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SUMMARY

Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the
high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths
and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs.
In this work, we asked whether neuronal arbors have topological properties that may also optimize their
growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distribu-
tions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent
distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance.
Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching
rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size

distribution is a topological property that recapitulates the functional morphology of dendrites.

INTRODUCTION

Branched morphologies are fascinating because they are ubiqui-
tous in the natural world and often have high complexity.'™ In the
case of neurons, the morphology of dendritic trees is functionally
important because it defines where the cell can receive synaptic
inputs from other neurons and how these inputs are integrated to
allow signal transmission and computation.® The morphologies
of dendrites are shaped during development by many cellular
and molecular mechanisms including branching, elongation
and retraction,®’ self-avoidance,® and morphogen gradients.’
The resulting geometries, and in particular the lengths and
spatial arrangements of the individual branches, often optimize
electrical signaling by minimizing propagation times between
sites of input and output.'®"” Intracellular transport within
branches delivers materials and nutrients to support the growth
and activity of the cell.'® Branch diameters, another important
geometric property of neurons, may optimize the distribution of
materials for growth and homeostasis'®?" and the transfer of
electrical currents.'” Thus, the geometry of dendritic arbors—
the lengths and diameters of their neurites—is functionally
important because it constrains the transport of signals and ma-
terials within the cell. In this paper we asked whether the topol-
ogy of dendritic arbors, those network properties that are
invariant under deformations (homeomorphisms) of the arbor’s
geometry, is also important for neuronal function or growth.
The great diversity of the branching patterns of neurons®? has
spurred efforts to use topological concepts, in addition to geom-
etry, to categorize neuronal morphologies into smaller numbers
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of distinct classes.?>2° One avenue is topological data analysis
(TDA), an approach to the analysis of data using techniques from
topology to obtain information that is independent of the partic-
ular metrics®®; this approach can reveal a system’s intrinsic
structure and distinguish that structure from other structures
and noise.”’*° The topological morphology descriptor (TMD),
based on TDA, encodes the spatial structure of branched trees
as a “barcode” and has been found to be useful for categorizing
neurons.*® In addition to TMD, which includes geometric infor-
mation, there are several other topological measures that have
been used to characterize the branching morphology of neurons.
These include tree asymmetry,®'*? Strahler ordering,***° and
subtree persistence.*® Because the genetic networks respon-
sible for pattern formation are frequently conserved through evo-
lution, organisms of different size often have neuronal structures
that scale geometrically.®” Even for individual neurons, one
might anticipate that repetitive application of a single set of
pattern-formation rules®”*® could generate arbors with similar
geometric properties at different length scales, such as the
fractal dimension.®**° Are there analogous topological proper-
ties that scale, and are these features functionally important?

In this study, we analyzed invertebrate*'*** and vertebrate
(NeuroMorpho.Org)*® neurons and discovered a topological
property of dendrites, the subtree-size distribution, that is often
scale invariant. To appreciate the notion of topological scale
invariance, we need some definitions. Each node or branchpoint
in a tree defines a subtree comprising the set of branches that
are distal to the node. We define the size of the subtree as the
number of terminal branches, or tips, that the subtree supports.
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Figure 1. Subtree-size distributions for class IV sensory neurons follow a power law
(A) Dendritic arbor of a 96-h class IV neuron visualized with a GFP-tagged membrane marker by spinning-disk confocal microscopy (see STAR Methods).

(B) Dendrogram of the upper half of the arbor in (A).

(C) Subtree-size distribution for seven different dorsal class IV neurons from larval segments A3 to A5. The subtree size equals the number of tips. The solid
symbols correspond to the cell in (A) and (B). The solid black line is the reduced major axis (RMA; see STAR Methods) fit to all the log-log data: the slope is —1.40 +
0.04 (error stands for standard deviation from the RMA fitting). This corresponds to a perfection index of 0.70. The insets show a perfect tree (lower left) and a

maximally imperfect tree (upper right) with slopes —2 and 0, respectively.

Because the number of tips is one more than the number of inter-
nal branches (those segments between two branchpoints), tip
number is approximately one-half the total branch number and
SO serves as a proxy for subtree size. We found that for many
neurons, the distribution of subtree sizes follows a power law,
meaning that the distribution is linear when plotted on a log-log
axis. This implies that the subtree-size distribution is scale
invariant in the following sense: the distribution of subtrees of
size cn (where ¢ a constant) is proportional to the distribution
of subtrees of size n (Newman et al., 2005** and STAR Methods,
where we show that scale invariance is equivalent to a power
law). Because different classes of neurons have different expo-
nents in the power law (the slopes of the log-log plots), scale
invariance can be used to distinguish cell types based on their
topology. Through simulation, we show that scale invariance
arises from iterative growth processes such as the Galton-
Watson (GW) process.*>**® The exponent depends on the bifur-
cation probability, the probability that a given dendritic tip will
branch rather than terminate, as well as on the relative frequency
of branching on internal, non-terminal branches. Furthermore,
the presence of postsynaptic spines on mammalian neurons
and of branchlets on Drosophila class lll dendritic arborization
(da) sensory neurons leads to characteristic deviations from a
power law, suggesting that the spines and branchlets arise
through different growth mechanisms compared to the proximal
branches. Thus, the subtree-size distribution is a topological
property that reflects the underlying branching morphogenesis
of dendritic arbors and distinguishes the morphologies of
different neuronal types.

RESULTS
Subtree-size distribution and perfection index

In our quest to uncover the underlying growth mechanisms of neu-
rons, we investigated the topological properties of the dendritic
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arbors of class IV da cells in Drosophila melanogaster larvae
(Figures 1A and 1B). These nociceptive cells form a dense mesh-
work of dendrites just under the cuticle; they detect attacks by the
syringe-like ovipositor barbs of parasitic wasps and trigger
escape responses.’” With dendritic arbors having up to 2,000
branches and 1,000 tips (i.e., terminal branches) by the end of
larval development (5-6 days after egg lay), class IV cells consti-
tute a model system for studying dendrite morphogenesis.*

For a branched tree, such as a dendritic arbor, we define the
subtree-size distribution®®*® as the average number, S, of
branches that support n dendrite tips (or leaves of the tree).
The subtree-size distribution is a topological function that de-
pends on the branching pattern of the dendrite. This is illustrated
by the trees in the insets of Figure 1C. In a perfect, binary tree
(lower left) each tip bifurcates at each branch order. The perfect
tree shown has branch order (or height) 4 and has 2* = 16 tips.
The number of branches that support 16 tips is 1, the number
that supports 8 tips is 2, and so forth. Because many tip numbers
have no associated branches (e.g., in this example the number of
branches that support three tips is zero), we bin and average.
Specifically, we take geometrically increasing intervals of branch
number: [0.5,1.5], [1.5,2.5], [2.5,4.5], [4.5,8.5], [8.5,16.5], and
average the number of tips in each interval: S(1) = 16,
S(2) = 8,5(3.5) =2,5(6.5) = 0.5,5(12.5) = 0.125 (see Figure 1
legend). S(1) equals the total number of tips. In this way, sub-
tree-size distributions are calculated for single arbors. Note
that the average number, S, can be less than 1 due to the normal-
ization by interval size. For a perfect binary tree, the average de-
creases geometrically with a slope of approximately —2 when
plotted using log-log axes (dashed red line on left). For the maxi-
mally imperfect tree (Figure 1C, upper right), each bifurcation
leads to one terminal tip. In this case, the subtree-size density
is S(1) = 16,S(2) = 1,S(3.5) = 1,5(6.5) = 1,5(12.5) = 1,
which has slope zero on a log-log plot (dashed red line on right,
omitting the first point).
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Figure 2. Dendrite subtree-size distributions and perfection indices for neurons in the central nervous systems of vertebrates and in-

vertebrates

(A) Skeletonized guinea pig cerebellar Purkinje cell*® in which branches have been replaced by their center lines.
(B) Subtree-size distributions for four Purkinje cells (orange) and three retinal ganglion cells (magenta): the perfection indices are 0.86 + 0.02 and 0.76 + 0.04,

respectively.

(C) Subtree-size distributions for the five Drosophila T5 cells shown in Figure S3. The perfection index is 0.73 + 0.04. We did not include error bars in (B) and

(C) because they are small.

(D) Perfection indices measured from reconstructed neurons from the morphological database www.neuromorpho.org. Retinal ganglion cells: 0.80 + 0.04
(magenta, n = 130 cells); neocortical pyramidal cells: 0.85+0.06 (blue, n = 165 cells); hippocampal pyramidal cells: 0.78 + 0.07 (green, n = 131 cells); moto-
neurons: 0.86 +0.04 (red, n = 56 cells); starburst amacrine cells: 0.79 £ 0.08 (dark green, n = 27 cells). All errors are standard deviations.

Based on these empirical properties, if S(n) scales linearly
with tip number n (on a log-log plot), with power-law exponent
—a, we define the perfection index 8 = «/2 (Figure S1). The intu-
ition behind the perfection index is that a “perfect” binary tree,
which is defined as one in which every tip bifurcates at each or-
der, has a perfection index 8 = 1 (oblique red dashed line in Fig-
ure 1C). A perfection index, 8 = 0, corresponds to a “maximally
imperfect” tree in which one tip bifurcates and the other termi-
nates (horizontal red dashed line in Figure 1C).

The subtree-size distribution follows a power law for
class IV neurons

The subtree-size distributions for the dendritic arbors of class IV
cells follow a power law: they are straight lines when plotted
against tip number on a log-log axis (Figure 1C). Thus, we can
write S(n) = Niotan™ * forn between 1 and nyoty. The average value
ofthe exponentis « = 1.40 with corresponding perfection index of
0.70. Thus, class IV cells are imperfect binary trees with slopes
lying between the extremes of perfect and maximally imperfect.

The subtree-size distribution follows a power law for a
wide variety of neurons
To test whether the perfection-index concept can be generalized
to neurons from other species, we analyzed guinea pig Purkinje
cells (Figure 2A).*°°" Figure 2B shows that the power law holds
with an exponent of 1.72 and corresponding perfection index of
0.86. The plot of normalized residuals for class IV and Purkinje
cells confirmed the goodness of fit (Figure S2). Mouse retinal
ganglion cells® also satisfied a power law, with a perfection in-
dex of 0.76 (Figure 2B).

Next, we asked whether the power law generalizes to the cen-
tral nervous system of adult flies. We analyzed Drosophila T5
cells, which are in the motion-sensing pathway (Figure S3,

from Scheffer et al.*?). T5 cells remain relatively stable in size
during adulthood, in contrast to class IV cells, which grow contin-
uously through larval development.” As shown in Figure 2C, the
power law holds with an average perfection index of 0.75.

We further analyzed the dendritic trees of different cell types
from the NeuroMorpho database®® including: Purkinje cells
from the cerebellums of guinea pig, rat, and mouse; spinal moto-
neurons from rat and cat; retinal ganglion cells from mouse,
pouched lamprey, and salamander; pyramidal cells in the hippo-
campus of rat, mouse, and guinea pig; pyramidal neurons in the
neocortical layers of rat, mouse, cat, monkey, and human; and
starburst amacrine cells from monkey, mouse, and rabbit. The
power law holds for these neurons, with mean perfection indices
ranging from 0.78 to 0.86 (Figure 2D). While the total range of
indices is small, 0.70 (Drosophila class IV neurons) to 0.86 (cere-
bellar Purkinje cells), the means differ significantly between
different cell types because the standard errors are small
(<0.01). Thus, the perfection index is a metric that distinguishes
different classes of neurons.

Perfection index is unchanged under trimming and
ablation

When we iteratively trimmed the terminal branches of class IV
neurons, the subtree-size distribution still followed a power
law, with a perfection index similar to that of the original neuronal
tree (Figures 3A-3D). Trimmed Purkinje cells also followed a po-
wer law, although the exponents decreased (Figure 3E). When
we randomly ablated internal branches of class IV neurons
(Figures 3F and 3G), the subtree-size distributions continued to
follow power laws (Figure 3H). The perfection indices of both
class IV and Purkinje cells were similar after ablation (Figure 3I).
Thus, the subtree-size distributions are self-similar under these
perturbations, with similar perfection indices.

Cell Reports 42, 113268, November 28, 2023 3
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Figure 3. The perfection index is invariant under branch trimming and ablation
(A-D) (A) Part of a class IV arbor with supported tips colored according to the scale at right. (B) Arbor A after trimming (i.e., removing terminal branches). (C) Arbor A
after trimming a second time. (D) The perfection indices are 0.74 (A), 0.73 (B), and 0.76 (C).

(E) Perfection indices of class IV and Purkinje cells before and after trimming.
(F) Arbor A after randomly ablating 35% of branches.

(G) Arbor A after randomly ablating 69% of branches.

(H) The perfection indices are 0.74 (A), 0.70 (F), and 0.69 (G).

(l) Perfection indices from class IV neurons and Purkinje cells following branch ablation.

Percolation transition associated with the Galton-
Watson branching process

To gain insight into why neurons have subtree-size distributions
that can be described by a power law with a narrow range of ex-
ponents, we initially studied one of the simplest models for
generating trees, the GW process.* In a binary GW process,*°
each terminal branch (denoted by B) bifurcates into two new ter-
minal branches with probability p, or stops bifurcating to form a
tip (denoted by T) with probability 1 — p:

B— {2_? Fl’Dr"c?tE):_ f o (Equation 1)

Whenp = 1, the GW process produces a perfect tree, which
is deterministic in the sense that every tree is identical. When p <
1, the GW process produces an imperfect tree, with an arboriza-
tion pattern that varies from tree to tree, even for the same value
of p.

The GW process (illustrated in Figure 4A) produces random
binary trees (gray lines in Figure 4A) that are a subset of a per-
fect tree (black lines in Figure 4A). If the bifurcation probability p
is >0.5, then on average at least one of the terminal branches
will continue to bifurcate. The number of branches is expected
to increase with branch order. Otherwise, when p< 0.5, the
average number of branches will decrease with the branch
order, and growth will almost surely terminate. The critical
bifurcation probability, p. = 0.5, therefore marks a qualitative
change in the behavior of a binary branching process, with su-
percritical (p >0.5) trees able to reach high branch orders. This
behavior is analogous to a percolation transition, which de-
scribes the emergence of long-range connectivity in random
systems when a critical value, known as the percolation
threshold, is exceeded.®®

4 Cell Reports 42, 113268, November 28, 2023

Stochastic simulations showed that the GW process (with
p>0.5) produces trees whose subtree-size distributions follow
power laws (Figure S4A). The perfection index increased from
0.7 to 1 as p increased from 0.5 to 1 (Figure 4B, black squares).
Interestingly, bifurcation probabilities larger than the percolation
threshold p; = 0.5 and smaller than 0.7 (Figure 4B, red region)
correspond to the perfection indices observed over a wide vari-
ety of neurons (0.70-0.86).

GW processes with variable bifurcation probabilities
also show power-law behavior

We next asked whether more general growth processes also
lead to subtree-size distributions that follow power laws. In a
generalized GW process the bifurcation probability, p(d), de-
pends on the branch order, d.*° For any tree, we can also mea-
sure the probability, P(d), that branches of order d bifurcate; Fig-
ure 5A shows P(d) measured for a class IV cell. Note that the
measured P for a simulated tree does not necessarily equal p
because growth is stochastic; indeed, growth fluctuations may
cause any simulated tree with p<1 to terminate eventually,
even when p> 0.5 for all d (i.e., P(d) = 0O for d sufficiently large).
For a finite tree, the measured bifurcation probability P must fall
below 0.5 at high branch order. For simulated trees, termination
can happen in a number of ways: there might be an abrupt
decrease in p to zero at some branch order, or p might decrease
to a value close to or below the critical value of p, = 0.5, so that
the tree slowly stops growing as found in class IV neurons (Fig-
ure 5A). We performed simulations using the two branch-or-
der-dependent bifurcation probabilities shown in Figure 5B. In
both cases, the subtree-size distribution S(n) vs. n follows a po-
wer law as shown in Figure 5C. Binary trees grown with higher
bifurcation probabilities at lower branch order have higher
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Figure 4. Percolation transition associated
with the Galton-Watson branching process
(A) An example binary tree (black lines) superimposed
ﬁ on a perfect binary tree (light-gray lines) with order 4.
(B) Perfection index 8 as a function of branching
probability p. For each branching probability, trees
with total tip number of approximately 400 were
analyzed with 100 simulations for each bifurcation
probability. The blue-shaded region corresponds to
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perfection indices (Figure 5B vs. Figure 5C). This observation is
consistent with the simulation results (Figure 4B), where higher
bifurcation probability leads to higher perfection indices.

Next, we asked whether the correlation between bifurcation
probabilities and perfection indices also applies to real den-
drites. The measured perfection index for Purkinje cells (0.86,
Figure 2B) is larger than that for class IV neurons (0.70, Fig-
ure 1C). Notably, Purkinje cells have a higher bifurcation proba-
bility, P, than class IV cells at lower branch orders, but lower
probability at higher orders (Figure 5A vs. Figure 5D). The higher
perfection indices of Purkinje cells compared to class IV cells
indicate that the bifurcation probability during the early stages
of growth may be an important determinant of the perfection in-
dex. Moreover, simulations performed with measured bifurca-
tion probabilities vs. branch order (Figures 5A and 5D, see
STAR Methods) as input were able to reproduce the experimen-
tally observed perfection indices (Figure S4B). Thus, the subtree-
size distribution of class IV and Purkinje cells are consistent with
GW processes with order-dependent bifurcation probabilities.

Quantifying the degree to which dendritic morphologies
are stochastic vs. deterministic

The correlation between the bifurcation probability in the GW
process and the perfection index allows us to relate the stochas-
ticity of a tree to its perfection index. If the branches with a given
order bifurcate with probability p, the mean number of new
branches at the next higher order is proportional to 2p and the
variance is proportional to 4p(1 — p). Therefore, the variance
in the number of new branches is greatest when p = 0.5, the
percolation threshold, and decreases to zero as p increases to
1. Hence, we can say that for p > 0.5, a smaller bifurcation prob-
ability (lower perfection index) is more stochastic whereas a
larger bifurcation probability (higher perfection index) is more
deterministic. By this measure, the growth rules for mammalian
Purkinje cells are more deterministic and less stochastic than in-
sect class IV neurons.

Density constraints account for why the bifurcation
probability is close to 0.5

We asked why the measured bifurcation probabilities are approx-
imately 0.5 for many branch orders (Figures 5A and 5D). One
possible explanation is that arbor volume constrains bifurcation.
It is clear when considering a perfect tree that the only way to fit
in the highest-order branches is to decrease the spacing between

Bifurcation probability, p

the region below the percolation transition. The red-
shaded region corresponds to the perfection-index
range observed in this work. The orange-shaded re-
gionis outside the observed range. Error bars are SDs.

| I
0.5 1.0

branches. If the area per branch (in 2D) or the volume per
branch (in 3D) remains constant during growth, however, then
p must decrease. This can be seen by considering a circular
arbor with constant dendrite density. The number of highest-
order branches is proportional to the perimeter, which in turn
is proportional to the radius, which is proportional to the
branch order, d (by the constant density assumption). If all the
peripheral tips were to bifurcate, the number of new branches
in the next growth ring would be proportional to 2d; but the
outer perimeter of the growth ring can only support a number
of branches proportional to the new perimeter (d +1). Thus,
we expect pp—(d+1)/2d = 1/2+1/2d. In 3D, psp—
(d+1)%/202 = 1/2+1/d. This shows that a constant branch den-
sity constrains the bifurcation probability to approach 0.5, the
percolation threshold, as observed.

Internal vs. tip branching

Class IV cells grow by a stochastic branching process in which
new branches can form either on terminal dendrites, which we
call tip branching and is topologically equivalent to tip bifurca-
tion, or on internal (non-terminal) branches.” The frequency of in-
ternal and tip branching is approximately equal. By contrast,
Purkinje cells in culture grow predominantly by tip branching.®
We therefore analyzed so-called QS growth processes® that
have a balance between internal and tip branching (here we
considered the one-parameter model®*; Figure S6). We found
that internal branching, provided its frequency is less than tip
branching, still gives rise to a power law, and that the perfection
index decreases as the relative frequency of internal branching
increases (Figure S6B). Deviations from a power law occur
when the frequency of internal branching exceeds that of tip
branching (Figure S6C). Thus, more general branching mecha-
nisms that include internal branching also give rise to power
laws, at least over a range of internal branching frequencies,
although the exponents are lower.

Neuronal branching patterns that optimize wiring also
follow a power law

In addition to the GW and QS processes, we also tested whether
other morphogenetic processes give rise to power laws for their
subtree-size distributions. Cuntz et al.'®*°° proposed a method of
constructing branched networks based on an optimal wiring
principle. To connect a given distribution of synapses or a sites
of sensory reception to a single point, the cell body, they
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Figure 5. The power-law exponent varies
with the order-dependence of the bifurcation
probability in the Galton-Watson process

(A) Bifurcation probabilities as a function of branch
order for class IV neurons.

(B) Two bifurcation probability functions. The blue
curve shows an abrupt decrease of bifurcation
probability from 0.7 to 0 at branch order 15. The red
dashed curve shows a decrease from 0.7 to 0.55 at
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] branch order 6 and a gradual change from 0.55 to
0.45 from branch order 7 to branch order 40, fol-
lowed by an abrupt change to 0.

(C) S(n) vs. n for the two cases in (B) follow power
laws, although the slopes differ. The exponent in
(@isa=179andin(b)is e = 1.52.

(D) Bifurcation probabilities as a function of branch
order for Purkinje cells.

In (A) and (D), six neurons were analyzed with
different colors representing different animals. The
bifurcation probability was only calculated for orders
with six or more branches. The black dotted line
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extended the concept of a minimum spanning tree to construct
trees that weigh the costs of material (total dendrite length)
against the conduction time (path length to soma) using a single
regularization parameter, the balancing factor, bf. The balancing
factor (BF) has proved to be an effective method to describe a
wide variety of neuronal structures from insect dendrites to
mammalian neurons.'®°® A smaller balancing factor, bf, leads
to a more branched structure, in which the neuron utilizes its
limited cytoskeletal resources more efficiently to fill up a large
space. A larger balancing factor results in fewer bifurcations
and more direct connections to the soma so that conduction
times are reduced.

To test whether trees generated by the balancing-factor (BF)
process display power laws, we randomly distributed points to
mimic synaptic sites and created optimal-wired synthetic trees
starting at the center point according to the balancing factor
from 0 to 1 in steps of 0.1 (Figure 6A). The subtree-size distribu-
tion followed a power law with the perfection index increasing
monotonically from 0.67 to 0.81 as bf increased from 0 to 0.9
(Figure 6B); this falls within the experimentally measured range
of perfection indices. Moreover, this finding is consistent with
the conclusions from previous studies that balancing factors in
the range of 0.0-0.9 can be used to describe a wide variety of
neurons in Drosophila sensory neurons and hippocampal
granule cells.'®%¢

Comparison between the perfection index and tree
asymmetry

The perfection index is also related to another topological mea-
sure, tree asymmetry.>2 The asymmetry of a branch whose daugh-
ters support/and mtips (| < m)isdefinedas (m — I)/(I+m — 2);
if I=m the asymmetry is zero and if / = 1 the asymmetry is 1. The
asymmetry of the tree is the weighted average of the branch asym-
metry.®> We compared the perfection index and the tree asymme-
try for neurons from the NeuroMorpho and Hemibrain datasets
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shows a bifurcation probability of 0.5. A linear
piecewise fit (dashed red lines) is overlaid.

Branch Order, d

(density plot as shown in Figure 6C) and found that the data
cluster around perfection indices of 0.8 and asymmetry 0.5.
When we generated trees using the GW process with different
values of p and measured both the perfectionindex and tree asym-
metry, we found that they are inversely correlated, as shown by
the gray dotted curve in Figure 6C, which passes through the
experimental data. This is consistent with our earlier observation
that a higher perfection index is associated with higher symmetry
of the arbors. In earlier studies, tree asymmetry was also found
to be invariant under trimming (terminal pruning) and ablation
(random pruning),®” further highlighting the close relationship be-
tween these two topological measures. Because tree asymmetry
has a larger coefficient of variation compared with the perfection
index, it might better distinguish the morphologies of different
neuronal types.

Two-step growth mechanisms lead to deviations of the
subtree-size distribution from a power law

Next, we asked whether every morphogenetic process gives rise
to power-law behavior of the subtree-size distribution. The
answer is no.

There are four classes of sensory neurons that tile the larval
body wall of flies.*® The morphology of class Ill neurons differs
from that of class IV neurons in having short terminal branchlets
along most of their lengths (Figure 7A). The subtree-size distribu-
tion of class Il cells shows two phases (Figure 7B): a shallower
slope for small tip numbers (exponent of 0.84) and a steeper
slope for larger tip numbers (exponent of 1.52). When we
removed all the branchlets from a class Il neuron, leaving only
the backbone (Figure S5), we found that the subtree-size distri-
bution followed a power law (Figure 7C) similar to that of class
IV neurons with an exponent of 1.50. When we added back
branchlets at random locations along the backbone, we recov-
ered the two-phase behavior of the subtree-size distribution
(Figure 7B). Thus, class lll cells have a backbone with a
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Figure 6. Perfection indices of trees generated by the optimal wiring and with different asymmetries

(A) Example trees grown from randomly distributed points (left panel) from a root at the center. As the balancing factor (bf) increases, the branches become more
radial as the trade-off shifts from smaller total branch length to shorter path distances to the center (see text).

(B) Perfection index  is plotted as a function of balancing factor. The red shadowed region indicates the region that falls within the experimentally observed range
(determined by [mean — 2SD, mean + 2SD]). Each data point is averaged from 100 simulations. Error bars are standard deviations.

(C) A comparison between the tree asymmetry, A,, and the perfection index, 8, measured for 532 cells from NeuroMorpho and Hemibrain databases. A, = 0.50 +
0.07 and 8 = 0.82 +0.07 (mean + SD, n = 532). The dotted curve is obtained from the GW model.

perfection index similar to that of class IV cells, with the differ-
ence in the subtree-size distribution arising from terminal
branchlets. This observation suggests that primary branches of
class lll cells grow by a developmental mechanism similar to
that of class IV cells, i.e., with bifurcation probability above the
percolation threshold, followed by the random addition of
branchlets, consistent with a recent paper demonstrating that
a two-step model is necessary to describe the class Il neuron
morphology.°®

Like class Il neurons, the subtree-size distributions of pyrami-
dal cells with spines from layer 2/3 of the mouse cortex (Fig-
ure 7D, MICrONs datasets, see STAR Methods) also deviate
from power laws as shown in Figure 7E. The subtree-size distri-
bution showed two phases, a shallow slope (exponent 0.08) and
a steeper slope with (exponent 1.77). When we removed all
spines and measured the subtree-size distribution, a power
law was recovered with an average exponent of 1.6 (Figure 7F).
Note that the pyramidal and Purkinje cells analyzed in Figure 2
did not include spines. Again, adding artificial spines through
simulations recovers the experimental observation as shown in
Figure 7E. It is noteworthy that although the power-law behavior
can be disrupted when internal branching exceeds tip bifurca-
tion, the two-phase behavior cannot be achieved by the QS pro-
cess alone (when S is kept at zero, i.e., one-parameter model,
Figure S6C). This further suggests that a two-step model is
necessary. Thus, subtree-size distributions can deviate from a
power law and exhibit two-phase behaviors, indicating distinc-
tive growth mechanisms.

DISCUSSION

In this study, we found that the subtree-size distribution, which is
a purely topological property of branched networks, follows a
power law for many, but not all, neurons. When the distribution
follows a power law, we can define the perfection index as half
of the power-law exponent; a value of 1 corresponds to a perfect
binary tree in which the number of branches doubles at each or-
der, and a value less than 1 corresponds to an imperfect tree in
which branching is stochastic and eventually terminates. By
analyzing neurons from the NeuroMorpho.Org and Hemibrain
datasets, we found that the perfection index falls within the range
0.70-0.86 for a wide range of vertebrate and invertebrate neu-
rons and that the value of the perfection index distinguishes
different neuronal types: for example, mammalian Purkinje cells
have a perfection index of 0.86 while fly class IV da neurons have
a perfection index of 0.70. Moreover, these values are often
invariant to iterative trimming of terminal branches and ablation
of internal branches, suggesting that in these cells the branching
rules may persist as the neuron grows and that the subtree struc-
tures are self-similar. We found exceptions to power laws when
spines and branchlets were included in the analysis, consistent
with these terminal branches arising through growth processes
that differ from those of the backbone arbor. Thus, the sub-
tree-size distribution is a topological property that reflects the
functional morphology of dendrites and, as discussed below,
likely recapitulates the morphogenetic processes, i.e., the
ontogeny, underlying branching.

Cell Reports 42, 113268, November 28, 2023 7




¢? CellPress

OPEN ACCESS

Cell Reports

. e 100
~1000 H
= a o Experiment = :
100 o Simulation 9 g
o i - g 10
5 10 B, £
2 LN =
ke 1 “~ %S
g 8 g 1
2 g
E 01— I | £ | :
z 1 10 100 = 1 10
Subtree size, n Subtree size, n
E F
10000 o Experiment 100
£ 1000 ° o Simulation S
7] & E
§ 100 £ 10
= B-g-8-8--n 5 g
Z 2 10 o £
% “(2 \\n 3
e} 8 1 \B ..é 1
8 0.1 2
L’ e T T T | £ I |
e = 1 10 100 1000 2 1 10

Figure 7. Spines and branchlets lead to deviations from a power law

Subtree size, n Subtree size, n

(A) A GFP-labeled 96-h class Il dorsal neuron in the A4 segment imaged by spinning-disk confocal microscopy. It has short branchlets along its branches.
(B) The “two-phase” behavior of the subtree-size distribution. The red and blue regions have different slopes (represented by dashed lines).

(C) Subtree-size distributions for backbones of six different class Il neurons (with terminal branches trimmed) in the A3 to A5 segments from both dorsal and
ventral sides fit a power law with exponent 1.47 (perfection index 0.74). Error bars are SDs.

(D) A pyramidal cell from layer 2/3 of mouse visual cortex segmented from the MICrONS electron microscopy dataset. It has spines along its length.

(E) Two-phase behavior of the pyramidal cell with spines is observed.

(F) The subtree-size distribution of six trimmed pyramidal cells has a power-law exponent 1.61 (perfection index 0.81). Error bars are SDs.

To gain a theoretical understanding of the subtree-size distri-
bution and why it follows a power law, we compared the
neuronal data to the predictions of several mathematical
morphogenetic processes, including the GW process in which
tips bifurcate, the QS process,**°° which has both tip bifurcation
(tip branching) and internal (non-tip) branching, and the optimal-
wiring BF process,'>°® which trades off total branch length
against distance to the cell body. All produce subtree-size distri-
butions that follow power laws and so are consistent with the
observed topologies. In the GW process, the power-law expo-
nent increases with the bifurcation probability, while in the QS
process, the exponent decreases with increasing internal
branching (relative to tip branching). It is likely that the higher
exponent in Purkinje cells than in class IV arises from both ef-
fects. First, at low branch orders, the measured bifurcation prob-
ability of Purkinje cells is higher than that of class IV cells (Fig-
ure 5D vs. Figure 5A); this is expected to lead to a higher
perfection index. Second, cultured Purkinje cells make fewer in-
ternal branches than tip branches (90% of new branches occur
on terminal branches® and only 10% on internal branches), while
class IV cells in vivo make similar numbers of terminal and non-
terminal branches’; this difference is also expected to increase
the perfection index of Purkinje cells relative to class IV cells.
These two effects are not mutually exclusive. An increase in tip
branching relative to internal branching results in higher branch-
ing probabilities at low branch orders (Figures S6D and S6E).
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Thus, it is likely that multiple developmental differences give
rise to the different topologies of class IV and Purkinje cells.

Power laws in physics are often associated with phase transi-
tions.®" A phase transition that may be pertinent to dendrite
branching is percolation: the GW process has a percolation
threshold when the bifurcation probability is 0.5. Above 0.5,
the number of branches increases, on average, at each order
and below 0.5 it decreases. Any observed finite tree must have
a measured bifurcation probability that decreases below 0.5 at
high orders. Furthermore, as we argued in the results section,
if there is a minimum branch density, space constraints cause
the GW bifurcation probability to approach 0.5. Therefore, there
are theoretical reasons why dendritic trees should have bifurca-
tion probabilities near 0.5, at least at high orders. Consistent with
this argument, measured bifurcation probabilities of both class
IV cells and Purkinje cells both have wide ranges of orders where
P=0.5. Thus, the growth of dendritic arbors is close to a perco-
lation threshold, and this may contribute to the power-law
behavior.

Time-lapse imaging of dendrites in vivo (e.g., class IV cells’) and
in vitro (e.g., Purkinje cells®) shows that morphogenesis often en-
tails iteration of growth rules that remain fairly constant over time.
Two features of the subtree-size distribution likely reflect this iter-
ative process. First, the observation that the subtree-size distribu-
tion is scale invariant (i.e., follows a power law) for many cell types
suggests the branching process is invariant/self-similar over
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development. Second, the observation that trimming and ablating
arbors preserves the power law and its exponent suggests that
later growth occurs by the same rules as earlier growth. In the
cases of class Ill neurons and mammalian neurons, branchlets
and spines perturb the subtree-size distribution from a power
law, consistent with an altered growth process during develop-
ment. Interestingly, in branchlets®® and spines,®” actin plays a
prominent role, while in of the dendritic shaft or “backbone,” mi-
crotubules are prominent structures that serve as tracks for
long-distance transport.°®> Thus, branchlets and spines use
different cytoskeletal machineries compared to the backbone,
and this may disrupt the iterative growth process and perturb
the subtree-size distribution.

In summary, the subtree-size distribution provides a simple
quantitative description of the topology of neuronal morphol-
ogies. While it lacks the richness of other schemes for classifying
neuronal morphology, such as the TMD,*° the power-law expo-
nent can still distinguish different cell types and different growth
rules. The subtree-size distribution simplifies study of the struc-
ture of neurons and thus provides an important additional
constraint that must be fulfilled by other methods for generating
dendritic trees.

Limitations of the study

Despite its success in identifying a consistent signature of den-
dritic structure and evidence for distinct growth processes, our
study has several limitations. First, accurately measuring the
subtree-size function requires a large number of branches, on
the order of 100, limiting its utility to highly branched cells. For
smaller trees other measures like asymmetry? should be used.
Second, subtree-size distributions are not generative, in the
sense that they can be used to grow arbors; indeed, different
growth processes with different bifurcation probabilities and in-
ternal-to-tip branching ratios can generate similar subtree-size
distributions. Third, as more neurons are added to the rapidly ex-
panding morphological databases, exceptions to our findings
are likely to increase. Finally, theoretical studies are needed to
establish rigorously whether there exist conditions necessary
and sufficient for scale invariance of subtree-size distributions.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental models: Organisms/strains

D. melanogaster: y[1] w[*]; PBac{y[+mDint2] Bloomington Drosophila 36361
w[+mC] = nompC-GAL4.P}VK00014; Stock Center

Df(3L)Ly, sens[Ly-1]/TM6C, Sb[1] Tb[1]

D. melanogaster: w[1118]; P{y[+t7.7] Bloomington Drosophila 32187
w[+mC] = 10XUAS-IVS-mCD8::GFP}su Stock Center

(Hw)attP1

D. melanogaster: ppk-cd4-tdGFP Chun Han, Cornell N/A

Deposited data

Neuron images and MICrONS dataset This study Mendeley Data: https://data.mendeley.com/datasets/z97bs2c8p7/1
Software and algorithms
Code for this paper This study https://github.com/Maijia-cpu/

TREES toolbox
MATLAB
Imaged
GraphPad Prism

Cuntz et al.™®
Version R2021a
Schneider et al.®*

Version 08

Topology-properties-of-neurons/tree/main
https://www.treestoolbox.org/
https://se.mathworks.com/products/matlab.html
https://imagej.net

https://www.graphpad.com/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jonathon

Howard (joe.howard@yale.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

o All data reported in the paper have been deposited at Mendeley and are publicly available. DOlIs are listed in the Key resources

table.

® All original code has been deposited at Github and is publicly available. Link is provided in the Key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster strains

Drosophila melanogaster larvae were raised on cornmeal-agar medium with glucose and yeast (Glucose D2, Archon Scientific) at 25
°C. 96hr AEL larvae were used for all analyses. For visualization of dendritic morphologies of class Il neurons (ddaF), nompC-Gal4
(Stock 36361 from Bloomington Drosophila Stock Center) was crossed with 10XUAS-mCD8GFP (32187). The fly strain ppk-cd4-
tdGFP (a gift from Han Chun (Cornell University)) was used for imaging class IV neurons.

METHOD DETAILS
Scale invariance and power laws
We say that a function, f(x), is scale invariant if changing the scale or units of x leaves the shape of f unchanged (except for a

multiplicative constant). In other words, f(ix) = g(A)f(x) (Equation 1) where the function g does not depend on x. This is sometimes
called scale-free, but we use the term scale invariance. Because f(1142x) = g(A1A2)f(x) = g(A1)f(A2x) = g(A1)g(A2)f(x), we must
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have g(2142) = g(41)9(%2) (provided f is non-zero). By Cauchy’s multiplicative function equation, g(2) is of the form g(1) = 217¢,
where « is a constant. Substituting x = 1 into Equation 1 gives (1) = g(2)f(1). After substituting 2 = x, the required power law fol-
lows: f(x) = f(1)g(x) = f(1)x™“. This function is linear when plotted on log axes because In f(x) = Inf(1) —« In x. The log-log slope
is —. It is easy to show the converse is also true: a power law implies scale invariance.

Spinning disk confocal imaging

Embryos were collected for 2 h on apple juice agar plates with a dollop of yeast paste and aged at 25°C in a moist chamber. The
plates containing the first batch of embryos were discarded as the dendrite morphology of sensory neurons is less consistent in those
animals.®® Larvae were immobilized individually on agarose pads (thickness 0.3-0.5mm) sandwiched between a slide and a cover-
slip. The imaging was done using a spinning disk microscope: the Yokogawa CSU-W1 disk (pinhole size 50 pum) built on a fully auto-
mated Nikon Tl inverted microscope with perfect focus system, an sCMOS camera (Zyla 4.2 plus sCMOS), and running Nikon Ele-
ments software. Individual neuron image stacks were acquired with a 60 x 1.2 NA water immersion lens with a z step size 0.16 um.

Data processing method

To reveal the power-law form of the density distribution it is better to plot the density histogram on logarithmic scales. However, the
right-hand end of the distribution is noisy because of sampling errors. To deal with it, we vary the width of the bins in the density his-
togram and normalize the sample counts by the width of the bins they fall in. That is, the number of samples (denoted by Z;’*A”N(n)) in
abin of width An should be divided by An to get a count per interval of n (i.e., average count denoted by M). Note that we only consider
sample counts larger than 10 to reduce the statistical error. The standard deviation of the normalized count is calculated as:

ZZ*A”N(n)+2/An. Then the normalized sample count becomes independent of bin width on average and we are free to vary

the bin widths as we like. Here we use logarithmic binning.** We choose a multiplier of 2 and create bins that span the intervals
1.5t0 2.5, 2.5 t0 4.5, 4.5 to 8.5 and so forth. The first point N(1), which is just the total number of leaves (or tips), is neglected in
the fitting unless the maximal tip number is less than 60 or the total number of normalized sample count is less than 5. The normalized
sample counts and the center of the bins are used to plot the results.

Reduced major axis (RMA) linear regression method

In our manuscript, the power law exponent « is obtained using reduced major axis (RMA) linear regression on the log-log transformed
data. RMA regression®®-®’ is often recommended in allometric scaling analysis when it is difficult to establish a cause-effect relation-
ship between the variables x and y. In simple linear regression, it is assumed that y depends on x with additive noise: the slope is
by = Sy /S2 , Where ry, is the Pearson correlation coefficient, s, is the sample cross-correlation and s2 is the sample variance
in x. The RMA slope is the geometrical mean of the two slopes obtained by simple linear regression: by, (y the dependent variable)

and by (x the dependent variable): brma = Sign(ryy)+\/bxy /by x = sign(rxy)%.

Perfection index calculation
A function perfection_tree is made available as part of the TREES Toolbox'® in MATLAB and Github.

Bifurcation probability measurement from experimentally reconstructed neurons

All branches of a reconstructed neuron were classified according to their branch orders d. Within each branch order, the number n of
branches that bifurcate further (generate two daughter branches) was counted. The bifurcation probability at each branch order is
defined as the ratio between n and the total number m of branches within that branch order. To obtain enough statistics, only branch
orders with total branch number m larger than 6 were used for bifurcation probability calculation.

Methods for MICrONS dataset analysis

Spine data were recovered from an electron microscopy dataset on layer 2/3 of the mouse visual cortex generated by the MICrONS
program. 301 publicly available neuron reconstructions without spines®® were cross-referenced with ~3.2 million automatically iden-
tified synapses from the same volume.®° As the synapse dataset is known to contain false-positives, synapses that would imply a
spine length of greater than 4 um were excluded from our analysis.

Simulating trees with balancing factors

In the functional simulations, the synthetic tree is constrained by the “density profile” of a neuron group and by a balancing factor (bf)'°
that weighs two demands: the minimization of resources and the minimization of conduction time. Higher bf values correspond to
increased importance of conduction time minimization relative to resource minimization and vice versa. The simulation was carried
out using the TREES Toolbox package in the MATLAB environment. 3000 random points were generated and synthetic trees starting
at the center point according to the balancing factor from 0 to 1 in the step of 0.1 were created for further analyses. For each balancing
factor, 100 synthetic trees were created. Note that there exist only two N(n) values when balancing factoris set to 1. Thus, the tree perfec-
tion index for bf = 1 is not calculated in Figure 6B.
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Figure S1. Perfection indices of perfect and imperfect trees. A A perfect tree is shown above
(bifurcation probability p = 1). The number of subtrees with size n (n defined as the number of tips) is
plotted against n with log-log axes. The points fall on a line: S(n) = ny,:n™* (N is the total number of
tips). The perfection index is defined g = a/2 = 1.04 £+ 0.02 = 1 when fit using reduced major axis (RMA)
linear regression (See STAR Methods). B A maximally imperfect tree is shown above (one tip produced
at each bifurcation). The log-log slope is zero (omitting the first point). The perfection index is therefore 0.
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Figure S2. Residual plots confirm the goodness of fit using reduced major axis (RMA) linear
regression. A. Normalized residuals for the RMA fit to the log-log plot of the subtree size distribution
([S(n) — Sk (n)]/(S(n), where S is the subtree site and Sy, is the RMA fit) for class IV cells. B. Same for
Purkinje cells.




Figure S3. Five examples of T5 cells from the adult fly central nervous system. Five motion-
sensitive T5 cells have dendrites in the lobula (LO) and axons in the lobula plate (LOP) (from the
Hemibrain dataset). The identification numbers are indicated at the upper left.
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Figure S4. Trees generated by the Galton-Watson process follow power laws. A. Trees generated
using bifurcation probabilities of 0.6 and 0.7, which are above the percolation threshold of 0.5, follow
power laws with perfection indices equal to 0.78 and 0.88 respectively. B. Galton-Watson simulations
using the experimentally measured bifurcation probabilities from class IV neurons (Fig. 5A) and Purkinje
cells (Fig. 5D) follow lower laws with perfection indices of 0.75 + 0.03 (mean £ SD, N = 100 simulations)
and 0.82 = 0.03 (mean = SD, N=100) respectively. The indices from the simulations are close to those
measured from the original data (0.70 and 0.86 respectively).
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Figure S5. Simulations show that branchlets lead to two-phase scaling. A A class Ill neuron. B The
same cell with its 363 terminal branchlets removed. C 363 terminal branches with average length 10um
were added back at random positions on the trimmed backbone. D Comparison of the subtree-size
distributions for the neurons in A and C (Figure 7B in main text). The random addition of terminal
branches recapitulates the two-phase behavior measured from experimental data. The dashed lines
represent the slopes in the two regions.
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Figure S6. Trees generated by the QS model with different ratios of internal-to-tip branching. A.
Trees generated with (Q,S) = (0,0) (no internal branching), (Q,S) = (0.5,0) (equal internal and tip
branching), and (Q,S) = (1,0) (all internal branching). B. Subtree-size distributions with QS values (0,0)
and (0.5,0). The respective perfection indices are 0.93 and 0.76. Average of 20 simulations. C. Subtree-
size distributions with QS values (0.8,0), (0.9,0), and (1,0). Average of 20 simulations. Note that the
(0.8,0) and (0.9,0) curves are concave. D,E Bifurcation probabilities, P(d), as a function of branch order,
d, with QS values (0.5,0) and (0.2,0) respectively. Different colors represent six different simulations.
Linear piecewise fits (dashed red lines) are overlaid. The bifurcation probabilities for orders less than or
equal to 10 are 0.62 + 0.02 (mean + SD, N=6 simulations) for QS values (0.5,0) and 0.70 + 0.02 (mean *
SD, N=6 simulations) for QS values (0.2,0).
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