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ABSTRACT: Frustrated Lewis Pairs (FLP) are an important advance in metal-
free catalysis due to their ability to activate a variety of small molecules. Many
studies have focused on a very limited sample of Lewis acids and bases. Herein,
we disclose an automated exploration algorithm using density functional
methods, artificial neural networks (ANNs), and a molecule builder that
incentivizes the exploration of favorable FLP space for the activation of methane
via two mechanisms: deprotonation and hydride abstraction. The exploration
algorithm creates FLPs with different Lewis acids (LA), Lewis bases (LB), and
their substituents (LA/LB), which proved successful in quickly converging in the
favorable chemical space, suggesting chemically sound structures, and
generating thousands of potential candidates for methane activating FLPs. By
modeling thousands of reactions, an FLP database of methane activation was
created, allowing one to data mine properties, e.g., adduct bond length, highest
occupied molecular orbital−lowest-unoccupied molecular orbital (HOMO−LUMO) gap, global electrophilicity index, favored
Lewis acids/bases/substituents, and substituent steric volume. These properties not only successfully narrow the FLP chemical space
but also provide meaningful insight into the chemical nature of competent methane activators. The machine learning discovery
strategy disclosed here is general enough to be applicable to many chemical optimization tasks. This study also investigates the
efficacy of a Machine-Learned Force Field (MLFF) in predicting the formation energies of Frustrated Lewis Pairs (FLPs). Our
model, exhibiting a test error of ±10 kcal/mol, highlighted impressive computational efficiency by enabling the calculation of all
possible FLP permutations within our chemical space. The MLFF demonstrated proficiency in predicting energies, providing a
significant acceleration compared to quantum mechanics methods. However, challenges emerged in accurately capturing forces,
necessitating recourse to classical force fields for reliable structure relaxation. The present study sheds light on the MLFF’s potential
as a tool for rapid energy predictions, emphasizing the need for further refinement to enhance its accuracy, particularly in force
predictions, to expand its utility in chemical simulations.

■ INTRODUCTION
Since the discovery of Frustrated Lewis Pairs (FLPs) by
Stephan et al., these compounds have provided an efficient
route to activation of dihydrogen and activated C−H
bonds,1−4 as well as other small molecules such as CO2,
N2O, NO, SO2, and SO.5−9 Methane is an abundant chemical
compound that has the potential as a hydrocarbon feedstock
for multiple industrial applications; however, no FLP-mediated
activation of this alkane has been reported.10 Frustrated Lewis
Pairs provide an alternative to conventional transition metal
catalysis. FLPs exploit the motif of sterically hindered Lewis
acids and Lewis bases, which forestalls the formation of a stable
adduct, to activate small molecules with the use of cheaper and
Earth-abundant elements, most typically those of the main
group. Different studies have focused on a limited array of
bulky (often alkyl) substituents, Lewis acids, and/or Lewis
bases. In our previous research on modeling trial trihalides and
pnictogen pentahalides as Lewis acids with an ammonia Lewis

base pair, heavier Lewis acids (those based on Bi, Sb, and Tl)
were found to have more favorable activation and reaction free
energies as compared to Lewis acids centered around lighter
main group elements.11 Moreover, as compared to many
transition metal intermediates for alkane C−H activation, these
reactions were reasonably close to thermoneutral, which
should aid in subsequent functionalization steps in a catalytic
cycle.
In a previous study of FLP-mediated methane activation,11 it

proved difficult to elucidate the chemical factors that most
greatly impact methane activation free energies using statistical
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regression approaches. Therefore, an extension of the work is
desirable to increase the chemical space of the potential FLP
constituents evaluated. Using machine learning (ML)
methods, a protocol is described here that automates the
discovery of p-block FLPs for methane activation, modeling a
robust database of Lewis acids, Lewis bases, and different
substituents. Although specifically applied to the main group
FLPs herein, the protocols developed are general enough to be
applicable to the ML-directed discovery of other novel catalyst
leads.
Searching the chemical space for FLPs for promising

methane activators is infeasible even by using cutting-edge
density functional theory (DFT) given the myriads of
permutations one must generate and then evaluate. Machine
learning addresses a key issue of dealing with the immensity of
searchable chemical space by providing an effective nonlinear
predictor to connect key structural properties (frontier orbital
energies, steric parameters, etc.) with desired catalyst outcomes
(e.g., a lower methane activation barrier or greater selectivity
for a particular mechanism). Researchers have sought to
automate the process of molecule discovery with the use of
ML. For example, Aspuru-Guzik and collaborators have used
artificial neural networks (ANNs) for the prediction of organic
chemical reactions by building a system which, given a set of
reagents and reactants, predicts the likely product.12 Aspuru-
Guzik’s team have also developed an efficient exploration of
chemical space that converts discrete representations to a
multidimensional continuous representation, allowing one to
automatically generate novel chemical structures by performing
simple operations in latent space.13 Other approaches by this
team used NNs to study the chemical space of Vaska-type
iridium complexes that are competent for dihydrogen
activation.14 Roitberg et al. have used ML methods to create
an extensible neural network potential of organic molecules
with the use of deep neural networks, having DFT accuracy
with force field computational costs. The applicability of ML
methods in science and computational chemistry has shown
great versatility and potential. In our earlier studies, ML
regressors were successfully used to find a correlation between
ground state properties such as bond dissociation energies,
global electrophilicity index, and reaction energies with the
activation energies of methane activation by FLPs.11

ML approaches to automate the exploration of chemical
space have also been applied to in situ robotic experiments.
Cronin and collaborators utilized Support Vector Machines, an
ML algorithm, to develop a robot capable of exploring novel
reactions by using spectroscopic tools and a combination of
reactants. The machine can predict favorable reactions and
create a feedback loop that allows the robot to synthesize the
favored reactants.15 Our present study is in a sense a digital
analogue of the robot presented by Cronin et al. A fixed
database of different permutations of Lewis acids, Lewis bases,
and their substituents will be tested to allow for a more
efficient search of the favored chemical space to identify novel
leads for FLP-based methane activators.

■ MOLECULE BUILDER
Generation of three-dimensional (3D) models of FLPs was
achieved by developing a molecule builder that took as input a
4-bit feature vector, which represents a Lewis acid (LA), Lewis
acid substituents (LA), Lewis base (LB), and Lewis base
substituents (LB), assigning arbitrary numbers that represent
atoms for LA/LB and chemical moieties for the substituents.

As a simple example, if ammonia borane was the target FLP,
LA = B, LB = N, and LA = LB = H. As shown in Figure 1, the

encoder takes the input vector, builds the FLP defined, and
then quantum mechanically optimizes the Cartesian coor-
dinates of the reactants and products of methane activation.
Two different pathways are modeled herein, generated by
hydride abstraction and deprotonation mechanisms, between
methane and an FLP. In previous work, it was predicted that
the deprotonation mechanism is favored for triel trihalides and
pnictogen pentahalides.11 The scope of this research is to not
only use ML to efficiently explore chemical space but also to
probe the chemical factors that favor these mechanisms.
The FLP generated by a specific 4-bit input vector is

automatically built, input files are generated, and then these
stationary points are modeled using Gaussian16.16 The
automated molecule builder takes the four previously
optimized subunits�LA, LB, LA, LB�combines them to
create new FLPs, and then generates and models the FLP
adduct, the products of hydridic methane activation, as well as
the products generated by methane deprotonation, Figure 1.
The molecule builder obtains the LA, LB, LA, and LB moieties
from a fixed, curated structural library. Taking into
consideration the results of our previous11 and current study,
for the present research, triels, pnictogens, and alkaline earth
metals were chosen to form the basis of the Lewis acid (LA),
while the Lewis bases (LB) were limited to nitrogen and
phosphorus bases. The substituents were taken from a review,
whereby different univalent substituents of varying Hammet
constant (specifically σm) are reported.17 Methane activation
reaction energies have been calculated at the ωB97X-D18/
def2-SVP19 level of theory, which was previously calibrated
versus high-accuracy composite ab initio techniques. Geo-
metries were optimized in a polar aprotic solvent, acetonitrile,
utilizing the SMD model.20 All electronic energies are reported
in kcal mol.−1

Figure 1. Input vector encoder. 4-bit input vector (Lewis acid (LA),
Lewis acid substituent (LA), Lewis base (LB), Lewis base substituent
(LB)) uniquely defines the FLP; for example, in the present case,
[1,1,2,2] corresponds to F3BF-PH3. The input vector also defines the
two reactions of interest for FLP-mediated methane activation:
hydride abstraction (top) and deprotonation (bottom). From these,
the reaction energies (ΔE) are computed.
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■ EXPLORATION OF CHEMICAL SPACE PROTOCOL
The molecule builder allows one to automate the process of
modeling molecular structures but must be guided by an
algorithm that optimizes the search for promising methane
activators or whatever the target reaction may be. ML has
proven to be successful for nonlinear regression; by creating an
ML surrogate model, we seek to expedite the exploration of
very large chemical spaces by efficiently and effectively
identifying chemical systems that give rise to favorable
reactions.21−24 Paired with the automated molecule builder
just described, it is possible to create a feedback loop that
allows the search to focus on molecules that are predicted to be
the most favored for the specific chemical application.
In 2, the exploration algorithm is depicted. The first step is

to generate random input vectors that uniquely define an
assortment of chemically diverse FLPs, which will then be
modeled to determine their reaction energies with methane;
these energies will be calculated with Gaussian16. The

electronic energies generated from the 4-bit input vectors
will be automatically parsed from the G16 output, and these
data are then fed to an ML algorithm. Due to the vast quantity
of possible FLPs that could be explored, it was decided to only
consider the electronic energies of the molecules and reactions,
as doing additional vibrational frequency calculations would
slow the process down. Also, once suitable promising leads are
found via ML, one would further refine the best candidates at
higher levels of theory, including effects such as solvent,
dispersion, etc.
From the initial reaction energies of randomly selected FLPs

(using a baseball analogy, this was termed inning #1), the ML
algorithm predicts favored input vectors for a second “inning”
of the search. These favored input vectors are determined by
ranking the predicted reaction energies from more exothermic
to less exothermic (−ΔE to +ΔE) and selecting the top 100
exothermic candidates. These input vectors predicted by the
ML algorithm are in turn fed back into the molecule encoder

Figure 2. ML exploration protocol guides the modeling of FLP-based methane activators focused on identifying favorable chemical spaces. Starts
with the generation of random input vectors, geometry is then optimized for both the adduct and the products to obtain the reactions energies,
then these reaction energies and 4-bit feature vectors are fed into the ANN, finally the top 100 reactions that were predicted are fed into the cycle
thus completing an inning.
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and thus continue the search process in subsequent innings.
The algorithm will terminate once the calculated and modeled
molecules are the same or suitably close enough, i.e., the search
has converged. In this study, multiple innings were modeled to
discover how ML-guided exploration benefits the examination
of an exceptionally large chemical space. The goal is to assess
how ML can identify promising portions of chemical space for
emphasis, and unpromising areas for de-emphasis, without
having to generate and assess all possible combinations, i.e., an
Edisonian search in normal parlance.
Sophisticated representations of molecules are often used in

ML and cheminformatics, such as SMILES or molecular
fingerprints. Although these representations have shown
remarkable results,14,25−27 oftentimes they are represented by
1024- or 2048-bit vectors that require more sophisticated deep
learning methodologies. Herein, it is shown that it is possible
to use a simple 4-bit vector with a relatively small artificial
neural network (ANN) to provide comparable results and
identify novel candidates for FLP-mediated methane activa-
tion. This naiv̈e representation of the molecular structure,
known as one-hot encoding, has allowed us to have a chemical
representation of our system based on chemical intuition of the
chemistry of FLPs, assigning categorical variables to each
chemical moiety. Although great generalizability is not
expected, the current approach can be a great tool for simple
surrogate models for specific chemical systems, where
molecular fingerprints fail to provide meaningful regressions.
The ANN used in this work comes from the Neural Network
Toolbox from Matlab,28 a 1 hidden layer, 10 hidden neurons
with sigmoid activation function, and a linear output layer, was
paired with Bayesian regularization, which is good for small or
noisy data sets. The ANN was cross-validated to find the best
hyperparameters. The training and validation split was set to
70/30%, and the neural network was retrained after every
inning. Moreover, as discussed below, it is possible to use a first
round of ML-guided analysis to both focus and diversify
subsequent rounds of discovery.

■ MACHINE-LEARNED FORCE FIELDS
Machine learning (ML) has pervaded various facets of
chemical research, integrating tasks from data analysis to the
development of force fields for energy estimation. ML stands
as a formidable tool, but its efficacy is contingent upon several
factors. These include the necessity for accurate training data,
exploration of a diverse parameter space, and meticulous
selection of appropriate hyperparameters during model
training. Machine-learned force fields (MLFF), particularly
those exemplified by the work of Roitberg et al.,29 have
garnered widespread popularity, as they promise the accuracy
of quantum mechanics with the speed of molecular mechanics.
Their approach utilizes a descriptor-based neural network
potential first introduced via Behler−Parrinello symmetry
functions,30 as demonstrated in the development of the ANI
atomic neural network potential for organic systems. This
MLFF has undergone training across various levels of theory,
from ωB97X-D to CCSD(T), incorporating millions of
generated molecules into its training data set. Noteworthy is
the emphasis of ANI on a select group of atoms, C, H, O, N, P,
and S, and halogens that serve as the focal point for organic
chemistry. ANI has proven to be extremely competent in
simulating organic molecule systems with high accuracy and
speed. It is noteworthy that there is a noticeable absence of

similar efforts in the realm of inorganic chemistry and even less
so in main group chemistry.

■ RESULTS AND DISCUSSION
Game 1. The first search of FLP space (i.e., the protocol in

Figure 2 is run until convergence and is termed a “Game”)
gave interesting predictions and identified relevant issues in
ML-directed chemical exploration. In this research, con-
vergence was defined when the predicted favored structures
are the same as the calculated structures by DFT. This allowed
both further expanding and focusing a subsequent search in
finding promising main group FLPs for methane activation. In
this work, two independent games are presented with different
considerations for the chemical space probe involving LA, LB,
and their respective substituents. The first game consisted of
combining triel/pnictogen Lewis acids and pnictogen/tetrel
Lewis bases, which helped elucidate the underlying chemistry
of FLP-mediated methane activation without a priori chemical
intuition as well as the ML-pertinent specifics parameters that
dictate the search. Table S1 in the Supporting Information
presents the Lewis acids, Lewis bases, and their respective
substituents. The 10 Lewis acid substituents (LA) chosen are
dependent on the Lewis acid chosen, e.g., if LA is a triel or a
pnictogen, the central atom will have a valency of three or five,
respectively, thus dictating the number of univalent sub-
stituents attached to the central Lewis acid atom. The 13
substituents for the Lewis acids have been chosen to be both
electron-donating and electron-withdrawing. For the Lewis
bases, trivalent pnictogen atoms were chosen, also with varying
electron demand on LB being imparted by the various
substituents. In total, for Game 1, 4875 total possible FLPs
are possible within the chemical space. For each angle,
quantum chemical calculations must be performed and
analyzed by the ANN.
Chemical intuition would suggest that Lewis acids in FLPs

favor electron-withdrawing groups, while LB in FLPs will favor
electron-donating groups. The aim of this study is to have the
ANN determine such rules with no or limited previous
chemical intuition, as this is the most likely scenario in the
general case of catalyst discovery. One of the main challenges
to automating the discovery of chemical reactions through
computational chemistry is the abundance of mistakes in
forming the initial structure that could lead to, for example,
failed convergence of either the self-consistent field equations
or geometry optimization routines. Earlier versions of the
molecule builder employed here did not consider the steric
overlap of atoms in the initial structure, which led to a higher
percentage of failed calculations. For example, for the first
optimization cycle (inning), out of 449 calculations, 369
calculations terminated successfully (82% success rate); failed
structures were not taken into consideration by the ML
algorithm. Manually fixing chemical structures would defeat
the purpose of automation, in addition to being too time-
consuming.
Each subsequent step calculates 100 new FLP methane

activation reactions based on predictions from the ML
surrogate model. In the first inning, 100 random 4-bit feature
vectors were generated and fed into the algorithm. These
vectors were used to predict FLPs with promising energetics
for methane activation. The results from these predictions are
then used to update the ML algorithm, which refines its
predictions for the following innings. For the first game, only
the methane deprotonation mechanism was taken into
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consideration, as previous studies11 concluded that it was
thermodynamically favored versus hydride abstraction reac-
tions. For the following game, both reaction mechanisms were
taken into consideration. For game one, a Random Bit Forest
(RBF) algorithm31 was also evaluated. This technique uses
random forests, ANNs, and boosting for a more robust ML
regressor. Interestingly, while RBFs proved to be a good
regressor for the limited first game,31 they proved less capable
for the larger second game. ANNs were also tested
(Supporting Information) and proved to have less error and
better R2 for the larger, more diverse exploration of the FLP
space for the second game.
From the four innings before convergence was achieved in

the first game, the best FLP candidates for methane activation
are presented in Table S2. These FLPs were found to have
favorable (i.e., negative or close to thermoneutral) reaction
energies for methane deprotonation. These FLPs are thus
potential candidates for further study as methane activators. An
aggregate of 30 (30) promising FLPs were found in the
optimization cycles�or innings�from among 664 molecules
investigated in Game 1. The number of possible 4-bit
combinations for the first game is 4875. The ML-directed
optimization thus converged at only 13.6% of the total FLP
population size!
In Figure 3, we can see the average reaction energy of all of

the FLPs per optimization cycle (inning) in more limited game

1. The first inning is the highest in energy as the algorithm
initially chooses random input vectors to widely sample
chemical space. As optimization progresses the ML algorithm
is trained, and increasingly better FLP structures are suggested
and evaluated. The following innings follow the trend of having
lower average methane reaction energies, but the overall
energies tended to be endothermic. The limited choice of
substituents (LA and LB) in this first survey played a role in the
overall chemical space being dominated by endothermic
methane activation reactions.
The first instance of running the exploration with an ML

surrogate model code provided valuable insight into its
capabilities to predict chemical properties and efficiently
map. If one analyzes the top FLP candidates from Game 1,

Figure S1, all have N as the Lewis base; all of the other Lewis
base choices yielded endothermic reaction energies for
methane deprotonation. In Figures S2 and S5, the frequency
with which each constituent appears in each of the four
features is graphed. The common trend is that in the first
inning, there is a wider variety of LA/LB and their substituents
being tried. For the Lewis acids, the variety of atoms being
suggested and tested by the ML is varied, with all except N
being suggested, and As being the most favored. This is
consistent with our previous study,11 as nitrogen is not
expected to form stable hypervalent species, and it was
reported that pentavalent pnictogens make for the most potent
Lewis acids for methane activation. The Lewis acids sampled
tended to be more diverse than the LA, but favored the heavier
triels and pnictogens, specifically focusing on N and P. By the
third inning of Game 1, the code was exclusively focusing on
N-based Lewis bases. This outcome is also consistent with
basic chemical principles, as nitrogen forms the strongest Lewis
bases among the pnictogens sampled.
For the substituents of each, there is also unique insight

obtained from the ML algorithm. The LA substituents (LA)
favored a more electron-withdrawing group while the Lewis
base substituents (LB) preferred alkyl groups which are
electron-donating. These insights are eminently reasonable
and were taken to catalyze a second optimization run (or
game) with the intention of expanding and focusing the search
to a more viable chemical space: focusing on N and P Lewis
bases and expanding the Lewis acids and their substituents.
Moreover, it is to be emphasized that these leads were arrived
at without a priori guiding of the search, thus highlighting the
robustness of the search protocol and the value of a multitiered
ML search strategy for catalyst leads.

Game 2. With the important findings of Game 1, the
chemical space explored was modified thusly: LA = Group 2,
Group 13, or Group 15 elements and only N or P for LB. It
was decided to investigate a wider variety of substituents, both
LA and LB, with electron-donating properties for the Lewis base
and electron-withdrawing properties for the Lewis acid.
Substituents were chosen by consulting the review by Hansch
et al.17 Also, given the definition of an FLP, substituents were
chosen with increased steric profile.17 The complete list of the
atoms and moieties used in modeling can be found in the
Supporting Information. In Figure 4, the energy distribution of
all calculated reactions is plotted for the deprotonation
mechanism of methane activation; 10 innings were modeled
for this study which resulted in 1985 successfully modeled
reactions and 1181 reactions (59%) that are exothermic or
close to thermoneutral (ΔE < 10 kcal mol−1). A first important
observation for Game 2 is that the energy distribution of all
modeled reactions skews toward exothermic a favored
chemical space region for deprotonation mechanism.
The highest percentage of exothermic reactions modeled can

be found in innings 2−5 due to the ML initially suggesting the
best candidates; the following innings are modeling the next
best reactions, refining already good predictions in favorable
portions of FLP space. The FLP search algorithm was able to
focus on the promising chemical space for the majority of the
innings past the first random inning as can be seen in Figure 5.
However, there is a decrease in exothermic reactions found in
the later innings as “good” portions of FLP space are
exhausted.
Figures S8 and S9 reveal similar analyses for the hydridic

activation mechanism. The energy distribution for hydridic

Figure 3. Game 1. Average methane activation reaction energy (kcal
mol−1)�deprotonation mechanism�per inning with standard
deviation depicted by the blue bar. After a random initial assessment
of the FLP space (inning 1), the ML-guided search increasingly
suggests more favorable reactions.
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methane activation is centered in favorable chemical space and
most of the reactions targeted have ΔE < 10 kcal mol−1. If the
percentage of reactions that are <10 kcal mol−1 are plotted,
similar observations to those just discussed for the deproto-
nation mechanism are seen, whereby thermodynamically
favored reactions are in majority in the innings after the
randomly selected FLPs of the first inning. Figure S10 plots the
cumulative count of different methane activation energies as a
function of inning; different innings are represented by
different colored lines. There is a stark difference between
the first inning (dark blue line in Figure S10) with randomly
selected FLPs versus the subsequent innings that exploit ML to
guide the identification of more favorable chemical spaces.
Another interesting observation is the precipitous drop from

inning 1 to inning 2, whereupon the improvement as far as the
ΔE metric is concerned is more moderated. The last two
innings, green and yellow lines in Figure S10, have a lower
count of favorable reaction energies. The algorithm quickly
converged in the correct chemical space in the first few innings
and identified the “best” leads. As the innings progress, the ML
algorithm suggests the remaining next most favorable FLP-
based methane activators. By the final innings, the favorable
portions of chemical space have been depleted, thus providing
a signal that the ML search has converged.
Comparing the first and last innings, it can be observed how

the different energies are distributed, Figure 6. The first,
random inning of ML optimization has a wider dispersion and
is skewed to the right (ΔE > 0); this indicates that the
algorithm is not initially focused on a specific chemical space,
which is desirable, as one desires to first search the available
chemical space most broadly. Thus, a large proportion of the
initially sampled reactions are endothermic for methane
activation. In contrast, the last inning has a narrower peak to
the left of thermoneutral (ΔE = 0) indicating the ML has
quickly and efficiently focused on the exothermic chemical
space and has the majority of molecules being exothermic for
methane deprotonation.
In summary, the results indicate that the machine learning

code can efficiently and diversely explore FLPs, quickly
narrowing the search to favorable portions of chemical space,
i.e., those for which methane is exothermic and close to
thermoneutral. Hence, numerous potential candidates were
obtained for methane activation with the exploration
algorithm, while avoiding the majority of infeasible and
unfavorable FLPs. The total number of reactions that can be
modeled for the selected chemical space of Game 2 is 7448
deprotonations and 7448 hydride abstractions. For the
deprotonation mechanism, convergence was observed around
Inning 8, which is 1601 molecules of the total 7448,

Figure 4. Reaction energy distribution (kcal mol−1) of all modeled reactions for the deprotonation mechanism of methane activation utilizing the
exploration protocol. Reaction energies computed at the ωB97X-D/def2-TZVPP/SMD-MeCN level of theory. The red vertical line marks 10 kcal/
mol anything below is defined as favorable chemical space. The ML-guided algorithm is able to skew the search toward negative�or favorable�
methane activation reactions.

Figure 5. Percentage of methane deprotonation reactions modeled
with ΔE < 10 kcal mol−1 as a function of inning. Energies were
calculated at the ωB97X-D/def2-TZVPP/SMD-MeCN level of
theory. After a random sampling of FLPs in inning 1, the ML-guided
algorithm quickly focused on favorable portions of chemical space.
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corresponding to 21% of the chemical space; similar
observations can be seen for the hydride mechanism; see the
Supporting Information.
Training and Testing Machine-Learned Force Fields

from Our Data. The machine-learned force field was trained
using Schnetpack32 for 1309 epochs. The training process was
halted when no substantial improvement in validation was
observed for 200 consecutive epochs. For further details,
including the precise hyperparameter yaml file and the model
itself, refer to the GitHub repository at http://github.com/
IgnacioMigliaro. The data underwent meticulous preprocess-
ing to eliminate any potential outliers in both energy and
geometry optimization. The geometry optimization was
assessed through manual inspection of each structure, ensuring
proper convergence to a chemically sound structure. For
energy elimination, the quartile range from Q2 to Q3 was
employed, effectively removing extreme outliers. Despite the
leftward skewness evident in the energy distribution, Figure 7,
these steps proved crucial in refining the data set for
subsequent training of the MLFF.
The training mean squared error (MSE) for energy stood at

1.06 eV, while for forces, it registered at 0.13 eV/Å. Notably,
the initial stages of training were marked by substantial noise,
evident in the energy training graph, Figure 8. However, as the
training progressed, a stabilization phase ensued, leading to
convergence. Similar observations were made during valida-
tion, where initial noise gradually diminished, reaching a point
where no discernible improvement was observed in the
training process. The MSE for validation energy settled at
1.25 eV, and for forces, it recorded a value of 1.08 eV/Å.
Additional figures, including those depicting other aspects of
the training process, can be found in the Supporting
Information. These results underscore the convergence and
stabilization achieved during the training process despite the
initial challenges posed by noise.
The test mean absolute error (MAE) for energy was

recorded at 0.44 eV, while the MAE for forces reached 0.15
eV/Å. These values correspond to an average absolute error of
10.0 kcal/mol for energy and 3.47 kcal/mol/Å for forces. It is

noteworthy that the initial expectation was for forces to exhibit
a considerably lower error, potentially several magnitudes
smaller than achieved. The results indicate that our model
excels in predicting energies but demonstrates limitations in
accurately predicting forces. This discrepancy suggests that
while the model may perform well in providing inference
values for energy, its effectiveness in geometry optimizing
structures is diminished.

Data Analysis of Methane Activation Reactions. The
goal of this research is not to only find the perfect molecule or
“needle” but rather to narrow the chemical space so that
subsequent computational, synthetic, spectroscopic, and other
efforts are focused on the further evaluation of the most
promising catalyst candidates. Colloquially, the purpose of the
ML algorithm is not to find a needle in a haystack, but rather
to reduce the size of the haystack quickly and effectively. As
such, after the ML exploration algorithm has run, there is not
only a prioritized set of catalyst leads for further scrutiny�

Figure 6. Kernel distribution estimation plot of Inning 1 vs Inning 10 for FLP-mediated methane deprotonation (kcal mol−1); reaction energies
(ΔE) calculated at the ωB97X-D/def2-TZVPP/SMD-MeCN level of theory. Note the ML algorithm guides the search from unfavorable (ΔE > 0)
to favorable (ΔE < 0), and the distribution is narrower in the final inning of the search protocol.

Figure 7. Histogram showing the distribution of energy per atom
(eV) for our data generated using DFT, at the ωB97X-D/def2-
TZVPP/SMD-MeCN level of theory.
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computational or experimental�but also an FLP database for
methane activation via two different mechanisms. This
database can then be mined to yield insight into the underlying
reasons for why particular systems are favorable for the target
reaction. Density functional theory calculations are, of course,
very rich in information, which can then be data mined to find
specific trends in the behavior of these reactions. Information
such as orbital energies, highest occupied molecular orbital−
lowest-unoccupied molecular orbital (HOMO−LUMO) gap,
reaction energies, and geometric properties such as bond
length, angles, steric volume, etc. can be analyzed to see how
the descriptors impact, or do not impact, the specific target
reaction.

The histogram with frequencies of Lewis acids suggested can
be found in Figure 9; the different hues represent endothermic
(orange) and exothermic (gray) reactions. A trend is apparent
in that certain Lewis acids are more prevalent in exothermic
reactions and vice versa. These more thermodynamically
favored reactions are FLPs containing LA = B, P, As, Sb, or
Bi. In previous research,11 it was concluded that heavier LA,
and heavier pnictogens, are favored for methane activation.
This arrived at in a traditional Edisonian approach of setting up
a search matrix in chemical space and methodically going
through all combinations. Herein, even while examining a
much wider chemical space, the ML search protocol
independently arrived at the same conclusion in a much
more efficient manner. Importantly, the ML search breaks with

Figure 8. Validation curve for mean square error for energy (eV): linear scale (left) and logarithmic scale (right).

Figure 9. Histogram showing the frequency distribution of Lewis acids (LA) in deprotonation reactions for methane activation: endothermic
(orange) and exothermic (blue) reactions. The ML-derived FLP database indicates that favorable chemical space (ΔE < 0) is populated by B-, P-,
As-, Sb-, and Bi-containing Lewis acids.
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preconceived notions one may have inferred from the literature
that light Lewis acids such as B and Al are “better” for FLPs for
small-molecule activation.6,33

Figure 10 shows the frequency histogram for Lewis acid
substituents (LA) for the methane deprotonation mechanism.

Although substituent choice is correlated with the type of
Lewis acid (some Lewis acids are divalent, trivalent, or
pentavalent), the plot provides insight into which substituents
are favored for each valency. One could mine the data more
deeply to see if the preferred LA choice correlates with
different LA or vice versa; similar considerations are expected to
apply to LB and LB although with some caveats, as discussed
below. The main take-home message extracted from the ML-
guided search is that the majority of favored FLP-mediated
methane activation reactions are found for Lewis acids with
pentavalent substituents, which again mirrors previous
conclusions from a more traditional search of FLP space that
noted pnictogens (PnX5) are favored over triels (TrX3).

11 For
triels, there is a less clear trend as to what substituents are
favored, which may reflect the fact that the favorability of the
target reactions is primarily dominated by the central Lewis
acid, and the attached substituents are a secondary influencing
factor. Such information extracted from the ML-derived
database is valuable in guiding follow-on efforts as, for
example, synthetic viability, availability of necessary reagents,
or even sustainability or intellectual property considerations
must also factor into the catalyst search protocol.
For substituents of pentavalent Lewis acids, the ML-derived

database yields a few substituents that show a clear preference
in terms of the objective, viz., exothermic reactions with
methane. Pnictogens favor F and Br over I and Cl. Other more
atypical FLP substituents that are prevalent in exothermic
reactions are CN, GeBr3, and OCN. In a more realistic
scenario, one would want to give greater weight to first
investigate catalyst leads with regard to additional metrics such
as ease of synthesis, sustainability parameters, IP concerns, etc.
Comparable results are found for the hydridic reaction
mechanism, plotted in the Supporting Information (Figure
S11).

Figure 10. Histogram showing the frequency distribution of Lewis
acid substituents (LA) in the deprotonation mechanism for FLP-
mediated methane activation. The favorable chemical space is
dominated by the substituents for pentavalent (pnictogen) Lewis
acids. Some halides are heavily favored such as F and Br. Other
favored LA species are CN, GeBr3, and OCN.

Figure 11. Frequency histogram of Lewis bases (LB) for methane deprotonation (left) and hydride abstraction (right). Endothermic (light gray)
and exothermic (dark blue) reactions are indicated. For the deprotonation mechanisms, N is favored over P for exothermic reactions, but for the
hydridic mechanism, both N- and P-derived Lewis bases are favored equally.
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The same frequency analysis was performed for the Lewis
bases. It is found that for both the hydridic and deprotonation
mechanisms, the LA preferred B as well as heavier pnictogens.
For LB, however, there is a difference; there is a preference for
N for favorable deprotonation mechanisms, but for the
hydridic mechanism, N and P have the same frequency in
exothermic reactions, Figure 11. Such information could be
used when, for example, there is a need to design catalysts that
prefer one mechanism over the others, allowing the ML
protocol to enhance selectivity in addition to activity.
In Figure 12, the only unfavorable chemical space for LB (the

Lewis base substituents) regards the different amine

substituents (L = NH2, NHEt, N(Et)2). There is an increased
preference for cyclic alkyls, such as cyclopropyl and cyclo-
pentyl. Similar results are observed for the hydridic mechanism
found (Figure S11). The information extracted from the ML-
generated database on the more favorable FLP components
helps narrow the desirable chemical space to a few specific
substituents (LA and LB) and Lewis acids (LA). Such an

important deduction could help guide synthetic chemists
interested in FLPs for methane activation. Also, this insight
could be used to guide a third “game” whereby the search is
focused with respect to three of the four FLP components, and
a wider survey of LB is undertaken. Or perhaps, one might
desire to expand LA to include other Lewis acids such as d-
block metal complexes.
Not only can the components of the FLP be analyzed in

terms of their impact on reaction energetics, but one can also
data mine different QM-derived properties like the HOMO−
LUMO gap or descriptors such as bond length, Hammett
constants for the substituents buried volume, etc. In the
Supporting Information (Figures S17 and S16), representative
descriptors such as LA-LB bond length and LA/LB Hammett
values are plotted and compared for exothermic and
endothermic reactions. It is seen from these properties that
there is no difference between the two reactivity subsets,
indicating that they are not meaningful discriminating features
vis-a-̀vis exothermic or endothermic methane activation
reactions. One example of a property that showed potential
in being a good determinant of methane activation favorability
is the buried volume, as shown in Figure 13.
Buried volume is defined as the space occupied by a ligand

in the first coordination sphere of a metal center; this
calculation was done using the SambVca code.34 Both
exothermic and endothermic reactions display a right skew
for a larger buried volume, i.e., sterically hindered LA/LB are
preferred. Exothermic reactions have a higher density toward
higher buried volume; the average buried volume for
exothermic reactions is 74% as compared to 68% for the
endothermic reactions. The kernel density estimation plot,
Figure 13 (right), further exemplifies the difference between
endothermic and exothermic reactions, showing exothermic
reactions have a greater skew toward more sterically hindered
substituents. This finding is congruent with FLP theory, as the
FLP requires sterically hindered substituents to avoid forming
a stable, unreactive Lewis acid−Lewis base adduct.
Electronic properties were also data mined, such as

HOMO−LUMO gap and the global electrophilicity index of
the FLPs; the latter is derived from frontier orbital energies.
The frequency plot for the HOMO−LUMO gap of the FLP in
Figure 14 shows that exothermic methane deprotonation
reactions have FLP adducts with smaller HOMO−LUMO
gaps in comparison to endothermic systems. The same results

Figure 12. Histogram showing the frequency distribution of Lewis
base substituents (LB) for exothermic and endothermic methane
activation reactions via the deprotonation mechanism. We see that
both endothermic and exothermic reactions are dispersed among the
substituents investigated, although amine substituents are less favored
than the rest.

Figure 13. Histogram of substituent (LA/LB) buried volume for deprotonation mechanism for exothermic (blue) and endothermic (orange)
reactions (left). Kernel distribution estimation plot of the buried volume (right). Exothermic reactions favored a higher buried volume than that of
endothermic reactions.
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are found for the hydridic activation mechanism, Supporting
Information.
Global electrophilicity index is a metric reported by Stephan

et al.;35 it is a measure of the electrophilicity of a compound
derived from HOMO and LUMO energies.
This metric quantifies how much the molecule of interest

desires to obtain an electron. It has been reported that for
initial activation of methane, the complex must be a good acid,
and base character is more important later in the reaction
coordinate for CH activation.36 In support of this proposal, in
Figure 15, it is observed that the endothermic deprotonation
reactions are heavily focused among FLPs with lower GEIs,
meaning that less electrophilic FLPs are less inclined to react
with methane. Meanwhile, although more disperse, exothermic
reactions skew to the right, indicating that promising catalysts
leads have enhanced electrophilicity.
Features such as those discussed above are not only

important to understand the nature of FLPs in methane
activation but also allow for subsequent rounds of ML-inspired
catalyst optimization, if needed, to create more meaningful
features. For example, a PCA (principal component analysis)
of features could potentially help train an ML classifier to
determine if a reaction will be exothermic or endothermic just
from ground state properties of the adduct, saving significant
calculation time and allowing for high-throughput screening of
millions of molecules through either a wider survey of the
chemical components or the consideration of multiple
optimization objectives.
Analysis of Machine-Learned Force Field Inference

and Insights. To assess the capabilities of the machine-
learned force field (MLFF) for structural optimization of main

group FLPs, inference was run on structures generated by the
molecule builder described previously, which assembles FLPs
using preoptimized ligand fragments, Lewis acids, and Lewis
base ligands. Surprisingly, the optimized structures exhibited
outward expansion rather than converging to chemically
reasonable configurations. This outcome aligned with our
observations during training, whereby forces converge less well
compared to energies.
To further evaluate the newly derived MLFF’s performance,

a universal force field37 was applied for initial optimization,
achieving more chemically plausible FLP geometries. Sub-
sequently, these optimized structures were subjected to MLFF
for energy assessment. It is essential to note that the current
MLFF is restricted to predicting energies for neutral-charged
molecules. Consequently, simulations involving the reaction
energies for our mechanism, which includes ionic products, are
not feasible. As an alternative, we focused on predicting the
formation energies of FLPs, aiming to obtain energy metrics
comparable to those from DFT to provide meaningful
comparisons. This approach allowed us to navigate the
limitations of MLFF but still obtain valuable insights into its
performance within the current chemical space.
Exploring the entirety of chemical space and leveraging the

newly developed FLP molecule builder to generate all possible
permutations, we created a comprehensive set of 7058
Frustrated Lewis Pairs (FLPs). The objective was to evaluate
the formation energies of these pairs with the MLFF. During
the analysis, extreme outliers in the formation energies were
identified and subsequently removed, specifically those falling
below −100 kcal/mol. These outliers were indicative of
instabilities in the MLFF model, potentially stemming from

Figure 14. Frequency plot and histogram for the calculated FLP HOMO−LUMO gap (eV) for endothermic (orange) and exothermic (blue)
deprotonation reactions for methane activation. Exothermic reactions have red-shifted HOMO−LUMO gaps.
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inadequacies in the training data. The decision to eliminate
such outliers seeks to refine the data set and ensure a more
reliable assessment of the FLP formation energies. This careful
curation of data contributes to a more accurate understanding
of the capabilities and limitations of the model in the context
of FLP predictions. The MLFF has an inference time of less
than a second per FLP, an incredible speed up as compared to
quantum mechanics. Pairing classical FF with MLFF for energy
evaluation thus provided an analysis within minutes. This
significantly reduced computational work compared to
hundreds of hours typically required in a DFT calculation.
In Figure 16, the average FLP formation energies are

organized with respect to the Lewis acid constituent. There is a
clear difference in Al-, In- and Tl-based Lewis acids yielding a
more stable FLP. The DFT results pointed to the pnictogen
group as better at activating methane, by which it may be
deduced that a less stable, more strained FLP is needed to
provide a more reactive adduct for methane activation.

■ SUMMARY AND CONCLUSIONS
A novel exploration protocol was developed and proven to be
successful in finding exothermic reactions for the activation of
methane through two different reaction mechanisms, hydridic
activation and deprotonation. In contrast to our previous
study,11 which was limited to Group 13 trihalides and Group
15 pentahalides, herein are tested different groups, such as
Group 2, Group 13, and Group 15 elements, with 42 different
electron-withdrawing groups, leading to over 3000 reactions
being modeled with state-of-the-art DFT methods. From the
reaction energy distribution graphs, it can be concluded that
the reactions being modeled are largely and quickly focused

upon favorable portions of chemical space. The cumulative
distribution graphs showed the difference between each
optimization cycle (inning). The difference between random
input vectors (inning 1) and vectors suggested by the
algorithm is clear. The cumulative distribution graphs showed
that the code converged in very few innings. Once the best
molecules are modeled, they are knocked out of the suggestion
pool, so the ML algorithm, which does not model duplicates,
suggests the best candidates first, and then the code chooses
the next best, next−next best, etc. at which point an increase in
average reaction energy is observed. Comparing the kernel

Figure 15. Histogram for Global Electrophilicity Index (GEI, in eV) for exothermic (blue) and endothermic (orange) reactions. More favorable
methane activation reactions are characterized by a greater GEI, although the distribution is quite dispersed.

Figure 16. Average FLP formation energy for each Lewis acid
calculated by MLFF (kcal/mol).
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distribution graphs between the first and last innings also
shows that the algorithm is correctly focusing on favorable
chemical space and has much less dispersion than the
randomly generated vectors of the first inning. The ML
protocol also generates a database of DFT-derived data that is
rich in information and which thus allows mining of and
chemical characteristics that are important in optimal catalyst
design. For example, it was further confirmed without a priori
guidance to the ML that FLPs with heavier pnictogens are
favored for methane activation, as are bulkier substituents,
cyclic alkyl substituents. Also, nitrogen bases are favored for
the deprotonation mechanism, while N- and P-based Lewis
bases make equal contributions to FLPs with favorable
thermodynamics for hydridic methane activation. Electronic
properties were also mined: lower HOMO−LUMO gaps in
the adduct may be an important indicator of whether the
reaction will be favored or not. Also, there are trends in the
global electrophilicity index where more electrophilic mole-
cules are favored for both reaction mechanisms studied, but
the trends were more dispersed, suggesting such a descriptor
may be of secondary significance in terms of efficient FLP-
mediated C−H activation.
Although promising, additional work would be needed to

fully leverage the ML protocol disclosed here. For example,
one would wish to connect ground state descriptors with
transition state properties such as activation energies�as
discussed in ref 11�to further winnow or prioritize the
candidate pool. Also, adding metrics, such as a synthetic
feasibility score or a measure of the sustainability of the catalyst
leads, would be desirable. However, the data provided here not
only indicate that ML protocols can provide meaningful insight
into the efficient searching of favorable chemical spaces of
Frustrated Lewis Pairs for methane activation but highlight
that ML can be exploited in a multitiered strategy to search
catalyst space in a manner that is more focused and more
diverse. Finally, the methods discussed here are general enough
to be extensible to other reactions and reagents.
The machine-learning force field (MLFF) was a valuable

tool for efficiently analyzing the formation energies of
Frustrated Lewis Pairs (FLPs). The MLFF yielded a significant
acceleration compared to quantum mechanics methods, with
an inference time of under a second per structure, as opposed
to the lengthy calculations associated with self-consistent field
(SCF)-based quantum methods such as DFT, which take
upward of a minute each on a high-performance computing
platform. However, this enhanced speed comes at the expense
of precision as the model exhibits instability in predicting
molecular forces, hindering its ability to effectively relax FLP
structures. In response to this limitation, it was necessary to
resort to classical force fields, which, while less accurate than
density functional theory (DFT), provided a means to obtain
structurally reasonable configurations in a very short amount of
time. Future research in the use of MFFs for the optimization
of inorganic entities will need more careful evaluation of
optimization strategies that yield consistent molecular forces.
This study serves as an initial exploration into the potential

benefits of training MLFFs for main group compounds, hinting
at their role as direct rivals to DFT in the future. Notably, as of
the current writing, there are, to our knowledge, no MLFFs
capable of simulating ions. The closest approximation is
Chgnet,38 which utilizes magnetic moments to provide insights
into ions. However, this approach was not feasible for our force
field, as specific data could not be incorporated into our

calculations. This work highlights the ongoing advancements
and challenges in the field of MLFFs, emphasizing the need for
further development to address their limitations and enhance
their applicability in diverse chemical scenarios.
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