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Abstract— Most real-world Multi-Robot Task Allocation
(MRTA) problems require fast and efficient decision-making,
which is often achieved using heuristics-aided methods such
as genetic algorithms, auction-based methods, and bipartite
graph matching methods. These methods often assume a form
that lends better explainability compared to an end-to-end
(learnt) neural network based policy for MRTA. However,
deriving suitable heuristics can be tedious, risky and in some
cases impractical if problems are too complex. This raises the
question: can these heuristics be learned? To this end, this paper
particularly develops a Graph Reinforcement Learning (GRL)
framework to learn the heuristics or incentives for a bipartite
graph matching approach to MRTA. Specifically a Capsule
Attention policy model is used to learn how to weight task/robot
pairings (edges) in the bipartite graph that connects the set of
tasks to the set of robots. The original capsule attention network
architecture is fundamentally modified by adding encoding
of robots’ state graph, and two Multihead Attention based
decoders whose output are used to construct a LogNormal
distribution matrix from which positive bigraph weights can
be drawn. The performance of this new bigraph matching
approach augmented with a GRL-derived incentive is found to
be at par with the original bigraph matching approach that used
expert-specified heuristics, with the former offering notable
robustness benefits. During training, the learned incentive
policy is found to get initially closer to the expert-specified
incentive and then slightly deviate from its trend.

I. INTRODUCTION

Multi-Robot Task Allocation (MRTA) is the problem of

allocating multiple robots to complete multiple tasks with the

goal of maximizing/minimizing an objective or cost. In this

paper, we are interested in comparing learning methods that

generalize well with more traditional optimization methods.

Some of the real-world applications include construction

[1], disaster response [2], manufacturing [3], and warehouse

logistics [4]. Even though expensive solvers such as Mixed-

Integer Non-Linear Programming (MINLP) provide near-

optimal solutions, these methods cannot be deployed for

scenarios with 100s or 1000s of tasks and robots.

There exists a notable body of work on heuristic-based

approaches to solving MRTA problems more efficiently, e.g.,

using genetic algorithm [5], graph-based methods [2], [6],

[7], and auction-based methods [8]). Often the heuristic

choices and setting in these approaches are driven by expert
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experience and intuition. Hence, although they provide some

degree of explainability, they leave significant scope for im-

provement in performance. Moreover, heuristic-based meth-

ods are often poor at adapting to complex problem charac-

teristics, or generalizing across different problem scenarios,

without tedious hand-crafting of underlying heuristics. As a

result, an emerging notion in (fast, near-optimal) decision-

making is “can more effective heuristics be automatically

(machine) learned from prior operational data or experience

gathered by the agent/robot e.g., in simulation” [9]? This

raises the fundamental question of whether learned heuristics

can match and potentially surpass the performance of human-

prescribed heuristics when generalizing across a wide range

of problem scenario of similar or varying complexity. We

explore this research question in the context of multi-robot

task allocation problems of the following type Multi Robot

Tasks-Single Task Robots (MR-ST) [10]. In doing so, this

paper also provides initial evidence of the potential for

exploiting the best of both worlds: explainable structure of

graph matching techniques and automated generation of the

necessary heuristics through reinforcement learning (RL).

A. Related Works
Some of the most common online solution approaches

for MRTA problems include heuristic-based methods Integer

linear programming (ILP) based methods, bipartite graph

(bigraph) matching, meta-heuristic methods such as genetic

algorithm and Ant Colony Optimization, and also Rein-

forcement Learning (RL) based methods. ILP-based mTSP

formulations and solutions have also been extended to MRTA

problems [11]. Although the ILP-based approaches can in

theory provide optimal solutions, they are characterized by

exploding computational effort as the number of robots and

tasks increases [12], [13].

Most online MRTA methods, e.g., auction-based meth-

ods [8], [14], [15], metaheuristic methods [16], [17], and

bi-graph matching methods [2], [6], [18], Genetic Algo-

rithms [5], use some sort of heuristics, and often report the

optimality gap at least for smaller test cases compared to

the exact ILP solutions. [6] introduces the use of bigraphs

and the Max-Sum algorithm for decentralized task alloca-

tion in multi-agent systems. specifically, maximum weighted

bipartite matching [2], [6] with manually tuned incentive

functions (aka expert heuristics) has been shown to provide

scalable and effective solutions to various MRTA problems.

The incentive function typically represents the affinity of

any given robot to choose a given task based on the task’s

properties and the state of that robot. However every time the

features of the robot, robot team, or task space changes, the



incentive functions must be re-designed or re-calibrated by

an expert to preserve performance. This technical challenge

motivates learning of the incentive function from experience.

Over the past few years, Graph Reinforcement Learning

(GRL) methods have emerged as a promising approach to

solving combinatorial optimization problems encountered in

single and multi-agent planning applications [10], [19]–[28].

While these methods have shown to generate solutions that

can generalize across scenarios drawn from the same dis-

tribution and can be executed near instantaneously, they are

considered to be black-box methods (thus lacking explain-

ability) and usually do not provide any sort of guarantees.

Key Contributions: The overall objective of this paper

is to identify an approach to learning the incentive function

that can be used by maximum weighted bigraph matching to

perform multi-robot task allocation, with performance that

is comparable to or better than reported i) bigraph matching

techniques that use expert heuristics, and ii) purely RL based

solutions. Thus the main contributions of this paper include:

1) Identify the inputs, outputs and structure of the graph

neural network (GNN) model that will serve as the incentive

function; 2) Integrate the GNN-based incentive with the

bigraph matching process in a way that the GNN can be

trained by policy gradient approaches over simulated MRTA

experiences; 3) Analyze the (dis)similarity of the learned

incentives to that of the expert-derived incentives.

Paper Outline: The next section summarizes the MRTA

problem, its MDP formulation, and the bigraph representa-

tion of the MRTA process. Section III describes our proposed

GNN architecture for incentive learning and computing the

final action (robot/task allocations). Section IV discusses

numerical experiments on MRTA problems of different sizes,

comparing learning and non-learning methods and analyzing

computing time. Section V concludes the paper.

II. MRTA - COLLECTIVE TRANSPORT (MRTA-CT)

Here we consider the MRTA Collective Transport (MRTA-

CT) problem defined in [10]. Given a homogeneous set of

NR robots denoted as R (r1, r2, . . . , rNR ) and a set of

NT tasks represented by V T , the objective is to optimize

task allocation to maximize the number of completed tasks.

There is a central depot that serves as both the starting and

ending points for each robot. Each task, denoted as i ∈ V T ,

possesses unique location coordinates, (xi, yi). Additionally,

each task has a workload or demand, wi, which may vary

over time, and a time deadline, Äi, by which the task must

be completed (i.e., demand satisfied) to be considered as

“done” (È = 1). Each robot has a maximum range, ∆max

that limits its total travel distance including return to depot.

Robots also have a predefined maximum payload carrying

capacity, Cmax. A robot starts its journey from the depot with

a full battery and payload, proceeds to task locations to partly

or completely fulfill its demands; it returns to the depot once

it’s either completely unloaded, running low on battery, or

there are no remaining tasks in the environment, whichever

condition is met first. The recharging process is assumed to

be instantaneous, such as through a battery swap mechanism.

A. MRTA-CT as Optimization Problem

The exact solution to the MRTA-CT problem is obtained

by formulating it as an INLP problem, as concisely expressed

below (for brevity); details can be found in [10].

min fcost = (NT −Nsuccess)/N
T (1)

Nsuccess =
∑

i∈V T

Èi

{

Èi = 1, if Äfi ≤ Äi

Èi = 0, if Äfi > Äi

0 ≤ ∆t
r ≤ ∆max, r ∈ R (2)

0 ≤ ctr ≤ Cmax, r ∈ R (3)

Here Äfi is the time at which task i is completed, ∆t
r is

the available range for robot r at a time instant t, ctr is

the capacity of robot r at time t, Nsuccess is the number

of successfully completed tasks during the operation. We

craft the objective function (Eq. (1)) such that it emphasizes

minimizing the rate of incomplete tasks, i.e., the number

of incomplete tasks divided by the total number of tasks.

Equations 2 and 3 correspond to the remaining range and

capacity respectively at time t. We express the MRTA-

CT as an MDP over a graph to learn policies that along

with a bigraph matching approach yield solutions to this

combinatorial optimization problem, as described next.

B. Bipartite Graph for MRTA

A bipartite graph (bigraph) is a graph with two distinct

and non-overlapping vertex sets such that every edge in

the graph connects a vertex from one set to a vertex

in the other set. A weighted bigraph is a special type

of bigraph in which each edge is assigned a numerical

weight or cost. These weights represent some measure of

significance, incentive, affinity, cost, or strength associated

with the connections between the vertices in the graph.
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Fig. 1: Bigraph showing robot-
task connections. The Bigraph
weights is written as a matrix.

Weighted bigraphs are com-

monly used to model and

solve various real-world prob-

lems, where the weights on

edges provide additional infor-

mation about the relationships

between entities across the two

sets. In this work as shown in

Fig. 1, we construct a bigraph

GB = (V B , EB ,ΩB), where

the two types of vertices in

V B are from the set of robots,

V R, and the set of tasks, V T .

Here, EB represent the edges

that connect any vertex or node in V R with a vertex in V T .

Here, ΩB(∈ R
NR

×NT

) is the weight matrix, where each

weight, ΩB
r,i, r ∈ V R, i ∈ V T , is associated with the edge

that connects nodes r and i. In our MRTA representation,

this weight ΩB
r,i, r ∈ V R, i ∈ V T provides a measure of the

affinity for robot r to perform task i.
Maximum Weight Matching: Weighted (bigraph) graph

matching is a well-studied problem in graph theory and

combinatorial optimization. The goal is to find a matching

(a set of non-overlapping edges or one-to-one connections)



in a bigraph such that the sum of the weights of the selected

edges is maximized or minimized, depending on whether

it’s a maximum-weight or minimum-weight matching, re-

spectively. Here we make use of maximum-weight matching

to allocate tasks to the robots. Popular methods for weight

matching for bigraphs include the Hungarian Algorithm [29]

and Karp Algorithm [30]. Along with providing provably

optimal matching, Maximum weight matching offers clarity

and transparency on how robots are paired with tasks in

the case of MRTA. Effectiveness of this approach however

hinges on how well the weight matrix represent the relative

affinity or value of the robots to select tasks (connected

by edges) given the current state of the environment. The

formulation of the MDP to learn how to generate this weight

matrix given the environment state is described next.

C. MDP over a Graph

The MDP is defined in an asynchronous decentralized

manner for each individual robot, to capture its task selection

process, and is expressed as a tuple, < S,A,Pa,R >. Here,

we assume full observability, i.e., every robot communicates

its chosen task with other robots.

Graph formulation for Tasks: The task space of an

MRTA-CT problem is represented as a fully connected

graph GT = (V T , ET ,ΩT ), where V T is a set of nodes

representing the tasks, ET is the set of edges that connect the

nodes to each other, and ΩT is the weighted adjacency matrix

that represents ET . Node i is assigned a 4-dimensional

normalized feature vector denoting the task location coor-

dinates, time deadline, and the remaining workload/demand

i.e., ¶Ti =[xi, yi, Äi, w
t
i ] where i ∈ [1, NT ]. Here, the edge

weight between two nodes ΩT
i,j (∈ ΩT ) is computed as

ΩT
i,j = 1/(1+|¶Ti −¶Tj |), where i, j ∈ [1, NT ], and expresses

how similar the two nodes are in the graph space. This

is a common approach to compute the weighted adjacency

matrix, despite the node properties representing different

physical quantities. The degree matrix DT is a diagonal

matrix with elements DT
i,i =

∑

j∈V T ΩT
i,j , ∀i ∈ V T .

D. Task selection

Graph formulation for Robots: The state of the robots in

MRTA-CT is represented as a fully connected graph GR =
(V R, ER,ΩR), where V R is a set of nodes representing the

robots, ER represent the set of edges, and ΩR is the weighted

adjacency matrix that represents ER. The number of nodes

and edges are NR and NR(NR − 1), respectively. Every

robot node is defined as ¶Rr = [xtr, y
t
r,∆

t
r, c

t
r, t

next
r ], ∀r ∈ R,

where for robot r, xtr, y
t
r represents its current destination,

∆t
r represents its remaining range (battery state), ctr repre-

sents its remaining capacity of robot, and tnext
r represents

its next decision time. The weights of ΩR are computed

using ΩR
r,s = 1/(1 + |¶Rr − ¶Rs |), where r, s ∈ [1, NR].

The degree matrix DR is a diagonal matrix with elements

DR
r,r =

∑

s∈V R ΩR
r,s, ∀r ∈ V R. When a robot r visits a task

i, the demand fulfilled by the robot r is min(wt
i , c

t
r).

The components of the MDP are defined as follows: State

Space (S): a robot r at its decision-making instance uses

a state s ∈ S , which contains the task graph GT and the

robots’ state graph GR. Action Space (A): each action a
is defined as the index of the selected task, {0, . . . , NT }
with the index of the depot as 0. This action is selected as

a result of the maximum weight matching of the bigraph.

State Transition, Pa(s
′|s, a): the transition is an event-

based trigger. A robot taking action a at state s reaches

the next state s′ in a deterministic manner. This definition

assumes that the policy model encapsulates all processes,

including but not limited to the learning-derived models, that

together produces the action to be taken, given the state of

the environment. Reward (R): Here a reward of 1/NT is

given during each decision-making instance, if an active task

(whose demand has not yet been fully met, and deadline has

not passed) is chosen, while a reward of 0 is given if the

depot is chosen. Hence, the maximum possible aggregate

reward in any episode is 1.

III. INCENTIVE (WEIGHT) LEARNING FRAMEWORK

In our solution approach, we construct a policy network

that serves as the incentive generator. Namely, it takes in

the state information during a decision-making instance for

a robot and outputs the bigraph weight matrix. This is used

by maximum weight matching on the bigraph to yield the

task selection for the deciding robot. This section discusses

the policy network and the various steps involved in the

sequential decision-making process.
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Fig. 2: The overall structure of the BiG-CAM policy.

Figure 2 shows the inputs/outputs and structure of the

policy model that computes the bigraph weights. The ele-

ments of the weight matrix (ΩB
r,i, r ∈ V R, i ∈ V T ), which

represents an incentive score for that robot r to pick task

i at that instance, should be computed as a function of the

task and robot features. Here the policy model is designed

to output parameters of (independent LogNormal) probability

distributions from which the bigraph weights, ΩB
r,i, can be

sampled. Since the state and features of the tasks and robots

are both formulated as graphs (GT and GR), we use GNNs to

compute their node embeddings. Along with node features,

the choice of the GNN type seeks to also embed the structure

of the task and robot spaces to promote generalizability.

These node embeddings are then used to compute the weights

using Multi-head Attention-based decoders (MHA). We use

two such decoders to produce a matrix of the mean values

of the bigraph weights and a matrix of the corresponding

standard deviation values. We call this incentive policy model

BiGraph-informing Capsule Attention Mechanism or BiG-

CAM, whose components are described next.
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A. GNN-based feature encoder

We use Graph Neural Networks (GNNs) for encoding the

state of the tasks and robots. The GNNs take in a graph

and compute node embeddings. We consider two separate

encoders (Fig. 2) for the task and robot graphs, named as the

Task Graph Encoder (TGE) and the Robots Graph Encoder

(RGE). Both TGE and RGE are based on Graph Capsule

Convolutional Neural Networks (GCAPS) [31], as shown

in Fig. 3. In our prior works [10], [22], [24], GCAPS has

shown superior capability in capturing structural information

compared to GNNs such as Graph Convolutional Networks

(GCN) and Graph Attention Networks (GAT). Here, both

the TGE and the RGE take in the corresponding graphs, GT

and GR, and compute the corresponding node embeddings,

FT (RNT
×h) and FR (RNR

×h), respectively; here h is the

embedding length. The embeddings are then passed into two

decoders to compute the mean weight matrix ÄΩB , and its

corresponding standard deviation ÃΩB (Fig. 2).

B. Multi-head Attention (MHA) based decoding
We initialize two MHA-based decoders, to compute the

mean weights (ÄΩB ) and the standard deviation (ÃΩB ). Each

decoder takes in the task embeddings FT and the robot

embeddings FR and outputs a matrix of size NR × NT .

The structure of the decoder is shown in Fig. 4. FT is used

to compute the key K and value V , while the a set of query Q
is computed using FR. The output of decoders are matrices

for the mean (ÄΩB ) and the standard deviation (ÃΩB ).

C. BiGraph Weights Modeled as Probability Distributions

The outputs from the decoder (ÄΩB and ÃΩB ), which rep-

resent the matrices with the mean and the standard deviation

for the bigraph weights, are then used to express NR ×NT

Lognormal probability distributions, from which the bigraph

weights (ΩB
r,i) are drawn. To encourage exploration during

training, the weights are sampled in an ϵ-greedy fashion

(ϵ = 0.2); i.e., with ϵ probability the weight is randomly

sampled from the corresponding distribution, and in the

remaining cases, the mean value (from ÄΩB ) is directly used.

During testing, the mean value is always greedily used.

D. Weighted Bigraph Construction

Similar to [2], we omit the edges that represent an infea-

sible combination of robots and tasks, and those connecting

tasks whose demand has been fully met or deadline has

passed. The remaining edge weights are obtained from the

computed weight matrix distributions. Once the weighted

bigraph is constructed, we perform a maximum weight

matching using the Hungarian Algorithm [29] to match

robots to tasks. The deciding robot then broadcasts the task

selection information to peer robots.

E. BiG-CAM Policy Training Details

Training Dataset: We train the BiG-CAM policy on an en-

vironment with 50 tasks, 6 robots, and a depot. Every episode

is a different scenario characterized by the task location,

demand, time deadline, and depot location. The locations

of the tasks and the depot are randomly generated following

a uniform distribution ∈ [0, 1] km. We consider every robot

to have a constant speed of 0.01 km/sec. The demand for

the tasks is an integer drawn randomly between 1 and 10

following a uniform distribution. The time deadline for the

tasks is drawn from a uniform distribution ∈ [165, 550]
seconds. The environment settings here are adopted from

[10], inspired by applications such as multi-robot disaster

response and materials transport. For both TGE and RGE,

we use the same settings for the GCAPS encoders as in [10].

Eight attention heads are used in MHA-based decoders.

Training Algorithm: In order to train the BiG-CAM

policy, we use Proximal Policy Optimization (PPO) [32]. We

allow 5 million steps, with a rollout buffer size of 50000,

and a batch size of 10000. The simulation environment is

developed in Python as an Open AI gym environment for

ease of adoption. The training is performed on an Intel

Xeon Gold 6330 CPU with 512GB RAM and an NVIDIA

A100 GPU using PPO from Stable-Baselines3 [33]. The

testing is performed only using the CPU. Here, we consider

centralized training, where the collected experience of all the

robots is used for training a single policy. Implementation is

decentralized, where at any decision-making instance for a

given robot, it executes the BiG-CAM policy to compute

bigraph weights and runs maximal matching.

IV. EXPERIMENTAL EVALUATION

A. Baseline Methods:

Three different baselines are considered, a bigraph match-

ing approach that uses expert-designed incentive function as

edge weights, an RL-trained policy that directly provides task

selections for robots, and a feasibility-preserving random

walk approach. They are summarized below.

Bi-Graph MRTA (BiG-MRTA): BiG-MRTA [2], [7] uses

a handcrafted incentive function to compute the weights

of the edges connecting robots and tasks, based on which



maximum matching is performed to decide task selection.

This incentive for robot r to choose task i at a time t is a

product of two terms. The first term measures the remaining

range if the robot chooses and completes task i and returns

to the depot. This term becomes zero if there’s insufficient

battery for the return. It represents the remaining potential for

robot r to perform additional tasks after task i. The second

term is a negative exponential function of the time tri needed

for robot r to complete task i if chosen next, i.e., before the

deadline Äi. If task i can’t be completed by robot r before

the deadline, the edge weight (Éri) becomes zero. Therefore,

the weight Éri of a bigraph edge (r, i) is expressed as:

ωri =

{

max (0, lr) · exp
(

−
t
r

i

α

)

if tri ≤ τi

0 Otherwise
(4)

where lr = ∆t
r−(dri+di0), ³ is the max time (550 seconds),

dri is the distance between the current location/destination

of robot r and the location of task i, while di0 is the distance

between the location of task i and the depot.

Capsule-Attention Mechanism (CapAM): The CapAM

policy network from [24] uses a GCAPS network as GNN

and an MHA-based decoder to directly compute log prob-

abilities for all available tasks given a state for the robot

taking the decision. This method has demonstrated better

performance compared to other encodings such as GCN and

GAT [22], and standard RL [10]. This policy has been trained

with the same settings as that of BiG-CAM, (refer Section

III-E). Previous work on related problems have already

enlightened on the optimality gap of of BiG-MRTA and

CapAM w.r.t MINLP solutions [2], [10], and hence expensive

MINLP solutions are not generated here.

Feasibility-preserving Random-Walk (Feas-Rnd): is a

myopic decision-making method that takes randomized but

feasible actions, avoiding conflicts and satisfying other prob-

lem constraints. Feas-Rnd serves as a lower bound to com-

pare the performance of the other methods.

B. Training Convergence:

From the training history, it was observed that at the

end of 5 million steps, BiG-CAM converged to an average

total episodic reward of 0.53, compared to 0.51 achieved by

CapAM. this training process for BiG-CAM took ∼21 hours

while CapAM took ∼15 hours. This increase in training time

is due to the computation overhead of the maximum weight

matching algorithm, and the larger number of trainable

weights for BiG-CAM compared to CapAM.

C. Performance Analysis (% Task completion)

In order to assess the performance of the learned policy

on generalizability and scalability, we designed test scenarios

with varying numbers of tasks NT and number of robots

NR. We generate different scenarios based on a set of scaling

factors ST = {1, 2, 5, 10} for tasks and SR = {1, 2} for

robots. For every combination of st ∈ ST and sr ∈ SR we

consider 100 scenarios with number of tasks NT = 50× st,
and number of robots NR = 6 × sr (note again, 50-

task-6-robot scenarios were used in training). For example,

for scenarios with st=2, and sr=2, NT =100, and NR=24.

(a) Scenarios with NT
= 50 (st=1)

(b) Scenarios with NT
= 100 (st=2)

(c) Scenarios with NT
= 250 (st=5)

(d) Scenarios with NT
= 500 (st=10)

Fig. 5: % task completion for all the methods. Left plots correspond to
scenarios with sr = 1; right plots correspond to scenarios with sr = 2.

We implemented the other baseline methods (BiG-MRTA,

CapAM, and Feas-Rnd) on these same test scenarios for

comparison in terms of % task completion metric. In order

to confirm the significance of any performance difference

between the methods, we performed the statistical t-test

pairwise for different settings of st and sr, with the null

hypothesis being the mean of the two sets of samples are

the same. For BiG-CAM, for scenarios with sr>1 and st>1,

we shrink the size of the bigraph weight to 6×50. The 50

tasks and 5 peer robots are chosen based on their proximity

to the robot taking decision, thus keeping the computation

time spent for the maximum weight matching relatively

unchanged irrespective of the scenario size.

Across all testing scenarios, BiG-CAM, BiG-MRTA and

CapAM provide clearly better task completion rates com-

pared to Feas-Rnd. Comparing generalizability performance,

i.e., in test scenarios of similar size as in training, we observe



from Fig. 5a (left side) that BiG-CAM and BiG-MRTA

exhibit comparable performance. BiG-MRTA has a slightly

better median task completion %, while BiG-CAM provides

smaller variance. The t-test yields a p-value of 0.188, indi-

cating no significant difference between BiG-CAM and BiG-

MRTA for these scenarios. In contrast, when compared to

CapAM, BiG-CAM has a slightly higher median (around

3%) while maintaining a lower standard deviation. The p-

value from the t-test is 0.03 (<0.05), indicating a significant

difference between BiG-CAM and CapAM’s performance.

In scenarios with st=2 and fewer robots (sr=1) (Fig. 5b,

left side), BiG-CAM performs similarly to BiG-MRTA (p-

value>0.05) while outperforming CapAM (p-value<0.05).

However, for a larger number of robots st=2 (Fig. 5b,

right side), BiG-CAM exhibits slightly inferior performance

compared to both BiG-MRTA and CapAM (p-value<0.05 for

both cases). For scenarios with st=5 and 10 and for scenarios

with a lower number of robots (sr=1), BiG-CAM performs

significantly better than both BiG-MRTA and CapAM (p-

values <0.05), while for scenarios with a larger number of

robots (sr=2), BiG-CAM performs slightly poor compared

to BiG-MRTA (p-value <0.05), and on par compared to

CapAM for st = 5 (p-value>0.05), and better than CapAM

for st=10 (Figs. 5c and 5d).

BiG-CAM outperforms BiG-MRTA in scenarios with

fewer robots (sr=1), while BiG-MRTA excels in scenarios

with more robots (sr=2). The performance drop of BiG-

CAM compared to BiG-MRTA could be partly because of

the forced limiting of the bigraph to the size for which

the policy model in BiG-CAM has been trained. Notably,

BiG-CAM exhibits significantly lower variance across all

scenarios compared to both BiG-MRTA and CapAM. BiG-

CAM’s standard deviation ranges from 0.064 (st=1, sr=1)

to 0.21 (st=2, sr=2), while BiG-MRTA’s standard deviation

spans from 0.88 (st=1, sr=2) to 0.57 (st=5, sr=1).

Computing time analysis: Computation time is assessed

using two metrics: the average time for all decisions in an

episode and the time for a single decision, as presented in

Table I. CapAM which only includes a policy execution is

faster than BiG-CAM and BiG-MRTa as expected. Now, be-

tween BiG-MRTA and BiG-CAM, scenarios with fewer tasks

(NT =50,100) favor BiG-MRTA, since it solely performs

maximum weight matching. BiG-CAM needs to also perform

policy execution to compute the bigraph weights, which adds

to its computing time. However, in scenarios with more tasks

(NT = 250, 500), BiG-CAM is significantly faster than BiG-

MRTA (up to 9 times). This is because BiG-CAM limits the

bigraph size to 50-task/6-robot based on proximity, while

BiG-MRTA considers the entire task/robot space leading to

greater cost of the maximum matching process.

D. Learned incentives vs expert-derived incentives model

A key question is whether the learned policy in BiG-CAM

produces incentives that are similar to or differ from those

computed by the expert-specified incentive function in BiG-

MRTA. To answer this question, we compute the weight

matrix for a set of 1000 states, S = [S1, . . . S1000] in 50-

task/6-robot scenarios, using the policy at different stages

TABLE I: Average total episodic decision computing time (with average
computing time per decision) in seconds

N
T

N
R BiG-CAM BiG-MRTA CapAM Feas-Rnd

50
6 0.67 (0.007) 0.28 (0.004) 0.20 (0.003) 0.002 (2e-5)

12 1.3 (0.007) 0.7 (0.006) 0.28 (0.002) 0.002 (1.6e-4)

100
12 2.26 (0.012) 1.6 (0.007) 0.64 (0.004) 0.003 (1.7e-5)
24 5.47 (0.012) 4.7 (0.009) 0.92 (0.004) 0.005 (1.8e-5)

250
30 12.99 (0.02) 23.2 (0.07) 3.03 (0.009) 0.006 (1.8e-5)
60 38.15 (0.04) 67.10 (0.2) 6.39 (0.009) 0.013 (1.8e-5)

500
60 91.9 (0.09) 174.4 (0.40) 25.5 (0.03) 0.012 (1.9e-5)
120 192.0 (0.11) 464.0 (0.90) 35.6 (0.03) 0.014 (1.9e-5)

of learning, namely when the time steps are 50K, 100K,

500K, 1M, 2M, 3M, and 5M. Then we compute the average

Sinkhorn distance between the weight matrices derived from

the learned policy and the corresponding weight matrix given

by BiG-MRTA expert-specified incentive function, as shown

in Fig. 6. We observe that the average Sinkhorn distance

between the weight matrices of the two methods for all

the states in S decreases until 2M, and then increases. This

observation shows that as the learning progresses the weight

matrix initially gets more similar to that given by the expert-

specified incentive function (in BiG-MRTA), but later on

slightly deviates from the expert incentive function.

Fig. 6: Comparison of Sinkhorn distance between the bigraph weight of S.

V. CONCLUSIONS

This paper proposed a graph RL approach called BiG-

CAM to learn incentives or weights for a bigraph repre-

sentation of candidate robot-task pairing in MRTA, which

is then used by a maximum weight matching method to

allocate tasks. We considered an MRTA collective transport

(MRTA-CT) problem, which was formulated as an MDP with

the state of the tasks and the robots expressed as graphs.

The weights of the task/robot pairing bigraph are sampled

from distributions computed by a policy network (BiG-

CAM) that act on the state space graphs, comprises GNN

encoders and MHA-based decoders, and trained using PPO.

In testing, BiG-CAM demonstrated comparable or slightly

better performance relative to BiG-MRTA (that instead uses

an expert-crafted incentive to compute bigraph weights) for

scenarios with lower number of robots, and comparable or

slightly poorer median performance for scenarios with a

larger number of robots. Compared to both BiG-MRTA and

CapAM (purely GNN for MRTA), BiG-CAM demonstrated

better robustness w.r.t. task completion rates. In the future,

alleviating the limitation of fixing the size of the task and

robot spaces during training of BiG-CAM could further

improve its relative performance. Future systematic analysis

is also needed to adapt the bigraph size based on the ex-

pected propagation of decision influence across the task/robot

graphs to ensure reliable yet compute-efficient scalability of

the underlying bigraph matching concept.
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