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Topological phase transition from periodic edge states in moiré superlattices
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Topological mosaic pattern (TMP) can be formed in two-dimensional (2D) moiré superlattices, a set of
periodic and spatially separated domains with distinct topologies that give rise to periodic edge states on the
domain walls. In this study, we demonstrate that these periodic edge states play a crucial role in determining
global topological properties. By developing a continuum model for periodic edge states with Ce, and Cj;,
rotational symmetry, we predict that a global topological phase transition at the charge neutrality point (CNP)
can be driven by the size of domain walls and moiré period. The Wannier representation analysis reveals that
these periodic edge states are fundamentally chiral p, % ip, orbitals. The interplay between on-site chiral orbital
rotation and neighboring hopping among chiral orbitals leads to band inversion and a topological phase transition.
Our work establishes a general model for tuning local and global topological phases, paving the way for future
research on strongly correlated topological flat minibands within topological mosaic patterns.

DOLI: 10.1103/PhysRevB.107.235427

I. INTRODUCTION

Moiré superlattices formed in twisted or lattice-
mismatched van der Waals (vdW) materials present a
highly tunable platform for engineering electronic correlation
and topology. One celebrated example is the Mott insulator
as well as unconventional superconductivity discovered in
mgaic-angle twisted bilayer graphene (TBG) [1,2]. Moreover,
topological phases have been widely explored in twisted
graphene systems [3—12], homo- and heterobilayers of twisted
2D transition metal dichalcogenides (TMDs) [13-20], and so
on [21-24]. For small twist angles, local electronic states are
slowly modulated over long-period moiré superlattices, and
tuning stacking-dependent local properties may significantly
alter global properties of the moiré pattern.

The formation of a topological mosaic pattern in long-
period moiré superlattices is an intriguing phenomenon, as
depicted in Fig. 1. The presence of different domains with
distinct topologies in the 2D structure results in the emergence
of periodic edge states along the domain walls, in accordance
with the bulk-boundary correspondence [25,26]. One way
to create such a TMP is by twisting van der Waals (vdW)
materials with stacking-dependent topology [22,27-32]. For
instance, in heterobilayer TMDs, the type-II band alignment
for certain atomic configurations can be adjusted to fall into
the inverted regime with a few hundred meV interlayer bias
[30,31]. TBG with a large interlayer bias also exhibit in-
sulating AB and BA stacking domains with opposite valley
Chern numbers [33-36]. Furthermore, thin films of topolog-
ical insulators (TT) such as bilayer Bi,Te; or even magnetic
TIs like MnBi,Te, family can exhibit stacking-dependent
topology without interlayer bias [27-29,32]. Remarkably,
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their twisted counterparts can host topological flat moiré
minibands and moiré-scale edge states, implying global TI
phases for the TMP via doping [21,22]. However, it is still
unclear whether the topological flat minibands in these ma-
terials are connected to the emergent periodic edge states
and how global TI phases can be controlled by adjusting the
local TI phases at CNP, as depicted in Fig. 1. To address
these questions, a model based on the periodic edge states is
necessary.

In this paper, we present a continuum model for periodic
edge states on domain walls in the topological mosaic pattern.
Our findings reveal a topological phase transition at the charge
neutrality point that can be driven by the size of domain walls
and the moiré period. Using maximally localized Wannier
functions for the low-energy minibands, we establish that the
topological phase transition arises from overlaps of the peri-
odic edge states described by neighboring hopping between
px £ ip, orbitals on the triangular lattice. Additionally, we
provide topological phase diagrams for Cs; and Cs,-symmetric
domain walls. To demonstrate the versatility of our model, we
calculate moiré minibands of twisted bilayer Bi,Te; (TBBT)
and the domain wall network of TBG, both featuring Cs,-
symmetric domain walls. Our model’s findings align with
results from some previous studies.

The remainder of this paper is organized as follows. The
continuum model Hamiltonian for the periodic edge states is
constructed, and the symmetry analysis for the model is also
presented in Sec. II. The study of tunable band topology and
topological phase diagram for Cg,, Cs,-symmetric domain
walls are presented, and a tight-binding Hamiltonian based on
the maximally localized Wannier orbitals for the low-energy
bands for Cs.-symmetric domain walls is constructed in
Sec. III. Further discussion about the model is presented
in Sec. IV. Some auxiliary material is relegated to the
Appendixes.
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FIG. 1. (Left) Topological mosaic pattern (TMP), including
(a) TI domains with band inversion and (b) NI domains without
band inversion. The white circles stand for periodic edge states on
TI/NI domain walls. (Right) Sketch of topological mosaic pattern.
The black circles denote helical periodic edge states. The dashed
lines indicate possible helical edge states at the boundary of the TMP.

II. CONTINUUM MODEL HAMILTONIAN

As seen in Fig. 1, the TMP allows 1D edge states to
reside on the domain walls. Recall that 1D edge states at
the boundary of 2D TIs are closely related to Jackiw-Rebbi
zero-mode, which appears as the zero energy soliton of Dirac
equation [25,37,38]. In other words, the low-energy bound
states can be solved from a massive Dirac equation to reside
at the interface between two regions with opposite masses.
Inspired by this idea, we modify the 2D Dirac equation to
describe periodic edge states by considering the mass term as
a real space function with moiré period. Then domains with
opposite masses represent topologically distinct areas in TMP.
The modified Dirac Hamiltonian can be expressed as

H = —ihv(e,dy + aydy) + BM(r), )

where oy =1, ® o0y, @, =5, ®0,, 8 =1, ® 0, satisfying
Clifford algebra. Here s and o are Pauli matrices that cor-
respond to spin and orbital pseudospin degrees of freedom.
Hence M(r) denotes an orbital Zeeman splitting. Here we
note that (i) the Hamiltonian in Eq. (1) is mathematically
identical to the Bernevig-Hughes-Zhang (BHZ) model with
a moiré scale oscillation in the mass term [22,39], (ii) M (r)
is time-reversal (TR) invariant so that the two Dirac cones in
Eq. (1) could be gapped without breaking the TR symmetry
[40], and and (iii) a similar model Hamiltonian has been
used to describe surface states of TIs gapped by magnetic
Zeeman moiré potential [16,23,41], which however breaks the
TR symmetry. Up to the second-order Fourier approximation,
M (r) with three-fold rotational symmetry about the z axis
(Cs;) can be expanded as

M@E)=—mo—=2m Y cos(Gj r+9). (3
=135

where the summation runs over the three nearest
[O5=Y)

neighbor reciprocal lattices. G; = 4w/ (+/3ay)(cos 2m 5=,
siHZn@) (j=1,3,5). my, my, ¢ alter the landscape of
the moiré potential M (r) while ay; controls the moiré period.
Note that # is TR invariant as THy(r)T ' = H_k(r),
T =ioyK ®1, with T? = —1, where K is the complex
conjugation operator. It also preserves the particle-hole
symmetry SHy(r)S™! = —Hy(r) where S=1,® io K,
which implies the energy spectrum to be symmetric with

respect to zero energy. Furthermore, s, is a good quantum
number so H has two decoupled parts

H](r) = v(keo, + kya,) + M(r)or, 4
Hy (r) = H*(r),

where we have set i = 1. Hence the local spin Chern number
for each part can be defined as

‘ _/dkd dd  d]_ M @
Al T | ax a3 ok, T ok, | 2iM|

where the vector d is defined by the Pauli matrix expansion of
Eq.(3),H' = (d - ¢). The local spin Chern number difference
across the domain walls is 1, namely, one helical electronic
channel residing on the domain walls.

Up to a scale H has three independent dimensionless
parameters mg/my, ¢, and aym;/v. For simplicity, we set
m; = v = 1 in our calculations. Bloch’s theorem allows H to
act on the spinor W,k (r) = (wik(r), wik(r))T, where wnTk(r)
is a two-component Bloch’s function, and the band structures
can be computed by using the plane-wave expansion with
truncated 169 plane wave basis that are sufficient for energy
convergence.

III. RESULTS
A. Cg-symmetric domain walls

First we consider Cg,-symmetric domain walls, in which
¢ =0, my and ay, are two tunable parameters, and mainly
focus on electronic structures of HkT (r). As shown in
Figs. 2(a)-2(c), for ay = 5.7, as my < 1, all the low-energy
minibands are flat but topologically trivial. A gapped Dirac
cone emerges at the CNP, arising from the closed domain-wall
geometries [22,41]. As my = 1 a Dirac cone is formed at the
I' point. As mgy > 1, the two minibands around the CNP are
inverted with spin Chern number +1, implying a topological
phase transition at the CNP. Note that as m, > 1.38, the sec-
ond and the third minibands are also inverted at the I point
with spin Chern number *1, thus topological flat minibands
come out. The spin Chern number for each band is defined as
the integral of the Berry curvature, which can be expressed as

Q; = —Im{(Okutnk| X |Okttuk)}z,
1 (%)
C,=— [ d*ks,
27 Jpz

where |u,x) denotes the periodic part of Bloch functions. As
shown in Figs. 2(d) and 2(h), a & flux switches near the I
point between the lowest two bands. For noninverted bands,
a —m flux from the T" point is canceled by a background flux
of m, while for inverted bands they carry the same sign and
add up to 27 and therefore the spin Chern number equals to
1. While the Chern number for each band is clearly defined as
an integer, the total Chern number or the Hall conductance
of all occupied bands can be half-integer values [42]. The
reason is because the Dirac cone near the CNP only con-
tributes half a quantum of Hall conductance, while another
half-integer values from high-energy fermions is obscured by
the finite truncation of plane-wave basis. However, the gap-
closing transition at the CNP shall be interpreted as a global
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FIG. 2. [(a)-(c)] Moiré minibands of HkT (r) for ay = 5.7 and
(a) my=—-0.9, (b) my =1, where a Dirac point appears, and
(c) my = 2.4. The red dashed curves are band structures from the
tight-binding model in Eq. (6). Energies are in unit of m;. Inset:
heatmaps of M(r) characterizing the TMPs. [(d) and (h)] Berry
curvature for the lowest band for ay = 5.7 and (d) my = 0.9, (h)
mo = 1.1. [(e)—(g)] Bloch function density p(r) (blue background)
and current density j(r) (red arrow) in real space for the top occupied
band at the I point. The black solid curves are zero contour lines of
M ((r) as the topological domain walls.

topological phase transition because the total Chern number
of all occupied bands is changed by 1.

Furthermore, with the topological phase transition driven
by my, the Bloch states are substantially changed. As shown
in Figs. 2(e)-2(g), the wave function density of the first
occupied miniband at the I' point is localized around the
zero-contour lines of M (r) and preserves all spatial symme-
tries. Further calculations of Wannier functions also show
similar results, signifying the expected periodic edge states on
the domain walls. Besides, the corresponding current density

jor) = —evy ok + o,¥ 1y implies chiral currents along the
domain walls. For small my, chiral currents circulate in the
clockwise direction around the circular domain walls enclos-
ing domains on the triangular lattice with period a,;. Note that
although these circular domain walls may appear large, they
do not overlap with each other. As a result, the energy bands
associated with them are very flat, as shown in Fig. 2(a). This
characteristic will also be observed in subsequent calculations
of Wannier functions. As my increases, the domain walls ex-
pand and approach one another until my = 1.5. Beyond this
point, they contract and enclose domains on the honeycomb
lattice centered around the triangular lattice. As a result, chiral
currents circulate in the counter-clockwise direction along the
domain walls. Additionally, the time-reversal part H (K, r)
has degenerate energy bands associated with opposite spin
Chern numbers as well as chiral currents, resulting one helical
channel on the periodic domain walls.

In addition to mg, we find the moiré period ay,s could also
drive the topological phase transition at the CNP, as illustrated
in Fig. 3(a). Apparently this should be related to the inter-
actions between periodic edge states. To gain deeper insight,
we construct the maximally localized Wannier functions and
a tight-binding model. We perform the standard maximally
localized procedure to minimize the spread functional [43],
with a proper gauge choice for the initial trial Wannier func-
tions (see Appendix C). Interestingly, the localized Wannier
orbitals for the lowest two minibands have characteristics of
chiral p, &+ ip, orbitals on the triangular lattice, as shown in
Figs. 3(c) and 3(d). Up to the nearest neighbor hopping, the
tight-binding model in the Wannier representations reads

Hrg =A Z Ec;c‘,‘g + it Z e_"g"""fcjscj,,g
i§ (i,))§

—1' Y Eclce. (6)
(i, /)&

where £ = *and ¢; + = (¢cx T icy)/ V2 denotes the chiral ba-
sis associated with p, & ip, orbitals. ¢;; is the azimuthal angle
of the bond orientation from site i to j. The first term denotes
the on-site orbital rotation. The second and third terms rep-
resent the nearest-neighbor hopping between the orbitals with
opposite and same orbital angular momentum, respectively, as
shown in Fig. 3(b). The energy dispersion and band topology
from Eq. (6) are both in good agreement with the lowest two
minibands from Eq. (3) for various m( and ay;, as shown in
Figs. 2(a)-2(c).

It is worth mentioning that this Hamiltonian is identical to
the BHZ model on the triangular lattice [44]. It gives rise to
a Dirac cone at the " point that can be expressed as Hesr =
3ayt (keoy + kyoy) + (A — 61" + %t’a,%,kz)oz. For A < 6¢/, the
lower band carries Chern number +1, and under time rever-
sal the chiral p, £ ip, orbitals are interchanged, ¢z — c_¢,
so the lower band for the opposite spin part carries Chern
number — 1. Hence, the topological phase transition occurs as
the hopping amplitudes A, ¢, and ¢’ are changed by my and
ay . The hopping amplitudes calculated from the constructed
Wannier functions are shown in Figs. 3(e) and 3(f). For large
ay or small my, the neighboring hopping between domain
walls on the triangular lattice is very small. When increasing
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FIG. 3. (a) Topological phase diagram of Cs,-symmetric domain
walls tuned by (a) ay and my. The blue (yellow) regions represent
two distinct topological phases with (without) band inversion at the
CNP. The vertical dashed line contains parameters used in Fig. 2.
(b) Sketch of the tight-binding model (5) on the triangular lattice.
[(c) and (d)] Two Wannier functions associated with the two lowest
minibands. Only one component of each Wannier spinor with nonva-
nishing orbital angular momentum is shown. (e¢) Hopping amplitudes
as a function of my for ay = 5.7. (f) Tight-binding parameters as
a function of ay for my = 1. (Inset) Log-log plot of tight-binding
parameters, where the dashed line denotes a critical point for ay,.
All the tight-binding parameters have a power-law tail after the
topological phase transition.

myg or decreasing ays, the domain walls approach each other
as seen in Figs. 2(e) and 2(f), and the chiral p, & ip,-orbital
electrons on the domain walls are more likely to hop between
the domain walls, namely, ¢ and ¢" increase. Consequently, the
bandwidth increases and the band gap decreases to facilitate
the band inversion. It is noteworthy as mgy > 1.38, the lowest
four minibands can be described by the tight-binding model
in Eq. (6) on the honeycomb lattice, and realize two copies of
the Haldane model for each spin [45]. Moreover, the on-site
orbital rotation on the honeycomb lattice plays a similar role
with the neighboring hopping on the triangular lattice (see
Appendix D), which is crucial for topological phase transi-
tion in the TMP. After the topological phase transition, the
hopping amplitudes have a power-law tail with respect to
ay due to the topological obstruction [46—48], as shown in
Fig. 3(f) inset.
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FIG. 4. [(a) and (b)] Topological phase diagram of Cs,-
symmetric domain walls tuned by (a) ¢ and my for ay = 1.8, and
(b) ¢ and ay, for my = 0.5. The blue (yellow) regions represent two
distinct topological phases with (without) band inversion at the CNP.
The red stars mark topological phases of TBBT and domain wall net-
work of TBG. [(c) and (d)] Moiré minibands of (¢) TBBT at 1° twist
angle, and (d) domain wall network of TBG under interlayer bias,
the parameters are calculated from the band gaps for local registries
[22,34]. (Inset) Heatmaps of M (r) characterizing the TMPs.

B. C5;-symmetric domain walls

Most moiré systems have moiré superlattices that are sym-
metric under Cs, operations. This makes it more practical
to study the topological phase transition (TMP) with Cjs,-
symmetric domain walls, which involves another parameter
¢. When ¢ deviates from 2nm /3, it breaks the inversion
symmetry and causes the shapes of domain walls to change.
When ¢ approaches 7 /6, a triangular domain wall network
will be formed. This change has a minor effect on the domain
wall size when compared to the effect of my, since my can
always drive the topological phase transition whatever ¢ is,
as illustrated in Fig. 4(a). However, as my is tuned around the
phase boundary, ¢ and ay; can also drive the topological phase
transition, as illustrated in Fig. 4(b). To be specific, ay will
significantly close and reopen the miniband gap only if ¢ is
close to 2nm /3, as shown in Fig. 4(b).

To demonstrate the versatility of our model, we take TBBT
and TBG under interlayer bias as two practical paradigms,
which are proposed to exhibit isolated circular shapes and
connected triangular shapes of Cs;-symmetric domain walls
[22,33,34,36], respectively. Take TBBT as an example,
ay ~ ap/6 is about 25 nm at 1° twist angle, and v =
250 meV - nm [49,50]. We take (mg, mi, ¢) as (=31 meV,
18 meV, 0.62) that can be estimated from the band gaps of
untwisted high-symmetry atomic registries [22], so my/m; =
—1.7 and ayym; /v ~ 1.8, marked in Fig. 4(a). The band struc-
ture of TBBT from those parameters exhibits a miniband gap
at the CNP, as shown in Fig. 4(c), and the two lowest bands
remain noninverted. It is important to note that the moiré
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minibands derived from the Dirac Hamiltonian in Eq. (1)
represent only a small fraction of the TBBT bands, so our
model cannot determine the Hall conductance or the global TI
at the CNP as mentioned earlier. Nevertheless, the low-energy
miniband dispersion and topology align well with prior re-
search [22]. As a result, a global TI/NI phase transition could
occur if the domain walls are adjusted to close and reopen
the miniband gap at the CNP. This may be achievable by
considering lattice reconstruction, as TI domains are expected
to enlarge due to local atomic registries with an inverted band
regime being more stable than other atomic registries [22].
Consequently, the CNP gap could decrease or even undergo a
topological phase transition in a fully relaxed TBBT system.

On the other hand, the domain wall network in twisted
bilayer graphene (TBG) features two gapless Dirac cones, as
illustrated in Fig. 4(d), resulting in a metallic system. Our
model, presented in Eq. (1), accurately reproduces the band
structure using a simple tight-binding model for the domain
wall network. However, as our model only accounts for a
single helical channel, the local valley Chern number across
TBG network domain walls is 2 [33], allowing for two helical
channels per valley. Consequently, the coupling between these
channels within the AA region is absent, a factor that has
been suggested as critical for Aharonov—Bohm oscillations
observed in transport experiments [51-53]. A more precise
model incorporating the coupling between the two channels
can be further developed.

IV. EXPERIMENTAL REALIZATION

As mentioned earlier, twisted bilayer BiyTe; and
MnBi, Te, are potential experimental materials for fabricating
a TMP. Experimental techniques for manipulating the topo-
logical domain walls in the TMP are basically available. For
instance, the geometry of the domain walls, controlled by the
ratio mgy/m,, can be adjusted by applying an external electric
field or a uniform strain perpendicular to the TMP. Addition-
ally, the period of the TMP can be modified by changing the
twist angle, while preserving the spatial symmetry. It is worth
noting that although it is challenging to precisely manipulate
the local geometry of the domain walls using either the
applied electric field or uniform strain, they still need to be
carefully tuned. Otherwise, they might induce metallic phases
in the local atomic structures, leading to the formation of
conductive channels and turning the TMP into a metal.

V. DISCUSSION

So far we have unveiled that the TMP with Cg,-symmetric
domain walls has chiral p, &= ip, orbitals in the low-energy
minibands. In our model, we neglect the particle-hole asym-
metric part that will bring about a scalar moiré potential
that involves more complicated topological phase diagrams
[23]. While the continuum model in Eq. (1) works well for
C3;-symmetric domain walls, the tight-binding model in
Eq. (6) can also be generalized by adding a sublattice asym-
metry term on the honeycomb lattice [54]. In general, a TMP
can generate chiral p-orbital bands with nontrivial topology.

Although the p, & ip,-orbital model on the honeycomb
lattice has been seen in low-energy minibands in TBG [55,56],

the on-site orbital rotation is negligible to induce a sizable
topological miniband gap at the CNP. On the other hand,
the geometry of domain walls in TMP can be tuned by twist
angle, interlayer bias, and lattice strain, so the electron states
are allowed to be more spatially extended with certain chi-
rality, which can lead to topological flat bands as discussed
above. Hence the chiral p, & ip, orbitals on the domain walls
may bring strong correlation effect such as Wigner crys-
tal and ferromagnetism [57-59]. The periodic edge states
will be expected to involve anisotropic p-band interactions
which are rarely found in realistic materials, while isotropic
s-band interactions have been proposed in twisted TMDs
materials [19,60-63].
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APPENDIX A: UNDERLYING DIRAC EQUATION
FROM TWISTED BILAYER BHZ MODEL

In this section, we display the relationship between
our modified Dirac Hamiltonian and the twisted bi-
layer BHZ Hamiltonian proposed by Lian et al. to de-
scribe twisted bilayer MnBi,Tes; moiré superlattice [21].
This layered system has two distinct magnetic orders,
ferromagnetic/antiferromagnetic, whose Hamiltonian is dif-
ferent from each other. Even so, it has a nonmagnetic part
which is same for both. It consists of a two-by-two block
matrix, where the intralayer (diagonal) blocks with a relative
twist angle are coupled via interlayer (off-diagonal) blocks.

The nonmagnetic part reads
I(r)
h-p2(=iV))’

hg2(—iV)
T'(r)
where hig/) = ng /QIHBHZR:N:Q /2 describes the intralayer cou-
pling. Each layer is rotated by +6/2 about z-axis so the
relative twist angle between two layers is 6. In basis of
{IBi", 1), [Te", ), IBi", |), |Te", 1)} where [Bi",s) is vth-
layer p. orbital of Bi atoms with spin s, the rotation matrix
Rig/> can be expressed as diag(e=?/4, ¢Fi0/4, o£i0/4 Fi0/4)
and

Hi = (A1)

m(Kk) ak_
k —m(k
Hpnz = (k) + o i) mk) aky |
ak_ —m(k)
(A2)
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t ityn
—tn it
T(r)= , (A3)
it B

—if —h

where T (r) describes the interlayer coupling. With the rel-
ative layer displacement slowly varying over the moiré
period, the interlayer coupling for local atomic registries
are continuously tuned. Hence T'(r) is real position depen-
dent with moiré period. This block matrix can be partially
decoupled by introducing a unitary transformation for the

J

Hi = e(K)Igys

m(K) + 113 o COS %k, itp
acos§ky  —m(k) — 1 —ityy

it mk)+1ty  ocos bk,

n —itp o COoS %k, —m(K) — tp
io sin %k,
ia sin Sk
ia sin %k+
io sin %k_

basis,
1
IBi*, s) = —(|Bi', s) F |Bi%, 5)),
V2 i
. (A4)
ITe*, s) = —(|Te', s) F |Te?, s)),

V2

where |Bi", s) is the bonding state of p, orbital of Bi atoms
of two twisted layers with spin s =7, |, and |Bi~, s) is the
antibonding state of p, orbital of Bi atoms of two twisted
layers with spin s. This unitary transformation mixes states
in the two twisted layers. After the unitary transformation the
Hamiltonian can be written as

—io sin %k,
—ia sin %kJr
—io sin %k+
—ia sin %k,
mk)—t;  —ocos Sk it '
—acos Sko —m(k) — 1y —it1y
it1o —m(K) —t;; —acos %k,
—iti —acos ks m(k) — 1
(A5)

where #1; and f,, are positive numbers representing the interlayer hopping between Bi-Bi and Te-Te atoms, respectively. Then

the Hamiltonian appears to be block diagonal with the zeroth-order approximation at small twist angle where sin% < cos %.
The top left block now reads
m(k) + t1; ak_ it1n
ok —m(K) — 12 —ityp
Hr = e(K)laxa + . , A6
2 (K) 1454 it m(k) + 1 ak, (A6)
—it1n ok_ —m(K) — tr

in the basis of {|Bi~, 1), |Te*, |),|Bi~, |)|Te", 1)}. This
decoupled matrix is time-reversal invariant and has de-
generate eigenvalues & &+ /M2 + k2, where & = e(k)+
%(lll —tp)and M = \/tfz + (m + %)2. Hence the Hamil-
tonian can be transformed without breaking time-reversal
symmetry as

d-o
HZ = 814)(4 + ( (d . O_)T)v

where d = (aky, ak,, M) and o are the Pauli matrices. Ap-
parently M = M(r) has the moiré period that is dependent
on twist angle. Therefore the particle-hole symmetric part of
the Hamiltonian is mathematically equivalent to the modified
Dirac Hamiltonian in the main text. Apparently the interlayer
hopping parameters play a role as the periodic modulation on
the mass term, which is also reflected by the fact that the
interlayer hopping could alter topological properties of the
local atomic registries and thus generate the TMP in moiré
superlattices.

Besides, we note that our modified Dirac Hamiltonian in
Eq. (1) in the main text is identical to the twisted BHZ model

(AT)

(

with a moiré scale oscillation in the mass term [22] (which
can be simplified from the twisted bilayer BHZ model as
mentioned above) to describe twisted bilayer Bi;Tes;. This
also makes sense since the original BHZ model itself can be
used to describe the thin films as well as bulk of topological
insulators [64]. Even so, these two versions of BHZ model
may have different physical interpretations in the sense that
the basis has been changed under unitary transformation.

APPENDIX B: DERIVATION OF SPIN-ORBIT COUPLING
IN MODIFIED DIRAC HAMILTONIAN

In this section, we provide a further evaluation on the
modified Dirac Hamiltonian to show the intrinsic spin-orbit
coupling (SOC), from which we may have partial insight
into the origin of chiral p, & ip, orbitals for the low-energy
bands. Suppose the eigenvector for Hlj (r) is (Y1, ¥»)7, then
the corresponding eigenvalue equation can be written as

(")) =)
kg M ) T \)

(BI)
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my=-0.9

Component 1
Band 1

Band 2

Q—I'/‘ |
Arg()

Component 2

my=2.4

Component 1

Component 2

FIG. 5. Real-space distributions of the Bloch spinors at the I' point for the top two occupied bands. The bottom two unoccupied bands are

related by the particle-hole symmetry.

which involve two coupled equations. From the second equa-
tion, we obtain ¥, = (€ + M)~ (k, + ik, ). By substituting
Y, in the first equation and using the canonical commutation
relation the eigenvalue equation for ¥r; can be expressed as

1 1
(- Vi M+ iA—/I(VM x V), + A—/IVM : v)wl = ey,
(B2)

1~

where.w.e havg used the lgw—energy approx1mat10n e -
Combining spin and orbital pseudospin degrees of freedom,
the total eigenvalue equation is decoupled as

1 1
V24V + iszo(—vv X v) +—VV . V)W:ezlll,
( \2v .2V
(B3)

where V = M(r)?. Now we arrive at a relativistic wave equa-
tion. The first two terms are kinetic and potential energy that
generate bound states around the potential minimum. The
third term denotes the atomic SOC that diverges as M(r)
reaches 0, corresponding to the domain walls in TMP. The
atomic SOC from the modified Dirac Hamiltonian possibly
leads to the chiral p, £ ip, orbitals per spin in low energy and
thus nontrivial band topology.

APPENDIX C: CONSTRUCTION OF MAXIMALLY
LOCALIZED WANNIER FUNCTIONS

In this section, we discuss construction of maximally lo-
calized Wannier functions. The first step is to find out the
localized center of Wannier function and its symmetry. To
do this, we plot distributions of Bloch functions at k = 0
point for low-energy bands as shown in Fig. 5 . Each Bloch
spinor for the Hamiltonian in Eq. (3) has two components.
We define L = L! 4 L? as the angular momentum for each

band, where Lé denotes the angular momentum for the ith
component of the Bloch spinor. For my = —0.9, the wave
functions are localized on the triangular lattice, so we choose
the triangular lattice as the rotation center. Then each Bloch
spinor is found to be an eigenstate of Cs, with eigenvalue of
e'3L:. Hence (L!, L?) = (0, 1) for the first top occupied band,
and (Lg, Lf) = (1, 2) for the second top occupied band. Due
to the particle-hole symmetry, (L;, L?) = (—1, 0) for the first
bottom unoccupied band, thus L!** = %1 for the lowest two
bands. For my = 2.4, the wave functions are localized on the
honeycomb lattice, so we choose the honeycomb lattice as
the rotation center. Then each Bloch spinor is found to be
an eigenstate of Cy, with eigenvalue of ¢, Because the
lowest two bands as well as the second and third bands have
been inverted, their angular momentum are also switched.
Then (Lzl, Lzz) = (—1, 0) for the first top occupied band, and
(LZI, LZZ) = (0, —1) for the second top occupied band. Hence
L = —1 for the top two bands and L!** = 1 for the bottom
two bands.

Next we prepare the initial wave functions. We note that we
separately construct the Wannier representations for varying
my that changes the localizing sites of electron states. Since
the topological phase transition at the CNP involves only the
lowest two bands, which are energetically isolated from other
bands, we expect two independent Wannier orbitals on the
triangular lattice to be transformed from the Bloch functions
for these bands. We fix the global phase factor of the Bloch
states by different gauges. For the n-th Wannier orbital, we fix
the phase e'®* so that ¥, (r = 0) is real and positive, where
i denotes the i-th component of Bloch spinors with LI = 0.
Then the initial Wannier functions are constructed as

1 o
w, (r) = ﬁ;e‘f’" Y Yk, (1)

m=1,2
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(a) Orbital 1 L,=-1 (b) Orbital 2 L.=1

(e)

(c) Orbital 3 L.=1

(d) Orbital 4 L= 1

ay

FIG. 6. [(a)—(d)] Wannier functions for the lowest four lowest bands for my = 2.4 and a) = 5.7. Only one component of each Wannier
spinor with nonvanishing orbital angular momentum is shown. (e) Sketch of the tight-binding model in Eq. (6) on the honeycomb lattice.
(f) Moiré minibands of HkT (r) for ay = 5.7 and my = 2.4. The red dashed curves are band structures from the p, & ip,-orbital model on
the honeycomb lattice. (g) Hopping amplitudes as a function of my for ay = 5.7. (h) Hopping amplitudes as a function of a,, for my = 2.4.

Log-log plot of hopping amplitudes, which have a power-law tail.

where the summation in k is taken over N discrete points in
the Brillouin zone. Moreover, we impose the Cg, rotational
symmetry for the initial Wannier functions. Then we use the
maximally localizing method [43] to reduce the total spread
functional. Here we take N = 18 x 18 in the minimizing pro-
cedure. For large my we consider the lowest four bands for
the Wannierization and take a similar strategy for initial Wan-
nier functions as mentioned above. We note that the chosen
gauges allow the initial Wannier trials to be well-localized
and preserve the desired symmetry as well, so we just take
several iterative steps instead of fully minimizing the total
spread which may break the symmetry of Wannier orbitals.

APPENDIX D: p, £ip,-ORBITAL MODEL
ON THE HONEYCOMB LATTICE

As mgy > 1.38, ayy = 5.7, the second and third miniband
are inverted. Using the same approach we construct localized

Wannier functions for the lowest four minibands. As shown
in Figs. 6(a)-6(d), the four Wannier functions characterize
the chiral p, &£ ip, orbitals on the honeycomb lattice. The
tight-binding model in Wannier representations has the same
formula with Eq. (6), where the on-site orbital rotation now
plays a role as an effective SOC [54]. The energy dispersion
and band topology are both in good agreement with the band
structures from the continuum model, as shown in Fig. 6(f).
Since the honeycomb lattice is right at the center of each trian-
gular plaquette, the above mentioned neighboring hopping on
the triangular lattice turns into the effective SOC on the hon-
eycomb lattice, and vice versa. As a result, as mg increases,
A increases while 7 and ¢’ decrease, as shown in Fig. 6(g),
which is inverse of Fig. 3(e). The effective SOC is larger than
the neighboring hopping, and the CNP gap between the first
and second band is inverse of A or mg [57,65]. Similarly, the
hopping amplitudes have a power-law decay respect to ay, as
shown in Fig. 6(f).
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