
Formal Verification of the Empty Hexagon Number
Bernardo Subercaseaux �

Carnegie Mellon University, Pittsburgh, PA, USA

Wojciech Nawrocki �

Carnegie Mellon University, Pittsburgh, PA, USA

James Gallicchio �

Carnegie Mellon University, Pittsburgh, PA, USA

Cayden Codel �

Carnegie Mellon University, Pittsburgh, PA, USA

Mario Carneiro �

Carnegie Mellon University, Pittsburgh, PA, USA

Marijn J. H. Heule �

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
A recent breakthrough in computer-assisted mathematics showed that every set of 30 points in the
plane in general position (i.e., no three points on a common line) contains an empty convex hexagon.
Heule and Scheucher solved this problem with a combination of geometric insights and automated
reasoning techniques by constructing CNF formulas „n, with O(n4) clauses, such that if „n is
unsatisfiable then every set of n points in general position must contain an empty convex hexagon.
An unsatisfiability proof for n = 30 was then found with a SAT solver using 17 300 CPU hours of
parallel computation. In this paper, we formalize and verify this result in the Lean theorem prover.
Our formalization covers ideas in discrete computational geometry and SAT encoding techniques
by introducing a framework that connects geometric objects to propositional assignments. We see
this as a key step towards the formal verification of other SAT-based results in geometry, since the
abstractions we use have been successfully applied to similar problems. Overall, we hope that our
work sets a new standard for the verification of geometry problems relying on extensive computation,
and that it increases the trust the mathematical community places in computer-assisted proofs.

2012 ACM Subject Classification Theory of computation æ Logic and verification

Keywords and phrases Empty Hexagon Number, Discrete Computational Geometry, Erd�s-Szekeres

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.35

Supplementary Material Software (Source Code):
https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024 [37]

archived at swh:1:dir:29dc0e7145296997bcb1230b4e03cd14c8d75617

Funding Supported by the National Science Foundation (NSF) grant CCF-2229099.

1 Introduction

Mathematicians are often rightfully skeptical of proofs that rely on extensive computation
(e.g., the controversy around the four color theorem [42]). Nonetheless, many mathematically-
interesting theorems have been resolved with the help of computers. SAT solving in particular
has been a powerful tool for mathematics, successfully resolving Keller’s conjecture [2], the
packing chromatic number of the infinite grid [35], the Pythagorean triples problem [20],
Lam’s problem [3], and one case of the Erd�s discrepancy conjecture [25]. Notably, all of
these proofs follow the same two-step structure:

© Bernardo Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario Carneiro, and

Marijn J. H. Heule;

licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).

Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bsuberca@andrew.cmu.edu
https://orcid.org/0000-0003-2295-1299
mailto:wjnawrocki@cmu.edu
https://orcid.org/0000-0002-8839-0618
mailto:jgallicc@andrew.cmu.edu
https://orcid.org/0000-0002-0838-3240
mailto:ccodel@andrew.cmu.edu
https://orcid.org/0000-0003-3588-4873
mailto:mcarneir@andrew.cmu.edu
https://orcid.org/0000-0002-0470-5249
mailto:mheule@andrew.cmu.edu
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.4230/LIPIcs.ITP.2024.35
https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024
https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024
https://archive.softwareheritage.org/swh:1:dir:29dc0e7145296997bcb1230b4e03cd14c8d75617;origin=https://github.com/bsubercaseaux/EmptyHexagonLean;visit=swh:1:snp:0e11d6564bd15317306605932e0acd87cf3d7f80;anchor=swh:1:rev:d7f798ffc8deabc2f3ca1ae36e92e0250e57c205
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Formal Verification of the Empty Hexagon Number

(Reduction) Show that the mathematical theorem of interest is true if a concrete
propositional formula „ is unsatisfiable.
(Solving) Show that „ is indeed unsatisfiable.

Formal methods researchers have developed techniques that make the solving step
reliable, reproducible, and trustworthy. For example, modern SAT solvers produce proofs of
unsatisfiability in formal proof systems such as DRAT [43] that can in turn be checked with
verified proof checkers such as cake_lpr [41]. These tools ensure that when a SAT solver
declares a formula „ to be unsatisfiable, the formula is indeed unsatisfiable. In contrast, the
reduction step is not as trustworthy, as it can use problem-specific mathematical insights that,
when left unverified, threaten the correctness of the proof. A perfect example of a complex
reduction can be found in a recent breakthrough in discrete computational geometry due to
Heule and Scheucher [21]. They constructed (and solved) a formula „ whose unsatisfiability
implies that every set of 30 points in the plane, without three in a common line, must
contain an empty convex hexagon. However, as is common with such results, their reduction
argument was only sketched, relied heavily on intuition, and had several gaps.

In this paper we complete and formalize their reduction in the Lean theorem prover [10].
We do so by connecting existing geometric definitions in the mathematical proof library
mathlib [29] to the unsatisfiability of a particular SAT instance, thus setting a new standard
for verifying results which rely on extensive computation. Our formalization is publicly
available at https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024.

Verification of SAT proofs. Formal verification makes the SAT solving step trustworthy. For
example, theorem provers and formal methods tools have been used to verify solvers [27,31,33]
and proof checkers [26, 41]. However, the reduction step has not received similar scrutiny,
with only a few reductions having been verified. For instance, Cruz-Filipe and coauthors [8,9]
used the Coq proof assistant to verify the reduction of the Pythagorean triples problem [20]
to SAT, and Delemazure and colleagues [11] used Isabelle/HOL to verify SAT-based results in
social choice theory for which minimal unsatisfiable sets of clauses were too large to extract
human-readable proofs. More generally, Giljegård and Wennerbreck [16] built a CakeML
library of verified SAT encodings, which they used to write verified SAT reductions for
di�erent puzzles, such as the N-queens problem. In this paper, we use reduction verification
techniques based on those of Codel, Avigad, and Heule [6], which they developed in Lean.

Formal verification for SAT-based combinatorial geometry was pioneered by MariÊ [28].
He formally verified a reduction of a case of the Happy Ending Problem (see below) to SAT
in Isabelle/HOL. We compare our work to his in Section 7.

Lean. Initially developed by Leonardo de Moura in 2013 [10], the Lean theorem prover has
become a popular choice for formalizing modern mathematical research. Recent successes
include the Liquid Tensor Experiment [5] and the proof of the polynomial Freiman-Ruzsa
conjecture [17,34], both of which brought significant attention to Lean. A major selling point
for Lean is the mathlib project [29], a monolithic formalization of foundational mathematics.
By relying on mathlib for definitions, lemmas, and proof tactics, mathematicians can focus
on the interesting components of a formalization while avoiding duplication of proof e�orts.
In turn, by making a formalization compatible with mathlib, future proof e�orts can rely on
work done today. In this spirit, we connect our results to mathlib as much as possible.

The Empty Hexagon Number. In the 1930s, Erd�s and Szekeres, inspired by Esther Klein,
showed that for any k Ø 3, one can find a su�ciently large number n such that every n points
in the plane in general position (i.e., with no three points collinear) contain a convex k-gon,

https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024

B. Subercaseaux et al. 35:3

i.e., a convex polygon with k vertices [13]. The minimal such n is denoted g(k). The same
authors later showed that g(k) > 2k≠2 and conjectured that this bound is tight [12]. Indeed,
it is known that g(5) = 9 and g(6) = 17, with the latter result obtained by Szekeres and
Peters 71 years after the initial conjecture via exhaustive computer search [40]. Larger cases
remain open, with g(k) Æ 2k+o(k) being the best known upper bound [22,38]. This problem
is now known as the Happy Ending Problem, as it led to the marriage of Klein and Szekeres.

In a similar spirit, Erd�s defined h(k) to be the minimal number of points in general
position that is guaranteed to contain a k-hole, or empty k-gon, meaning a convex k-gon
with no other point inside. It is easy to check that h(3) = 3 and h(4) = 5. In 1978, Harborth
established that h(5) = 10 [19]. Surprisingly, in 1983, Horton discovered constructions of
arbitrarily large point sets that avoid k-holes for k Ø 7 [23]. Only h(6) remained. The Empty

Hexagon Theorem, establishing h(6) to be finite, was proven independently by Gerken [15]
and Nicolás [30] in 2006. In 2008, Valtr narrowed the range of possible values down to
30 Æ h(6) Æ 1717, where the problem remained until the breakthrough by Heule and
Scheucher [21], who used a SAT solver to prove that h(6) Æ 30, a result we refer to as the
Empty Hexagon Number.

2 Outline of the proof

We will incrementally build su�cient machinery to prove the following theorem.

I Theorem. Any finite set of 30 or more points in the plane in general position has a 6-hole.

Outline of the proof. We begin Section 3 with a precise statement in Lean of the above
theorem and involved geometric terms. In a nutshell, the proof consists of building a CNF
formula „n such that from any set S of n points in general position without a 6-hole we can
construct a satisfying assignment ·S for „n. Then, checking that „30 is unsatisfiable implies
that no such set S of size 30 exists, thus implying the theorem. In order to construct „n,
one must first discretize the continuous space R2. Triple orientations, presented in Section 4,
are a way to achieve this. Concretely, any three points p, q, r in general position correspond
to either a clockwise turn, denoted by ‡(p, q, r) = ≠1, or a counterclockwise turn, denoted
by ‡(p, q, r) = +1, depending on whether r is above the directed line ≠æpq or not. In this way,
every set S of points in general position induces an assignment ‡S : S3

æ {≠1, +1} of triple
orientations. We show in Section 4 that whether S contains a k-hole (i.e., HasEmptyKGon k S)
depends entirely on ‡S . As each orientation ‡(p, q, r) can only take two values, we can
represent each orientation ‡(p, q, r) with a boolean variable. Any set of points S in general
position thus induces an assignment ·S over its orientation variables. Because HasEmptyKGon
k S depends only on ‡S , it can be written as a boolean formula over the orientation variables.
Unfortunately, it is practically infeasible to determine if such a formula is satisfiable with a
naïve encoding. In order to create a better encoding, Section 5 shows that one can assume,
without loss of generality, that the set of points S is in canonical position. Canonicity
eliminates a number of symmetries from the problem – ordering, rotation, and mirroring –
significantly reducing the search space. In Section 6, we show the correctness of the e�cient
encoding of Heule and Scheucher [21] for constructing a smaller CNF formula „n. Concretely,
we show that any finite set of n points in canonical position containing no 6-hole would give
rise to a propositional assignment ·S satisfying „n. However, „30 (depicted in Section 6) is
unsatisfiable; therefore no such set of size 30 exists and the theorem follows by contradiction.
As detailed in Section 6, to establish unsatisfiability of „30 we passed the formula produced
by our verified encoder to a SAT solver, and used a verified proof checker to certify the
correctness of the resulting unsatisfiability proof. The construction of „n and ·S involves
sophisticated optimizations which we justify using geometric arguments. J

ITP 2024

35:4 Formal Verification of the Empty Hexagon Number

3 Geometric Preliminaries

We identify points with elements of R2. Concretely, abbrev Point := EuclideanSpace R
(Fin 2). The next step is to define what it means for a k-gon to be empty (with respect to a
set of points) and convex, which we do in terms of mathlib primitives.

/-- ‘EmptyShapeIn S P’ means that ‘S’ carves out an empty shape in ‘P’:
the convex hull of ‘S’ contains no point of ‘P’ other than those already in ‘S’. -/
def EmptyShapeIn (S P : Set Point) : Prop :=

’ p œ P \ S, p /œ convexHull R S

/-- ‘ConvexIndep S’ means that ‘S’ consists of extremal points of its convex hull,
i.e., the point set encloses a convex polygon. -/
def ConvexIndep (S : Set Point) : Prop :=

’ a œ S, a /œ convexHull R (S \ {a})

/-- ‘ConvexEmptyIn S P’ means that ‘S’ forms a convex empty polygon in ‘P’ -/
def ConvexEmptyIn (S P : Set Point) : Prop :=

ConvexIndep S · EmptyShapeIn S P

/-- ‘HasEmptyKGon k P’ means that ‘P’ has a convex, empty ‘k’-gon -/
def HasEmptyKGon (k : Nat) (P : Set Point) : Prop :=

÷ S : Finset Point, S.card = k · øS ™ P · ConvexEmptyIn S P

Let SetInGenPos be a predicate that states that a set of points is in general position, i.e.,
no three points lie on a common line (made precise in Section 4). With this we can already
state the core theorem.

theorem hole_6_theorem : ’ (pts : Finset Point),
SetInGenPos pts æ pts.card = 30 æ HasEmptyKGon 6 pts

At the root of the encoding of Heule and Scheucher is the idea that the ConvexEmptyIn
predicate can be determined by analyzing only triangles. In particular, that a set s of k
points in a pointset S form an empty convex k-gon if and only if all the

!k
3

"
triangles induced

by vertices in s are empty with respect to S. This is discussed informally in [21, Section 3,
Eq. 4]. Concretely, we prove the following theorem:

theorem ConvexEmptyIn.iff_triangles {s : Finset Point} {S : Set Point}
(sS : øs ™ S) (sz : 3 Æ s.card) :
ConvexEmptyIn s S ¡
’ (t : Finset Point), t.card = 3 æ t ™ s æ ConvexEmptyIn t S

Proof sketch. We first prove a simple monotonicity lemma: if ConvexIndep(s), then
ConvexIndep(sÕ) for every sÕ

™ s, and similarly EmptyShapeIn(s, S) ∆ EmptyShapeIn(sÕ, S)
for every set of points S. By instantiating this monotonicity lemma over all subsets t ™ s
with |t| = 3 we get the forward direction of the theorem. For the backward direction it is
easier to reason contrapositively: if the ConvexIndep predicate does not hold of s, or if s is
not empty w.r.t. S, then we want to show that there is a triangle t ™ s that is also not empty
w.r.t. S. To see this, let H be the convex hull of s, and then by Carathéodory’s theorem (cf.
theorem convexHull_eq_union from mathlib), every point in H is a convex combination of at
most 3 points in s, and consequently, of exactly 3 points in s. If s is non-empty w.r.t. S,
then there is a point p œ S \ s that belongs to H, and by Carathéodory, p is a convex
combination of 3 points in s \ {a}, and thus lies inside a triangle t ™ s (Figure 1a). If s does

B. Subercaseaux et al. 35:5

(a) (b)

Figure 1 Illustration of the proof for ConvexEmptyIn.iff_triangles. The left subfigure shows
how a point in S \ s that lies inside s will be inside one of the triangles induced by the convex hull
of s (orange triangle). The right subfigure shows how if the ConvexIndep predicate does not hold of
s, then some point a œ s will be inside one of the triangles induced by the convex hull of s \ {a}.

not hold ConvexIndep, then there is a point a œ s such that a œ convexHull(s \ {a}), and by
Carathéodory again, a is a convex combination of 3 points in s, and thus lies inside a triangle
t ™ s \ {a} (Figure 1b). J

In the next section, we show how to use boolean variables to encode which triangles (and,
by the above theorem, which k-holes) are empty in a pointset.

4 Triple Orientations

An essential step for obtaining computational proofs of geometric results is discretization:
problems concerning the existence of an object O in a continuous search space like R2 must
be reformulated in terms of the existence of a discrete, finitely-representable object O

Õ that a
computer can search for. It is especially challenging to discretize problems in which the desired
geometric object O is characterized by very specific coordinates of points, thus requiring
the computer to use floating-point arithmetic, which su�ers from numerical instability.
Fortunately, this is not the case for Erd�s-Szekeres-type problems such as determining the
value of h(k), as their properties of interest (e.g., convexity and emptiness) can be described
in terms of axiomatizable relationships between points and lines (e.g., point p is above the
line ≠æqr, lines ≠æqr and ≠æ

st intersect, etc.) that are invariant under rotation, translation, and
even small perturbations of the coordinates. We can discretize these relationships with
boolean variables, thus making us agnostic to the specific coordinates of the points. The
combinatorial abstraction that has been most widely used in Erd�s-Szekeres-type problems is
that of triple orientations [21,32], also known as signotopes [14,36], Knuth’s counterclockwise

relation [24], or signatures [39]. Given points p, q, r, their triple-orientation is defined as:

‡(p, q, r) = sign det

Q

a
px qx rx

py qy ry

1 1 1

R

b =

Y
__]

__[

1 if p, q, r are oriented counterclockwise,

0 if p, q, r are collinear,
≠1 if p, q, r are oriented clockwise.

.

We define ‡ in Lean using mathlib’s definition of the determinant.

inductive Orientation : Type where
| cw -- Clockwise turn
| ccw -- Counter-clockwise turn
| collinear -- Collinear

ITP 2024

35:6 Formal Verification of the Empty Hexagon Number

p

q

r

s

t

Figure 2 Illustration of triple orientations, where ‡(p, r, q) = ≠1, ‡(r, s, q) = 1, and ‡(p, s, t) = 0.

noncomputable def ‡ (p q r : Point) : Orientation :=
let det := Matrix.det !![p.x, q.x, r.x ; p.y, q.y, r.y ; 1, 1, 1]
if 0 < det then ccw
else if det < 0 then cw
else collinear

Using the function ‡ we can define the notion of general position for collections (e.g.,
finite sets, lists, etc.) of points, simply postulating that ‡(p, q, r) ”= 0 for every three distinct
points p, q, r in the collection. Furthermore, we can start formalizing sets of points that are
equivalent with respect to their triple orientations, and consequently, properties of pointsets
that are fully captured by their triple orientations (orientation properties).

structure ‡Equiv (S T : Set Point) where
f : Point æ Point
bij : Set.BijOn f S T
parity : Bool
‡_eq : ’ (p œ S) (q œ S) (r œ S), ‡ p q r = parity ^^^ ‡ (f p) (f q) (f r)

def OrientationProperty (P : Set Point æ Prop) :=
’ {{S T}}, S ƒ‡ T æ P S æ P T -- ‘ƒ‡‘ is infix notation for ‘‡Equiv‘

Our notion of ‡ equivalence allows for all orientations to be flipped. The ^^^ (xor)
operation does nothing when parity is false, and negates the orientation when parity is true.
See Section 5 for more details.

To illustrate how these notions will be used, let us consider the property fik(S) ,
“pointset S contains an empty convex k-gon”, formalized as HasEmptyKGon.

Based on ConvexEmptyIn.iff_triangles, we know that fik(S) can be written in terms of
whether certain triangles are empty w.r.t S. We can define triangle membership using ‡,
and prove its equivalence to the geometric definition.

/-- ‘Means that ‘a’ is in the triangle ‘pqr’, possibly on the boundary. -/
def PtInTriangle (a : Point) (p q r : Point) : Prop :=

a œ convexHull R {p, q, r}

/-- ‘Means that ‘a’ is in the triangle ‘pqr’ strictly, not on the boundary. -/
def ‡PtInTriangle (a p q r : Point) : Prop :=

‡ p q a = ‡ p q r · ‡ p a r = ‡ p q r · ‡ a q r = ‡ p q r

theorem ‡PtInTriangle_iff {a p q r : Point} (gp : InGenPos4 a p q r) :
‡PtInTriangle a p q r ¡ PtInTriangle a p q r

B. Subercaseaux et al. 35:7

Heule and Scheucher used the orientation-based definition [21] and, as it is common in
the area, its equivalence to the ground-truth mathematical definition was left implicit. This
equivalence, formalized in theorem ‡PtInTriangle_iff is not trivial to prove: the forward
direction in particular requires reasoning about convex combinations and determinants. Using
the previous theorem, we can generalize to k-gons as follows.

def ‡IsEmptyTriangleFor (a b c : Point) (S : Set Point) : Prop :=
’ s œ S, ¬‡PtInTriangle s a b c

def ‡HasEmptyKGon (n : Nat) (S : Set Point) : Prop :=
÷ s : Finset Point, s.card = n · øs ™ S · ’ (a œ s) (b œ s) (c œ s),
a ”= b æ a ”= c æ b ”= c æ ‡IsEmptyTriangleFor a b c S

theorem ‡HasEmptyKGon_iff_HasEmptyKGon {n : Nat} (gp : ListInGenPos pts) :
‡HasEmptyKGon n pts.toFinset ¡ HasEmptyKGon n pts.toFinset

Then, because ‡HasEmptyKGon is ultimately defined in terms of ‡, we can prove

lemma OrientationProperty_‡HasEmptyKGon {n : Nat} : OrientationProperty
(‡HasEmptyKGon n)

Which in combination with theorem ‡HasEmptyKGon_iff_HasEmptyKGon, provides

theorem OrientationProperty_HasEmptyKGon {n : Nat} : OrientationProperty
(HasEmptyKGon n)

The previous theorem is important for two reasons. First, if ‡ is invariant under certain
point transformations (e.g., rotations, translations, etc.), then any orientation property is
invariant under the same transformations. This is a powerful tool for performing symmetry
breaking (see Section 5). For a concrete example, consider a proof of an Erd�s-Szekeres-type
result that starts by saying “we assume without loss of generality that points p1, . . . , pn all

have positive y-coordinates.” Since ‡ is invariant under translation, we can see that this
assumption indeed does not impact the validity of the proof.

Second, as introduced at the beginning of this section, SAT encodings for Erd�s-Szekeres-
type problems use triple orientations to capture properties like convexity and emptiness,
thus discretizing the problem. Because we have proved that fik(S) is an orientation property,
the values of ‡ on the points in S contain enough information to determine whether fik(S)
holds. Therefore, we have proved that given n points, it is enough to analyze the values
of ‡ over these points, a discrete space with at most 2n3 possibilities, instead of grappling
with a continuous search space on n points,

!
R2

"n. This is the key idea that will allow us to
transition from the finitely-verifiable statement “no set of triple orientations over n points

satisfies property fik” to the desired statement “no set of n points satisfies property fik.”

4.1 Properties of orientations
We now prove, assuming points are sorted left-to-right (which is justified in Section 5), that
certain ‡-implication-properties hold. Consider four points p, q, r, s with px < qx < rx < sx.
If p, q, r are oriented counterclockwise, and q, r, s are oriented counterclockwise as well, then
it follows that p, r, s must be oriented counterclockwise (see Figure 3). We prove a number
of properties of this form:

ITP 2024

35:8 Formal Verification of the Empty Hexagon Number

◊1

◊2 ◊2

◊3

◊4

◊3

p

q

r

s

p

q

r

s

p

q

r

s

Figure 3 Illustration for ‡(p, q, r) = 1 · ‡(q, r, s) = 1 =∆ ‡(p, r, s) = 1. As we have assumptions
◊3 > ◊2 > ◊4 by the forward direction of the slope-orientation equivalence, we deduce ◊3 > ◊4, and
then conclude ‡(p, r, s) = 1 by the backward direction of the slope-orientation equivalence.

theorem ‡_prop1 (h : Sorted4 p q r s) (gp : InGenPos4 p q r s) :
‡ p q r = ccw æ ‡ q r s = ccw æ ‡ p r s = ccw

[. . .]

theorem ‡_prop3 (h : Sorted4 p q r s) (gp : InGenPos4 p q r s) :
‡ p q r = cw æ ‡ q r s = cw æ ‡ p r s = cw

Our proofs of these properties are based on an equivalence between the orientation
of a triple of points and the slopes of the lines that connect them. Namely, if p, q, r
are sorted from left to right, then (i) ‡(p, q, r) = 1 ≈∆ slope(≠æpq) < slope(≠æpr) and
(ii) ‡(p, q, r) = 1 ≈∆ slope(≠æpr) < slope(≠æqr). By first proving these slope-orientation

equivalences we can then easily prove ‡_prop1 and others, as illustrated in Figure 3.
These properties will be used in Section 6 to justify clauses (4) and (5) of the SAT

encoding; these clauses are commonly added in orientation-based SAT encodings to reduce
the search space by removing some “unrealizable” orientations [21,32,36,39].

(¬oa,b,c ‚ ¬oa,c,d ‚ oa,b,d) · (oa,b,c ‚ oa,c,d ‚ ¬oa,b,d)

5 Symmetry Breaking

Symmetry breaking plays a key role in SAT solving by reducing the search space of satisfying
assignments for a formula [1, 7], thus making a wider range of formulas practical to solve.
For example, if one proves that all satisfying assignments to a formula „ have either (i)
x1 = 0, x2 = 1, or (ii) x1 = 1, x2 = 0, and that there is a bijection between satisfying
assignments of forms (i) and (ii), then one can assume, without loss of generality, that
x1 = 0, x2 = 1, and thus add unit clauses x1 and x2 to the formula „ while preserving its
satisfiability. There are several techniques that can automatically find symmetry-breaking
clauses, such as structured bounded variable addition [18], but it is accepted wisdom in the
SAT-solving community that problem-specific symmetry breaking is more e�ective.

In their proof of the Empty Hexagon Number, Heule and Scheucher showed that for any
list of points in general position, there exists a list of points in canonical position with the
same triple-orientations. Canonical position is defined as follows.

I Definition 1 (Canonical Position). A list of points L = (p1, . . . , pn) is said to be in canonical
position if it satisfies all of the following properties:

B. Subercaseaux et al. 35:9

a

b
c

d

(a)

aÕ

bÕ cÕ
dÕ

(b)

a

b

c

d

e

f

(c)

aÕ

bÕ

cÕ

dÕ

eÕ

f Õ

(d)

Figure 4 The pointsets depicted in Figures 4a and 4b are ‡-equivalent with parity := false
since the bijection f defined by (a, b, c, d) ‘æ (bÕ

, d
Õ
, c

Õ
, a

Õ) satisfies ‡(pi, pj , pk) = ‡(f(pi), f(pj), f(pj))
for every {pi, pj , pk} ™ {a, b, c, d}. On the other hand, no orientation-preserving bijection exists
for Figures 4c and 4d, which are only ‡-equivalent with parity := true.

(General Position) No three points are collinear, i.e., for all 1 Æ i < j < k Æ n, we have

‡(pi, pj , pk) ”= 0.

(x-order) The points are sorted with respect to their x-coordinates, i.e., x(pi) < x(pj) for all

1 Æ i < j Æ n.

(CCW-order) All orientations ‡(p1, pi, pj), with 1 < i < j Æ n, are counterclockwise.

(Lex-order) The list of orientations

1
‡

1
pÁ n

2 Ë≠1, pÁ n
2 Ë, pÁ n

2 Ë+1

2
, . . . , ‡ (p2, p3, p4)

2
is not lex-

icographically smaller than the list

1
‡

1
pÂ n

2 Ê+1, pÂ n
2 Ê+2, pÂ n

2 Ê+3

2
, . . . , ‡ (pn≠2, pn≠1, pn)

2
.

The three ordering properties each break a di�erent symmetry. First, the x-order property
breaks symmetry due to how we label the points by ensuring that the points are labeled
from left to right. The x-order property also simplifies the encoding of clauses (1)–(5), as
they rely on the points being sorted. Second, the CCW-order property breaks symmetry due
to rotation by fixing the orientations involving the leftmost point p1.

Third, the lex-order property breaks symmetry due to reflection. Reflecting a set of
points S over a line (e.g., with the map (x, y) ‘æ (≠x, y)) preserves the presence of k-holes
and convex k-gons. This operation does not quite preserve orientations, but rather flips
them (clockwise orientations become counterclockwise and vice versa). Our definition of
‡-equivalence includes a parity flag for this purpose: parity := false corresponds to the
case that orientations are the same, and parity := true corresponds to the case that all
orientations have been flipped. See the point sets in Figure 4 for an example.

The lex-order property, then, picks between a set of points and its reflection over x = 0.
The vector of consecutive orientations from the middle to the left is assumed to be at least
as big as the vector of consecutive orientations from the middle to the right. This constraint
is not geometrically meaningful, but is easy to implement in the SAT encoding.

We prove that there always exists a ‡-equivalent point set in canonical position.

theorem symmetry_breaking : ListInGenPos l æ
÷ w : CanonicalPoints, Nonempty (l.toFinset ƒ‡ w.points.toFinset)

ITP 2024

35:10 Formal Verification of the Empty Hexagon Number

x

y

1

2

3

4

5

6

7

8

9

(a) The original list of points.

x

y

1

2

3

4

5

6

7

8

9

(b) There always exists a rotation
(in this case by 45¶) that makes
all the x-coordinates di�erent.

x

y

1

2

3

4

5

6

7

8

9

(c) After translating, the leftmost
point is at (0, 0).

x

y

1

2 (0, Œ)

3

4

5 6

7
8

9

(d) Result after applying the map
(x, y) ‘æ (y/x, 1/x).

x

y

1

2

3

4

5 6

7
8

9

(e) Point 2 is brought back into
the real plane.

x

y
1

2

3
4

5 6

7

8 9

(f) Points are relabeled from left
to right.

Figure 5 Illustration of the proof of the symmetry breaking theorem. Note that the highlighted
holes are preserved as ‡-equivalence is preserved. For simplicity we have omitted the illustration of
the Lex order property.

Proof Sketch. The proof proceeds in 6 steps, illustrated in Figure 5. In each of the steps,
we construct a new list of points that is ‡-equivalent to the previous one, with the last one
being in canonical position.1 The main justification for each step is that, given that the
function ‡ is defined as a sign of the determinant, applying transformations that preserve
(or, when parity := true, uniformly reverse) the sign of the determinant will preserve (or
uniformly reverse) the values of ‡.

For example, given the identity det(AB) = det(A) det(B), if we apply a transformation
to the points that corresponds to multiplying by a matrix B such that det(B) > 0, then
sign(det(A)) = sign(det(AB)), and thus orientations will be preserved. Step 1: we transform
the list of points so that no two points share the same x-coordinate. This can be done by
applying a rotation to the list of points, which corresponds to multiplying by a rotation
matrix. Rotations always have determinant 1. Step 2: we translate all points by a constant
vector t, which corresponds to multiplying by a translation matrix, to bring the leftmost
point p1 to position (0, 0). As a result, every other point has a positive x-coordinate.

1 Even though we defined ‡-equivalence for sets of points, our formalization goes back and forth between
sets and lists. Given that symmetry breaking distinguishes between the order of the points e.g., x-order,
this proof proceeds over lists. All permutations of a list are immediately ‡-equivalent.

B. Subercaseaux et al. 35:11

Let L2 be the list of points excluding p1 after Step 2. Step 3: we apply the projective
transformation f : (x, y) ‘æ (y/x, 1/x) to every point in L2, showing that this preserves
orientations within L2. To see that this mapping is a ‡-equivalence consider that

sign det

Q

a
px qx rx

py qy ry

1 1 1

R

b = sign det

Q

a

Q

a
0 0 1
1 0 0
0 1 0

R

b

Q

a
py/px

qy/qx
ry/rx

1/px
1/qx

1/rx

1 1 1

R

b

Q

a
px 0 0
0 qx 0
0 0 rx

R

b

R

b

= sign

Q

a1 · det

Q

a
py/px

qy/qx
ry/rx

1/px
1/qx

1/rx

1 1 1

R

b · pxqxrx

R

b = sign det

Q

a
py/px qy/qx ry/rx

1/px 1/qx 1/rx

1 1 1

R

b .

To preserve orientations with respect to the leftmost point (0, 0), we set f((0, 0)) = (0, Œ), a
special point that is treated separately as follows. As the function ‡ takes points in R2 as

arguments, we need to define an extension ‡(0,Œ)(q, r) =
I

1 if qx < rx

≠1 otherwise.
, We then show

that ‡((0, 0), q, r) = ‡(0,Œ)(f(q), f(r)) for all points q, r œ L2.
Step 4: we sort the list L2 by x-coordinate in increasing order, thus obtaining a list L3.

This can be done while preserving ‡-equivalence because sorting corresponds to a permutation,
and all permutations of a list are ‡-equivalent by definition. Step 5: we check whether the
Lex order condition above is satisfied in L3, and if it is not, we reflect the pointset, which
preserves ‡-equivalence with parity := true. Note that in such a case we need to relabel
the points from left to right again.

Step 6: we bring point (0, Œ) back into the range by first finding a constant c such that
all points in L3 are to the right of the line y = c, and then finding a large enough value M
such that (c, M) has the same orientation with respect to the other points as (0, Œ) did,
meaning that ‡((c, M), q, r) = ‡(0,Œ)(q, r) for every q, r œ L3.

Finally, we note that the list of points obtained in step 6 satisfies the CCW-order property
by the following reasoning: if 1 < i < j Æ n are indices, then

‡(p1, pi, pj) = 1 ≈∆ ‡((c, M), pi, pj) = 1
≈∆ ‡(0,Œ)(pi, pj) = 1 (By step 6)
≈∆ (pi)x < (pj)x (By definition of ‡(0,Œ))
≈∆ true. (By step 4, since points are sorted and i < j)

This concludes the proof. J

Compared to the symmetry-breaking transformation described by Heule and Scheucher,
our transformation is simpler. Nonetheless, proving the above theorem in Lean was tedious,
as we had to show that the properties from the previous steps were preserved at each new
step, which carried substantial proof burden. In particular, steps 3 through 6 required careful
bookkeeping and special handling of the distinguished point p1.

6 The Encoding and Its Correctness

Having established the reduction to orientations, and the symmetry-breaking assumption of
canonicity, we now turn to the construction of a CNF formula „n whose unsatisfiability would
imply that every set of n points contains a 6-hole.2 The formula is detailed in Section 6.

2 Satisfiability of „n would not necessarily imply the existence of a point set without a 6-hole, due to the
realizability problem (see e.g., [36]).

ITP 2024

35:12 Formal Verification of the Empty Hexagon Number

ci;a,b,c æ ((oa,b,c ¡ oa,i,c) · (oa,b,c ¡ oa,i,b)) for all 2 Æ a < i < b < c Æ n (1)

ci;a,b,c æ ((oa,b,c ¡ oa,i,c) · (oa,b,c ¡ ob,i,c)) for all 2 Æ a < b < i < c Æ n (2)

1 fi

a<i<c
i ”=b

ci;a,b,c

2
æ ha,b,c for all 2 Æ a < b < c Æ n (3)

oa,b,c · oa,c,d æ oa,b,d for all 2 Æ a < b < c < d Æ n (4)

oa,b,c · oa,c,d æ oa,b,d for all 2 Æ a < b < c < d Æ n (5)

1
oÁ n

2 Ë≠1,Á n
2 Ë,Á n

2 Ë+1, . . . , o2,3,4

2
≤lex

1
oÂ n

2 Ê+1,Â n
2 Ê+2,Â n

2 Ê+3, . . . , on≠2,n≠1,n

2
(6)

oa,b,c · ob,c,d æ u4

a,c,d for all 2 Æ a < b < c < d Æ n (7)

oa,b,c · ob,c,d æ v4

a,c,d for all 2 Æ a < b < c < d Æ n (8)

u4

a,b,c · ob,c,d · ha,b,d æ u5

a,c,d for all 2 Æ a < b < c < d Æ n, a + 1 < b (9)

u4

a,c,d æ oa,c,d for all 2 Æ a < c < d Æ n, a + 1 < c (10)

v4

a,c,d æ oa,c,d for all 2 Æ a < c < d Æ n, a + 1 < c (11)

¬(u5

a,d,e · oa,p,e) for all 2 Æ a < d < e Æ n, a < p < e, a + 2 < d (12)

¬(u5

a,d,e · od,e,f) for all 2 Æ a < d < e < f Æ n, a + 2 < d (13)

¬(u4

a,c,d · v4

a,cÕ,d · ha,c,cÕ) for all 2 Æ a < c < cÕ < d Æ n, a + 1 < c (14)

¬(u4

a,c,d · v4

a,cÕ,d · ha,cÕ,c) for all 2 Æ a < cÕ < c < d Æ n, a + 1 < cÕ (15)

¬(v4

a,c,d · oc,d,e · ha,c,e) for all 2 Æ a < c < d < e Æ n, a + 1 < c (16)

Figure 6 Encoding based on that of Heule and Scheucher for the Empty Hexagon Number [21].
Each line determines a set of clauses. Unsatisfiability of the formula below for n = 30 implies
h(6) Æ 30, as detailed throughout the paper.

B. Subercaseaux et al. 35:13

a

÷b c

d

(a) u4
a,c,d

a

÷b c

d

(b) v4
a,c,d

a

÷b
÷c

d

e

(c) u5
a,d,e

Figure 7 Illustration of the 4-cap (7a), 4-cup (7b), and 5-cap (7c) variables. The highlighted
region denotes an empty triangle.

Variables. Let S = (p1, . . . , pn) be the list of points in canonical position. We explain the
variables of „n by specifying their values in the propositional assignment ·S that is our
intended model of „n corresponding to S. We then have:

For every 2 Æ a < b < c Æ n, oa,b,c is true i� ‡(pa, pb, pc) = +1.3
The first optimization observes that orientations are antisymmetric: if (p, q, r) is counter-
clockwise then (q, p, r) is clockwise, etc. Thus one only needs oa,b,c for ordered triples
(a, b, c), reducing the number of orientation variables by a factor of 3! = 6 relative to
using all triples. The second optimization uses the CCW-order property of canonical
positions: since all o1,a,b are true, we may as well omit them from the encoding.
Next, for every a < b < c with a < i < b or b < i < c, the variable ci;a,b,c is true i�
‡PtInTriangle S[i] S[a] S[b] S[c] holds. By ‡PtInTriangle_iff, this is true exactly i�
pi is inside the triangle papbpc. The reason for assuming (a, b, c) to be ordered is again
symmetry: papbpc is the same triangle as papcpb, etc. Furthermore thanks to the x-order
property of canonical positions, if pi is in the triangle then x(pa) < x(pi) < x(pc). This
implies that a < i < c, leaving one case distinction permuting (i, b).
For every a < b < c, ha,b,c is true i� ‡IsEmptyTriangleFor S[a] S[b] S[c] S holds. By a
geometro-combinatorial connection analogous to ones above, this is true i� papbpc is a
3-hole.
Finally, one defines 4-cap, 5-cap, and 4-cup variables. For a + 1 < c < d, u4

a,c,d is true
i� there is b with a < b < c with ‡(pa, pb, pc) = ‡(pb, pc, pd) = ≠1. v4

a,c,d is analogous,
except in that the two orientations are required to be counterclockwise. These are the
4-caps and 4-cups, respectively. The 5-cap variables u5

a,d,e are defined for a + 2 < d < e.
We set u5

a,d,e to true i� there exists c with a + 1 < c < d such that u4

a,c,d, oc,d,e, and ha,c,e

are all true. Intuitively, 4-caps and 4-cups are clockwise and counterclockwise arcs of
length 4, respectively, whereas 5-caps are clockwise arcs of length 5 containing a 3-hole.
All three are depicted in Figure 7. The usage of these variables is crucial to an e�cient
encoding: we will show below that a hexagon can be covered by only 4 triangles, so one
need not consider all

!
6

3

"
triangles contained within it.

Satisfaction. We now have to justify that the clauses of „n are satisfied by the intended in-
terpretation ·S for a 6-hole-free point set S. The variable-defining clauses (1)–(3) and (7)–(11)
follow essentially by definition combined with boolean reasoning. The orientation proper-
ties (4) and (5) have been established in the family of theorems ‡_propi. The lexicographic
ordering clauses (6) follow from the Lex order property of canonical positions. Thus we are
left with clauses (12)–(16) which forbid the presence of certain 6-holes.4 We illustrate why

3 Since the point set is in general position, we have ¬oa,b,c ≈∆ ‡(pa, pb, pc) = ≠1.
4 They are intended to forbid all 6-holes, but proving completeness is not necessary for an unsatisfiability-

based result.

ITP 2024

35:14 Formal Verification of the Empty Hexagon Number

a

÷b
÷c

d

e

p

(a) (u5
a,d,e · oa,p,e)

a

÷b

c
d

cÕ

÷bÕ

(b) (u4
a,c,d · v4

a,cÕ,d · ha,c,cÕ)

a

÷b c
d

1

e

(c) (v4
a,c,d · oc,d,e · ha,c,e)

Figure 8 Illustration of some forbidden configurations that imply 6-holes. Figure 8a corresponds
to the configuration forbidden by clause (12), Figure 8b to the one forbidden by clause (14),
and Figure 8c to clause (16). All highlighted regions denote empty triangles.

clause (12) is true. The contrapositive is easier to state: if ·S satisfies u5

a,d,e · oa,p,e, then
S contains a 6-hole. The intuitive argument is depicted in Figure 8a. The clause directly
implies the existence of a convex hexagon apedcb such that ace is a 3-hole. It turns out that
this is enough to ensure the existence of a 6-hole by “flattening” the triangles ape, edc, and
cba, if necessary, to obtain empty triangles apÕe, edÕc, and cbÕa, which can be assembled into
a 6-hole apÕedÕcbÕ.

Justifying this formally turned out to be complex, requiring a fair bit of reasoning about
point Arcs and ‡CCWPoints: lists of points winding around a convex polygon. Luckily, the
main argument can be summarized in terms of two facts: (a) any triangle abc contains an
empty triangle abÕc; and (b) empty shapes sharing a common line segment can be glued
together. Formally, (a) can be stated as

theorem ‡IsEmptyTriangleFor_exists (gp : ListInGenPos S)
(abc : [a, b, c] ™ S) : ÷ b’ œ S, ‡ a b’ c = ‡ a b c

· (b’ = b ‚ ‡PtInTriangle b’ a b c) · ‡IsEmptyTriangleFor a b’ c S.toFinset

Proof. Given points p, q, say that p Æ q i� p is in the triangle aqc. This is a preorder.
Now, the set SÕ = {x œ S | ‡(a, x, c) = ‡(a, b, c) · x Æ b} is finite and so has a weakly
minimal element bÕ, in the sense that no x œ SÕ has x < bÕ. Emptiness of abÕc follows by
minimality. J

Moving on, (b) follows from a triangulation lemma: given any convex point set S and a
line

Ωæ
ab between two vertices of S, the convex hull of S is contained in the convex hulls of

points on either side of
Ωæ
ab . That is:

theorem split_convexHull (cvx : ConvexIndep S) :
’ {a b}, a œ S æ b œ S æ

convexHull R S ™ convexHull R {x œ S | ‡ a b x ”= ccw}
fi convexHull R {x œ S | ‡ a b x ”= cw}

Proof. Let S+ = {x œ S | ‡(a, b, x) Ø 0} and S≠ = {x œ S | ‡(a, b, x) Æ 0} be the two
sets in the theorem, and let p œ S, where S denotes the convex hull of S. Assume WLOG
that ‡(a, b, p) Ø 0. (We would like to show that p œ S+.) Now p is a convex combination
of elements of S+ and elements of S≠, so there exist points u œ S≠ and v œ S+ such
that p lies on the uv line. Because {x | det(a, b, x) Æ 0} ´ S≠ is convex, it follows that
det(a, b, u) Æ 0, and likewise det(a, b, v) Ø 0, so they lie on opposite sides of the

Ωæ
ab line and

hence uv intersects
Ωæ
ab at a point z. The key point is that z must in fact be on the line

B. Subercaseaux et al. 35:15

a

bu

v
p

z

S+

S≠

(a)

a
b

u

v
p

zw

S+

S≠

(b)

Figure 9 Illustration of the proof for split_convexHull. (a) Given point p, we obtain points
u and v inside the two halves and z as the point of intersection with the line ab. (b) In this
(contradictory) situation, the point z has ended up outside the segment ab, because S is not actually
convex. In this case we construct w such that z is on the wa segment, and observe that w, z, a, b are
collinear.

segment ab; assuming that this was the case, we could obtain z as a convex combination of a
and b, and p as a convex combination of v and z, and since v is in S+ and a, b œ S+

™ S+

we can conclude p œ S+. To show that z œ ab, suppose not, so that a lies between z and
b (see Figure 9b). (The case where z is on the b side is similar.) We can decompose z as
a convex combination of some w œ S \ {a} and a, which means that w, z, a, b are collinear
and appear in this order on the line. Therefore a is a convex combination of w and b, which
means that a œ S \ {a} which violates convexity of S. J

By contraposition, the triangulation lemma directly implies that if {x œ S | ‡(a, b, x) ”= +1}

and {x œ S | ‡(a, b, x) ”= ≠1} are both empty shapes in P , then S is an empty shape in P .

6.1 Running the CNF

Having now shown that our main result follows if „30 is unsatisfiable, we run a distributed
computation to check its unsatisfiability. We solve the SAT formula „30 produced by
Lean using the same setup as Heule and Scheucher [21], although using di�erent hardware:
the Bridges 2 cluster of the Pittsburgh Supercomputing Center [4]. Following Heule and
Scheucher, we partition the problem into 312 418 subproblems. Each of these subproblems
was solved using CaDiCaL version 1.9.5. CaDiCaL produced an LRAT proof for each execu-
tion, which was validated using the cake_lpr verified checker on-the-fly in order to avoid
writing/storing/reading large files. The total runtime was 25 876.5 CPU hours, or roughly
3 CPU years. The di�erence in runtime relative to Heule and Scheucher’s original run is
purely due to the di�erence in hardware. Additionally, we validated that the subproblems
cover the entire search space as Heule and Scheucher did [21, Section 7.3]. This was done by
verifying the unsatisfiability of another formula that took 20 seconds to solve.

The artifact for this paper includes scripts to validate any individual subproblem, as
well as the summary proof that the subproblems cover the search space. However, the
unsatisfiability of „30 depends on the unsatisfiability of all (hundreds of thousands of)
subproblems. A skeptical reader might wish to examine the proof files for all subproblems,
but we estimated the total proof size to be tens or hundreds of terabytes, far too much to
reasonably store and distribute. Instead, the skeptical reader must run the entire 3 CPU
year computation. We believe this trust story can be somewhat improved, but we leave such
a challenge to future work.

ITP 2024

35:16 Formal Verification of the Empty Hexagon Number

7 Related Work

Our formalization is closely related to a prior development in which MariÊ put proofs of
g(6) Æ 17 on a more solid foundation [28]. The inequality, originally obtained by Szekeres
and Peters [40] using a specialized, unverified search algorithm, was confirmed by MariÊ
using a formally-verified SAT encoding. MariÊ introduced an optimized encoding based on
nested convex hull structures, which, when combined with performance advances in modern
SAT solvers, significantly improved the search time over the unverified computation.

Our work focuses on the closely-related problem of determining k-hole numbers h(k).
Rather than devise a new SAT encoding, we use essentially the same encoding presented by
Heule and Scheucher [21]. Interestingly, a formal proof of g(6) Æ 17 can be obtained as a
corollary of our development. We can assert the hole variables ha,b,c as true while leaving
the remainder of the encoding in Section 6 unchanged, which trivializes constraints about
emptiness so that only the convexity constraints remain.5 The resulting CNF formula asserts
the existence of a set of n points with no convex 6-gon. We checked this formula to be
unsatisfiable for n = 17, giving the same result as MariÊ:

theorem gon_6_theorem : ’ (pts : Finset Point),
SetInGenPos pts æ pts.card = 17 æ HasConvexKGon 6 pts

Since both formalizations can be executed, we performed a direct comparison against
MariÊ’s encoding. On a personal laptop, we found that it takes negligible time (below 1s) for
our verified Lean encoder to output the full CNF. In contrast, MariÊ’s encoder, extracted
from Isabelle/HOL code,6 took 437s to output a CNF. To improve encoding performance,
MariÊ wrote a C++ encoder whose code was manually compared against the Isabelle/HOL
specification. We do not need to resort to an unverified implementation.

As for the encodings, ours took 28s to solve, while the MariÊ encoding took 787s (both
using cadical). This di�erence is likely accounted for by the relative size of the encodings,
in particular their symmetry breaking strategies. For k = 6 and n points, the encoding of
Heule and Scheucher uses O(n4) clauses, whereas the one of MariÊ uses O(n6) clauses. They
are based on di�erent ideas: the former as detailed in Section 5, whereas the latter on nested
convex hulls. The di�erent approaches have been discussed by Scheucher [32]. This progress
in solve times represents an encouraging state of a�airs; we are optimistic that if continued,
it could lead to an eventual resolution of g(7).

Further di�erences include what exactly was formally proven. As with most work in this
area, we use the combinatorial abstraction of triple orientations. We and MariÊ alike show
that point sets in R2 satisfy orientation properties (Section 4). However, our work goes further
in building the connection between geometry and combinatorics: our definitions of convexity
and emptiness (Section 3), and consequently the theorem statements, are geometric ones
based on convex hulls as defined in Lean’s mathlib [29]. In contrast, MariÊ axiomatizes these
properties in terms of ‡. A skeptical reviewer must manually verify that these combinatorial
definitions correspond to the desired geometric concept.

A final point of di�erence concerns the verification of SAT proofs. MariÊ fully reconstructs
some of the SAT proofs on which his results depend, though not the main one for g(6), in an
NbE-based proof checker for Isabelle/HOL. We make no such attempt for the time being,

5 This modification was performed by an author who did not understand this part of the proof, nevertheless
having full confidence in its correctness thanks to the Lean kernel having checked every assertion.

6 We used Isabelle/HOL 2016. Porting the encoder to more recent versions of the prover would require
broader adaptations due to breaking changes in the HOL theories.

B. Subercaseaux et al. 35:17

instead passing our SAT proofs through the formally verified proof checker cake_lpr [41]
and asserting unsatisfiability of the CNF as an axiom in Lean. Thus we trust that the CNF
formula produced by the verified Lean encoder is the same one whose unsatisfiability was
checked by cake_lpr.

8 Concluding Remarks

We have proved the correctness of the main result of Heule and Scheucher [21], implying
h(6) Æ 30. Given that the lower bound h(6) > 29 can be checked directly (see [21]), we
conclude the result h(6) = 30 is indeed correct. We believe this work puts a happy ending to
one line of research started by Klein, Erd�s and Szekeres in the 1930s. Prior to formalization,
the result of Heule and Scheucher relied on the correctness of various components of a
highly sophisticated encoding that are hard to validate manually. We developed a significant
theory of combinatorial geometry that was not present in mathlib. Beyond the main theorem
presented here, we showed how our framework can be used for other related theorems such
as g(6) = 17, and we hope it can be used for proving many further results in the area.

Our formalization required approximately 300 hours of work over 3 months by researchers
with significant experience formalizing mathematics in Lean. The final version of our proofs
consists of approximately 4.7k lines of Lean code; about 26% are lemmas that should be
moved to upstream libraries, about 40% develops the theory of orientations in plane geometry,
and the remaining 34% (1550 LOC) validates the symmetry breaking and SAT encoding.

We substantially simplified the symmetry-breaking argument presented by Heule and
Scheucher, and derived in turn from Scheucher [32]. Moreover, we found a small error in
their proof, as their transformation uses the mapping (x, y) ‘æ (x/y, ≠1/y), and incorrectly
assumes that x/y is increasing for points in CCW-order, whereas only the slopes y/x are
increasing. Similarly, we found a typo in the statement of the Lex order condition that did
not match the (correct) code of Heule and Scheucher. Our formalization corrects this.

Future Work. We hope to formally verify the result h(7) = Œ due to Horton [23], and
other results in Erd�s-Szekeres style problems.

We also want to improve the trust story of importing “cube and conquer”-style results
into an ITP. Importing these kinds of proofs is a significant engineering task when the proof
certificate is hundreds of terabytes in size, as it was for this result (see Section 6.1). Although
we are confident that our results are correct, more work needs to be done to strengthen the
trust in this connection point.

References
1 A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume 185

Frontiers in Artificial Intelligence and Applications. IOS Press, NLD, 2009.
2 Joshua Brakensiek, Marijn Heule, John Mackey, and David Narváez. The Resolution of Keller’s

Conjecture, 2023. arXiv:1910.03740.
3 Curtis Bright, Kevin K. H. Cheung, Brett Stevens, Ilias S. Kotsireas, and Vijay Ganesh. A SAT-

based resolution of Lam’s Problem. In Thirty-Fifth AAAI Conference on Artificial Intelligence,

AAAI 2021, pages 3669–3676. AAAI Press, 2021. doi:10.1609/AAAI.V35I5.16483.
4 Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and

Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021.

5 Davide Castelvecchi. Mathematicians welcome computer-assisted proof in ’grand unification’
theory. Nature, 595(7865):18–19, June 2021. doi:10.1038/d41586-021-01627-2.

ITP 2024

https://arxiv.org/abs/1910.03740
https://doi.org/10.1609/AAAI.V35I5.16483
https://doi.org/10.1038/d41586-021-01627-2

35:18 Formal Verification of the Empty Hexagon Number

6 Cayden Codel, Marijn J. H. Heule, and Jeremy Avigad. Verified Encodings for SAT Solvers.
In Alexander Nadel and Kristin Yvonne Rozier, editors, Proceedings of the 23rd conference on

Formal Methods In Computer-Aided Design, 2023.
7 James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-breaking

predicates for search problems. In Proc. KR’96, 5th Int. Conf. on Knowledge Representation

and Reasoning, pages 148–159. Morgan Kaufmann, 1996.
8 Luís Cruz-Filipe, João Marques-Silva, and Peter Schneider-Kamp. Formally Verifying the

Solution to the Boolean Pythagorean Triples Problem. J. Autom. Reason., 63(3):695–722,
October 2019. doi:10.1007/s10817-018-9490-4.

9 Luís Cruz-Filipe and Peter Schneider-Kamp. Formally Proving the Boolean Pythagorean
Triples Conjecture. In Thomas Eiter and David Sands, editors, LPAR-21. 21st International

Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 46 of
EPiC Series in Computing, pages 509–522. EasyChair, 2017. doi:10.29007/jvdj.

10 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25, pages 378–388, Cham, 2015. Springer International
Publishing.

11 Théo Delemazure, Tom Demeulemeester, Manuel Eberl, Jonas Israel, and Patrick Lederer.
Strategyproofness and proportionality in party-approval multiwinner elections. In Brian
Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference on

Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of

Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial

Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pages 5591–5599. AAAI
Press, 2023. doi:10.1609/AAAI.V37I5.25694.

12 Paul Erd�s and George Szekeres. On some extremum problems in elementary geometry. Ann.

Univ. Sci. Budapest. Eötvös Sect. Math., 3(4):53–62, 1960.
13 Paul Erd�s and György Szekeres. A combinatorial problem in geometry. Compositio Mathe-

matica, 2:463–470, 1935. URL: http://eudml.org/doc/88611.
14 Stefan Felsner and Helmut Weil. Sweeps, arrangements and signotopes. Discrete Applied

Mathematics, 109(1):67–94, April 2001. doi:10.1016/S0166-218X(00)00232-8.
15 Tobias Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational

Geometry, 39(1):239–272, March 2008. doi:10.1007/s00454-007-9018-x.
16 Sofia Giljegård and Johan Wennerbeck. Puzzle Solving with Proof. Master’s thesis, Chalmers

University of Technology, 2021.
17 W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of Marton,

2023. arXiv:2311.05762.
18 Andrew Haberlandt, Harrison Green, and Marijn J. H. Heule. E�ective auxiliary variables

via structured reencoding. In 26th International Conference on Theory and Applications

of Satisfiability Testing (SAT 2023), volume 271 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 11:1–11:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.SAT.2023.11.

19 Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik,
33:116–118, 1978. URL: http://eudml.org/doc/141217.

20 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and Verifying the Boolean

Pythagorean Triples Problem via Cube-and-Conquer, pages 228–245. Springer International
Publishing, 2016. doi:10.1007/978-3-319-40970-2_15.

21 Marijn J. H. Heule and Manfred Scheucher. Happy ending: An empty hexagon in every set of
30 points, 2024. arXiv:2403.00737.

22 Andreas F Holmsen, Hossein Nassajian Mojarrad, János Pach, and Gábor Tardos. Two
extensions of the erd�s-szekeres problem. arXiv preprint arXiv:1710.11415, 2017.

23 J. D. Horton. Sets with No Empty Convex 7-Gons. Canadian Mathematical Bulletin, 26(4):482–
484, 1983. doi:10.4153/CMB-1983-077-8.

https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.29007/jvdj
https://doi.org/10.1609/AAAI.V37I5.25694
http://eudml.org/doc/88611
https://doi.org/10.1016/S0166-218X(00)00232-8
https://doi.org/10.1007/s00454-007-9018-x
https://arxiv.org/abs/2311.05762
https://doi.org/10.4230/LIPIcs.SAT.2023.11
http://eudml.org/doc/141217
https://doi.org/10.1007/978-3-319-40970-2_15
https://arxiv.org/abs/2403.00737
https://doi.org/10.4153/CMB-1983-077-8

B. Subercaseaux et al. 35:19

24 Donald E. Knuth. Axioms and Hulls. In Donald E. Knuth, editor, Axioms and Hulls,
Lecture Notes in Computer Science, pages 1–98. Springer, Berlin, Heidelberg, 1992. doi:
10.1007/3-540-55611-7_1.

25 Boris Konev and Alexei Lisitsa. A SAT Attack on the Erdos Discrepancy Conjecture, 2014.
arXiv:1402.2184.

26 Peter Lammich. E�cient Verified (UN)SAT Certificate Checking. Journal of Automated

Reasoning, 64(3):513–532, March 2020. doi:10.1007/s10817-019-09525-z.
27 Filip MariÊ. Formal verification of a modern SAT solver by shallow embedding into Is-

abelle/HOL. Theor. Comput. Sci., 411(50):4333–4356, 2010. doi:10.1016/J.TCS.2010.09.
014.

28 Filip MariÊ. Fast formal proof of the Erd�s-Szekeres conjecture for convex polygons with at
most 6 points. J. Autom. Reason., 62(3):301–329, 2019. doi:10.1007/S10817-017-9423-7.

29 The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM

SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20. ACM,
January 2020. doi:10.1145/3372885.3373824.

30 Carlos M. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry,
38(2):389–397, September 2007. doi:10.1007/s00454-007-1343-6.

31 Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy. Versat: A Verified Modern SAT
Solver. In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking, and

Abstract Interpretation, pages 363–378, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
32 Manfred Scheucher. Two disjoint 5-holes in point sets. Computational Geometry, 91:101670,

December 2020. doi:10.1016/j.comgeo.2020.101670.
33 Sarek Høverstad Skotåm. CreuSAT, Using Rust and Creusot to create the world’s fastest

deductively verified SAT solver. Master’s thesis, University of Oslo, 2022. URL: https:
//www.duo.uio.no/handle/10852/96757.

34 Leila Sloman. ‘A-Team’ of Math Proves a Critical Link Between Addition
and Sets. https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-
addition-and-sets-20231206/, December 2023.

35 Bernardo Subercaseaux and Marijn J. H. Heule. The Packing Chromatic Number of the
Infinite Square Grid is 15. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools

and Algorithms for the Construction and Analysis of Systems - 29th International Conference,

TACAS 2023, Held as Part of ETAPS 2022, Proceedings, Part I, volume 13993 of Lecture Notes

in Computer Science, pages 389–406. Springer, 2023. doi:10.1007/978-3-031-30823-9_20.
36 Bernardo Subercaseaux, John Mackey, Marijn J. H. Heule, and Ruben Martins. Minimizing

pentagons in the plane through automated reasoning, 2023. arXiv:2311.03645.
37 Bernardo Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario

Carneiro, and Marijn J. H. Heule. EmptyHexagonLean. Software, swhId:
swh:1:dir:29dc0e7145296997bcb1230b4e03cd14c8d75617 (visited on 2024-08-23). URL:
https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024.

38 Andrew Suk. On the erd�s-szekeres convex polygon problem. Journal of the American

Mathematical Society, 30(4):1047–1053, 2017.
39 George Szekeres and Lindsay Peters. Computer solution to the 17-point Erd�s-Szekeres

problem. The ANZIAM Journal, 48(2):151–164, 2006. doi:10.1017/S144618110000300X.
40 George Szekeres and Lindsay Peters. Computer solution to the 17-point erd�s-szekeres problem.

The ANZIAM Journal, 48(2):151–164, 2006.
41 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. Verified Propagation Redundancy

and Compositional UNSAT Checking in CakeML. International Journal on Software Tools

for Technology Transfer, 25(2):167–184, April 2023. doi:10.1007/s10009-022-00690-y.
42 Mark Walters. It Appears That Four Colors Su�ce : A Historical Overview of the Four-Color

Theorem, 2004. URL: https://api.semanticscholar.org/CorpusID:14382286.
43 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: E�cient checking

and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory

and Applications of Satisfiability Testing – SAT 2014, pages 422–429, Cham, 2014. Springer
International Publishing.

ITP 2024

https://doi.org/10.1007/3-540-55611-7_1
https://doi.org/10.1007/3-540-55611-7_1
https://arxiv.org/abs/1402.2184
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1016/J.TCS.2010.09.014
https://doi.org/10.1016/J.TCS.2010.09.014
https://doi.org/10.1007/S10817-017-9423-7
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/s00454-007-1343-6
https://doi.org/10.1016/j.comgeo.2020.101670
https://www.duo.uio.no/handle/10852/96757
https://www.duo.uio.no/handle/10852/96757
https://doi.org/10.1007/978-3-031-30823-9_20
https://arxiv.org/abs/2311.03645
https://archive.softwareheritage.org/swh:1:dir:29dc0e7145296997bcb1230b4e03cd14c8d75617;origin=https://github.com/bsubercaseaux/EmptyHexagonLean;visit=swh:1:snp:0e11d6564bd15317306605932e0acd87cf3d7f80;anchor=swh:1:rev:d7f798ffc8deabc2f3ca1ae36e92e0250e57c205
https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024
https://doi.org/10.1017/S144618110000300X
https://doi.org/10.1007/s10009-022-00690-y
https://api.semanticscholar.org/CorpusID:14382286

	1 Introduction
	2 Outline of the proof
	3 Geometric Preliminaries
	4 Triple Orientations
	4.1 Properties of orientations

	5 Symmetry Breaking
	6 The Encoding and Its Correctness
	6.1 Running the CNF

	7 Related Work
	8 Concluding Remarks

