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ABSTRACT

This paper develops a graph reinforcement learning approach to
online planning of the schedule and destinations of electric aircraft
that comprise an urban air mobility (UAM) fleet operating across
multiple vertiports. This fleet scheduling problem is formulated
to consider time-varying demand, constraints related to vertiport
capacity, aircraft capacity and airspace safety guidelines, uncertain-
ties related to take-off delay, weather-induced route closures, and
unanticipated aircraft downtime. Collectively, such a formulation
presents greater complexity, and potentially increased realism, than
in existing UAM fleet planning implementations. To address these
complexities, a new policy architecture is constructed, primary com-
ponents of which include: graph capsule conv-nets for encoding
vertiport and aircraft-fleet states both abstracted as graphs; trans-
former layers encoding time series information on demand and
passenger fare; and a Multi-head Attention-based decoder that uses
the encoded information to compute the probability of selecting
each available destination for an aircraft. Trained with Proximal
Policy Optimization, this policy architecture shows significantly
better performance in terms of daily averaged profits on unseen test
scenarios involving 8 vertiports and 40 aircraft, when compared to
a random baseline and genetic algorithm-derived optimal solutions,
while being nearly 1000 times faster in execution than the latter.

CCS CONCEPTS

« Computing methodologies — Multi-agent planning; Plan-
ning under uncertainty; Sequential decision making.
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1 INTRODUCTION

The concept of Urban Air Mobility (UAM) utilizes electric verti-
cal take-off and landing (eVTOL) aircraft [2] to offer automated air
transportation for passengers, cargo, and critical (e.g., air-ambulance)
services, with a projected global market size of $1.5 trillion by 2040
[8, 10]. The economic viability of this new mode of transportation
depends on the ability to operate a sufficiently large number of
increasingly autonomous eVTOLs in any given market (i.e., achieve
high penetration). This in turn demands safe airspace management
and robust fleet planning solutions among others. More specifically,
deploying a regional UAM network comprising scores of eVTOL
aircraft requires an effective scheduling framework that can adapt
to the unique demand patterns (that’s different from general avi-
ation) and aircraft and airspace constraints (distinct from other
modes of regional/metropolitan transportation), while maximizing
profitability and mitigating energy footprint [7]. These scheduling
problems usually take the form of complex nonlinear Combinatorial
Optimization (CO) problems, which can be addressed through clas-
sical optimization, heuristic search, and learning-based approaches.
Approaches that provide local optimal solutions for small UAM fleet
scheduling problems [13, 26, 31] often present computational com-
plexity that makes them impractical for online decision-making. By
taking a multi-agent task planning perspective of the online fleet
scheduling problem, in this paper, we propose a new reinforcement
learning (RL) based solution. Moreover, this approach accounts for
important problem complexities and constraints that are otherwise
often overlooked by existing methods. These include constraints
related to airspace corridors, aircraft charging, vertiport capacity,
weather-induced uncertainties, and time-varying demand [2]. Air
corridors in UAM are designated routes or paths in the airspace
that are specifically allocated for the operation of the eVTOL. Some
of the associated technical challenges are summarized below.

Dynamic environment: The scheduling framework needs to
consider real-time factors such as airspace and weather conditions,
ground traffic, infrastructure availability, and demand uncertainty
[2]. Thus, shorter time-scale, adaptive and robust planning is fa-
vored over fixed, deterministic, and/or day-ahead planning. It is
also computationally challenging to resolve uncertainties in online
planning.

Conflict resolution: The framework should facilitate sharing
eVTOLs’ state information and allow for trajectory and speed ad-
justments to ensure safe and optimal sharing of the airspace, which
introduces additional constraints on decision-to-fly actions w.r.t.
the route between any two vertiports [2].
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Optimization & resource allocation: Optimizing (scarce) re-
source allocation, such as vertiport parking slots, charging stations,
and air corridor capacity, is essential to prevent unnecessary delays
in charging, takeoff, and other operations, which in turn impose
additional constraints on scheduling actions [2].

Learning & adaptation: The capability of learning from past
experiences, interactions, and feedback to adapt their decision-
making strategies is needed. Learning algorithms facilitate agent
adaptation to changing conditions, leading to improved efficiency
and enhanced system performance by shifting the computational
expense of training offline [33]. Similar challenging characteristics
can be found in other fleet planning and multi-robot transport or
fulfillment planning problems.

Note that some of the above-stated challenges also appear in
other critical fleet planning, multi-robot transport and fulfillment
planning problems. To address these stated problem complexities
and provide efficient online-executable policies for fleet scheduling,
we explore the use of specialized Graph Neural Networks (GNNs)
[22, 23]. Our approach builds upon existing work in multi-robot
task allocation, and through numerical experiments, demonstrates
superior performance compared to standard RL-based and heuristic
optimization-based solutions, as well as a feasible-random baseline.

Related Work: There is a small but growing body of work in
UAM fleet planning, which has provided impetus for transitioning
optimization and learning formalisms to advance this emerging
concept. However, the majority of the existing work overlooks
some of the important guidelines proposed by the US FAA [2] w.r.t.
UAM airspace integration. For example, existing work usually lacks
considerations for air corridors, range/battery capacity constraints,
unforeseen events such as route closures due to bad weather or off-
nominal events, or dysfunctional eVTOLs [5, 13, 21, 39]. Traditional
methods such as Integer Linear Programming (ILP) and metaheuris-
tics are not suitable for solving related NP-hard fleet scheduling
problems in a time-efficient manner [12, 18, 19, 25, 28, 38, 40]. For
perspective, here we consider hour-ahead planning, in order to
enable enough capacity to adapt to varying demand and state of
routes affected by weather and unanticipated aircraft downtime.
Learning-based methods have in recent years shown promise for
generating policies for CO problems with relatable characteristics
[3,9, 11, 15-17, 20, 23, 32, 34]. In their current form, however, they
consider fewer complexities, tackle simpler problem scenarios or
do not provide explicit capture of the problem-specific context.

We hypothesize that in order to address these complexities in
UAM fleet scheduling or related problems, in a manner that would
be both generalizable across scenarios/environments, a suitable rep-
resentation of the problem space is needed. Subsequently, we need
to identify a neural architecture that can efficiently operate on this
representation to provide reliable solutions with a small optimality
gap. To this end, firstly we explore the use of a graph abstraction
of the eVTOL state and vertiport state space, which is amenable to
adding or changing problem/environment features. Secondly, we
create a lightweight simulation environment that incorporates the
modeling of the principal constraints and uncertainties. Finally, we
propose a new graph neural net (GNN) type policy architecture
to operate on the graph abstraction of the problem and utilize the
simulation environment to generate hour-ahead sequential actions
for eVTOLs over a generic (12-hr) day of operation, acting in the
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role of a centralized planner. The policy network combines a Graph
Capsule Convolutional Neural Network (GCAPCN) [37] to encode
vertiport and eVTOL state information, a Transformer encoder net-
work to incorporate time-series data on demand and fare (similar
to [4]), and a feedforward network to encode passenger transporta-
tion cost. Additionally, a Multi-head Attention mechanism is used
to fuse the encoded information and problem-specific context, to
compute the sequential actions [15, 36, 37].

The Main Contributions of this paper can thus be summa-
rized as 1) Formulating the UAM fleet scheduling problem as a
Markov Decision Process (MDP), and architecting a centralized
encoder-decoder policy network, where the state of the UAM net-
work (vertiports and aircrafts) is embedded by a special Graph
Neural Network (GNN), with the demand, passenger fare, oper-
ating cost and air corridor availability information processed by
different Context encoders and then concatenated. The scheduling
actions are computed using a Multi-head Attention (MHA) based
action decoder that is fed by the GNN and context. 2) Integrating
the encoder-decoder policy network with a new simulation envi-
ronment that models the daily operation of 40 eVTOLs across 8 ver-
tiports, associated uncertainties, and airspace/aircraft constraints,
and provides data on demand, fare, and operational costs. 3) Train-
ing the encoder-decoder network via policy gradient techniques
and demonstrating its ability to generalize across unseen scenarios
and uncertainties. We expect that, with problem-specific design of
the context portion, this policy architecture can generalize to a wider
range of multi-agent/vehicle/robot scheduling problems with simi-
lar complex characteristics, namely graph-abstractable task/resource
space, time-varying and uncertain environment properties, and the
need for sequential actions that satisfy a large set of physical and
operational constraints.

Paper Outline: The next section describes the UAM fleet sched-
uling problem and its MDP formulation. Section 3 explains the
proposed solution, including the state encoding and action decod-
ing. Section 4 covers training and experimental evaluations, and
Section 5 presents concluding remarks.

2 PROBLEM DESCRIPTION & FORMULATION

A UAM network includes vertiports and eVTOLs (or aircraft) for pas-
senger transportation, with vertiports providing take-off/landing
spots, charging spots, parking areas, and terminals for boarding and
departing. We consider a concept of operations (ConOps), where
every vertiport is connected to each other (i.e., a fully connected
vertiport network [24]) by a route that comprises air corridors, as
shown in Fig. 1. For safe operation, eVTOLS can only use these air
corridors for flight. Since UAM is still an emerging concept, the ex-
act connectivity structure of a UAM network is not yet established.
Hence we assumed a fully connected network, i.e., where all the
nodes are connected to each other. The corridors have regulations
regarding the required distance gap for safe navigation. Here, we
consider the corridors to be straight tube-shaped air columns. We
consider there to be 4 air corridors between two vertiports with
two corridors for each direction. The UAM network is defined as
involving N vertiports, and Ng number of eVTOLSs, with each eV-
TOL having a maximum passenger seating capacity of C (=4) and
maximum battery capacity of Bpax (=110kWh). Let V and K be the
set of all vertiports and eVTOLs, respectively. Each vertiport i € V
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Figure 1: The trained policy implemented on the UAM net-
work: The two images show two consecutive decision-making
instances. For clarity of illustration, only 4 eVTOls are shown.

has a maximum number (Cff;}: =10) of eVTOLs it can accommodate
at a time and the total number of charging stations it contains
(Cfr{:(rgezé). Some of the vertiports that do not have a charging fa-
cility, called vertistops (Vs C V), are only used for landing/take-off,
and passenger boarding and have parking spaces. For computing
the cost of transportation, we define R; j to be the cost of transport-
ing a passenger from vertiport i to j. The travel demand between
vertiports is modeled based on real data as explained in Section 2.1.
Each vertiport i € V, has an expected take-off delay TiTOD which
will affect every take-off from the vertiport during an episode. Here,
an episode refers to the UAM operation for a specific time period.

We make the following assumptions for setting up this problem:
1) A single service provider runs the entire UAM network, and full
observation of the states of aircraft and vertiports in the network
is available to the central agent making the scheduling decisions,
which is reasonable under current communication capabilities in
urban areas, and given that planning occurs at 15-60 min time
scales. 2) Every eVTOL can commute between any two vertiports if
it has enough battery charge (considering a safety margin) for the
commute. 3) The resistive loss of the batteries is negligible. 4) The
state information of eVTOLs and vertiports is always accessible for
decision-making, which is crucial for ensuring passenger safety in
aviation applications. 5) An estimate of the probability of unplanned
technical grounding of eVTOLSs is available. 6) While route closure
on a given day of operation is not known apriori, an estimate of the
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probability of route closure (due to factors such as bad weather) is
however available. 7) The expected take-off delay (TiTOD, ieV)at
every vertiport can be estimated and is considered to be less than 6
minutes. We consider a probability of route closure between two
vertiports as Pf’lj"sure(s 0.05),V i, j € V. Once the route is closed,
there will not be any more commutes between these two vertiports
during the rest of the episode. We consider the probability of an
eVTOL to become dysfunctional as P]iaﬂ(s .005),V k € K during an
episode. In every episode, we consider a randomly assigned take-off
delay (of < 30 mins) for any vertiport-i, based on a Gaussian distri-
bution with mean TiTOD and a standard deviation of 6 minutes. We
assume this probability distribution of take-off delay to be known
prior to the scheduling. While these uncertainties are modeled for
realism, and seeded with prescribed values due to lack of historical
data in this regard, these values can be readily tweaked once data
(or forecasts) become available. Passenger pricing for a journey is
based on operational cost per passenger and the demand for the
trip. Upon reaching a vertiport, each eVTOL is fully charged before
proceeding to the next destination (excluding vertistops) or before
being parked in an available spot if it is to be idle.

The planning objective is to maximize the daily profit by opti-
mizing the schedule of eVTOL flights between vertiports to meet
travel demand. Each decision-making instance involves assigning
an eVTOL (currently at a vertiport) to another vertiport to fly to, or
instructing it to remain idle for another 15 mins. Factors such as de-
mand, battery charge, and operational costs are taken into account.
The current implementation focuses on 4-hour-long episodes (for
computational ease of training) between 6 am to 6 pm without an
end-of-episode constraint. Each episode is independent, starting
with a random number of fully charged eVTOLSs at each vertiport,
subject to vertiport capacity constraints. The passenger demand
model, eVTOL battery model, and optimization formulation of the
problem are further discussed below.

2.1 Demand Model

Passenger demand modeling is used to generate stochastic passen-
ger requests between different vertiports. The demand is based on
forecasted data from [35], and we assume to know the expected
demand for each hour during daily operating hours. The demand
between two vertiports i and j at a time ¢, Q(i, j, t), mimics the
demand patterns of a major city’s subway system, where certain sta-
tions close to commercial hubs and workplaces experience higher
traffic. In our scenario, a subset of vertiports, Vg C V, is desig-
nated as high-demand vertiports. The demand between vertiports
in Vp is higher compared to those in V' — Vg. We consider two peak
hours: 8.00-9.00 am (TP%?k1) and 4.00-5.00 pm (TPeak2) Vertiports
in Vp experience peak demand during both hours, resembling the
morning and evening rush hours for commuting between home
and workplace. This represents high demands from vertiports in
V — Vg to those in Vg during TPeakl and vice versa in TPeakz,

2.2 eVTOL model

The eVTOL vehicle model considered here is the same as in [21]
(City Airbus eVTOL aircraft), having a maximum cruise speed of
74.5 mph, maximum passenger capacity of 4, and a maximum range
of 50 miles The operating cost of the vehicle is about $0.64 per mile
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[31]. We also assume that for every eVTOL k, a downtime probabil-
ity of being dysfunctional is given by Pliaﬂ; this is based on work
on aircraft predictive maintenance [29]. Once an eVTOL become
dysfunctional, it can no longer be in service for the remainder of
the episode. The battery model is considered to be the same as that
in [21], which consists of a maximum capacity of Bpax= 110 kWh.
If BI; is the battery charge of eVTOL k at time ¢, and assuming the
eVTOL travels from vertiport i to j, the charge for the next time

k k  _ pk charge charge
step By, can be computed as By, ; = Bf — Bi’j Here B;
is the charge required to traverse between vertiports i and j. The

batteries are charged at vertiports with a charging rate of 150 kW.

2.3 Passenger Fare & Electricity Pricing Models

The passenger price consists of a fixed base fare, Fbase, of $5, and
a variable fare, FP3SS€NE€T The variable fare between two verti-
ports for a passenger at a time t is computed as a function of
the demand profile, Q(i, j, t), and the operational cost, R; ; (be-
tween i and j), expressed as FE;’S:enger = Ri j X Ofactor (i, j, t). Here
Ofactor (i, j, t) = max(log(Q(i, j, t)/10),1). This is a hand-crafted
function that accounts for demand in passenger pricing. A constant
electricity pricing, Price®® of $0.2/kWh is used here [1].

2.4 Optimization Formulation

The objective function to be maximized in the fleet scheduling prob-
lem is the daily profit, given by the difference of the earned revenue,
and the operating and electric-charging costs. Uncertainties due to
route closures, eVTOL malfunctions, and expected delays affect this
objective function. Here, the decision variables are the destination
vertiports (Vke"lld in the following paragraph) of all the eVTOLs for
all journeys. Hence, we are presented with a stochastic Integer
Nonlinear Programming (INLP) problem.

Consider a time period T (with |T| hours), with a start time of
Tst2rt and end time of T, We consider cases where T¢ < 6.00
pm, and TSt = Tend _ |T|, and TS > 6,00 am. For every eVTOL,

k € Ve, let S be the set of journeys taken during time period

of T; this could be of different length for different eVTOLs. Let
ypassengers
il

l e S;Cour by eVTOL k. Let B;‘ be the battery charge of eVTOL k
just before its I’th journey, VkStlart and V]frlld be the respective start

be number of passengers transported during the trip,

and end vertiports of eVTOL k during its I’th journey, lealke‘)ﬁ and

landing
Tk,l
Therefore, the total cost of transportation, (CostOP®") and charg-

be the corresponding takeoff time and landing time.

ing, (CostP!e®), and the revenue during T are given by:
CostOPer — Z Z N{)[assengers XRij, i= Vks,tlart’ j= V/:,l;d (1)
keK j
€K s
. h . .
CostPlee = Z Z Price®e® x B?, jarge, i= VkStla "= Vlz?d (2)
keK jespr
assengers assenger
Revenue = Z Z Ni},)l B8 % Ffj,t ser 3)
keK jeglow

. _ yrstart . _ yrend _ ~takeoff
i=Ver - 7=V =T
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Therefore, the objective function can be expressed as:
max z = Revenue — CostOP" — CostFlec (4)
We must also satisfy the following operational constraints:

assengers . PR . .
NETSPE = min(C, Qaet (i ju D), 1 = VIS, j = VY,

=TTy [ S (5)

k charge
BTIEakeoff > Bi’j

Ci= vt j=ved Ve K Ve S (o)
A ’

kl >

k< bk ey, Ve [TSta", Te“d] )

max >
- yrend :
Ve 20 if AMVIE =0VieV,, VhkeK, VeSSt (s)

Here B

charge
ij
from vertiport i to j, Qact (i, j, t) is the actual demand sampled from

is the amount of charge required for an eVTOL to fly

Q, Plosure represents the probability matrix for route closure, and
A is a binary matrix such that A; j = A;; = 0, if the route between
vertiports i and j is closed. Equations 1, 2, and 3 are used to compute
the objective function (Eq. 4). Equation 5 is used to compute the
number of passengers transported by eVTOL k on its I’th journey.
Constraint in Eq. 6 ensures that eVTOL k has enough charge before
taking off for its I’th journey. Constraint in Eq. 7 ensures that the
number of eVTOLs parked in every vertiport does not exceed its
maximum capacity. Constraint in Eq. 8 ensures that infeasible verti-
ports are not chosen during a decision-making instance. Later on, a
Genetic Algorithm is applied on this exact optimization formulation
to compute optimal solutions for comparisons with the learning
based solutions.

2.5 MDP Formulation

In this work, we formulate the fleet scheduling problem as an MDP,
where actions are computed sequentially for each eVTOL during
its decision-making instance (t € [T, Tend]), At each time step,
an action is assigned to each eVTOL based on the current state of
the vertiport network, which contains all necessary information for
decision-making. Unlike other multi-agent approaches in smaller
UAM settings, here we impose high safety standards [2]. Therefore,
full state information is essential for decision-making, leading us
to adopt a centralized decision-making scheme.

Graph Formulation for UAM vertiport Network: The UAM
vertiport network is expressed as a graph, G, = (V;, Ey, Ay), where
Vo (=V) represents the set of nodes or vertiports; in this case, E,
represents the set of edges between the nodes, and A, represents
the adjacency matrix of the nodes. Since we consider a route closure
probability PElosUre e compute the weighted adjacency matrix
as Ay = (1yxn — PEIOSUI€) 5 A where A is a matrix representing
the route closure such that if A;; is the route between nodes i
and j (i, j € Vy), then A; j = AJl = 0, if the route is closed; else
it is equal to 1. Here, the properties, 5{, of each node i € V, at
the time step ¢ are: 1) the x-y coordinates of the node/vertiport
(xi, yi), 2) the number of eVTOLs that are parked at vertiport i

at time ¢, Cpark

i+ » 3) the earliest time at which a charging station

is available Tfharge, 4) the expected take-off delay Tl.TOD, and 5)
a binary number I;’StoP which takes a value of 1 if the node is a

. k ~ch
vertistop. Hence, 5{ = x,-,yi,Cf?r TiC arge, TZ.TOD,I;’StOp ,5{ € RS,

>
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Graph Formulation for eVTOLs Network: The state of eV-
TOLs is also represented as a graph, Ge = (V,, Ee, A¢), where V,
represents the set of eVTOLs, E, represents the set of edges between
the nodes, and A, represents the adjacency matrix. We consider
Ge to be fully connected. Each node k € V, has its time-varying
node properties, 1//]€ The properties of a eVTOL node are 1) the
coordinates of the destination vertiport (x/‘f, y,‘f), 2) the current bat-
tery level as a fraction BF, 3) the next flight time Tlil lght, 4) the next
decision-making time T]?ec, and 5) the probability of failure Pliail,
Therefore, gﬂi = [xg, yl‘f, Blt‘, Tlil lght, TISSC,P};&H R 1//lt e R®.

State Space: The state information that will be used for comput-
ing the action at a time step ¢ consists of: 1) Vertiport graph Gy, 2)
eVTOLs graph G, 3) Demand profile Q, 4) Passenger fare FP2SSenger,
5) Cost of per passenger transportation R, and 6) Time at which
it’s safe to launch an éVTOL to the corridors T € RN*Nx2,
It should be noted some of the state variable updates such as
Tﬂight, Tdec, T;harge, TiTOD, etc. are not explicitly presented in this
paper due to space constraints; however, they have been appro-
priately implemented programmatically in the developed RL envi-
ronment. To handle the large state space, we use a Graph Neural
Network (GNN) to compute a fixed-length feature vector that repre-
sents the information of vertiports and eVTOLs. The demand profile
and passenger fare are modeled as time-series data and extracted by
a Transformer encoder. The cost of per-passenger transportation is
represented by alearned feature vector from a feedforward network.
Corridor closure information T is flattened and concatenated
with the aforementioned embeddings.

Action Space: During each decision-making instance, there will
be one eVTOL (or aircraft) that will be deciding its next destination,
ie., select an action, Vkel;d € V,), where V,, includes all available
vertiports. If it chooses the vertiport where it is currently located,
it will wait or idle for 15 mins before triggering a new decision
instance. We also consider a masking mechanism to prevent the
selection of infeasible vertiport journeys, i.e., ones that violate any
of the constraints presented in Egs. 5, 6, and 7.

Reward: We consider a delayed reward strategy, where the
total reward computed at the end of the episode is the ratio of

the profit (Eq. 4) to the maximum possible episodic profit, i.e.,
.. passenger
ZieV,jeV,te[Tm't,Te“d] (Q(l,], t) XFi,j,t )

State Transition: Uncertain route closure and take-off delay,
and uncertain variations in demand lead to a stochastic state tran-
sition here, which is computed by the simulation.

3 POLICY ARCHITECTURE & LEARNING
FRAMEWORK

We develop an RL framework to compute actions for individual
eVTOLs during decision-making instances. The policy model, as
illustrated in Fig. 2, is called when a fully charged eVTOL is waiting
to be assigned a destination. If an eVTOL remains grounded due to
route closures, destination crowding, or insufficient battery, the pol-
icy model is re-queried after a 15-min wait. The policy model takes
the state as input and outputs the probability of selecting the next
destination for the eVTOL. As shown in Fig. 2), it combines GNN-
based and Transformer-based encoders, a feedforward network,
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Figure 2: The CapTAIN policy network consists of GCAPCN
and Transformer encoders, and a decoder. Green and blue
blocks represent the policy and the state space, respectively.

and a Multi-head Attention (MHA) based decoder. The state infor-
mation is encoded as fixed-length (of lopeq) feature vectors using
encoders and a context module. These vectors are used by the de-
coder to compute actions sequentially. We call the proposed policy
network as Capsule Transformer Attention-mechanism Integrated
Network (CapTAIN). Each component of this policy model is fur-
ther explained below.

3.1 State Encoding

The state information consists of the information of UAM vertiports,
eVTOLs, passenger demand, passenger fare, passenger transporta-
tion costs, and electricity pricing. This section describes how the
state information is encoded.

3.1.1  Vertiport and eVTOL State Encoding with GNN:. We use a
GNN to compute feature vectors for the vertiport and eVTOL state
information, both of which are abstracted as graphs. Specifically, we
employ a Graph Capsule Convolutional Neural Network (GCAPCN)
for learning local and global structures with node properties (Fig.
2 top-left). The node embedding in GCAPCN is permutation in-
variant, similar to the approach described in [21]. GCAPCN is a
GNN introduced in [37] to address the limitations of Graph Convo-
lutional Neural Networks (GCN), enabling the encoding of global
information using capsule networks as presented in [6]. Further
description of the GCAPCN architecture can be found in [21]. We
use GCAPCN to compute node embeddings for the vertiport and
eVTOL graphs, F, € RNk Xlembed and F,, € RN*kembed respectively,
where loped is the embedding length.

3.1.2  Transformer-based Encoding of Demand & Passenger Fare:
Here, we utilize a Transformer Architecture to compute learnable
embeddings for entities that can be represented as time-series data,
such as demand distribution over time and passenger fare (Fig. 2
bottom-left). The Transformer architecture, originally introduced
in [36] and widely used in applications such as Natural Language
Processing [36] and time series forecasting [41], follows an encoder-
decoder approach based on self-attention. The encoder maps an
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input sequence to continuous representations, and the decoder
generates an output sequence by attending to relevant informa-
tion. In our work, we utilize the Transformer encoder to compute
continuous and learnable feature vectors for time-series data. The
forecasted demand between vertiports during each hour (Q) and
the passenger fare (FP255€R8€T) are processed by two separate Trans-
former networks into learned feature vectors, Fg € Rlembed and
Fp € Rlembed, respectively.

3.1.3  Passenger transportation cost encoding: The passenger trans-
portation information (R) can be considered as a matrix of size
N x N. This information can be encoded as a feature vector Fg of
length leypeq by passing through a feedforward (FF) network.

3.1.4  Corridor Availability encoding: For every corridor, we keep
track of the time at which it is safe for a new eVTOL to enter
the corridor (Fig. 1) subject to minimum separation requirements
governed by safety. The corridor availability T<°%, a tensor of size
NxNx2.T" is stretched into a 1-D vector Fr of length N X N x 2,
as shown in Fig. 2 bottom-right.

3.1.5 Context: The context vector is computed by taking the linear
transformation of a concatenated vector of the mean of the eVTOL
node embedding (Fe) given by the GCAPCN encoder, the embedding
of the eVTOL taking decision (Féc), demand and passenger fare
encoding given by the transformers (Fg and Fp), the transportation
cost encoding (FR) given by the FF, and the corridor availability
vector (Fr).

3.2 Action Decoding

We use a Multi-head Attention-based decoder as shown in Fig. 2
top-right, to compute which vertiport to visit next, given the verti-
port node embeddings (F,) and the Context vector. The attention
mechanism computes compatibility scores between the context
and the node embeddings, selecting the destination for the eVTOL
based on the highest compatibility score. The choice of the current
vertiport itself indicates a stay-idle decision.

3.3 Simulation Environment & Training
Algorithm

We considered a hypothetical area of 50 x 50 sq miles with 8 ver-
tiport locations (Fig. 1), including 2 vertistops, Vs (1 and 6). Four
vertiports (0, 4, 6 and 7) are designated as high-traffic (Vg) due to
their high trip demand. The location of vertiports remained the
same for each training scenario, while the hourly demand values
changed for each episode. The simulation environment is imple-
mented in Python using the OpenAl Gym interface, making it
compatible with standard RL training algorithms such as A2C [14]
and PPO [30] through the stable-baselines3 library. To train the
policy network, here we use PPO from stable-baselines3 [27]. A
2-layer neural network with input and intermediate length Iy peqd
and LeakyReLU activation is used as the value network.

4 EXPERIMENTAL EVALUATION

In order to assess the importance of each principal component of
the proposed CapTAIN policy model, e.g., the novel encoder choices,
we train two alternate policy models, using two GPUs (NVIDIA
Tesla V100, 16GB RAM). The first of these alternate models ablates
the two GCAPCN encoders by replacing it with a Multi-Layered
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Figure 3: Convergence plot for all the Table 1: Training
trained models settings

Perceptron (MLP) and is named the Ablation-GCAPCN, while the
second one ablates the Transformer network by replacing it with
an MLP, and is named the Ablation-Transformer. These alternate
models are also compared against two other baselines (Section 4.2).

The first baseline is given by a standard elitist Genetic Algo-
rithm (GA) that uses a population size of 30, max iteration of 30,
mutation probability of 0.1, elite ratio of 0.1, and crossover probabil-
ity of 0.5. Here, the GA is implemented in batches of 30 sequential
decisions. During each batch, the optimization variables are the 30
decisions where each decision takes an integer value between 1 and
N (for each vertiport), and the objective function is computed using
Eq. 4 at the end of the 30 decisions. We take the 30 decision vari-
ables and run the simulation with these 30 decisions implemented
sequentially resulting in an updated environment state. The opti-
mization of the next 30 decisions starts with the current state of
the environment. This is continued until the end of an episode. A
standard Python package! is used to implement the GA.

The second baseline method is a Feasibility Preserving Ran-
dom Walk (Feas-RND) approach that randomly selects a vertiport
from the set of feasible choices (satisfying Egs. 5,6, 7, and 8) as the
next destination during each decision-making instance.

Here onward, the Ablation-GCAPCN and Ablation-Transformer
policy models are called the two learning-based baselines, while the
GA and Feas-RND are called the two non-learning-based baselines.

4.1 Training & Convergence

The three policies are trained using PPO for 2 million steps based
on the parameters in Table 1. From the convergence plots in Fig. 3,
it can be seen that CapTAIN converges to a higher episodic mean
reward compared to the other two policies. Ablation-Transformer
episodic rewards improved until 900K steps, after which the perfor-
mance started to deteriorate. This demonstrates the utility of the
combination of the two encoder components (GCAPCN and Trans-
former) to provide better learning capability. Next, these trained
models are tested against the non-learning-based methods (GA and
Feas-RND), with the latter implemented on a 2.6 GHz Intel core i7
MacOS 11.2.3 system.

4.2 Generalizability & Ablation Study

The trained RL models and baselines are tested on 100 unseen
episodes, which are each defined as a 12 hr (6.00 am-6.00 pm) op-
eration of the UAM network. Figure 4 compares the results across
all 100 scenarios based on the mean episodic reward and episodic

Uhttps://pypi.org/project/geneticalgorithm/
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profit. Figure 5 provides further comparisons in terms of the fol-
lowing metrics: total number stay-idle decisions, total number of
flight decisions, total idle time, total flight time and total delay, com-
puted across all eVTOLSs over entire training episodes. It is observed

Reward

-

- =

25000 * %
" .

Profit in $
20000
15000 %
10000
5000 -
CapTAIN Ablation- Ablation- GA Feas-RND
GCAPCN Transformer

Figure 4: Comparative analysis of the 5 methods on total
episodic reward, total episodic profit, total idle decisions, and
total flight decisions.

from Fig. 4 that CapTAIN outperforms GA in terms of the average
episodic rewards, achieving a mean reward of 0.34 vs. the 0.29 mean
reward obtained by GA. To assess the significance of this difference,
we perform a statistical T-test, with the null hypothesis being that
both methods’ mean performance is the same. The p-value is found
to be 6x107%(< .05), which indicates that CapTAIN has a statis-
tically significant performance advantage over GA. As expected,
Feas-RND performed the worst.

As seen from Fig. 4, the comparative trend (or ranking in terms)
of the total episodic profit is very similar to that the episodic reward
across the five methods tested, with CapTAIN performing the best.
It is also notable that the Ablation-Transformer performs worse
than Ablation-GCAPCN. This shows that the Transformer encoder
contributes more strongly to generalizability compared to GCAPCN,
at least under the current problem settings.

4.2.1  Computation Time analysis. The solution computing time
for the GA is determined by adding the total time for which the
optimization (in batches) is performed. Similarly for CapTAIN and
the other learning-based methods, the total episodic computing
time is the sum of the computing times for the forward propagation
through the policy network throughout an episode. It’s found that
the average episodic computation time required by the GA is about
1,774 seconds, while for CapTAIN, it is only 2.1 seconds.

4.3 Further Analysis of Decision-Making

In order to physically interpret the diverse nature of the decision-
making by the different methods, we track the total number of idle
decisions, the total number of flight decisions, and the total episodic
flight time, idle time and delays per eVTOL. From Fig. 5, it can be
seen that Feas-RND and GA have comparatively more number of
flight decisions and fewer idle decisions, and consequently higher
episodic flight time per eVTOL and lower episodic idle time per
eVTOL (Fig. 5), compared to CapTAIN. Interestingly, these obser-
vations show that more flights do not necessarily result in greater
overall profits. This phenomenon is caused by the difference in
demand and pricing across peak (higher fares) and off-peak (lower
fares) hours. Here CapTAIN is taking advantage of this difference
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to provide better trade-offs in a number of peak/off-peak flights,
leading to more favorable profit generation. Both GA and Feas-RND
are also observed from Fig. 5 to result in lower total episodic delay
per eVTOL, compared to CapTAIN. This shows that CapTAIN com-
promises delays with the objective of a higher profit, which could

also be an artifact of delays not directly affecting demand or fares.
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Figure 5: Comparmg the effect of the 5 methods on total idle
time, total flight time, and total delay time per eVTOL.

5 CONCLUSIONS
We proposed a graph RL approach using a new encoder-decoder pol-

icy architecture to perform UAM fleet scheduling, one that uniquely
considers uncertainties (due to delays, aircraft downtime, and route
closures), time-varying demand, vertiport constraints, and airspace
constraints. The state of eVTOL aircraft and vertiport occupancy
were expressed as graphs, while demand forecast and fares were
treated as time-series data. Our novel architecture (CapTAIN) com-
prises Graph Capsule Convolutional Networks, Transformer en-
coders, feedforward context layers, and a Multi-head Attention-
based decoder to compute sequential actions. Each of these compo-
nents of CapTAIN is designed to play a specific role that caters to a
specific complexity of the fleet scheduling problem, such as gener-
alizable embedding of the structural information of the vertiports
and eVTOL graphs, and transforming time-series data for demand
and passenger fare into context vectors. The policy was trained
using PPO and evaluated on 100 unseen scenarios. Compared to
non-learning-based methods (GA and Feas-RND), our CapTAIN
achieved better performance with up to 3 orders of magnitude faster

-
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computation time than GA. Ablation studies showed that the Trans-
former encoder had a greater impact on performance than graph
neural net encoders. Future directions include extending planning
horizons and incorporating end-of-episode constraints to alleviate
the limitations of the current myopic training implementation of
the policy. Decentralized policies suitable for more realistic sce-
narios with multiple stakeholders operating vertiports and eVTOL
fleets can also be explored in the future.
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