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Topological phase transition from periodic edge states in moiré superlattices
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Topological mosaic pattern (TMP) can be formed in two-dimensional (2D) moiré superlattices, a set of

periodic and spatially separated domains with distinct topologies that give rise to periodic edge states on the

domain walls. In this study, we demonstrate that these periodic edge states play a crucial role in determining

global topological properties. By developing a continuum model for periodic edge states with C6z and C3z

rotational symmetry, we predict that a global topological phase transition at the charge neutrality point (CNP)

can be driven by the size of domain walls and moiré period. The Wannier representation analysis reveals that

these periodic edge states are fundamentally chiral px ± ipy orbitals. The interplay between on-site chiral orbital

rotation and neighboring hopping among chiral orbitals leads to band inversion and a topological phase transition.

Our work establishes a general model for tuning local and global topological phases, paving the way for future

research on strongly correlated topological flat minibands within topological mosaic patterns.
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I. INTRODUCTION

Moiré superlattices formed in twisted or lattice-

mismatched van der Waals (vdW) materials present a

highly tunable platform for engineering electronic correlation

and topology. One celebrated example is the Mott insulator

as well as unconventional superconductivity discovered in

mgaic-angle twisted bilayer graphene (TBG) [1,2]. Moreover,

topological phases have been widely explored in twisted

graphene systems [3–12], homo- and heterobilayers of twisted

2D transition metal dichalcogenides (TMDs) [13–20], and so

on [21–24]. For small twist angles, local electronic states are

slowly modulated over long-period moiré superlattices, and

tuning stacking-dependent local properties may significantly

alter global properties of the moiré pattern.

The formation of a topological mosaic pattern in long-

period moiré superlattices is an intriguing phenomenon, as

depicted in Fig. 1. The presence of different domains with

distinct topologies in the 2D structure results in the emergence

of periodic edge states along the domain walls, in accordance

with the bulk-boundary correspondence [25,26]. One way

to create such a TMP is by twisting van der Waals (vdW)

materials with stacking-dependent topology [22,27–32]. For

instance, in heterobilayer TMDs, the type-II band alignment

for certain atomic configurations can be adjusted to fall into

the inverted regime with a few hundred meV interlayer bias

[30,31]. TBG with a large interlayer bias also exhibit in-

sulating AB and BA stacking domains with opposite valley

Chern numbers [33–36]. Furthermore, thin films of topolog-

ical insulators (TI) such as bilayer Bi2Te3 or even magnetic

TIs like MnBi2Te4 family can exhibit stacking-dependent

topology without interlayer bias [27–29,32]. Remarkably,
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their twisted counterparts can host topological flat moiré

minibands and moiré-scale edge states, implying global TI

phases for the TMP via doping [21,22]. However, it is still

unclear whether the topological flat minibands in these ma-

terials are connected to the emergent periodic edge states

and how global TI phases can be controlled by adjusting the

local TI phases at CNP, as depicted in Fig. 1. To address

these questions, a model based on the periodic edge states is

necessary.

In this paper, we present a continuum model for periodic

edge states on domain walls in the topological mosaic pattern.

Our findings reveal a topological phase transition at the charge

neutrality point that can be driven by the size of domain walls

and the moiré period. Using maximally localized Wannier

functions for the low-energy minibands, we establish that the

topological phase transition arises from overlaps of the peri-

odic edge states described by neighboring hopping between

px ± ipy orbitals on the triangular lattice. Additionally, we

provide topological phase diagrams for C6z and C3z-symmetric

domain walls. To demonstrate the versatility of our model, we

calculate moiré minibands of twisted bilayer Bi2Te3 (TBBT)

and the domain wall network of TBG, both featuring C3z-

symmetric domain walls. Our model’s findings align with

results from some previous studies.

The remainder of this paper is organized as follows. The

continuum model Hamiltonian for the periodic edge states is

constructed, and the symmetry analysis for the model is also

presented in Sec. II. The study of tunable band topology and

topological phase diagram for C6z,C3z-symmetric domain

walls are presented, and a tight-binding Hamiltonian based on

the maximally localized Wannier orbitals for the low-energy

bands for C6z-symmetric domain walls is constructed in

Sec. III. Further discussion about the model is presented

in Sec. IV. Some auxiliary material is relegated to the

Appendixes.
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FIG. 1. (Left) Topological mosaic pattern (TMP), including

(a) TI domains with band inversion and (b) NI domains without

band inversion. The white circles stand for periodic edge states on

TI/NI domain walls. (Right) Sketch of topological mosaic pattern.

The black circles denote helical periodic edge states. The dashed

lines indicate possible helical edge states at the boundary of the TMP.

II. CONTINUUM MODEL HAMILTONIAN

As seen in Fig. 1, the TMP allows 1D edge states to

reside on the domain walls. Recall that 1D edge states at

the boundary of 2D TIs are closely related to Jackiw-Rebbi

zero-mode, which appears as the zero energy soliton of Dirac

equation [25,37,38]. In other words, the low-energy bound

states can be solved from a massive Dirac equation to reside

at the interface between two regions with opposite masses.

Inspired by this idea, we modify the 2D Dirac equation to

describe periodic edge states by considering the mass term as

a real space function with moiré period. Then domains with

opposite masses represent topologically distinct areas in TMP.

The modified Dirac Hamiltonian can be expressed as

H = −ih̄v(αx∂x + αy∂y) + βM(r), (1)

where αx = 1s ⊗ σx, αy = sz ⊗ σy, β = 1s ⊗ σz, satisfying

Clifford algebra. Here s and σ are Pauli matrices that cor-

respond to spin and orbital pseudospin degrees of freedom.

Hence M(r) denotes an orbital Zeeman splitting. Here we

note that (i) the Hamiltonian in Eq. (1) is mathematically

identical to the Bernevig-Hughes-Zhang (BHZ) model with

a moiré scale oscillation in the mass term [22,39], (ii) M(r)

is time-reversal (TR) invariant so that the two Dirac cones in

Eq. (1) could be gapped without breaking the TR symmetry

[40], and and (iii) a similar model Hamiltonian has been

used to describe surface states of TIs gapped by magnetic

Zeeman moiré potential [16,23,41], which however breaks the

TR symmetry. Up to the second-order Fourier approximation,

M(r) with three-fold rotational symmetry about the z axis

(C3z) can be expanded as

M(r) = −m0 − 2m1

∑

j=1,3,5

cos(G j · r + φ),
(2)

where the summation runs over the three nearest

neighbor reciprocal lattices. G j = 4π/(
√

3aM )(cos 2π
( j−1)

3
,

sin 2π
( j−1)

3
) ( j = 1, 3, 5). m0, m1, φ alter the landscape of

the moiré potential M(r) while aM controls the moiré period.

Note that H is TR invariant as THk(r)T −1 = H−k(r),

T = iσyK ⊗ 1σ with T 2 = −1, where K is the complex

conjugation operator. It also preserves the particle-hole

symmetry SHk(r)S−1 = −Hk(r) where S = 1s ⊗ iσyK ,

which implies the energy spectrum to be symmetric with

respect to zero energy. Furthermore, sz is a good quantum

number so H has two decoupled parts

H
↑
k (r) = v(kxσx + kyσy) + M(r)σz,

H
↓
k (r) = H

↑∗
k (r),

(3)

where we have set h̄ = 1. Hence the local spin Chern number

for each part can be defined as

Clocal =
∫

dk

4π

d

d3
·
[

∂d

∂kx

×
∂d

∂ky

]

=
M

2|M|
, (4)

where the vector d is defined by the Pauli matrix expansion of

Eq. (3), H↑ = (d · σ). The local spin Chern number difference

across the domain walls is 1, namely, one helical electronic

channel residing on the domain walls.

Up to a scale H has three independent dimensionless

parameters m0/m1, φ, and aMm1/v. For simplicity, we set

m1 = v = 1 in our calculations. Bloch’s theorem allows H to

act on the spinor �nk(r) = (ψ
↑
nk(r), ψ

↓
nk(r))T , where ψ

↑
nk(r)

is a two-component Bloch’s function, and the band structures

can be computed by using the plane-wave expansion with

truncated 169 plane wave basis that are sufficient for energy

convergence.

III. RESULTS

A. C6z-symmetric domain walls

First we consider C6z-symmetric domain walls, in which

φ = 0, m0 and aM are two tunable parameters, and mainly

focus on electronic structures of H
↑
k (r). As shown in

Figs. 2(a)–2(c), for aM = 5.7, as m0 < 1, all the low-energy

minibands are flat but topologically trivial. A gapped Dirac

cone emerges at the CNP, arising from the closed domain-wall

geometries [22,41]. As m0 = 1 a Dirac cone is formed at the


 point. As m0 > 1, the two minibands around the CNP are

inverted with spin Chern number ±1, implying a topological

phase transition at the CNP. Note that as m0 > 1.38, the sec-

ond and the third minibands are also inverted at the 
 point

with spin Chern number ±1, thus topological flat minibands

come out. The spin Chern number for each band is defined as

the integral of the Berry curvature, which can be expressed as

�z = −Im{〈∂kunk| × |∂kunk〉}z,

Cn =
1

2π

∫

BZ

d2k�z,
(5)

where |unk〉 denotes the periodic part of Bloch functions. As

shown in Figs. 2(d) and 2(h), a π flux switches near the 


point between the lowest two bands. For noninverted bands,

a −π flux from the 
 point is canceled by a background flux

of π , while for inverted bands they carry the same sign and

add up to 2π and therefore the spin Chern number equals to

1. While the Chern number for each band is clearly defined as

an integer, the total Chern number or the Hall conductance

of all occupied bands can be half-integer values [42]. The

reason is because the Dirac cone near the CNP only con-

tributes half a quantum of Hall conductance, while another

half-integer values from high-energy fermions is obscured by

the finite truncation of plane-wave basis. However, the gap-

closing transition at the CNP shall be interpreted as a global
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FIG. 2. [(a)–(c)] Moiré minibands of H
↑
k (r) for aM = 5.7 and

(a) m0 = −0.9, (b) m0 = 1, where a Dirac point appears, and

(c) m0 = 2.4. The red dashed curves are band structures from the

tight-binding model in Eq. (6). Energies are in unit of m1. Inset:

heatmaps of M(r) characterizing the TMPs. [(d) and (h)] Berry

curvature for the lowest band for aM = 5.7 and (d) m0 = 0.9, (h)

m0 = 1.1. [(e)–(g)] Bloch function density ρ(r) (blue background)

and current density j(r) (red arrow) in real space for the top occupied

band at the 
 point. The black solid curves are zero contour lines of

M(r) as the topological domain walls.

topological phase transition because the total Chern number

of all occupied bands is changed by 1.

Furthermore, with the topological phase transition driven

by m0, the Bloch states are substantially changed. As shown

in Figs. 2(e)–2(g), the wave function density of the first

occupied miniband at the 
 point is localized around the

zero-contour lines of M(r) and preserves all spatial symme-

tries. Further calculations of Wannier functions also show

similar results, signifying the expected periodic edge states on

the domain walls. Besides, the corresponding current density

j(r) = −evψ†[σxx̂ + σyŷ]ψ implies chiral currents along the

domain walls. For small m0, chiral currents circulate in the

clockwise direction around the circular domain walls enclos-

ing domains on the triangular lattice with period aM . Note that

although these circular domain walls may appear large, they

do not overlap with each other. As a result, the energy bands

associated with them are very flat, as shown in Fig. 2(a). This

characteristic will also be observed in subsequent calculations

of Wannier functions. As m0 increases, the domain walls ex-

pand and approach one another until m0 = 1.5. Beyond this

point, they contract and enclose domains on the honeycomb

lattice centered around the triangular lattice. As a result, chiral

currents circulate in the counter-clockwise direction along the

domain walls. Additionally, the time-reversal part H↓(k, r)

has degenerate energy bands associated with opposite spin

Chern numbers as well as chiral currents, resulting one helical

channel on the periodic domain walls.

In addition to m0, we find the moiré period aM could also

drive the topological phase transition at the CNP, as illustrated

in Fig. 3(a). Apparently this should be related to the inter-

actions between periodic edge states. To gain deeper insight,

we construct the maximally localized Wannier functions and

a tight-binding model. We perform the standard maximally

localized procedure to minimize the spread functional [43],

with a proper gauge choice for the initial trial Wannier func-

tions (see Appendix C). Interestingly, the localized Wannier

orbitals for the lowest two minibands have characteristics of

chiral px ± ipy orbitals on the triangular lattice, as shown in

Figs. 3(c) and 3(d). Up to the nearest neighbor hopping, the

tight-binding model in the Wannier representations reads

HTB = λ
∑

i,ξ

ξc
†
iξ ciξ + it

∑

〈i, j〉ξ

e−iξφi j c
†
iξ c j,−ξ

− t ′
∑

〈i, j〉ξ

ξc
†
iξ c jξ , (6)

where ξ = ± and ci,± = (cx ± icy)/
√

2 denotes the chiral ba-

sis associated with px ± ipy orbitals. φi j is the azimuthal angle

of the bond orientation from site i to j. The first term denotes

the on-site orbital rotation. The second and third terms rep-

resent the nearest-neighbor hopping between the orbitals with

opposite and same orbital angular momentum, respectively, as

shown in Fig. 3(b). The energy dispersion and band topology

from Eq. (6) are both in good agreement with the lowest two

minibands from Eq. (3) for various m0 and aM , as shown in

Figs. 2(a)–2(c).

It is worth mentioning that this Hamiltonian is identical to

the BHZ model on the triangular lattice [44]. It gives rise to

a Dirac cone at the 
 point that can be expressed as Heff =
3aMt (kxσx + kyσy) + (λ − 6t ′ + 3

2
t ′a2

Mk2)σz. For λ < 6t ′, the

lower band carries Chern number +1, and under time rever-

sal the chiral px ± ipy orbitals are interchanged, cξ → c−ξ ,

so the lower band for the opposite spin part carries Chern

number −1. Hence, the topological phase transition occurs as

the hopping amplitudes λ, t , and t ′ are changed by m0 and

aM . The hopping amplitudes calculated from the constructed

Wannier functions are shown in Figs. 3(e) and 3(f). For large

aM or small m0, the neighboring hopping between domain

walls on the triangular lattice is very small. When increasing

235427-3



HAONAN WANG AND LI YANG PHYSICAL REVIEW B 107, 235427 (2023)

FIG. 3. (a) Topological phase diagram of C3z-symmetric domain

walls tuned by (a) aM and m0. The blue (yellow) regions represent

two distinct topological phases with (without) band inversion at the

CNP. The vertical dashed line contains parameters used in Fig. 2.

(b) Sketch of the tight-binding model (5) on the triangular lattice.

[(c) and (d)] Two Wannier functions associated with the two lowest

minibands. Only one component of each Wannier spinor with nonva-

nishing orbital angular momentum is shown. (e) Hopping amplitudes

as a function of m0 for aM = 5.7. (f) Tight-binding parameters as

a function of aM for m0 = 1. (Inset) Log-log plot of tight-binding

parameters, where the dashed line denotes a critical point for aM .

All the tight-binding parameters have a power-law tail after the

topological phase transition.

m0 or decreasing aM , the domain walls approach each other

as seen in Figs. 2(e) and 2(f), and the chiral px ± ipy-orbital

electrons on the domain walls are more likely to hop between

the domain walls, namely, t and t ′ increase. Consequently, the

bandwidth increases and the band gap decreases to facilitate

the band inversion. It is noteworthy as m0 > 1.38, the lowest

four minibands can be described by the tight-binding model

in Eq. (6) on the honeycomb lattice, and realize two copies of

the Haldane model for each spin [45]. Moreover, the on-site

orbital rotation on the honeycomb lattice plays a similar role

with the neighboring hopping on the triangular lattice (see

Appendix D), which is crucial for topological phase transi-

tion in the TMP. After the topological phase transition, the

hopping amplitudes have a power-law tail with respect to

aM due to the topological obstruction [46–48], as shown in

Fig. 3(f) inset.

FIG. 4. [(a) and (b)] Topological phase diagram of C3z-

symmetric domain walls tuned by (a) φ and m0 for aM = 1.8, and

(b) φ and aM for m0 = 0.5. The blue (yellow) regions represent two

distinct topological phases with (without) band inversion at the CNP.

The red stars mark topological phases of TBBT and domain wall net-

work of TBG. [(c) and (d)] Moiré minibands of (c) TBBT at 1◦ twist

angle, and (d) domain wall network of TBG under interlayer bias,

the parameters are calculated from the band gaps for local registries

[22,34]. (Inset) Heatmaps of M(r) characterizing the TMPs.

B. C3z-symmetric domain walls

Most moiré systems have moiré superlattices that are sym-

metric under C3z operations. This makes it more practical

to study the topological phase transition (TMP) with C3z-

symmetric domain walls, which involves another parameter

φ. When φ deviates from 2nπ/3, it breaks the inversion

symmetry and causes the shapes of domain walls to change.

When φ approaches π/6, a triangular domain wall network

will be formed. This change has a minor effect on the domain

wall size when compared to the effect of m0, since m0 can

always drive the topological phase transition whatever φ is,

as illustrated in Fig. 4(a). However, as m0 is tuned around the

phase boundary, φ and aM can also drive the topological phase

transition, as illustrated in Fig. 4(b). To be specific, aM will

significantly close and reopen the miniband gap only if φ is

close to 2nπ/3, as shown in Fig. 4(b).

To demonstrate the versatility of our model, we take TBBT

and TBG under interlayer bias as two practical paradigms,

which are proposed to exhibit isolated circular shapes and

connected triangular shapes of C3z-symmetric domain walls

[22,33,34,36], respectively. Take TBBT as an example,

aM ≈ a0/θ is about 25 nm at 1◦ twist angle, and v ≈
250 meV · nm [49,50]. We take (m0, m1, φ) as (−31 meV,

18 meV, 0.62) that can be estimated from the band gaps of

untwisted high-symmetry atomic registries [22], so m0/m1 ≈
−1.7 and aMm1/v ≈ 1.8, marked in Fig. 4(a). The band struc-

ture of TBBT from those parameters exhibits a miniband gap

at the CNP, as shown in Fig. 4(c), and the two lowest bands

remain noninverted. It is important to note that the moiré
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minibands derived from the Dirac Hamiltonian in Eq. (1)

represent only a small fraction of the TBBT bands, so our

model cannot determine the Hall conductance or the global TI

at the CNP as mentioned earlier. Nevertheless, the low-energy

miniband dispersion and topology align well with prior re-

search [22]. As a result, a global TI/NI phase transition could

occur if the domain walls are adjusted to close and reopen

the miniband gap at the CNP. This may be achievable by

considering lattice reconstruction, as TI domains are expected

to enlarge due to local atomic registries with an inverted band

regime being more stable than other atomic registries [22].

Consequently, the CNP gap could decrease or even undergo a

topological phase transition in a fully relaxed TBBT system.

On the other hand, the domain wall network in twisted

bilayer graphene (TBG) features two gapless Dirac cones, as

illustrated in Fig. 4(d), resulting in a metallic system. Our

model, presented in Eq. (1), accurately reproduces the band

structure using a simple tight-binding model for the domain

wall network. However, as our model only accounts for a

single helical channel, the local valley Chern number across

TBG network domain walls is 2 [33], allowing for two helical

channels per valley. Consequently, the coupling between these

channels within the AA region is absent, a factor that has

been suggested as critical for Aharonov–Bohm oscillations

observed in transport experiments [51–53]. A more precise

model incorporating the coupling between the two channels

can be further developed.

IV. EXPERIMENTAL REALIZATION

As mentioned earlier, twisted bilayer Bi2Te3 and

MnBi2Te4 are potential experimental materials for fabricating

a TMP. Experimental techniques for manipulating the topo-

logical domain walls in the TMP are basically available. For

instance, the geometry of the domain walls, controlled by the

ratio m0/m1, can be adjusted by applying an external electric

field or a uniform strain perpendicular to the TMP. Addition-

ally, the period of the TMP can be modified by changing the

twist angle, while preserving the spatial symmetry. It is worth

noting that although it is challenging to precisely manipulate

the local geometry of the domain walls using either the

applied electric field or uniform strain, they still need to be

carefully tuned. Otherwise, they might induce metallic phases

in the local atomic structures, leading to the formation of

conductive channels and turning the TMP into a metal.

V. DISCUSSION

So far we have unveiled that the TMP with C6z-symmetric

domain walls has chiral px ± ipy orbitals in the low-energy

minibands. In our model, we neglect the particle-hole asym-

metric part that will bring about a scalar moiré potential

that involves more complicated topological phase diagrams

[23]. While the continuum model in Eq. (1) works well for

C3z-symmetric domain walls, the tight-binding model in

Eq. (6) can also be generalized by adding a sublattice asym-

metry term on the honeycomb lattice [54]. In general, a TMP

can generate chiral p-orbital bands with nontrivial topology.

Although the px ± ipy-orbital model on the honeycomb

lattice has been seen in low-energy minibands in TBG [55,56],

the on-site orbital rotation is negligible to induce a sizable

topological miniband gap at the CNP. On the other hand,

the geometry of domain walls in TMP can be tuned by twist

angle, interlayer bias, and lattice strain, so the electron states

are allowed to be more spatially extended with certain chi-

rality, which can lead to topological flat bands as discussed

above. Hence the chiral px ± ipy orbitals on the domain walls

may bring strong correlation effect such as Wigner crys-

tal and ferromagnetism [57–59]. The periodic edge states

will be expected to involve anisotropic p-band interactions

which are rarely found in realistic materials, while isotropic

s-band interactions have been proposed in twisted TMDs

materials [19,60–63].
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APPENDIX A: UNDERLYING DIRAC EQUATION

FROM TWISTED BILAYER BHZ MODEL

In this section, we display the relationship between

our modified Dirac Hamiltonian and the twisted bi-

layer BHZ Hamiltonian proposed by Lian et al. to de-

scribe twisted bilayer MnBi2Te4 moiré superlattice [21].

This layered system has two distinct magnetic orders,

ferromagnetic/antiferromagnetic, whose Hamiltonian is dif-

ferent from each other. Even so, it has a nonmagnetic part

which is same for both. It consists of a two-by-two block

matrix, where the intralayer (diagonal) blocks with a relative

twist angle are coupled via interlayer (off-diagonal) blocks.

The nonmagnetic part reads

H1 =

(

hθ/2(−i∇ ) T (r)

T †(r) h−θ/2(−i∇ )

)

, (A1)

where h±θ/2 = R
†
±θ/2HBHZR±θ/2 describes the intralayer cou-

pling. Each layer is rotated by ±θ/2 about z-axis so the

relative twist angle between two layers is θ . In basis of

{|Biν,↑〉, |Teν,↓〉, |Biν,↓〉, |Teν,↑〉} where |Biν, s〉 is νth-

layer pz orbital of Bi atoms with spin s, the rotation matrix

R±θ/2 can be expressed as diag(e±iθ/4, e∓iθ/4, e±iθ/4, e∓iθ/4)

and

HBHZ = ε(k) +

⎛

⎜

⎜

⎜

⎝

m(k) αk−

αk+ −m(k)

m(k) αk+

αk− −m(k)

⎞

⎟

⎟

⎟

⎠

,

(A2)
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T (r) =

⎛

⎜

⎜

⎜

⎜

⎝

t11 it12

−t22 −it12

it12 t11

−it12 −t22

⎞

⎟

⎟

⎟

⎟

⎠

, (A3)

where T (r) describes the interlayer coupling. With the rel-

ative layer displacement slowly varying over the moiré

period, the interlayer coupling for local atomic registries

are continuously tuned. Hence T (r) is real position depen-

dent with moiré period. This block matrix can be partially

decoupled by introducing a unitary transformation for the

basis,

|Bi±, s〉 =
1

√
2

(|Bi1, s〉 ∓ |Bi2, s〉),

|Te±, s〉 =
1

√
2

(|Te1, s〉 ∓ |Te2, s〉),

(A4)

where |Bi+, s〉 is the bonding state of pz orbital of Bi atoms

of two twisted layers with spin s =↑,↓, and |Bi−, s〉 is the

antibonding state of pz orbital of Bi atoms of two twisted

layers with spin s. This unitary transformation mixes states

in the two twisted layers. After the unitary transformation the

Hamiltonian can be written as

H1 = ε(k)18×8

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m(k) + t11 α cos θ
2
k− it12 −iα sin θ

2
k−

α cos θ
2
k+ −m(k) − t22 −it12 −iα sin θ

2
k+

it12 m(k) + t11 α cos θ
2
k+ −iα sin θ

2
k+

−it12 α cos θ
2
k− −m(k) − t22 −iα sin θ

2
k−

iα sin θ
2
k− m(k) − t11 −α cos θ

2
k+ it12

iα sin θ
2
k+ −α cos θ

2
k− −m(k) − t22 −it12

iα sin θ
2
k+ it12 −m(k) − t11 −α cos θ

2
k−

iα sin θ
2
k− −it12 −α cos θ

2
k+ m(k) − t22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A5)

where t11 and t22 are positive numbers representing the interlayer hopping between Bi-Bi and Te-Te atoms, respectively. Then

the Hamiltonian appears to be block diagonal with the zeroth-order approximation at small twist angle where sin θ
2

� cos θ
2
.

The top left block now reads

H2 = ε(k)14×4 +

⎛

⎜

⎜

⎜

⎝

m(k) + t11 αk− it12

αk+ −m(k) − t22 −it12

it12 m(k) + t11 αk+

−it12 αk− −m(k) − t22

⎞

⎟

⎟

⎟

⎠

, (A6)

in the basis of {|Bi−,↑〉, |Te+,↓〉, |Bi−,↓〉 |Te+,↑〉}. This

decoupled matrix is time-reversal invariant and has de-

generate eigenvalues δ ±
√

M2 + k2, where δ = ε(k) +
1
2
(t11 − t22) and M =

√
t2
12 + (m + t11+t22

2
)2. Hence the Hamil-

tonian can be transformed without breaking time-reversal

symmetry as

H2 = δ14×4 +
(

d · σ

(d · σ )†

)

, (A7)

where d = (αkx, αky, M ) and σ are the Pauli matrices. Ap-

parently M = M(r) has the moiré period that is dependent

on twist angle. Therefore the particle-hole symmetric part of

the Hamiltonian is mathematically equivalent to the modified

Dirac Hamiltonian in the main text. Apparently the interlayer

hopping parameters play a role as the periodic modulation on

the mass term, which is also reflected by the fact that the

interlayer hopping could alter topological properties of the

local atomic registries and thus generate the TMP in moiré

superlattices.

Besides, we note that our modified Dirac Hamiltonian in

Eq. (1) in the main text is identical to the twisted BHZ model

with a moiré scale oscillation in the mass term [22] (which

can be simplified from the twisted bilayer BHZ model as

mentioned above) to describe twisted bilayer Bi2Te3. This

also makes sense since the original BHZ model itself can be

used to describe the thin films as well as bulk of topological

insulators [64]. Even so, these two versions of BHZ model

may have different physical interpretations in the sense that

the basis has been changed under unitary transformation.

APPENDIX B: DERIVATION OF SPIN-ORBIT COUPLING

IN MODIFIED DIRAC HAMILTONIAN

In this section, we provide a further evaluation on the

modified Dirac Hamiltonian to show the intrinsic spin-orbit

coupling (SOC), from which we may have partial insight

into the origin of chiral px ± ipy orbitals for the low-energy

bands. Suppose the eigenvector for H
↑
k (r) is (ψ1, ψ2)T , then

the corresponding eigenvalue equation can be written as

(

M kx − iky

kx + iky M

)(

ψ1

ψ2

)

= ε

(

ψ1

ψ2

)

, (B1)
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FIG. 5. Real-space distributions of the Bloch spinors at the 
 point for the top two occupied bands. The bottom two unoccupied bands are

related by the particle-hole symmetry.

which involve two coupled equations. From the second equa-

tion, we obtain ψ2 = (ε + M )−1(kx + iky)ψ1. By substituting

ψ2 in the first equation and using the canonical commutation

relation the eigenvalue equation for ψ1 can be expressed as
(

− ∇2 + M2 + i
1

M
(∇M × ∇ )z +

1

M
∇M · ∇

)

ψ1 = ε2ψ1,

(B2)

where we have used the low-energy approximation 1
M+ε

≈ 1
M

.

Combining spin and orbital pseudospin degrees of freedom,

the total eigenvalue equation is decoupled as
(

−∇2+V + iszσz

(

1

2V
∇V × ∇

)

z

+
1

2V
∇V · ∇

)

�=ε2�,

(B3)

where V = M(r)2. Now we arrive at a relativistic wave equa-

tion. The first two terms are kinetic and potential energy that

generate bound states around the potential minimum. The

third term denotes the atomic SOC that diverges as M(r)

reaches 0, corresponding to the domain walls in TMP. The

atomic SOC from the modified Dirac Hamiltonian possibly

leads to the chiral px ± ipy orbitals per spin in low energy and

thus nontrivial band topology.

APPENDIX C: CONSTRUCTION OF MAXIMALLY

LOCALIZED WANNIER FUNCTIONS

In this section, we discuss construction of maximally lo-

calized Wannier functions. The first step is to find out the

localized center of Wannier function and its symmetry. To

do this, we plot distributions of Bloch functions at k = 0

point for low-energy bands as shown in Fig. 5 . Each Bloch

spinor for the Hamiltonian in Eq. (3) has two components.

We define Ltot
z = L1

z + L2
z as the angular momentum for each

band, where Li
z denotes the angular momentum for the ith

component of the Bloch spinor. For m0 = −0.9, the wave

functions are localized on the triangular lattice, so we choose

the triangular lattice as the rotation center. Then each Bloch

spinor is found to be an eigenstate of C6z with eigenvalue of

ei π
3

Li
z . Hence (L1

z , L2
z ) = (0, 1) for the first top occupied band,

and (L1
z , L2

z ) = (1, 2) for the second top occupied band. Due

to the particle-hole symmetry, (L1
z , L2

z ) = (−1, 0) for the first

bottom unoccupied band, thus Ltot
z = ±1 for the lowest two

bands. For m0 = 2.4, the wave functions are localized on the

honeycomb lattice, so we choose the honeycomb lattice as

the rotation center. Then each Bloch spinor is found to be

an eigenstate of C3z with eigenvalue of ei 2π
3

Li
z . Because the

lowest two bands as well as the second and third bands have

been inverted, their angular momentum are also switched.

Then (L1
z , L2

z ) = (−1, 0) for the first top occupied band, and

(L1
z , L2

z ) = (0,−1) for the second top occupied band. Hence

Ltot
z = −1 for the top two bands and Ltot

z = 1 for the bottom

two bands.

Next we prepare the initial wave functions. We note that we

separately construct the Wannier representations for varying

m0 that changes the localizing sites of electron states. Since

the topological phase transition at the CNP involves only the

lowest two bands, which are energetically isolated from other

bands, we expect two independent Wannier orbitals on the

triangular lattice to be transformed from the Bloch functions

for these bands. We fix the global phase factor of the Bloch

states by different gauges. For the n-th Wannier orbital, we fix

the phase eiφnk so that ψ i
nk(r = 0) is real and positive, where

i denotes the i-th component of Bloch spinors with Ltot
z = 0.

Then the initial Wannier functions are constructed as

wn(r) =
1

√
2N

∑

k

eiφnk

∑

m=1,2

ψmk(r), (C1)
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FIG. 6. [(a)–(d)] Wannier functions for the lowest four lowest bands for m0 = 2.4 and aM = 5.7. Only one component of each Wannier

spinor with nonvanishing orbital angular momentum is shown. (e) Sketch of the tight-binding model in Eq. (6) on the honeycomb lattice.

(f) Moiré minibands of H
↑
k (r) for aM = 5.7 and m0 = 2.4. The red dashed curves are band structures from the px ± ipy-orbital model on

the honeycomb lattice. (g) Hopping amplitudes as a function of m0 for aM = 5.7. (h) Hopping amplitudes as a function of aM for m0 = 2.4.

Log-log plot of hopping amplitudes, which have a power-law tail.

where the summation in k is taken over N discrete points in

the Brillouin zone. Moreover, we impose the C6z rotational

symmetry for the initial Wannier functions. Then we use the

maximally localizing method [43] to reduce the total spread

functional. Here we take N = 18 × 18 in the minimizing pro-

cedure. For large m0 we consider the lowest four bands for

the Wannierization and take a similar strategy for initial Wan-

nier functions as mentioned above. We note that the chosen

gauges allow the initial Wannier trials to be well-localized

and preserve the desired symmetry as well, so we just take

several iterative steps instead of fully minimizing the total

spread which may break the symmetry of Wannier orbitals.

APPENDIX D: px ± ipy-ORBITAL MODEL

ON THE HONEYCOMB LATTICE

As m0 > 1.38, aM = 5.7, the second and third miniband

are inverted. Using the same approach we construct localized

Wannier functions for the lowest four minibands. As shown

in Figs. 6(a)–6(d), the four Wannier functions characterize

the chiral px ± ipy orbitals on the honeycomb lattice. The

tight-binding model in Wannier representations has the same

formula with Eq. (6), where the on-site orbital rotation now

plays a role as an effective SOC [54]. The energy dispersion

and band topology are both in good agreement with the band

structures from the continuum model, as shown in Fig. 6(f).

Since the honeycomb lattice is right at the center of each trian-

gular plaquette, the above mentioned neighboring hopping on

the triangular lattice turns into the effective SOC on the hon-

eycomb lattice, and vice versa. As a result, as m0 increases,

λ increases while t and t ′ decrease, as shown in Fig. 6(g),

which is inverse of Fig. 3(e). The effective SOC is larger than

the neighboring hopping, and the CNP gap between the first

and second band is inverse of λ or m0 [57,65]. Similarly, the

hopping amplitudes have a power-law decay respect to aM , as

shown in Fig. 6(f).
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