Bigraph Matching Weighted with Learnt Incentive Function for
Multi-Robot Task Allocation

Steve Paul!, Nathan Maurer? and Souma Chowdhury®:f

Abstract—Most real-world Multi-Robot Task Allocation
(MRTA) problems require fast and efficient decision-making,
which is often achieved using heuristics-aided methods such
as genetic algorithms, auction-based methods, and bipartite
graph matching methods. These methods often assume a form
that lends better explainability compared to an end-to-end
(learnt) neural network based policy for MRTA. However,
deriving suitable heuristics can be tedious, risky and in some
cases impractical if problems are too complex. This raises the
question: can these heuristics be learned? To this end, this paper
particularly develops a Graph Reinforcement Learning (GRL)
framework to learn the heuristics or incentives for a bipartite
graph matching approach to MRTA. Specifically a Capsule
Attention policy model is used to learn how to weight task/robot
pairings (edges) in the bipartite graph that connects the set of
tasks to the set of robots. The original capsule attention network
architecture is fundamentally modified by adding encoding
of robots’ state graph, and two Multihead Attention based
decoders whose output are used to construct a LogNormal
distribution matrix from which positive bigraph weights can
be drawn. The performance of this new bigraph matching
approach augmented with a GRL-derived incentive is found to
be at par with the original bigraph matching approach that used
expert-specified heuristics, with the former offering notable
robustness benefits. During training, the learned incentive
policy is found to get initially closer to the expert-specified
incentive and then slightly deviate from its trend.

I. INTRODUCTION
Multi-Robot Task Allocation (MRTA) is the problem of

allocating multiple robots to complete multiple tasks with the
goal of maximizing/minimizing an objective or cost. In this
paper, we are interested in comparing learning methods that
generalize well with more traditional optimization methods.
Some of the real-world applications include construction
[1], disaster response [2], manufacturing [3], and warehouse
logistics [4]. Even though expensive solvers such as Mixed-
Integer Non-Linear Programming (MINLP) provide near-
optimal solutions, these methods cannot be deployed for
scenarios with 100s or 1000s of tasks and robots.

There exists a notable body of work on heuristic-based
approaches to solving MRTA problems more efficiently, e.g.,
using genetic algorithm [5], graph-based methods [2], [6],
[7], and auction-based methods [8]). Often the heuristic
choices and setting in these approaches are driven by expert
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experience and intuition. Hence, although they provide some
degree of explainability, they leave significant scope for im-
provement in performance. Moreover, heuristic-based meth-
ods are often poor at adapting to complex problem charac-
teristics, or generalizing across different problem scenarios,
without tedious hand-crafting of underlying heuristics. As a
result, an emerging notion in (fast, near-optimal) decision-
making is “can more effective heuristics be automatically
(machine) learned from prior operational data or experience
gathered by the agent/robot e.g., in simulation” [9]? This
raises the fundamental question of whether learned heuristics
can match and potentially surpass the performance of human-
prescribed heuristics when generalizing across a wide range
of problem scenario of similar or varying complexity. We
explore this research question in the context of multi-robot
task allocation problems of the following type Multi Robot
Tasks-Single Task Robots (MR-ST) [10]. In doing so, this
paper also provides initial evidence of the potential for
exploiting the best of both worlds: explainable structure of
graph matching techniques and automated generation of the
necessary heuristics through reinforcement learning (RL).
A. Related Works

Some of the most common online solution approaches
for MRTA problems include heuristic-based methods Integer
linear programming (ILP) based methods, bipartite graph
(bigraph) matching, meta-heuristic methods such as genetic
algorithm and Ant Colony Optimization, and also Rein-
forcement Learning (RL) based methods. ILP-based mTSP
formulations and solutions have also been extended to MRTA
problems [11]. Although the ILP-based approaches can in
theory provide optimal solutions, they are characterized by
exploding computational effort as the number of robots and
tasks increases [12], [13].

Most online MRTA methods, e.g., auction-based meth-
ods [8], [14], [15], metaheuristic methods [16], [17], and
bi-graph matching methods [2], [6], [18], Genetic Algo-
rithms [5], use some sort of heuristics, and often report the
optimality gap at least for smaller test cases compared to
the exact ILP solutions. [6] introduces the use of bigraphs
and the Max-Sum algorithm for decentralized task alloca-
tion in multi-agent systems. specifically, maximum weighted
bipartite matching [2], [6] with manually tuned incentive
functions (aka expert heuristics) has been shown to provide
scalable and effective solutions to various MRTA problems.
The incentive function typically represents the affinity of
any given robot to choose a given task based on the task’s
properties and the state of that robot. However every time the
features of the robot, robot team, or task space changes, the



incentive functions must be re-designed or re-calibrated by
an expert to preserve performance. This technical challenge
motivates learning of the incentive function from experience.

Over the past few years, Graph Reinforcement Learning
(GRL) methods have emerged as a promising approach to
solving combinatorial optimization problems encountered in
single and multi-agent planning applications [10], [19]-[28].
While these methods have shown to generate solutions that
can generalize across scenarios drawn from the same dis-
tribution and can be executed near instantaneously, they are
considered to be black-box methods (thus lacking explain-
ability) and usually do not provide any sort of guarantees.

Key Contributions: The overall objective of this paper
is to identify an approach to learning the incentive function
that can be used by maximum weighted bigraph matching to
perform multi-robot task allocation, with performance that
is comparable to or better than reported i) bigraph matching
techniques that use expert heuristics, and ii) purely RL based
solutions. Thus the main contributions of this paper include:
1) Identify the inputs, outputs and structure of the graph
neural network (GNN) model that will serve as the incentive
function; 2) Integrate the GNN-based incentive with the
bigraph matching process in a way that the GNN can be
trained by policy gradient approaches over simulated MRTA
experiences; 3) Analyze the (dis)similarity of the learned
incentives to that of the expert-derived incentives.

Paper Outline: The next section summarizes the MRTA
problem, its MDP formulation, and the bigraph representa-
tion of the MRTA process. Section III describes our proposed
GNN architecture for incentive learning and computing the
final action (robot/task allocations). Section IV discusses
numerical experiments on MRTA problems of different sizes,
comparing learning and non-learning methods and analyzing
computing time. Section V concludes the paper.

II. MRTA - COLLECTIVE TRANSPORT (MRTA-CT)

Here we consider the MRTA Collective Transport (MRTA-
CT) problem defined in [10]. Given a homogeneous set of
NZE robots denoted as R (r1,72,...,ryr) and a set of
NT tasks represented by V7, the objective is to optimize
task allocation to maximize the number of completed tasks.
There is a central depot that serves as both the starting and
ending points for each robot. Each task, denoted as ¢ € VT,
possesses unique location coordinates, (x;, y;). Additionally,
each task has a workload or demand, w;, which may vary
over time, and a time deadline, 7;, by which the task must
be completed (i.e., demand satisfied) to be considered as
“done” (1p = 1). Each robot has a maximum range, Ay«
that limits its total travel distance including return to depot.
Robots also have a predefined maximum payload carrying
capacity, Cnax. A robot starts its journey from the depot with
a full battery and payload, proceeds to task locations to partly
or completely fulfill its demands; it returns to the depot once
it’s either completely unloaded, running low on battery, or
there are no remaining tasks in the environment, whichever
condition is met first. The recharging process is assumed to
be instantaneous, such as through a battery swap mechanism.

A. MRTA-CT as Optimization Problem

The exact solution to the MRTA-CT problem is obtained
by formulating it as an INLP problem, as concisely expressed
below (for brevity); details can be found in [10].

min fcost = (NT - Nsuccess)/NT (1)
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Here Tlf is the time at which task 7 is completed, A’; is

the available range for robot r at a time instant ¢, ¢! is
the capacity of robot r at time ¢, Ngyccess 1S the number
of successfully completed tasks during the operation. We
craft the objective function (Eq. (1)) such that it emphasizes
minimizing the rate of incomplete tasks, i.e., the number
of incomplete tasks divided by the total number of tasks.
Equations 2 and 3 correspond to the remaining range and
capacity respectively at time t. We express the MRTA-
CT as an MDP over a graph to learn policies that along
with a bigraph matching approach yield solutions to this
combinatorial optimization problem, as described next.

B. Bipartite Graph for MRTA

A bipartite graph (bigraph) is a graph with two distinct
and non-overlapping vertex sets such that every edge in
the graph connects a vertex from one set to a vertex
in the other set. A weighted bigraph is a special type
of bigraph in which each edge is assigned a numerical
weight or cost. These weights represent some measure of
significance, incentive, affinity, cost, or strength associated
with the connections between the vertices in the graph.
Weighted bigraphs are com-
monly used to model and
solve various real-world prob-
lems, where the weights on
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the two types of vertices in
VB are from the set of robots,
V2 and the set of tasks, V7.
Here, EP represent the edges
that connect any vertex or node in V7 with a vertex in V7.
Here, QB(e R¥N"*N") is the weight matrix, where each
weight, in,r € VE i e VT, is associated with the edge
that connects nodes 7 and ¢. In our MRTA representation,
this weight Q7;,r € V# i € VT provides a measure of the
affinity for robot r to perform task <.

Maximum Weight Matching: Weighted (bigraph) graph
matching is a well-studied problem in graph theory and
combinatorial optimization. The goal is to find a matching

(a set of non-overlapping edges or one-to-one connections)

Fig. 1: Bigraph showing robot-
task connections. The Bigraph
weights is written as a matrix.



in a bigraph such that the sum of the weights of the selected
edges is maximized or minimized, depending on whether
it’s a maximum-weight or minimum-weight matching, re-
spectively. Here we make use of maximum-weight matching
to allocate tasks to the robots. Popular methods for weight
matching for bigraphs include the Hungarian Algorithm [29]
and Karp Algorithm [30]. Along with providing provably
optimal matching, Maximum weight matching offers clarity
and transparency on how robots are paired with tasks in
the case of MRTA. Effectiveness of this approach however
hinges on how well the weight matrix represent the relative
affinity or value of the robots to select tasks (connected
by edges) given the current state of the environment. The
formulation of the MDP to learn how to generate this weight
matrix given the environment state is described next.

C. MDP over a Graph

The MDP is defined in an asynchronous decentralized
manner for each individual robot, to capture its task selection
process, and is expressed as a tuple, < S, A, P,, R >. Here,
we assume full observability, i.e., every robot communicates
its chosen task with other robots.

Graph formulation for Tasks: The task space of an
MRTA-CT problem is represented as a fully connected
graph GT' = (VT ET QT), where VT is a set of nodes
representing the tasks, E7 is the set of edges that connect the
nodes to each other, and Q7 is the weighted adjacency matrix
that represents E7. Node i is assigned a 4-dimensional
normalized feature vector denoting the task location coor-
dinates, time deadline, and the remaining workload/demand
ie., 07=[z;,y;, i, w!] where i € [1, NT]. Here, the edge
weight between two nodes ©f; (€ Q) is computed as
QZTJ = 1/(1+|5iT75jT ), where 4, j € [1, NT], and expresses
how similar the two nodes are in the graph space. This
is a common approach to compute the weighted adjacency
matrix, despite the node properties representing different
physical quantities. The degree matrix DT is a diagonal
matrix with elements D}; = > jeyT Qf,vieVvT,

D. Task selection

Graph formulation for Robots: The state of the robots in
MRTA-CT is represented as a fully connected graph G% =
(VE ER Q) where VE is a set of nodes representing the
robots, £ represent the set of edges, and QF is the weighted
adjacency matrix that represents £, The number of nodes
and edges are N¥ and NE(NT — 1), respectively. Every
robot node is defined as 0% = [z, yf, AL ct "] Vr € R,
where for robot 7, x!, y. represents its current destination,
Al represents its remaining range (battery state), c% repre-
sents its remaining capacity of robot, and t™**' represents
its next decision time. The weights of Qf are computed
using QfF, = 1/(1 + |6F — 6%|), where r,s € [1,NF].
The degree matrix D7 is a diagonal matrix with elements
DE =% cvn QES,VT € VE. When a robot r visits a task
i, the demand fulfilled by the robot r is min(w/, cL).

The components of the MDP are defined as follows: State
Space (S): a robot r at its decision-making instance uses
a state s € S, which contains the task graph G7 and the

robots’ state graph GZ. Action Space (A): each action a
is defined as the index of the selected task, {0,...,NT}
with the index of the depot as 0. This action is selected as
a result of the maximum weight matching of the bigraph.
State Transition, P,(s'|s,a): the transition is an event-
based trigger. A robot taking action a at state s reaches
the next state s’ in a deterministic manner. This definition
assumes that the policy model encapsulates all processes,
including but not limited to the learning-derived models, that
together produces the action to be taken, given the state of
the environment. Reward (R): Here a reward of 1/N T is
given during each decision-making instance, if an active task
(whose demand has not yet been fully met, and deadline has
not passed) is chosen, while a reward of 0 is given if the
depot is chosen. Hence, the maximum possible aggregate
reward in any episode is 1.

III. INCENTIVE (WEIGHT) LEARNING FRAMEWORK

In our solution approach, we construct a policy network
that serves as the incentive generator. Namely, it takes in
the state information during a decision-making instance for
a robot and outputs the bigraph weight matrix. This is used
by maximum weight matching on the bigraph to yield the
task selection for the deciding robot. This section discusses
the policy network and the various steps involved in the
sequential decision-making process.
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Fig. 2: The overall structure of the BiG-CAM policy.

Figure 2 shows the inputs/outputs and structure of the
policy model that computes the bigraph weights. The ele-
ments of the weight matrix (in,r € VE i e VvT), which
represents an incentive score for that robot r to pick task
1 at that instance, should be computed as a function of the
task and robot features. Here the policy model is designed
to output parameters of (independent LogNormal) probability
distributions from which the bigraph weights, in, can be
sampled. Since the state and features of the tasks and robots
are both formulated as graphs (G* and G%), we use GNNs to
compute their node embeddings. Along with node features,
the choice of the GNN type seeks to also embed the structure
of the task and robot spaces to promote generalizability.
These node embeddings are then used to compute the weights
using Multi-head Attention-based decoders (MHA). We use
two such decoders to produce a matrix of the mean values
of the bigraph weights and a matrix of the corresponding
standard deviation values. We call this incentive policy model
BiGraph-informing Capsule Attention Mechanism or BiG-
CAM, whose components are described next.
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Fig. 3: The overall structure of the GCAPS network. Here, h is the
embedding length, and bias terms are omitted for ease of representation.

A. GNN-based feature encoder

We use Graph Neural Networks (GNNs) for encoding the
state of the tasks and robots. The GNNs take in a graph
and compute node embeddings. We consider two separate
encoders (Fig. 2) for the task and robot graphs, named as the
Task Graph Encoder (TGE) and the Robots Graph Encoder
(RGE). Both TGE and RGE are based on Graph Capsule
Convolutional Neural Networks (GCAPS) [31], as shown
in Fig. 3. In our prior works [10], [22], [24], GCAPS has
shown superior capability in capturing structural information
compared to GNNs such as Graph Convolutional Networks
(GCN) and Graph Attention Networks (GAT). Here, both
the TGE and the RGE take in the corresponding graphs, G*'
and G%, and compute the corresponding node embeddings,
FT (RN"*h) and FR (RN 1), respectively; here h is the
embedding length. The embeddings are then passed into two
decoders to compute the mean weight matrix pos, and its
corresponding standard deviation ogs (Fig. 2).
B. Multi-head Attention (MHA) based decoding

We initialize two MHA-based decoders, to compute the
mean weights (pns) and the standard deviation (ogs). Each
decoder takes in the task embeddings F7 and the robot
embeddings F and outputs a matrix of size N%® x N7T.
The structure of the decoder is shown in Fig. 4. F7 is used
to compute the key X and value V, while the a set of query QO
is computed using F''*. The output of decoders are matrices
for the mean (pnz) and the standard deviation (o5).

C. BiGraph Weights Modeled as Probability Distributions
The outputs from the decoder (pgr and or), which rep-
resent the matrices with the mean and the standard deviation
for the bigraph weights, are then used to express N x NT
Lognormal probability distributions, from which the bigraph
weights (in) are drawn. To encourage exploration during
training, the weights are sampled in an e-greedy fashion
(e = 0.2); i.e., with e probability the weight is randomly
sampled from the corresponding distribution, and in the
remaining cases, the mean value (from pqgs) is directly used.
During testing, the mean value is always greedily used.

D. Weighted Bigraph Construction

Similar to [2], we omit the edges that represent an infea-
sible combination of robots and tasks, and those connecting
tasks whose demand has been fully met or deadline has
passed. The remaining edge weights are obtained from the
computed weight matrix distributions. Once the weighted
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Fig. 4: Structure of the MHA-based decoder.

bigraph is constructed, we perform a maximum weight
matching using the Hungarian Algorithm [29] to match
robots to tasks. The deciding robot then broadcasts the task
selection information to peer robots.

E. BiG-CAM Policy Training Details

Training Dataset: We train the BiG-CAM policy on an en-
vironment with 50 tasks, 6 robots, and a depot. Every episode
is a different scenario characterized by the task location,
demand, time deadline, and depot location. The locations
of the tasks and the depot are randomly generated following
a uniform distribution € [0, 1] km. We consider every robot
to have a constant speed of 0.01 km/sec. The demand for
the tasks is an integer drawn randomly between 1 and 10
following a uniform distribution. The time deadline for the
tasks is drawn from a uniform distribution € [165,550]
seconds. The environment settings here are adopted from
[10], inspired by applications such as multi-robot disaster
response and materials transport. For both TGE and RGE,
we use the same settings for the GCAPS encoders as in [10].
Eight attention heads are used in MHA-based decoders.

Training Algorithm: In order to train the BiG-CAM
policy, we use Proximal Policy Optimization (PPO) [32]. We
allow 5 million steps, with a rollout buffer size of 50000,
and a batch size of 10000. The simulation environment is
developed in Python as an Open Al gym environment for
ease of adoption. The training is performed on an Intel
Xeon Gold 6330 CPU with 512GB RAM and an NVIDIA
A100 GPU using PPO from Stable-Baselines3 [33]. The
testing is performed only using the CPU. Here, we consider
centralized training, where the collected experience of all the
robots is used for training a single policy. Implementation is
decentralized, where at any decision-making instance for a
given robot, it executes the BiG-CAM policy to compute
bigraph weights and runs maximal matching.

IV. EXPERIMENTAL EVALUATION
A. Baseline Methods:

Three different baselines are considered, a bigraph match-
ing approach that uses expert-designed incentive function as
edge weights, an RL-trained policy that directly provides task
selections for robots, and a feasibility-preserving random
walk approach. They are summarized below.

Bi-Graph MRTA (BiG-MRTA): BiG-MRTA [2], [7] uses
a handcrafted incentive function to compute the weights
of the edges connecting robots and tasks, based on which



maximum matching is performed to decide task selection.
This incentive for robot r to choose task ¢ at a time ¢ is a
product of two terms. The first term measures the remaining
range if the robot chooses and completes task ¢ and returns
to the depot. This term becomes zero if there’s insufficient
battery for the return. It represents the remaining potential for
robot r to perform additional tasks after task . The second
term is a negative exponential function of the time ¢} needed
for robot 7 to complete task ¢ if chosen next, i.e., before the
deadline ;. If task ¢ can’t be completed by robot r before
the deadline, the edge weight (w,;) becomes zero. Therefore,
the weight w,; of a bigraph edge (r,%) is expressed as:

max (0,1,) - exp (—%) ift; <7
Otherwise

@

Wri =

where I, = Al —(d,;+d;o), a is the max time (550 seconds),
d,; 1s the distance between the current location/destination
of robot r and the location of task i, while d;q is the distance
between the location of task ¢ and the depot.

Capsule-Attention Mechanism (CapAM): The CapAM
policy network from [24] uses a GCAPS network as GNN
and an MHA-based decoder to directly compute log prob-
abilities for all available tasks given a state for the robot
taking the decision. This method has demonstrated better
performance compared to other encodings such as GCN and
GAT [22], and standard RL [10]. This policy has been trained
with the same settings as that of BiG-CAM, (refer Section
III-E). Previous work on related problems have already
enlightened on the optimality gap of of BiG-MRTA and
CapAM w.r.t MINLP solutions [2], [10], and hence expensive
MINLP solutions are not generated here.

Feasibility-preserving Random-Walk (Feas-Rnd): is a
myopic decision-making method that takes randomized but
feasible actions, avoiding conflicts and satisfying other prob-
lem constraints. Feas-Rnd serves as a lower bound to com-
pare the performance of the other methods.

B. Training Convergence:

From the training history, it was observed that at the
end of 5 million steps, BiG-CAM converged to an average
total episodic reward of 0.53, compared to 0.51 achieved by
CapAM. this training process for BiG-CAM took ~21 hours
while CapAM took ~15 hours. This increase in training time
is due to the computation overhead of the maximum weight
matching algorithm, and the larger number of trainable
weights for BiG-CAM compared to CapAM.

C. Performance Analysis (% Task completion)

In order to assess the performance of the learned policy
on generalizability and scalability, we designed test scenarios
with varying numbers of tasks N7 and number of robots
N, We generate different scenarios based on a set of scaling
factors ST = {1,2,5,10} for tasks and ST = {1,2} for
robots. For every combination of s, € ST and s, € S% we
consider 100 scenarios with number of tasks N7 = 50 X s;,
and number of robots N® = 6 x s, (note again, 50-
task-6-robot scenarios were used in training). For example,
for scenarios with s,=2, and s,=2, N7=100, and NF=24.
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Fig. 5: % task completion for all the methods. Left plots correspond to
scenarios with s, = 1; right plots correspond to scenarios with s, = 2.

We implemented the other baseline methods (BiG-MRTA,
CapAM, and Feas-Rnd) on these same test scenarios for
comparison in terms of % task completion metric. In order
to confirm the significance of any performance difference
between the methods, we performed the statistical t-test
pairwise for different settings of s; and s,, with the null
hypothesis being the mean of the two sets of samples are
the same. For BiG-CAM, for scenarios with s,.>1 and s;>1,
we shrink the size of the bigraph weight to 6x50. The 50
tasks and 5 peer robots are chosen based on their proximity
to the robot taking decision, thus keeping the computation
time spent for the maximum weight matching relatively
unchanged irrespective of the scenario size.

Across all testing scenarios, BiG-CAM, BiG-MRTA and
CapAM provide clearly better task completion rates com-
pared to Feas-Rnd. Comparing generalizability performance,
i.e., in test scenarios of similar size as in training, we observe



from Fig. 5a (left side) that BiG-CAM and BiG-MRTA
exhibit comparable performance. BiG-MRTA has a slightly
better median task completion %, while BiG-CAM provides
smaller variance. The t-test yields a p-value of 0.188, indi-
cating no significant difference between BiG-CAM and BiG-
MRTA for these scenarios. In contrast, when compared to
CapAM, BiG-CAM has a slightly higher median (around
3%) while maintaining a lower standard deviation. The p-
value from the t-test is 0.03 (<0.05), indicating a significant
difference between BiG-CAM and CapAM’s performance.

In scenarios with s;=2 and fewer robots (s,=1) (Fig. 5b,
left side), BiG-CAM performs similarly to BiG-MRTA (p-
value>0.05) while outperforming CapAM (p-value<0.05).
However, for a larger number of robots s;=2 (Fig. 5b,
right side), BiG-CAM exhibits slightly inferior performance
compared to both BiG-MRTA and CapAM (p-value<0.05 for
both cases). For scenarios with s;=5 and 10 and for scenarios
with a lower number of robots (s,=1), BiG-CAM performs
significantly better than both BiG-MRTA and CapAM (p-
values <0.05), while for scenarios with a larger number of
robots (s,=2), BiG-CAM performs slightly poor compared
to BiG-MRTA (p-value <0.05), and on par compared to
CapAM for s; = 5 (p-value>0.05), and better than CapAM
for s;=10 (Figs. 5c and 5d).

BiG-CAM outperforms BiG-MRTA in scenarios with
fewer robots (s,.=1), while BiG-MRTA excels in scenarios
with more robots (s,.=2). The performance drop of BiG-
CAM compared to BiG-MRTA could be partly because of
the forced limiting of the bigraph to the size for which
the policy model in BiG-CAM has been trained. Notably,
BiG-CAM exhibits significantly lower variance across all
scenarios compared to both BiG-MRTA and CapAM. BiG-
CAM’s standard deviation ranges from 0.064 (s;=1, s,=1)
to 0.21 (s¢=2, s,=2), while BiG-MRTA’s standard deviation
spans from 0.88 (s;=1, s5,=2) to 0.57 (s:=5, s,=1).

Computing time analysis: Computation time is assessed
using two metrics: the average time for all decisions in an
episode and the time for a single decision, as presented in
Table I. CapAM which only includes a policy execution is
faster than BiG-CAM and BiG-MRTa as expected. Now, be-
tween BiG-MRTA and BiG-CAM, scenarios with fewer tasks
(N7=50,100) favor BiG-MRTA, since it solely performs
maximum weight matching. BiG-CAM needs to also perform
policy execution to compute the bigraph weights, which adds
to its computing time. However, in scenarios with more tasks
(NT = 250, 500), BiG-CAM is significantly faster than BiG-
MRTA (up to 9 times). This is because BiG-CAM limits the
bigraph size to 50-task/6-robot based on proximity, while
BiG-MRTA considers the entire task/robot space leading to
greater cost of the maximum matching process.

D. Learned incentives vs expert-derived incentives model

A key question is whether the learned policy in BiG-CAM
produces incentives that are similar to or differ from those
computed by the expert-specified incentive function in BiG-
MRTA. To answer this question, we compute the weight
matrix for a set of 1000 states, S = [S1,...S1000] in 50-
task/6-robot scenarios, using the policy at different stages

TABLE 1I: Average total episodic decision computing time (with average
computing time per decision) in seconds

NT [ N® | BiG-CAM | BiG-MRTA CapAM Feas-Rnd
50 6 0.67 (0.007) | 0.28 (0.004) | 0.20 (0.003) 0.002 (2e-5)
12 1.3 (0.007) 0.7 (0.006) [ 0.28 (0.002) | 0.002 (1.6e-4)

12_] 2.26 (0012) | 1.6 (0.007) | 0.64 (0.004) | 0003 (1.7¢-5) |
24| 547 (0.012) | 4.7 (0.009) | 0.92 (0.004) | 0.005 (1.8¢-5) |
o [ 30_[ 1299 (002) | 232 (0.07) | 3.3 (0.009) [ 0.006 (I.8-5) |
[ 60 | 38.15 (0.04) | 67.10 (0.2) | 6.39 (0.009) | 0.013 (1.8¢-5) |
o [ 60 [ 919 0.09) [ 1744 (0.40) | 255 (0.03) [ 0012 (1.9-) |
[ 120 | 192.0 (0.11) | 4640 (0.90) | 35.6 (0.03) | 0.014 (1.9¢-5) |

100 }

‘25

50

of learning, namely when the time steps are 50K, 100K,
500K, 1M, 2M, 3M, and SM. Then we compute the average
Sinkhorn distance between the weight matrices derived from
the learned policy and the corresponding weight matrix given
by BiG-MRTA expert-specified incentive function, as shown
in Fig. 6. We observe that the average Sinkhorn distance
between the weight matrices of the two methods for all
the states in S decreases until 2M, and then increases. This
observation shows that as the learning progresses the weight
matrix initially gets more similar to that given by the expert-
specified incentive function (in BiG-MRTA), but later on
slightly deviates from the expert incentive function.

100 500 1000 2000 3000 5000
Time steps x 1000

Fig. 6: Comparison of Sinkhorn distance between the bigraph weight of S.
V. CONCLUSIONS
This paper proposed a graph RL approach called BiG-

CAM to learn incentives or weights for a bigraph repre-
sentation of candidate robot-task pairing in MRTA, which
is then used by a maximum weight matching method to
allocate tasks. We considered an MRTA collective transport
(MRTA-CT) problem, which was formulated as an MDP with
the state of the tasks and the robots expressed as graphs.
The weights of the task/robot pairing bigraph are sampled
from distributions computed by a policy network (BiG-
CAM) that act on the state space graphs, comprises GNN
encoders and MHA-based decoders, and trained using PPO.
In testing, BiG-CAM demonstrated comparable or slightly
better performance relative to BiG-MRTA (that instead uses
an expert-crafted incentive to compute bigraph weights) for
scenarios with lower number of robots, and comparable or
slightly poorer median performance for scenarios with a
larger number of robots. Compared to both BiG-MRTA and
CapAM (purely GNN for MRTA), BiG-CAM demonstrated
better robustness w.r.t. task completion rates. In the future,
alleviating the limitation of fixing the size of the task and
robot spaces during training of BiG-CAM could further
improve its relative performance. Future systematic analysis
is also needed to adapt the bigraph size based on the ex-
pected propagation of decision influence across the task/robot
graphs to ensure reliable yet compute-efficient scalability of
the underlying bigraph matching concept.
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