
Twist-Driven Deep-Ultraviolet-Wavelength Exciton Funnel E�ect in
Bilayer Boron Nitride

Linghan Zhu, Yizhou Wang, and Li Yang*

Cite This: ACS Appl. Opt. Mater. 2024, 2, 166−172 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Realizing direct band gap quantum dots working
within the deep-ultraviolet frequency is highly desired for electro-
optical and biomedical applications while remaining challenging. In
this work, we combine first-principles many-body perturbation
theory and e�ective Hamiltonian approximation to propose the
realization of arrays of deep-ultraviolet excitonic quantum dots in
twisted bilayer hexagonal boron nitride. The e�ective quantum
confinement of excitons can reach ∼400 meV within small twisting
angles, which is about four times larger than those observed in
twisted semiconducting transition metal dichalcogenides. Especially
because of enhanced electron−hole attraction, those excitons will accumulate via the so-called exciton funnel e�ect to the direct
band gap regime, giving the possibility to better luminescence performance and manipulating coherent arrays of deep-ultraviolet
quantum dots.

KEYWORDS: excitonic quantum dot arrays, moire ́ superlattices, bilayer BN, exciton funnel e�ect, GW-BSE calculations

■ INTRODUCTION

Quantum dots (QDs), also known as “artificial atoms”, have
been widely utilized as fundamental building blocks in various
applications, including light emitters/detectors,1,2 photovol-
taics,3 biomedical sensors,4 and photo/electrocatalysis.5,6

Recent advancements in twisted two-dimensional (2D) van
der Waals (vdW) bilayers have opened up new possibilities for
creating arrays of QDs with uniform sizes.7,8 The formation of
moire ́ superlattices in these systems, with periodic potential
landscapes spanning hundreds or thousands of unit cells,
naturally creates quantum wells for carrier confinement.
Twisted transition metal dichalcogenide (TMD) heterostruc-
tures have particularly been demonstrated to hold promise in
realizing a variety of quantum emitters with high purity.9−12

However, most intrinsic few-layer TMDs are indirect band gap
semiconductors, limiting their optical quantum yield and
e9ciency.13 To overcome this limitation, heterostructures with
a type II band alignment have been employed to create few-
layer systems with direct band gaps.12,14 Electronically doped
TMD moire ́ heterostructures have been shown to exhibit Mott
insulating states and generalized Wigner crystals with atomic-
like orbitals.15−18 Excitonic quantum emitter arrays are
proposed in twisted TMD bilayers under an electric field.8

Nonetheless, the moire ́ confinement potential induced in these
TMD systems is typically less than 100 meV,7−9,19,20 making
their optical performance and correlated properties temper-
ature-sensitive, and the increased material complexity and
required external fields further limit their broader applications.

Despite significant advancements in twist-driven TMD QDs
operating in the infrared/visible frequency, there have been
limited proposals to extend their functionality into the deep-
ultraviolet (DUV) regime, covering wavelengths from 280 nm
down to 200 nm. The DUV domain is crucial for broad
applications, including polymer curing,21 air−water purifica-
tion,22 biomedical instrumentation,23 quantum sensing,24 and
germicidal systems.25 Layered hexagonal boron nitride (h-BN)
presents itself as an attractive candidate due to its ultrawide
band gap (UWBG) (∼6.2 eV in the bulk structure).26−28

However, intrinsic few-layer and bulk h-BN exhibit indirect
band gaps,26 resulting in the quenching of photoluminescence
and limitation of their potential for optical applications.
In this work, we employed first-principles simulations to

propose twist-induced DUV QD arrays. We show that by
twisting bilayer h-BN structures, one can realize QDs with a
significant periodic potential confinement of ∼400 meV.
Importantly, the minimum band gap within the h-BN
superlattice is switched to be direct, giving hope to realizing
arrays of DUV QDs with an improved quantum yield for
optical responses. Going beyond single-particle descriptions,
we further incorporate excitonic e�ects via many-body
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perturbation theory (MBPT) and explore an exciton funnel

e�ect, wherein the large moire ́ exciton binding drives

photoexcited electron−hole pairs toward the potential

minimum dominated by direct excitons. This exciton funnel

e�ect helps concentrate excitons for energy harvesting and

enables coherent optical responses of periodic DUV QDs in an

intrinsic moire ́ superlattice.

■ RESULTS AND DISCUSSION

There are two fundamental stacking orders in h-BN. Natural
bulk h-BN takes the AA′ stacking, where there is a 180°
rotation between adjacent layers.26,29 Two BN monolayer
sheets can also be stacked without rotation, realizing the other
AA stacking. A small twist between bilayer h-BN gives rise to
the moire ́ superlattices, where there is a local variation of

Figure 1.Moire ́ superlattices formed by a twist from (a) AA and (b) AA′ stacked bilayer h-BN. The top views of the atomic structure of local high-
symmetry stackings are shown in the circles. (c) The relative local bond length change δ and (d) atomic displacement η in a fully relaxed 0.5°
twisted bilayer h-BN.

Figure 2. DFT (dashed blue line) and GW (solid red line) band structures of (a) AA′, (b) AB1, and (c) AB2 bilayer h-BN stackings. The zero
energy is set to the vacuum level. (d) The plane-wave interpolated band gap landscape in the twisted AA′ bilayer h-BN moire ́ superlattice. The
background color bar represents the energy di�erence between the direct gap at K and the indirect gap from K to M. Notice that the deep color
represents the region of direct band gaps. (e) The plane-wave interpolated GW-calculated VBM and CBM energies across the high-symmetry
stackings in the moire ́ superlattice. All VBM are at K. CBM for AB1 is at K, while for AA′ and AB2, those are at M.
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interlayer stackings within the supercell. Figure 1a,b shows the
moire ́ superlattices formed by twisting AA and AA′ stacked
bilayer h-BN, respectively. For the twisted AA stacking, two
local stackings, AB and BA, are equivalent in the sense that
they are related by a spatial inversion. For the twisted AA′

stacking, three distinct high-symmetry stackings AA′, AB1, and
AB2 can be identified. Recent theoretical and experimental
studies have demonstrated intrinsic ferroelectricity in twisted
AA h-BN homobilayers since AB and BA configurations break
the inversion symmetry.30−32 On the other hand, all three
stackings of the twisted AA′ bilayer keep the inversion
symmetry, and no ferroelectricity is expected. In this work,
we mainly focus on the twisted bilayer h-BN based on the
intrinsic AA′ stacking. However, the twist-induced direct band
gap and exciton funnel e�ect proposed in this paper could also
be applied to other moire ́ superlattices.
Lattice reconstruction is considered to be an important issue

in the study of twisted vdW materials.33,34 We have employed
LAMMPS35 to study the local strain introduced by moire ́
superlattices in twisted bilayer h-BN. We adopted the modified
Kolmogorov and Crespi (KC) potential36 to simulate the
interlayer interactions and the Terso� potential37 for the
intralayer interactions. The relative change in local bond length
δ and atomic displacement η is defined by

=

d d

d

3

3

i j ij, BN

BN (1)

=

| |
÷÷÷

d

d3

i j ij,

BN (2)

where the summations are over the nearest neighbors and d is
the bond length. dBN is the intrinsic bond length. As shown in
Figure 1c,d, the local change of bond length and atomic
displacement is generally below 0.5% for both metrics in a 0.5°
twisted homobilayer h-BN. This is expected to a�ect the
electronic structures at the level of ∼10 meV,38 which will have
little impact on the UWBG h-BN. Moreover, previous works
have shown that the lattice reconstruction-induced strain is
inversely proportional to the twist angle.39 Hence, in the
remainder of the paper, we will not consider the strain e�ect in
the interpolation of local band energies for relevant twisting
angles between 0.5 and 2°.

Stacking-Dependent Quasiparticle Band Gap

We begin our discussions of the electronic structures of three
high-symmetry stackings in a twisted AA′ bilayer with the
density functional theory (DFT) results. The electronic band
structures of AA′, AB1, and AB2 stacked bilayer h-BN are
shown in Figure 2a−c, respectively. The DFT results are
represented by blue dashed lines. The distinct interlayer
atomic configurations of di�erent stackings result in sub-
stantially di�erent band structures. Intrinsic AA′ and AB2
stackings take an indirect band gap, where the valence band
maximum (VBM) is at K and the conduction band minimum
(CBM) lies at M. In contrast, the AB1 stacking has a direct
band gap at K. These findings agree with previous works on the
electronic structure of bilayer BN.40,41 The distinction in band
structures can be understood from the atomic arrangements of
di�erent stackings. In the AB1 stacking, boron atoms in the top
layer are vertically aligned with boron atoms in the bottom
layer. From the projected density of states (PDOS) of the AB1
stacked bilayer BN [see the Supporting Information42], the

CBM is mainly contributed by the p orbitals of boron atoms.
As a result, the strong interlayer interaction and orbital
hybridization lead to a large splitting of the CBM at K,
resulting in a direct band gap. Similarly, in the AB2 stacking,
nitride atoms in the top layer lie above the nitride atoms of the
bottom layer. As the VBM of bilayer BN is mainly composed
of the p orbital of nitride atoms, this renders the splitting of the
VBM in the AB2 stacking.
Since DFT is known to underestimate band gaps of

semiconductors and insulators, we further performed the
GW approximation to obtain the quasiparticle energies. As
shown by the red solid lines in Figure 2a−c, the GW correction
does not alter the band alignment but mainly renormalizes the
band energies. The direct band gap in the AB1 stacking is
enlarged by ∼2.33 eV, and the indirect band gaps in AA′ and
AB2 stackings are enlarged by ∼2.37 eV. The self-energy
corrections are similar in all three stackings since they are
mainly determined by the dimensionality and subsequently
reduced electronic screening. The DFT and GW-calculated
direct and indirect band gaps are summarized in Table 1.

Twist-Driven Continuous Band Gap Variation

We adopt the e�ective Hamiltonian to obtain the quasiparticle
moire ́ potential in the twisted bilayer h-BN superlattices. The
periodic quasiparticle band gap variation in moire ́ superlattices
can be approximated by a Fourier expansion over the nearest
moire ́ reciprocal lattice vectors43 and it is plotted in Figure 2d
along the three high-symmetry local stackings. The fitting
parameters (T0, V0, ψ) from ab initio GW calculations for the
band gap are (6.67 eV, 41 meV, 26°) for this C3 symmetry
system. The overall variation of quasiparticle band gap within
the moire ́ superlattice is ∼430 meV, which is significantly
larger than those realized in twisted TMDs. Moreover, as
demonstrated by the background color in Figure 2d, the region
around the moire ́ potential minimum at the AB1 stacking
assumes the direct band gap, which gives hope in realizing
high-quantum-yield QD arrays in twisted bilayer h-BN. We
notice that previous works on strained monolayer TMDs44−46

can realize similar energy barriers under indirect band gaps.
However, by exploiting the natural band gap variation in
twisted homobilayers, we bypassed the requirement of strain
engineering of ultrastrength materials, making our approach
more feasible to realize in experiments.

= = + · ±
=

r r b rV E T V( ) ( ) 2 cos( )
i i0 0 1,2,3 (3)

Nonetheless, the photoexcited carrier dynamics and,
particularly, luminescence are not only decided by the band
gap. Within the single-particle picture, photoexcited carriers in
the superlattice tend to move toward the band extrema, as
elucidated in Figure 2e, by the gray arrows for electrons
(CBM) and holes (VBM), respectively. Interestingly, although
the AB1 stacking has the minimum band gap, its VBM is lower

Table 1. DFT/GW Band Gaps and Exciton Energies for
Three High-Symmetry Local Stackingsa

Eg, K→K
DFT

(direct)
Eg, K→M
DFT

(indirect)
Eg, K→K
GW

(direct)
Eg, K→M
GW

(indirect)
Ex
d

(direct)
Ex
i

(indirect)

AA′ 4.74 4.52 7.19 6.89 5.30 5.38

AB1 4.13 4.51 6.46 6.90 4.94 5.45

AB2 4.52 4.29 6.96 6.65 5.18 5.21
aThe lower-energy values of each stacking are underscored. The
global energy minima are in bold font. The energy unit is in eV.
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than that nearby AB2 stacking because of the significant VBM
splitting at K point of the AB2 stacking (Figure 2c). As a result,
a charge-transfer picture is expected within the single-particle
picture, in which excited electrons are accumulated in AB1
stacking, while excited holes are accumulated in AB2 stacking.
Such a spatial separation of electrons and holes will diminish
optical radiative recombination because of the small overlap
between their wave functions, which leads to quenched dipole
oscillator strength. Fortunately, in the following, we show that
the strong electron−hole interactions and exciton funnel e�ect
in twisted bilayer BN may overcome the spatial separation of
electrons and holes and enhance the luminescence intensity.

Exciton Funnel E�ect in h-BN Moire ́ Superlattices

It is widely recognized that the optical responses of 2D
semiconductors and insulators are dictated by excitonic e�ects,
which are dramatically increased due to reduced dielectric
screening.13,49 For this consideration, we have further solved
BSE and calculated excitonic e�ects in the three high-
symmetry stackings, the optical absorption spectra of which
are shown in Figure 3a−c. Due to the reduced dimensionality

and dielectric screening, enhanced electron−hole interactions
dominate the optical absorption spectra. For the AB1 stacking,
the lowest-energy exciton state is a direct exciton Xd located at
4.94 eV with a 1.5 eV of electron−hole binding energy. It is
mainly formed by optical transitions from holes to electrons
around K in reciprocal space. We also find that around 500
meV above Xd, there is an indirect exciton Xi featuring
transitions mainly from K to M with a finite momentum.

Because of the requirement of momentum conservation for
vertical transitions, indirect exciton Xi is an optically dark state.
Interestingly, for the indirect band gap stackings AA′ and

AB2, the lowest-energy exciton state is essentially still a direct
exciton, Xd originated from transitions around the K point with
a zero momentum, as marked in Figure 3b,c, respectively. This
is because the strength of electron−hole interactions is
proportional to the electronic structure joint density of states
(JDOS).47 The excitonic transition matrix elements are a
coherent sum of the contributing electron−hole pair
transitions, which can also be written as an integral in the
energy space48,49

| | = | | =v i A vk v ck S0 ( )d
vck

vck

i

i

(4)

where = | |S A vk v ck E E( ) ( ( ))
i vck vck

i

ck vk
is essen-

tially the electron−hole coupling coe9cient modulated JDOS.
This also agrees with the picture of the hydrogenic model, in
which a larger e�ective mass contributes to a larger JDOS and
electron−hole binding energy.
As shown in Figure 2a,c, the CBM at K is doubly degenerate

for these two stacking styles while they are split at the CBM
(M point), which indicates much higher JDOS around K than
that at M. The enhanced electron−hole interaction induces a
large binding energy, which pushes the zero-momentum
(direct) exciton state Xd to a lower energy than that of the
indirect exciton state Xi. The lower-energy direct exciton in
indirect band gap bilayer h-BN has been discovered in a
previous theoretical study.50 The direct and indirect exciton
energies of di�erent stackings are summarized in Table 1. The
direct Xd exciton binding energy in bilayer BN is large,
reaching over 1.5 eV in AB1 and ∼1.8 eV in AA′ and AB2.
Although the JDOS and electron−hole binding energy are
smaller in the AB1 stacking than in the other two indirect gap
stackings, its quasiparticle band gap is the smallest, which leads
to its lowest-energy bright Xd state among three high-symmetry
sites.
The typical real-space wave functions of the excitonic state

Xd are plotted in the inset of Figure 3a. Compared with
monolayer TMD, in which the typical exciton size is ∼2.6
nm,9,51 the exciton radius of bilayer h-BN is significantly
smaller (∼0.7 nm) because of the weaker screening and
stronger electron−hole binding. In twisted bilayer h-BN, if we
take a twist angle of 1°, the moire ́ lattice constant is ∼14 nm.
The radius of the exciton is much smaller than the superlattice;
hence, we can adopt eq 1 and treat the lowest-energy exciton
as a composite particle moving within a slowly varying
excitonic moire ́ potential. The moire ́ potential of exciton
energies along the high-symmetry line is plotted in Figure 4a,
and all those excitonic states are direct (zero momentum). The
variation of direct exciton energy within the moire ́ period is
∼400 meV, which is comparable to that reported in strain-
engineered monolayer MoS2 under a high strain level (∼500
meV at a biaxial strain of 5%)44 and much larger than that in
twisted bilayer TMDs (∼100 meV).7,9,52

Importantly, because the exciton binding energy (∼1.5−1.8
eV) is much larger than the quasiparticle energy variation
(∼300 meV), the photoexcited carriers tend to form electron−

hole pairs because of the larger energy gain, and their motion is
dictated by the energy landscape of excitons, instead of that of
single particles shown in Figure 2e. A schematic plot of the
electron−hole interaction modified band edge landscape is

Figure 3. Optical absorption spectra of (a) AA′, (b) AB1, and (c)
AB2 stacked bilayer h-BN without (blue dashed line) and with (solid
red line) electron−hole interactions included. The direct Xd and
indirect Xi states are labeled in the plot. The inset in panel (a)
represents the real-space exciton wave function of Xd. The hole
position is marked with a gray circle.
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shown in Figure 4b. While the electrons in conduction bands
still tend to move toward the overall CBM around the AB1
stacking, the strong exciton binding drags holes in the valence
band toward AB1, instead of the overall VBM around AB2.
This is essentially the type III exciton funnel e�ect as proposed
previously44,60 and is a direct result of the overwhelming
electron−hole interaction. Therefore, despite the di�erent
localizations of VBM and CBM, photoexcited charge carriers
(both holes and electrons) will form excitons and accumulate
around AB1 stacking in favor of the decreasing exciton energy
profile via the exciton funnel e�ect.
Figure 4c summarizes the exciton energy profile in the moire ́

superlattice. Because of the accumulation of carriers at the
lowest-energy exciton state, excitons will be localized around
the AB1 high-symmetry sites. The increased local exciton
density will further enhance the intensity of the coherent
photoluminescence. Therefore, by exploiting the periodic
quasiparticle band gap variation and exciton funnel e�ect in
moire ́ superlattices of bilayer h-BN, we can realize arrays of
DUV QDs formed by bright exciton states. Finally, it is worth
mentioning that the exciton di�usion length reported in 2D
materials is typically on the order of ∼1 μm,53,54 which is much
larger than the moire ́ period discussed in this work. This
validates the proposed exciton funnel e�ect in the moire ́
superlattices before the excitons recombine.
Experimental realizations of quantum emitter arrays in strain

textured monolayers MoS2
55 and WSe2

56 were reported

previously by utilizing indented nanopillars, confirming the
theoretical predictions of exciton funnel e�ect in a strain-
engineered continuously varying band gap landscape. Besides,
we note that recently, there are experimental e�orts in realizing
the quantum-dot light emitters in MoS2/WSe2 heterostruc-
tures,57 and in hexagonal58 and orthorhombic59 boron nitride
crystals, via the formation of defect states. Our work provides
another general and intrinsic approach for achieving excitonic
quantum dot arrays in moire ́ superlattices, which can be
verified by photoluminescent measurements on twist-stacked
exfoliated monolayer BN.

■ CONCLUSIONS

By exploiting the large band gap variation in twisted bilayer h-
BN, we propose the realization of bright DUV QDs in the
moire ́ superlattice with the help of the exciton funnel e�ect.
Through many-body perturbation theory calculations, we show
that the large quasiparticle band gap and exciton energy
confinement within the moire ́ structure are significant (∼400
meV). Although the CBM and VBM are located in di�erent
high-symmetry areas of the moire ́ superlattice, the large
electron−hole binding energy drives both holes and electrons
toward the AB1 stacking to form bright direct55excitons owing
to the exciton funnel e�ect. The DUV wavelength excitonic
QD arrays could have broad applications in energy harvesting
and photolithography.

■ COMPUTATIONAL DETAILS

The ground-state properties of bilayer h-BN are calculated by
DFT within the general gradient approximation (GGA) with
the Perdew−Burke−Ernzerhof (PBE) exchange−correlation
functional60 as implemented in Quantum ESPRESSO.61 The
vdW interactions are included via the semiempirical Grimme-
D3 scheme.62 The plane-wave energy cuto� is set to 65 Ry
under the norm-conserving pseudopotentials. The vacuum
level of 18 Å is chosen between adjacent BN bilayers along the
out-of-plane direction to avoid spurious interactions. MBPT
simulations are performed with BerkeleyGW.63 The quasipar-
ticle energies are calculated under the single-shot G0W0

approximation within the general plasmon pole model,64

where the dielectric matrix energy cuto� is 10 Ry, and over 200
unoccupied bands are utilized for the summation. A coarse k-
grid of 18 × 18 × 1 is used, which is further interpolated to a
fine k-grid of 36 × 36 × 1 in order to obtain the electron−hole
interaction kernel and solve the Bethe−Salpeter equation
(BSE) for the excitonic e�ects and optical absorption
spectra.48
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