (Bm V T7),

from where we would deduce i < 7 < k <[< --- < m < i, a contradiction. There-
fore, Ggc,(r)[93] is acyclic, and the same argument applies to Ggc,(r)[S4], Gee,(r)[S5), and
Gee,(r) [S6)-

Note that it is not straightforward to extend this algorithm for & > 3, as the sets S, in
which one could hope to partition BC(F') become much more complicated. For example, for
k = 3, consider the set S, containing blocked clauses of the form (x; VZ; V x), blocked on z;,

with @ > j but i < k. How could we argue that Ggc,(r)[Sm] is acyclic, or at least that we can
easily obtain a large fraction of it? This is left as an open problem.

421

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

8 Further Characterization of BC Graphs

Even though Lemma 7 and Lemma 8 provide a partial characterization of BC graphs that was
enough to derive a hardness result, we now provide a tighter partial characterization for k > 4.
Let us first introduce two standard graph theory definitions. We will say a directed graph G
is Cy-free if it does not contain edges (u,v) and (v, u) for any pair of vertices u, v, and we will
say G is k-out-regular if the out-degree of every vertex is exactly k.

Lemma 12. Given any Cs-free k-out-regular directed graph G, one can compute in polynomial
time a formula F such that GBC(kJrl)(F) =G.

Proof. In order to simplify the presentation of the proof, let us present it only for & = 3, as
its generalization to k = 3 does not change the proof but makes the notation heavier. Let
G = (V,E) be a Co-free 3-out-regular graph. We start by creating a variable z,, for every
vertex u € V. Then, for every vertex u, create a clause C,, defined as

Co=|zuv | V T | =@ VvE, VI, Viy),
(u,v)EE

where we used z,, to denote the variable x, for the i-th out-neighbor v of u in G. We will now
construct F' to ensure that BC4(F') = {C, | u € V'}. We create two new variables y and z, and
then add the following sets of clauses to the formula F':

1. (xy-clauses) For every vertex u, add to F the clauses (z,, V y), (x4, V7).

2. (yz-clauses) Add to F the clauses (y V z), (y VZ), (G V 2), ([T V 2).

3. (E-clauses) For every edge (u,v) € E, add to F the clause (Ty V x,).

First, observe that every clause C,, indeed belongs to BC4(F') as C,, is blocked on z,,, which
can be seen as the only clauses in F' where T,, appears are the F-clauses, and their resolvent is
tautological by construction. We now claim that there are no other clauses in BC4(F'). Indeed,

let C' € BC4(F') be arbitrary, and then see how the following steps prove that C' = C,, for some
vertex u.

1. The clause C cannot be blocked on y, as otherwise C' ®, (¥ V z) being tautological would
imply Z € C, but then C ®, (g V Z) being tautological would imply z € C, which is a
contradiction. Similarly, C' cannot be blocked on g, Z, or z.

2. The clause C' cannot be blocked on T, for any u € V, as otherwise C ®z— (z,, V y) being
tautological would imply § € C, but then C ®z (z,, V J) being tautological would imply
y € C, which is a contradiction.

3. From 1. and 2., we deduce that C' must be blocked on a literal z,+ for some u* € V.

4. Let vy, v, v3 be the out-neighbors of u* in G. Then, as C ®,,, (Tur V 2y,) is tautological,
we must have Z,;, € C. Similarly, we deduce z,, € C and 7, € C.

5. From the previous steps, and recalling that |C] = 4, we conclude that C' = C,,.

422

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

Having proved that BC4(F) = {C, | v € V}, we now claim that C, ~», C, if and only
if (u,v) € E. To see this, first note that if (u,v) € E, and we denote by wi,ws, w3 the
out-neighbors of v, and by vy, vs, the out-neighbors of u that are not v, then

Cy Rz, Cu = (T VT, V Ty V Ty V Ty V Ty),

which is tautological if and only if v € {wy,ws, w3}, which would imply (v,u) € E and thus
contradict G being Ca-free. For the other direction, if (u,v) ¢ E, then T, ¢ C,, and thus C,
cannot prevent ', which is blocked on x,. This concludes the proof. O

But do Cs-free k-out-regular graphs exist? The previous result will be vacuously true
otherwise! We now show that not only do they exist but also that is easy to construct them.

Lemma 13. For every k > 3, there exists a Cy-free k-out-regular graph Gy, and moreover,
such a graph can be computed in time Oy(1).

Proof. The idea of this lemma is fairly standard (cf. [5,21]). Let n = 2k + 1, and let K, be
the complete graph on n vertices, which is clearly 2k-regular. As every vertex in K, has even
degree, we have that K, admits an Eulerian cycle C = eq,..., e, where m = (;), which can
be computed in time O(n?). We construct G as the orientation of K,, according to C, which
we describe formally next. For every ¢ € {1,...,m}, let e; = {u;,v;}, and let 7; be the single
vertex in e; \ (ei N 6(i+1)%m)~ This way, we identify C' with the sequence my, 7, ..., 7. Then,
to an empty graph on n vertices, add directed edges (7, T(;41)%m) for every i € {1,...,m}.
Note that the resulting graph G is an orientation of K,,, and thus it is Cs free. As G is also
a directed Eulerian graph, the in-degree of each vertex equals its out-degree, and as those two
amounts add up to 2k, it follows that G is k-out-regular. As the construction of G takes O(n?)
time, and n = O(1), we conclude the proof. O

9 Conclusion

We started by showing how the role of blocked clauses in SAT-solving is nuanced, and further
research will be required to have a better understanding of the impact of adding blocked clauses
as a preprocessing step. In particular, a promising direction of future research is to identify
subclasses of blocked clauses that are likely to be helpful during solving time, and thus restrict
BCA to those clauses. Similarly, identifying subclasses of blocked clauses that are not helpful
during solving might result in better BCE. For a concrete example, in the Pythagorean Triple
problem [14], BCE is able to eliminate variables, which has a significant impact on solving
time. This suggests that one could perform BCE with the hope of eliminating variables, but
re-introduce some of the eliminated blocked clauses afterwards.

In terms of complexity, we have shown a fundamental asymmetry between BCE and BCA,
proving that BCA is NP-hard for every arity & > 2. In doing so, we have related BCA to
different problems in graph theory, which we hope can result in identifying tractable cases for
BCA. Moreover, we have shown a very simple approximation algorithm obtaining a constant
factor approximation for 2-BCA. It might be possible that a more clever algorithm can obtain
an even better approximation factor. We have shown as well that model counting over blocked
sets is computationally hard, answering a question of Heule and Biere [12]. This arguably
represents a drawback of BCA, as it can alter the number of models of the original formula in
a way that is hard to track.

423

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

In terms of open problems, while Sections 5 and 8 provide a decent characterization
of BC graphs that is sufficient to derive hardness results, it would be interesting to fully char-
acterize them. In other words, what graphs can arise as BC graphs?

Another interesting open problem is to show that computing a maximum length sequence
for BCA, without any restriction on the arity of the blocked clauses, is NP-hard. Finally, a last
open question is whether k-BCA admits a constant factor approximation algorithm for & > 3.

Acknowledgments. I would like to thank Marijn J.H. Heule for introducing me to Blocked
Clause Addition. 1 would also like to thank the anonymous reviewers for their helpful comments
and suggestions. This work was supported by the National Science Foundation (NSF) under
grants CCF-2108521 and CCF-2229099.

References

[1] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman. An improved fixed-parameter
algorithm for vertex cover. Information Processing Letters, 65(3):163-168, February 1998.

[2] Tomas Balyo, Andreas Frohlich, Marijn J. H. Heule, and Armin Biere. Everything You Always
Wanted to Know about Blocked Sets (But Were Afraid to Ask). In Carsten Sinz and Uwe Egly,
editors, Theory and Applications of Satisfiability Testing — SAT 2014, pages 317-332, Cham, 2014.
Springer International Publishing.

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCalL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 — Solver and Benchmark Descriptions, volume B-2020-1 of Department of
Computer Science Report Series B, pages 51-53. University of Helsinki, 2020.

[4] Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition
2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors, Proc.
of SAT Competition 2022 — Solver and Benchmark Descriptions, volume B-2022-1 of Department
of Computer Science Series of Publications B, pages 10—11. University of Helsinki, 2022.

[5] Gunnar Brinkmann. Generating regular directed graphs. Discrete Mathematics, 313(1):1-7, 2013.

[6] Marek Cygan, Fedor V Fomin, BLukasz Kowalik, Daniel Lokshtanov, D&niel Marx, Marcin
Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer International Publishing, Basel,
Switzerland, 1 edition, August 2015.

[7] H. N. de Ridder et al. Information System on Graph Classes and their Inclusions (ISGCI). https:
//graphclasses.org/classes/problem_Feedback_vertex_set.html.

[8] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating Minimum Feedback Sets and
Multicuts in Directed Graphs. Algorithmica, 20(2):151-174, February 1998.

[9] Aleksander Figiel, Vincent Froese, André Nichterlein, and Rolf Niedermeier. There and Back
Again: On Applying Data Reduction Rules by Undoing Others. In Shiri Chechik, Gonzalo Navarro,
Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms
(ESA 2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 53:1—
53:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

[10] Mathias Fleury and Daniela Kaufmann. Life span of SAT techniques, 2024.

[11] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph. In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 573—-582, 2008.

[12] Marijn J. H. Heule and Armin Biere. Blocked Clause Decomposition. In Ken McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, Lecture Notes in Computer Science, pages 423-438, Berlin, Heidelberg, 2013. Springer.

424

https://graphclasses.org/classes/problem_Feedback_vertex_set.html
https://graphclasses.org/classes/problem_Feedback_vertex_set.html

NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

(13]

(14]

23]

Marijn J. H. Heule, Matti Jarvisalo, and Armin Biere. Efficient CNF Simplification Based on
Binary Implication Graphs. In Karem A. Sakallah and Laurent Simon, editors, Theory and Ap-
plications of Satisfiability Testing - SAT 2011, pages 201-215, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and Verifying the Boolean
Pythagorean Triples Problem via Cube-and-Conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing — SAT 2016, pages 228-245, Cham, 2016.
Springer International Publishing.

Matti Jarvisalo, Armin Biere, and Marijn Heule. Blocked Clause Elimination. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 129-144, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Richard M. Karp. Reducibility among Combinatorial Problems, page 85-103. The IBM Research
Symposia Series. Springer US, Boston, MA, 1972.

Benjamin Kiesl, Adridn Rebola-Pardo, and Marijn J. H. Heule. Extended resolution simulates
DRAT. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Rea-
soning, Lecture Notes in Computer Science, page 516-531, Cham, 2018. Springer International
Publishing.

Benjamin Kiesl-Reiter and Mike Whalen. Proofs for incremental SAT with inprocessing. In
FMCAD 2023, 2023.

O. Kullmann. On a generalization of extended resolution. Discrete Applied Mathematics,
96-97(1):149-176, October 1999.

J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4):777-788, 1983.

Lex Schrijver. Bounds on the number of Eulerian orientations. Combinatorica, 3:375—-380, January
1983.

Bernardo Subercaseaux and Marijn J. H. Heule. The packing chromatic number of the infinite
square grid is 15. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Paris, France, April 22-27, 2023, Proceedings, Part I, volume 13993 of Lecture Notes in
Computer Science, page 389—406. Springer, 2023.

Emre Yolcu. Lower bounds for set-blocked clauses proofs, 2024.

425

	1 Introduction
	2 Should they Stay or Should they Go?
	3 Preliminaries
	4 BC Graphs and Related Problems
	5 Characterization of BC Graphs
	6 Hardness Results
	7 Approximation Algorithms
	8 Further Characterization of BC Graphs
	9 Conclusion
	References

