
Fast Decision Support for Air Traffic Management at Urban Air

Mobility Vertiports using Graph Learning

Prajit KrisshnaKumar1∗, Jhoel Witter2∗, Steve Paul3∗, Hanvit Cho4∗, Karthik Dantu5‡, and Souma Chowdhury6∗†

Abstract— Urban Air Mobility (UAM) promises a new dimen-
sion to decongested, safe, and fast travel in urban and suburban
hubs. These UAM aircraft are conceived to operate from
small airports called vertiports each comprising multiple take-
off/landing and battery-recharging spots. Since they might be
situated in dense urban areas and need to handle many aircraft
landings and take-offs each hour, managing this schedule
in real-time becomes challenging for a traditional air-traffic
controller but instead calls for an automated solution. This
paper provides a novel approach to this problem of Urban Air
Mobility - Vertiport Schedule Management (UAM-VSM), which
leverages graph reinforcement learning to generate decision-
support policies. Here the designated physical spots within
the vertiport’s airspace and the vehicles being managed are
represented as two separate graphs, with feature extraction
performed through a graph convolutional network (GCN).
Extracted features are passed onto perceptron layers to decide
actions such as continue to hover or cruise, continue idling or
take-off, or land on an allocated vertiport spot. Performance is
measured based on delays, safety (no. of collisions) and battery
consumption. Through realistic simulations in AirSim applied
to scaled down multi-rotor vehicles, our results demonstrate the
suitability of using graph reinforcement learning to solve the
UAM-VSM problem and its superiority to basic reinforcement
learning (with graph embeddings) or random choice baselines.

I. INTRODUCTION

Urban Air Mobility (UAM) based on electric Vertical

Takeoff and Landing (eVTOL) aircraft is becoming an in-

creasingly popular concept for future urban transportation,

with the objective to mitigate problems such as traffic

congestion and circuitous routes. Such eVTOLs are electric

aircraft with the ability to transport 2-5 passengers, air-

ambulance or emergency services, or serve in a goods trans-

port role. Over the past few years, there have been numerous

feasibility studies on UAM in the context of addressing

traffic congestion, and its overall impact on reducing carbon

emissions [1], [2], [3]. However, the realization of UAM

comes with its own set of challenges which includes the

design challenges with regards to vertiport infrastructure,

accessibility and noise impact, and operational challenges

† Corresponding Author, soumacho@buffalo.edu
∗Department of Mechanical and Aerospace Engineer-

ing, University at Buffalo, Buffalo, NY {prajitkr,
jhoelwit,stevepau,hanvitch}@buffalo.edu

‡Department of Computer Science and Engineering, University at Buf-
falo, Buffalo, NY kdantu@buffalo.edu

This work was supported by Stephen Still Institute for Sustainable
Transportation and Logistics (SSISTL) and National Science Foundation
(NSF) award CMMI 2048020. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the SSISTL and NSF.

which include UAM fleet scheduling [4] and vertiport oper-

ation [5]. In these contexts, safety is the primary driving

factor behind the planning processes [5]. A Vertiport or

aerodrome is conceived as a site where the eVTOLs take

off, land, and charge their batteries [6]. In this work, we

focus on the problem of vertiport operation, specifically

real-time scheduling of eVTOL take-off and landing. The

key objectives are to ensure safety (i.e., avoid collisions),

minimize delays with respect to a pre-defined schedule of

takeoff and landing, and conserve battery. This problem is

named UAM-Vertiport Schedule Management (UAM-VSM).

Once deployed, such UAM vehicles are expected to be

entering or leaving a vertiport located in a dense urban

environment [7], somewhat similar to a subway network

in major cities, and unlike typical airports used in general

aviation. Unlike in ground transportation, minor collisions

or undesirable proximity can lead to dire consequences,

thereby necessitating strict spatiotemporal constraints on

their operation. Assuming high traffic at any given vertiport

(which is expected for an economically viable UAM net-

work) and uncertainties due to weather and system failures,

over-reliance on a human Air Traffic Controller (ATC) to

perform the real-time vertiport traffic management is unduly

risky. The high frequency of decision-making could lead to

a cognitive overload for the ATC and result in poor decision-

making [8]. Hence, there is an urgent need to develop

automated approaches to manage the real-time scheduling

of takeoff/landing of eVTOL aircraft at vertiports.

Prior works on UAM scheduling have mostly focused on

eVTOL fleet scheduling and path planning across multiple

vertiports in a region [9], [10] to maximize profit and meet

potential travel demand. Very limited quantitative work exists

in automated decision-support for real-time scheduling of

takeoff/landing with the objectives to maximize safety and

minimize delays. Unlike the other works which schedule

higher-level decisions such as which destination/vertiport to

visit next, or when to charge an eVTOL [11], here we assume

that a high-level schedule over a longer time horizon of say

6-12 hours already exists. Our focus is on computing real-

time decisions during each 1-minute time window, during

which tasks (land, takeoff, move to spot, etc.) have to be

allocated to up to 4 aircraft within the operational air space

managed by that vertiport. In addition, unlike prior works

where the eVTOL is simulated by a simple linear model [12],

we consider a more realistic eVTOL simulation developed

in AirSim [13], based on a scaled-down multi-rotor aerial

vehicle model. This is done to ensure that the simulated

outcomes have a reduced reality gap. Moreover, this work

is among the first to also present a scaled-down physical

validation of the proposed solution to UAM-VSM, through

indoor experiments with four small quadcopters.

Due to high computational costs, traditional methods such

as Mixed Integer Non-Linear Programming (MINLP) and

heuristic-search-based methods are unviable for the real-time

decision-making needs of the UAM-VSM problem. Hence

a learning-based method is posited as a robust alternative,

which can yield policies that are real-time executable. Specif-

ically, we take a novel graph-learning approach to solving

this problem in a scalable and generalizable manner. To

do so, firstly we consider the different designated physical

spots (Figure 2) that can be allocated to a vehicle, such as

landing/take-off pad (or spot), hovering spot and charging

spot or battery port, as nodes in a graph. We also consider

the eVTOLs aircraft to be represented as another Graph.

With this representation, we exploit Graph Neural Network

(GNN) for feature extraction over the graph-encoded state-

space, and Proximal Policy Optimization (PPO) [14] is used

to train this policy network.

Key Contributions: The primary contributions of this

work lie in: 1) Formulating the UAM-VSM problem as a

Markov Decision Process (MDP) and development of a rel-

atively realistic virtual environment to simulate this MDP for

scaled-down multi-rotor vehicles; 2) Testing the hypothesis

that a graph abstraction of the state-space of designated loca-

tions in the vertiport’s airspace and vehicles being managed,

along with graph learning, can yield effective policies for

this problem; 3) Analyzing the trade-offs between objectives

such as takeoff delay, landing delay, collision avoidance,

and battery conservation, achieved with such graph-learning

based UAM-VSM policies. Contribution 2 is demonstrated

via comparisons against vanilla RL solutions, randomized

decision-making, and first-come-first-serve decision-making,

with all methods evaluated over a sampling of different 24-

hour operational periods.

The rest of this paper is structured as follows. In Sec. II,

some of the prior works related to the problem is presented.

Sec. III describes the formulation of UAM-VSM as an

MDP, followed by the description of the proposed state

abstraction and graph learning architecture, in Sec. IV. In

Sec. V, we present the simulation environment developed

for Vertiport management problems. Sec. VI presents the

numerical experiments and comparison of results with that of

baselines, namely a random method, a first-come-first-served

method, and a standard RL approach. Sec. VII summarizes

our concluding remarks.

II. RELATED WORK

In commercial aviation, the most common approach for

aircraft takeoff/landing schedule is the First-Come-First-

Served (FCFS) approach [15]. The main advantage of this

approach is that it is easy to implement without the need for

any sophisticated scheduling software. The only constraint

for this approach is maintaining a safe distance. However,

Airsim + Unreal

Environment
Model

Physics Engine

Rendering Engine

OpenAI Gym
Environment

Vehicle
Model

State Manager

Vehicle State Space Vertiport State Space

Action Manager

Stable-Baselines Agent

Airsim
Client

Action

Obs
er

va
tio

n

GCNConv1

Update Weights

Action

Policy
Net(s)
Logits

Fig. 1. Overview of Simulation Environment displaying the progression of
Information through the State Manager, Action Manager, Learning Policy
Network, and the Simulation Engine (Airsim and Unreal Engine)

the major drawback of this approach is that it does not

provide any scope for improvement to decrease time delays.

Trivizas and Lieder et al. [16], [17] proposed a Dynamic

Programming algorithm for optimal landing on a runway,

while Beaslet et al. and Abela et al. [18], [19] proposed a

Mixed Integer Programming (MIP). These approaches are

feasible only for commercial aviation takeoff/landing where

the number of schedules is of the order of 1 every few

minutes. In recent years, RL algorithms with Graph Neural

Networks or GNN are being increasingly used to solve

planning and scheduling problems such as TSP, VRP, Max-

Cut, Min-Vertex, and MRTA [20], [21], [4], [22], [23], [24],

[21], [10], [25]. Some of the recent works [10], [26], [9],

[27] on UAM mainly focus on scheduling routes between

vertiports with the aim to optimize an entity such as profit,

delay, and demand met. Here, we build on our prior work

on this under-addressed problem [28], by considering the

critical objective of safety and presenting comparisons with

a standard RL implementation that does not use graph

abstractions.

III. PROBLEM FORMULATION

We consider this an Urban Air Mobility-Vertiport Sched-

ule Management (UAM-VSM) problem, where the goal is to

design an automated centralized Air Traffic Controller (ATC)

agent in order to successfully: i.) assign tasks to incoming

vehicles (taking off to destinations, landing, hovering); ii.)

maintain a sufficient battery level among all vehicles being

controlled; iii.) ensure a safe flight for each vehicle without

 Normal
Port

Hovering
Spot

Destination

Battery
Port

Takeoff

Takeoff

Move

Landing

Landing

Au
to

m
at

ed
Ac

tio
n

Fig. 2. State-Transition Diagram

collisions. Throughout this paper, we assume there is no

communication loss and no uncertainties in the environment.

To train the agent, we created an environment identical to that

of a realistic vertiport, with two ports for landing (Normal

Ports), and one charging station (Battery Port). There are

four hovering spots arranged around the ports, as well as five

destinations away from the agent’s airspace that the vehicles

travel to and from. The overall framework is shown in Figure

1. Each vehicle has 4 states and the state-transition diagram

is shown in figure 2.

The environment is initiated with 4 vehicles at a random

state and with a random schedule. Takeoff time is issued

between 10 and 20 minutes after the vehicle returns to the

vertiport, and likewise, the landing time is issued between

5 and 15 minutes after the vehicle begins traveling back to

the vertiport from a destination. Each vehicle starts with a

full battery and discharges at a rate of discharge rate (Ω)

per step. Ω is calculated based on the action:

Ω =







dt if cruising
0.5 if hovering
0.25 if idling on ground

(1)

where dt is the distance from one point to the next. When

a vehicle rests at a charging station, it regains 10% battery

per time-step. Thus a vehicle can lose battery even while not

moving, which will encourage the agent to travel and engage

with the charging port.

Vehicles move independently, allowing multiple simulta-

neous movements. This setup helps the agent learn collision

avoidance when vehicles intersect. At each time step, the

agent selects an available vehicle at the port to act. If the

chosen vehicle has reached its destination, the agent waits

until it re-enters the vertiport airspace before acting. The

simulation runs 300 times faster than in real-time, so every

second in the simulator corresponds to 5 minutes in real-time

and is useful for training, as it allows for step times as low

as 0.2 seconds, or 288 seconds (4.8 minutes) per episode

(1440 steps). Every episode simulates a full day of operation.

Every vehicle is updated with a minimum frequency of 45Hz,

which includes updating all features (location, delay, battery

status, and vehicle status).

A. MDP Formulation

The Urban Air Mobility-Vertiport Schedule Management

problem is modeled as a Markov Decision Process (MDP),

where the state space consists of the state of the vertiports

and the state of the vehicles. The vertiport state information is

represented as graph GV P=(VV P,EV P), where VV P represents

TABLE I

MDP FORMULATION

Type Variable

Vertiport States
Availability - Pa

Port type - Pt

Location - (xp,yp)

VTOL States

Current status - ci

Battery capacity - bi

Schedule status - li
Location - (xi,yi)

Action Space

Stay still
Takeoff
Move/ land in normal port - 1,2
Move/ land in battery port - 1
Move to hover spots - 1,2,3,4
Continue previous action
Avoid collision

the vertices or nodes of the graph and EV P represents

the set of edges. Every node i ∈ VV P has the following

properties (also described in table I) δV P
i = [Pi

a, Pi
t , xi, yi].

Similarly, the vehicle state information is represented as

a graph GEV =(VEV ,EEV), where VEV represents the nodes

of the graph and EEV represents the set of edges. Every

node i ∈VEV has the following properties (also described in

table I) δ EV
i = [ci, bi, li, xi,yi]. While there are no explicit

environment uncertainties here, state transition in principle

is not deterministic due to the possibility of aircraft collision

(that triggers avoidance actions) modeled by the simulation.

The state and action space can be found in table I, and the

reward is shown in equation 2. Here τ is the takeoff coeffi-

cient, γ is the landing coefficient, λ is the battery coefficient,

β is the delay coefficient, § is the safety coefficient, and wn

are the weights.

R = w1τ +w2γ +w3λ +w4β +w5§ (2)

Here are more details about the reward terms:

1) Takeoff-Landing coefficient: We classify a ”good”

takeoff as one where the vehicle is: i) departing punctually

(within 5 minutes of its planned takeoff time); ii) taking

off with a battery level exceeding 30%. The same standards

apply to a ”good” landing, with the added option that the

vehicle can decide to land before its scheduled time. Both τ
and γ fall within the range of −5,5.

2) Battery coefficient: This coefficient is defined as:

λ =

{

5× bi
100

if bi g 30

−5 else
(3)

The value gradually rises as the vehicle charges. To

discourage operations at critical battery levels, a penalty is

imposed once the battery capacity falls below 30%. In order

to maintain the battery coefficient, the agent must ensure

each vehicle is fully charged.

3) Delay coefficient: The delay time is computed from the

point when the vehicle misses its window for either taking

off or landing. This delay time accumulates till the vehicle

receives a new schedule. The delay coefficient is calculated

by:
β =−5+10× e−∆i (4)

where ∆ represents the delay in minutes. This formulation
encourages the agent to keep the delay as low as possible by

maximizing the delay coefficient.

Minimal
Separation Dmin

at time = tmin

Euclidean Distance
Between Vehicles
= D(x1, y1, x2, y2, t)

Vehicle 1
(x1, y1)

vy1

vx1

Vehicle 2
(x2, y2)

vy2

vx2

Fig. 3. Minimal Separation Scenario

4) Safety coefficient: Before the safety coefficient can be

calculated, the environment will check to see if the selected

vehicle: i.) is currently en-route to a location; ii.) has an

intersecting path with another vehicle that is en route. This

can be visualized in figure 3.
In the figure, two vehicles are moving toward a common

intersection point. The distance between them at any given

point is made into a function of time using the Euclidean

distance combined with their immediate position and velocity

vectors:
D(t) =

√

(x1 − x2 + vx1
t − vx2

t)2 +(y1 − y2 + vy1
t − vy2

t)2 (5)

where xn,yn,vxn ,vyn are the position and velocity components

of vehicles 1 and 2. This equation is then differentiated with

respect to time and solved for the local minimum, tmin:

tmin =−
2(vx1

− vx2
)(x1 − x2)+2(vy1

− vy2
)(y1 − y2)

2(vx1
− vx2

)2 +2(vy1
− vy2

)2
(6)

tmin is then plugged back into equation 5 to get the minimum

separation Dmin. Each simulated vehicle has an occupant

space of 1x1 meters, so if Dmin is less than 3 meters and the

agent doesn’t take evasive action(avoid collision), the agent

will be penalized:

§ =







0 if vehicle is on the ground
−5 else if Dmin f 3.0 & action ̸= avoid collision

5 else if Dmin f 3.0 & action = avoid collision
(7)

5) Reward weights: Each coefficient is multiplied by

a weight w1,w2, ..wn, reflecting the significance of each

coefficient. In our scenario, safety is considered the most

important, hence the highest weight is allocated to the safety

coefficient §, followed by β ,τ,γ,λ , in that order.

IV. LEARNING ARCHITECTURE

This paper focuses on a deep reinforcement learning

framework-PPO [14]- utilizing a GCN for feature abstraction

and a Multi-Layered Perceptron (MLP) for prediction.

A. Network Parameters

Linear layers with biases are used for all three networks

(feature abstraction, value, and policy) except for the feature

abstraction network in the GRL agent, for which GCNs are

used. We make use of LeakyReLU with a slope of 0.1

(for feature abstraction and value network) & Tanh (for

the policy network) activation layers, as they help reduce

sparse gradients. Adam optimizer with a learning rate of 1e-

5 is used for back-propagation. We chose Proximal Policy

Optimization (PPO) for the reinforcement learning algorithm

[14]. PPO is based on Trust Region Policy Optimization

(TRPO) [29], and has an objective function tailored to clip

policy expansion and allows for a safer policy update.

Fig. 4. The policy network along with the value network for the Graph
Learning Architecture

B. Frameworks

Two frameworks are used for learning the policy model,

namely the Multi-layer perceptron based RL network and

the graph learning-based RL network Both frameworks have

feature abstraction, policy, and value networks to work with

PPO. The main difference lies in the feature abstraction

network where: the RL agent uses a condensed feature vector

with both the vehicle and vertiport state space; the GRL

agent uses two GCNs, which take the vehicle and vertiport

feature matrix along with their respective edge connectivity

matrix. The GRL learning framework is shown in figure 4.

Both policy networks will use a four-layer MLP with a log-

softmax transformation to obtain log probabilities for the

11 actions. Both agents utilize masking which will depend

on the state of the selected vehicle and the availability of

each port. This takes away a layer of complexity and allows

the agent to focus on other environmental factors, such as

avoiding collisions and reducing delay.

V. VERTIPORT SIMULATION

The evolution of the gaming industry over the last decade

has had a great impact on the robotics community, allowing

us to simulate various complex tasks [30], [31], in a more

realistic environment that is nearly impossible in real life

due to the hardware limitations. To simulate the Vertiport, a

custom 3D environment is developed using Unreal Engine

[32] with AirSim [13] plugin being the backend for physics.

AirSim is an open-source simulator plugin developed by

Microsoft for unmanned aerial (UAV) and ground vehicles

(UGV). Since the operation of VTOLs is similar to that

of UAVs, throughout this paper we consider UAVs to be

vehicles. Fig. 1 shows the overview of the developed simu-

lation environment. Unreal Engine 4 is used as the GUI and

AirSim plugin provides dynamics for the vehicle. To reduce

the memory and computational footprint of the unreal engine,

the entire environment has been created with 101k static

triangles, limiting the memory to 3.4 Megabytes(excluding

VTOLs). The OpenAI Gym interface provides a connection

between Airsim, State/Action Managers, and the RL Agent.

This interface receives raw data of all the vehicles from

AirSim and filters the necessary data, which then will be

transferred to the State Manager. The State Manager and the

Fig. 5. Reward (left) and Loss (right) plots during training of the RL and
GRL Agent for 632 Episodes

Action Manager inherit the properties of all the vehicles and

ports. Filtering data and structuring the data takes place in

the state manager, while the action manager decodes the data

from the Policy model to AirSim understandable format.

VI. RESULTS AND DISCUSSION

This section presents the results of the case studies per-

formed for the UAM-VSM problem. The following subsec-

tions will delve into the i.) training analysis of the GRL and

RL agent. ii.) a comparison of test results with: the GRL

agent; the RL agent; a random agent; a First-Come-First-

Serve (FCFS) agent. iii.) analyses of effects of safety pa-

rameter and weights in the reward formulation. Both agents

received the same information in their observation space and

used the same environment for a fair comparison. Here, we

consider only 4 vehicles since the use of realistic simulations

limits the number of vehicles that can be simultaneously

modeled without blowing up the training process. Further,

departing vehicles are not simulated anymore once they leave

the port (within their allocated 20-min window), and instead

their embodiment is taken over by another aircraft that is

either landing or waiting for a take-off schedule, keeping

the number of aircraft simulated at 4 at all times.

A. Learning Curve
The reward and loss for each agent during training are

shown in figure 5. The GRL agent was able to converge,

while the RL agent struggled. The GRL agent shows a

stable loss decline, while the RL agent’s loss exhibits more

oscillations, indicating that the GRL agent found it easier to

correlate its observations in the state space.

B. Baseline Comparison
In order to evaluate the performance of the GRL agent, we

compare it with an RL agent with a Multi-Layer Perceptron

(MLP) as feature extractors (instead of GNN) trained with

the same parameters referenced in section IV, a random

agent, and a First-Come-First-Served (FCFS) agent (adapted

from [33]). The random agent chose random feasible actions

from the action space during each decision-making instance.

In the FCFS approach, each vehicle ready for landing is put

in a queue for recharging (for up to 6 steps), and the vehicle

which is ready to take off after recharging is put into another

queue. A scheduler commands each vehicle in the queues

to execute its action one after the other. Figure 6 show the

results after testing each agent for 50 episodes (72000 steps).

It is important to note the delay depicted is cumulative across

all 4 vehicles per episode. The GRL and FCFS agent are

observed to have the best performances of the four when

it comes to cumulative reward (GRL: 565± 522.7, FCFS:

Fig. 6. Comparison of all the reward terms against the baseline methods.

Fig. 7. Analysis of the effect of the Safety Weight on GRL Agent

293 ± 86), delay, good takeoffs, and battery management.

This is expected, as the GRL agent learned the feature space

faster and its goal is to maximize all metrics, while the

FCFS agent takes off and lands at set intervals that align

closely with each vehicle’s schedule and maximize specific

metrics (takeoffs, landings, and battery management). As for

collisions, the GRL agent has a mean of 0.3± 1.7, which

is 76% smaller than that of the RL agent and 90% smaller

than the FCFS agent, which has means of 0.86±4.24 and

2.88±0.66 respectively. The RL agent does outperform the

GRL agent in time scheduling efficiency, with a mean delay

of 7.49± 1.43 hours per vehicle, which is an 80% lower

standard deviation compared to the GRL agent. The random

agent struggled to learn delay, collision, and battery metrics.

C. Analysis of the Safety Coefficient

In this section, we analyze the importance of the safety

parameter §. Here, we run the training for 2 different values

of w5 in the reward function (eqn. 2), w5 = 0 and w5 = 2.2.

These models are then evaluated for 50 episodes and the

results are shown in Fig. 7. The model trained without a

safety weight: i.) got into more collisions over the course

of an episode; ii.) experienced more takeoffs and landings,

which led to it outperforming the model with a safety weight

and also experiencing more delay. This analysis shows that

more training time and variety is required to understand an

environment with both delay and safety factors, as the agent

has seemingly less difficulty learning one or the other and is

forced to compromise when learning both.

VII. CONCLUSION

In this paper, we proposed a Graph RL (GRL) method

to generate a policy that serves as the real-time air traffic

control (ATC) system at a vertiport. Specifically, this policy

performs real-time scheduling of take-offs and landings of

VTOL aircraft, considering safety, delay, and battery level.

We formulated the UAM vertiport management problem as

an MDP with the state of vertiport and states of aircraft

expressed as two separate graphs. We use two GCNs to

extract the vertiport and aircraft state information as learn-

able feature vectors. The training was performed using PPO

on a reward function defined as a weighted combination of

landing/takeoff delay, number of collisions, and battery con-

sumption, across the vehicles being managed. GRL policy

performance is compared with three baselines: MLP-based

RL agent, Random agent, and First-Come-First-Served. Due

to GCN’s better feature extraction, GRL outperformed MLP-

RL, learning faster and achieving higher episodic rewards.

In test episodes, GRL surpassed MLP-RL and the ran-

dom agent, demonstrating its generalizability. In the fu-

ture, simulation-based nonlinear optimization could enhance

RL solutions, approximating the optimality gap. Improved

draft interactions with nearby aircraft could also boost the

effectiveness of the proposed UAM vertiport management

approach.

REFERENCES

[1] A. R. Kadhiresan and M. J. Duffy, “Conceptual design and mission
analysis for evtol urban air mobility flight vehicle configurations,” in
AIAA Aviation 2019 Forum, 2019, p. 2873.

[2] R. Goyal, C. Reiche, C. Fernando, J. Serrao, S. Kimmel, A. Cohen,
and S. Shaheen, “Urban air mobility (uam) market study,” Tech. Rep.,
2018.

[3] H. Chao, A. Maheshwari, D. DeLaurentis, and W. Crossley, “Weather
impact assessment for urban aerial trips in metropolitan areas,” in
AIAA AVIATION 2021 FORUM, 2021, p. 3176.

[4] S. Paul, P. Ghassemi, and S. Chowdhury, “Learning scalable policies
over graphs for multi-robot task allocation using capsule attention net-
works,” in 2022 International Conference on Robotics and Automation
(ICRA), 2022, pp. 8815–8822.

[5] A. VERTIPORT, “High-density automated vertiport concept of oper-
ations.”

[6] M. Daskilewicz, B. German, M. Warren, L. A. Garrow, S.-S. Boddu-
palli, and T. H. Douthat, “Progress in vertiport placement and estimat-
ing aircraft range requirements for evtol daily commuting,” in 2018
Aviation Technology, Integration, and Operations Conference, 2018,
p. 2884.

[7] N. M. Guerreiro, G. E. Hagen, J. M. Maddalon, and R. W. Butler,
“Capacity and throughput of urban air mobility vertiports with a first-
come, first-served vertiport scheduling algorithm,” in AIAA Aviation
2020 Forum, 2020, p. 2903.

[8] A. Mathur, K. Panesar, J. Kim, E. M. Atkins, and N. Sarter, “Paths
to autonomous vehicle operations for urban air mobility,” in AIAA
Aviation 2019 Forum, 2019, p. 3255.

[9] S. G. Manyam, D. W. Casbeer, S. Darbha, I. E. Weintraub, and
K. Kalyanam, “Path planning and energy management of hybrid
air vehicles for urban air mobility,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 10 176–10 183, 2022.

[10] S. Paul and S. Chowdhury, A Graph-based Reinforcement Learning
Framework for Urban Air Mobility Fleet Scheduling. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2022-3911

[11] R. W. Simpson, “Computerized schedule construction for a vtol airbus
transportation system.” Journal of Aircraft, vol. 5, no. 3, pp. 299–305,
1968.

[12] J. P. Theron, J. F. Horn, and D. A. Wachspress, “An integrated
simulation tool for e-vtol aeromechanics and flight control analysis,” in
Aeromechanics for Advanced Vertical Flight Technical Meeting 2020,
Held at Transformative Vertical Flight 2020. Vertical Flight Society,
2020, pp. 115–130.

[13] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[15] A. R. Odoni, J.-M. Rousseau, and N. H. Wilson, “Chapter 5 models in
urban and air transportation,” in Operations Research and The Public
Sector, ser. Handbooks in Operations Research and Management
Science. Elsevier, 1994, vol. 6, pp. 107–150.

[16] D. A. Trivizas, “Optimal scheduling with maximum position shift
(mps) constraints: A runway scheduling application,” The Journal of
Navigation, vol. 51, no. 2, pp. 250–266, 1998.

[17] A. Lieder, D. Briskorn, and R. Stolletz, “A dynamic programming
approach for the aircraft landing problem with aircraft classes,”
European Journal of Operational Research, vol. 243, no. 1, pp. 61–69,
2015.

[18] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson,
“Scheduling aircraft landings–the static case,” Transportation Science,
vol. 34, no. 2, p. 180–197, may 2000.

[19] J. Abela, D. Abramson, M. Krishnamoorthy, A. de Silva, and G. B.
Mills, “Computing optimal schedules for landing aircraft,” 1993.

[20] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017, pp. 6348–6358.

[21] R. A. Jacob, S. Paul, W. Li, S. Chowdhury, Y. R. Gel, and J. Zhang,
“Reconfiguring unbalanced distribution networks using reinforcement
learning over graphs,” in 2022 IEEE Texas Power and Energy Con-
ference (TPEC), 2022, pp. 1–6.

[22] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Advances in Neural
Information Processing Systems, 2018, pp. 539–548.

[23] S. Paul and S. Chowdhury, “A scalable graph learning approach
to capacitated vehicle routing problem using capsule networks and
attention mechanism,” in International Design Engineering Technical
Conferences and Computers and Information in Engineering Confer-
ence, vol. 86236. American Society of Mechanical Engineers, 2022,
p. V03BT03A045.

[24] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning
algorithms for quadratic assignment with graph neural networks,” stat,
vol. 1050, p. 22, 2017.

[25] S. Paul, W. Li, B. Smyth, Y. Chen, Y. Gel, and S. Chowdhury,
“Efficient planning of multi-robot collective transport using graph
reinforcement learning with higher order topological abstraction,”
arXiv preprint arXiv:2303.08933, 2023.

[26] S. A. M. Shihab, P. Wei, J. Shi, and N. Yu, “Optimal evtol fleet
dispatch for urban air mobility and power grid services,” in AIAA
Aviation 2020 Forum, 2020, p. 2906.

[27] Q. Wei, G. Nilsson, and S. Coogan, “Scheduling of urban air mobility
services with limited landing capacity and uncertain travel times,” in
2021 American Control Conference (ACC), 2021, pp. 1681–1686.

[28] P. K. Kumar, J. Witter, S. Paul, K. Dantu, and S. Chowdhury, “Graph
learning based decision support for multi-aircraft take-off and landing
at urban air mobility vertiports,” in AIAA SCITECH 2023 Forum, 2023,
p. 1848.

[29] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2015.

[30] A. Behjat, H. Manjunatha, P. K. Kumar, A. Jani, L. Collins, P. Ghas-
semi, J. Distefano, D. Doermann, K. Dantu, E. Esfahani et al., “Learn-
ing robot swarm tactics over complex adversarial environments,”
in 2021 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS). IEEE, 2021, pp. 83–91.

[31] C. Zeng, G. R. Hecht, P. K. Kumar, R. K. Shah, E. M. Botta, and
S. Chowdhury, “Learning robust policies for generalized debris capture
with an automated tether-net system,” in AIAA SCITECH 2022 Forum,
2022, p. 2379.

[32] A. Sanders, An introduction to Unreal engine 4. AK Peters/CRC
Press, 2016.

[33] A. Andreeva-Mori, “A study on finding a substitute to the first come-
first served rule applied to aircraft sequencing,” in 28th International
Congress of the Aeronautical Sciences (ICAS), vol. 10, no. 2, 2012,
p. 2012.

	INTRODUCTION
	Related work
	Problem Formulation
	MDP Formulation
	Takeoff-Landing coefficient
	Battery coefficient
	Delay coefficient
	Safety coefficient
	Reward weights

	Learning Architecture
	Network Parameters
	Frameworks

	Vertiport Simulation
	Results and Discussion
	Learning Curve
	Baseline Comparison
	Analysis of the Safety Coefficient

	CONCLUSION
	References

