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ARTICLE INFO ABSTRACT

Editor: Jay Gan Host-parasite interactions are crucial to the regulation of host population growth, as they often impact both long-term
population stability and ecological functioning. Animal hosts navigate a number of environmental conditions, includ-

Keywords: ing local climate, anthropogenic land use, and varying degrees of spatial isolation, all of which can mediate parasitism

Bumble bee

exposure. Despite this, we know little about the potential for these environmental conditions to impact pathogen prev-

iniﬂn;i;ias alence at biogeographic scales, especially for key ecosystem service-providing animals. Bees are essential pollination
Dfs:;’se ccology providers that may be particularly sensitive to biogeography, climate, and land-use as these factors are known to
Land use limit bee dispersal and contribute to underlying population genetic variation, which may also impact host-parasite in-
Biogeography teractions. Importantly, many native bumble bee species have recently shown geographic range contractions, reduced

genetic diversity, and increased parasitism rates, highlighting the potential importance of interacting and synergistic
stressors. In this study, we incorporate spatially explicit environmental, biogeographic, and land-use data in combina-
tion with genetically derived host population data to conduct a large-scale epidemiological assessment of the drivers of
pathogen prevalence across >1000 km for a keystone western US pollinator, the bumble bee Bombus vosnesenskii. We
found high rates of infection from Crithidia bombi and C. expoekii, which show strong spatial autocorrelation and which
were more prevalent in northern latitudes. We also show that land use barriers best explained differences in parasite
prevalence and parasite community composition, while precipitation, elevation, and B. vosnesenskii nesting density
were important drivers of parasite prevalence. Overall, our results demonstrate that human land use can impact critical
host-parasite interactions for native bees at massive spatial scales. Further, our work indicates that disease-related sur-
vey and conservation measures should take into account the independent and interacting influences of climate, bioge-
ography, land use, and local population dynamics.

1. Introduction

Host-parasite interactions can play a key role in ecology by altering host
* Corresponding author. population growth (Anderson and May, 1986), health (Rutrecht and
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species (Altizer et al., 2013), and subsequent ecological function (Hatcher
etal., 2006). For example, infected animals may forage for longer durations
(Wolf et al., 2014) and visit resources outside of their typical preferences
(Richardson et al., 2016), thus impacting the availability of those resources
in the local environment (Hatcher et al., 2006). Given their host mobility,
animal parasites may be particularly responsive to environmental context
across organizational and spatial scales, leading to variation in prevalence
across host populations. Indeed, past work has shown that across large spa-
tial scales, animal hosts may be differentially susceptible to pathogens due
to underlying population genetic differences (Parsche and Lattorff, 2018;
Huth-Schwarz et al., 2012), differences in host density and contact among
susceptible host species (Graystock et al., 2020), and differences in underly-
ing abiotic conditions, including biogeography (Escobar and Morand,
2021), land-use (Gottdenker et al., 2014), and climate (Altizer et al.,
2013). Despite the likely role of abiotic environmental conditions and
host population characteristics in mediating parasite transmission, few
studies have simultaneously characterized both sets of forces and their
potential impact on parasite prevalence at biogeographic scales.

Recent work on pathogens of widely distributed species suggest
that biogeography, elevation, climate, and land use may be more important
drivers of spatial variation in parasitism than previously believed (Stephens
et al., 2016). Historically, studies have often hypothesized that parasite di-
versity is highest near the equator due to higher host diversity per unit of
area (e.g., Guernier et al., 2004). However, more recent studies have sug-
gested that this relationship is more host-dependent, where the intensity
of parasitic interactions may actually increase at higher latitudes likely
due to differences in host susceptibility and immune priming in more di-
verse parasite communities at low latitudes (Zvereva and Kozlov, 2021).
Biogeographic, elevational, and climatic gradients can also create variation
in habitat suitability, which could influence interactions between hosts and
parasites. For example, precipitation has a fundamental impact on plant
biomass and plant-based resource availability, and this can affect an ani-
mal's interaction with plant-based resources (Lawson and Rands, 2019).
Climate can also directly impact animal communities by shifting the geo-
graphic range of hosts and pathogens, leading to novel species interactions
(Altizer et al., 2013), or by altering the susceptibility of hosts, which may
occur more in stressful environments with limited resources (Gottdenker
et al., 2014). Anthropogenic land-use change often creates conditions of
stress that may impact wildlife disease (Los et al., 2020; Guo et al., 2019;
Gottdenker et al., 2014; Goulson et al., 2012; but see Ceballos et al.,
2006), with documented increases in infectious disease prevalence within
wildlife and higher risk of zoonotic outbreaks within humans following
land conversion (Jones et al., 2013). Land use change can also modify eco-
logical niches and can ultimately alter the spatial dynamics of disease inci-
dence through changes to host movement and the composition of hosts and
pathogens (Gottdenker et al., 2014).

Interestingly, these biogeographic, elevation, climate, and land use
forces also impact host genetic composition, which can underlie a hosts'
ability to respond to stressors (Manlik et al., 2022). For example, elevation
and land use can create resistance to dispersal for many host organisms
(Jha, 2015), leading to population genetic isolation, as organisms are either
unable to encounter the resources they need, or their movements are
diverted to avoid stressful conditions. From a population genetics perspec-
tive, isolated host populations are more likely to experience inbreeding de-
pression and a decrease in local genetic diversity (Hedrick and Kalinowski,
2000). Genetic diversity is closely associated with host immune function
(reviewed in King and Lively, 2012), and may also predict prevalence,
where populations with higher genetic diversity often experience lower
parasite prevalence (Lively et al., 1990; Shykoff and Schmid-Hempel,
1991; Whitehorn et al., 2011). Landscape-level genetic structure (differen-
tiation) also captures gene flow resulting from population connectivity,
which may correlate with the long-term host population stability and its
impact on infectious disease status (Kozakiewicz et al., 2018). A large-
scale study comparing disease incidence and landscape genetics of several
North American bee species showed that declining host species and those
undergoing range contractions experienced higher incidences of parasitism
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compared to stable co-occurring species (Cameron et al., 2011). Further, a
positive feedback loop may emerge between population decline, genetic in-
breeding, and increased parasitism (McCallum, 2012). Thus, it is essential
to quantify both the population-level genetic diversity and genetic differen-
tiation between host populations in order to best characterize landscape-
level parasite incidence.

Finally, these host-parasite interactions and their ecological conse-
quences are especially important for mobile organisms that forage across
space to provide key ecosystem functions (Kremen et al., 2007). Pollinators
provide great value to terrestrial ecosystems through the transport of pollen
necessary for the reproduction of more than 85 % of all plant species
(Ollerton et al., 2011). Over 80 % of crop species are also dependent on
pollinators, with bees providing the majority of pollination services
(Bartomeus et al., 2014). Bumble bees are some of the most ecologically
and economically important pollinators, and as central place foragers,
they are tied to the local landscape where they have constructed a nest.
Thus, they are often limited by suitable habitat (Koh et al., 2016) and
may be particularly sensitive to the synergistic stressors of land use change,
climate change, and pathogen pressure (Goulson et al., 2015). Host-parasite
interactions are also fascinating for bees given that many bee parasites are
transmitted through shared use of floral resources (Graystock et al., 2015),
as well as via intra-colonial transmission through contact with nest-mates
(Otterstatter and Thomson, 2007; Pinilla-Gallego et al., 2020) and brood
(Folly et al., 2017). Both of these forces could work to amplify parasite
abundance, which in turn can influence pollinator foraging with negative
consequences for the reproductive success of both plants and pollinators
(i.e., Gillespie and Adler, 2013).

In this study, we investigate the key drivers of spatial variation in
parasite prevalence, focusing on one of the most important native pollina-
tors in the Western US (Kremen et al., 2002), the yellow-faced bumble
bee, Bombus vosnesenskii. We quantify pathogen prevalence across nearly
1000 kms, allowing us to evaluate the impact of natural environmental var-
iation and population level differences across roughly half of the species'
range. We hypothesize that spatial variation in parasitism is related to
both landscape context (land-use and biogeography), and the habitat
preferences and dispersal patterns of the host. Additionally, given the
small but significant degree of population genetic structure in our samples
(Jha, 2015), we hypothesize that populations with high genetic diversity
would have low rates of parasitism and that genetic diversity would impact
the overall distribution of parasitism. We implement a large-scale epidemi-
ological and spatially-explicit modeling approach to understand variation
in parasitism, identify potential hotspots, and describe the relationship
between environmental conditions, host dynamics, and resulting host-
parasite interactions.

2. Methods
2.1. Study region and sampling

We sampled Bombus vosnesenskii from 21 sites (Fig. 1), separated by a
mean of 298.9 km (7.15-963.24 km), throughout the state of California
along the southwestern coast of the US, encompassing large gradients in
precipitation, elevation, and land use (as described in Jha, 2015). The sam-
pling scheme was established to maximize detection of potential patterns of
genetic differentiation and study sites were selected to represent the three
main biogeographic regions of California including the Sierra Nevada
foothills and mountain range, the Coastal and Transverse foothills and
mountain range, and the Channel Islands. An average of 41.14 (SE =
2.36) bees were collected by aerial netting within 25 m of the centroid of
each site, and were immediately submerged in 95 % ethanol within individ-
ual glass vials (as described in Jha, 2015).

2.1.1. GIS

Regional land use was characterized using the National Land Cover Da-
tabase (NLCD) (Homer et al., 2015) and measured at a 1-km resolution
using the majority resampling function in ArcGIS v.9.2 (ESRI, 2006).
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Fig. 1. Maps of the study regions showing the location and parasite prevalence at each of the 21 collection sites. The relative size of circles at each site indicates the prevalence

of Crithidia bombi (A), Crithidia expoekii (B), and Apicystis bombi (C),

Land use was classified into 5 main categories of bumble bee habitat based
on nest and food availability (as in Jha, 2015): Open water (open water and
surface ice) (0-26.1 % cover), Forests and scrubland (all categories of forest
and shrub/scrub) (0-96.3 % cover), Impervious land (developed surfaces
including commercial and industrial land with >20 % impervious cover)
(0-17.7 % cover), Grassland and pasture (including developed land with
<20 % impervious cover, grassland, barren land, and pasture) (3.5 %—
80 %), and Cropland (crops and wetlands) (0-14.2 % cover). Land use
was calculated from the 2011 NLCD land use surface which was concurrent
to the first year of bee sampling.

Mean precipitation was extracted from the publicly available PRISM
dataset (Daly et al., 2007; as in McNeil et al., 2020). As per past studies ex-
amining climate impacts on bee pathogen dynamics ( McNeil et al., 2020),
we used a long term mean precipitation score, in this case the 30-year
Normal mean annual precipitation (800 m resolution) and averaged all
point values within a 2-km radius of the site. The elevation of each collec-
tion site was calculated from the National Elevation Dataset (NED, httl://
ned.usgs.gov/). The absolute latitude was taken from the geographic
coordinates for the center-point of each collection site.

2.2. Molecular analyses

2.2.1. Genotyping and nest assignment

Tarsal snips were taken from collected bees, and DNA was extracted
from each individual for genotyping (see Jha, 2015). DNA was extracted
using the HotShot protocol (Truett et al., 2000) and 12 microsatellite loci
were screened, including B96, B100, B119 (Estoup et al., 1995), and
BT33, BT43, BT65, BT124, BT125, BT128, BT131, BT132, and BT136
(Stolle et al., 2009). Multiplex polymerase chain reactions (PCRs) contained
2 mg of DNA, 2ulL of 10 x PCR buffer, 1.5 mM MgCl,, 300 uM of each
dNTP, 1 U of Taq polymerase, and 0.25uM of each primer with a final reac-
tion volume of 20ul. The reaction began with a 5-min denaturation step at
95 °C, followed by 37 cycles of: 30 s at 72 °C, 60 s at the primer specific
annealing temperature, and 30 s at 72 °C, ending with a final 20-min
extension period at 72C (Jha, 2015). One primer in each pair was also
labelled with a dye (6-FAM, NED, VIC or PET) to aid in genotyping
with an ABI3730 Sequencer (Jha, 2015). Alleles were scored using
GENEMARKER ® (Softgenics). In order to optimize the accuracy of patterns
of population genetic structure (Landguth et al., 2012) and genetic differen-
tiation (ie. Arthofer et al., 2018), only specimens with at least 8 viable
markers were included in the study. To prevent pseudo-replication at the
colony level, we assigned individuals to colonies using the program
COLONY 2.0 (Wang, 2004) with the error rate set to 0.001 (as in Jha and
Kremen, 2013b). We then randomly excluded individuals until only one

representative of each colony remained, leaving a total of 762 bees with a
mean of 35.81 bees per site (+ 2.15 SE) for the pathogen screen.

2.2.2. Site-level nesting density and genetic variation

Next, the density of colonies nesting at each site was estimated based on
the distribution of recapture events for each colony at a site using the soft-
ware CAPWIRE (Miller et al., 2005). We used the Two Innate Rate Method
(TIRM) which has been found to best model the expected truncated Poisson
distribution of nest densities (as in Goulson et al., 2010). Previous analysis
of this dataset revealed small but significant genetic differentiation using
several measures (Jha, 2015). Given our emphasis on site-level host-
pathogen landscape dynamics, we assessed site-level nesting density and
site-level genetic variation (Hg; Nei and Kumar, 2000).

2.3. Pathogen screen

We briefly removed the specimens from ethanol storage and dissected
the gut tissue by making a lateral incision using iris scissors and forceps.
We removed all gut tissue and dried it at room temperature for 15 min to
remove ethanol that may interfere with subsequent molecular reactions.
We used a motorized pestle to grind the tissue, extracted DNA through iso-
propyl precipitation, and finally resuspended the DNA in 50uL. TE buffer.

We used a multiplex PCR approach to simultaneously detect three par-
asite taxa, Crithidia, Vairimorpha, and Apicystis (Mullins et al., 2020;
Tripodi et al., 2018). The PCR reaction mix consisted of 0.8 uM of each
parasite detection primer, 0.4 uM of a bee positive control primer set,
1.3 x buffer, 2.0 mM MgCl2, 0.8 pM total dNTPs, 1 unit Taq (Genesee
Scientific, Apex polymerase), 1.2 pL. DNA sample, with DEPC treated
water to adjust the volume to a total of 25 pL (Mullins et al., 2020). The
PCR reaction followed an initial denaturation step of 94 °C for 2 min,
followed by 10 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 45 s
then 30 cycles of 94 °C for 30 s, 57 °C for 30 s and 72 °C for 45 s and finally
an extension at 72 °C for 5 min (Mullins et al., 2020). Samples were run in
batches, and included one positive control for each of the parasite taxa, as
well as a negative control with water substituting DNA. PCR products
were visualized with gel electrophoresis, where each primer set amplified
a unique DNA fragment length (Crithidia = 584 bp, Apicystis = 357 bp,
Vairimorpha = 270-316 bp;; Mullins et al., 2020). We had difficulty reli-
ably amplifying our Vairimorpha positive controls, and ultimately excluded
this taxon from the analysis. Samples which contained Crithidia DNA were
then identified based on fragment length using a secondary multiplex
PCR to distinguish between Crithidia bombi (279 bp), Crithidia expoekii
(163 bp), and a sequence conserved across Crithidia (584 bp) to account
for non-target parasites (Mullins et al., 2020). Samples which contained
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Apicystis DNA were secondarily sequenced using a primer set to distinguish
between Apicystis bombi and the recently described Apicystis cryptica
(Schoonvaere et al., 2020).

2.4. Statistical analyses

2.4.1. Spatial autocorrelation

We mapped and analyzed spatial variation in parasitism (Fig. 1) using
Moran's I to test for spatial autocorrelation. We conducted all statistical
analyses using the R statistical computing software. Specifically, we calcu-
lated and compared geographic distances and dissimilarity in the rate of
parasitism for each parasite species at a given site and calculated Moran's
I using the ape package and the Moran.I function (Paradis et al., 2004).

2.4.2. Generalized linear mixed effect models

To analyze linear relationships between local and landscape attributes
and site-level parasitism, we ran generalized linear mixed effect models
(GLMM) (Ime4 package; Bates, 2010) for prevalence of each of the three
parasites. Specifically, predictor variables included site-level nesting den-
sity, genetic variation (Hg), elevation, mean precipitation, latitude, and
nesting suitability (combined Forest and Grassland cover, as in Jha and
Kremen, 2013a) within 2 km. Response variables included prevalence
(presence or absence) of a given parasite species as well as the overall
‘Health Status’ of individual bees (parasitized or not parasitized) (as in
McNeil et al., 2020). For all GLMMs, we used a binomial distribution and
included site as a random effect given repeated sampling (Zuur et al.,
2009). To test for collinearity between response variables, the car package
(Fox et al., 2013) was used to ensure Variance Inflation Factor (VIF) scores
for all predictor variables were below a conservative cutoff of 2.5 for all
models. Models underwent a strict model selection protocol using the
MuMIN package in R (Barton, 2020) which generates models with all
combinations of predictor variables and ranks each model using Akaike In-
formation Criteria (AIC). The ‘top model’ was selected as the model with
the lowest AIC score. In cases where multiple models fell within 2 AIC,
these were incorporated into a weighted ‘averaged best model’ (Table 2).

2.4.3. Multiple regression on distance matrices

To analyze pairwise differences in parasitism between all pairs of study
sites, we utilized multiple regression on distance matrices (MRDM), a com-
mon approach in landscape ecology (Cusser et al., 2018) which is increas-
ingly used to understand pathogen dynamics across large spatial scales
(Poulin et al., 2011). MRDMs allow for multiple environmental matrices
to be evaluated in the same model, rather than collapsing variables into a
single environmental dissimilarity score (Lichstein, 2007). MRDMs use
non-parametric regression methods where significance of each distance
matrix is tested using permutation (Lichstein, 2007). Therefore, specific
hypotheses for environmental metrics, geographic metrics, and land use
resistance metrics may be tested in the same model (Cusser et al., 2018).

The response variables used in this analysis were parasitism distance
matrices, where each response variable was calculated as site-by-site
pairwise dissimilarity in parasite prevalence, where sites with more similar
parasite prevalence have lower distances and sites with less similar rates of
parasitism have greater distances. Distance matrices were calculated for the
site-level prevalence of C. bombi, C. expoekii, and A. bombi using the Bray-
Curtis dissimilarity metric. We then calculated a Bray-Curtis dissimilarity
matrix for overall parasite pressure by including all three parasite taxa in
a single matrix (as in Poulin et al., 2011).

The predictor variables used in this analysis were the geographic dis-
tance between sites, resistance distance between sites, elevation dissimilar-
ity (as in Jha, 2015), host genetic distance (Fst), host nesting density
dissimilarity, and mean precipitation dissimilarity. Geographic distance
was calculated as the Euclidian distance between the center-point of each
site. Resistance distance was calculated using resistance surfaces generated
in CIRCUITSCAPE v3 based on land-use classifications for nesting suitabil-
ity (sensu Jha, 2015) where high resistance land-use represents unsuitable
habitat for host nesting and low resistance land-use represents suitable
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habitat for nesting. Specifically, using the 2011 NLCD land use classifica-
tions, we created a single resistance raster with a resistance score of 0.9
applied to water cover, cropland cover, and impervious cover, and a resis-
tance score of 0.1 applied to grassland and forest cover, and then calculated
a pair-wise Euclidian distance between each site (as in Jha, 2015). Eleva-
tion dissimilarity matrices were calculated from the National Elevation
Dataset (NED, httl://ned.usgs.gov/), by taking the elevation difference
between sites and centering them between 0 and 1 by dividing all values
by the maximum elevation of 4330 m (as in Jha, 2015). To create host
genetic distance matrices based on pairwise genetic differentiation between
sites, we calculated Fgr modified for multi-allelic markers (Weir and
Cockerham, 1984) using weighted analysis of variance (weighted for sam-
ple size) in the software FSTAT (Goudet, 1995) as in Jha and Kremen
(2013Db). Dissimilarity matrices for host nesting density and mean precipita-
tion were calculated as the Euclidean distance between site level values
(as in Surinova et al., 2019). Because geographic distance and resistance
distances were highly correlated (Pearson's R = 0.942223; P = 2.2e-16),
they were explored in independent models alongside the remaining
matrices.

The MRDMs were conducted using the ecodist package in R (Goslee and
Urban, 2007) using a backwards selection procedure (Numerical Ecology
3rd ed., 2012), where the initial model includes the greatest number of var-
iables and subsequent models exclude the least predictive variable (highest
P-value) at each step (as in Cusser et al., 2018). Model selection stopped
when all variables in the model had a significant effect, or when the
model retained only a single predictor variable after excluding all other var-
iables in previous steps. We ran 10,000 permutations in all models, and
compared models based on the goodness of fit measured as R? values,
given that other metrics such as AIC, AICc, and BIC are limited in their abil-
ity to compare MRDMs with different numbers of variables (Franckowiak
et al., 2017). Because the resistance distance models consistently had
greater predictive power than the geographic distance models (Supplemen-
tal Table 2), we chose to focus on the resistance distance models in remain-
ing sections.

3. Results
3.1. Parasitism rates

The most common parasites in the study were Crithidia expoekii (n =
177; 23.53 %) and Crithidia bombi (n = 173; 23.0 %), followed by Apicystis
bombi (n = 83;11.03 %). Site-level parasite prevalence was highly variable
(Fig. 1), with C. expoekii ranging from 0 to 82.2 % (mean site level preva-
lence = 8.43 %, SD = 9.57), C. bombi ranging from 0 to 64.2 % (mean
site level prevalence = 8.24 %, SD = 8.66), and A. bombi ranging from 0
to 39.0 % (mean site level prevalence = 3.95 %, SD = 4.33) (Fig. 1).

3.2. Spatial autocorrelation

There was strong evidence of spatial autocorrelation for both C. expoekii
and C. bombi, but not for A. bombi, which was much less prevalent in this
study. Moran's I test for spatial autocorrelation showed significant spatial
autocorrelation for C. expoekii (P = 0.0047), and C. bombi (P = 0.048)
but was non-significant (P = 0.926) for A. bombi.

3.3. Generalized linear mixed effect models

After model selection, the top model for C. bombi (Table 2) included a
significant positive relationship with latitude (P = 0.00239; Fig. 2A).
After model selection, the top model for C. expoekii (Table 2) included a sig-
nificant positive relationship with latitude (P < 2e-16; Fig. 2B), and a signif-
icant negative correlation with host genetic diversity (P = 0.0199). After
model selection, the top model for A. bombi prevalence (Table 2) included
a significant positive relationship with estimated nesting density (P =
0.01947; Fig. 4A), and a significant negative relationship with precipitation
(P = 0.00503; Fig. 4B). The top Health Status model, where individual bees
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Fig. 2. Regression plots from GLM models, showing significant correlations
between latitude and C. bombi prevalence (A), C. expoekii prevalence (B), and the
Health Status (parasitized or not parasitized) metric (C). All three show
significantly higher prevalence in Northern latitudes.

were either ‘parasitized’ or ‘not-parasitized’, included latitude as the single
significant predictor variable (P = 0.014; Fig. 2C). The full models and av-
eraged top models (within delta AIC 2) for all three pathogens were very
similar to their respective top models, including all of the same significant
variables (Table 1).
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Table 1

Summary of GLM results in the full model average after model selection, including
all models within delta 2 AIC. Response variables are the presence or absence of
C. bombi, C. expoekii, or A. bombi in individual bees. The ‘Health Status’ response var-
iable indicates the presence or absence of any parasite in an individual bee (ie. par-
asitized or not parasitized individuals). Significant terms in the full model are
indicated in bold.

Response Predictor Estimate Standard Z-value  P-value
Error

Nest Density 0.01234 0.12582 0.098 0.922
Mean 0.02351 0.14108 0.166 0.867
Heterozygosity

Crithidia bombi ~ Elevation —0.07724 0.21711 3.55E-01 0.722
Precipitation —0.05702 0.21372 0.267 0.789
Latitude 0.89275 0.36934 2.413 0.015
Nest Site Suitability 0.00639 0.11627 0.055 0.956
Nest Density 0.01709 0.12574 0.136 0.892
Mean —0.66595 0.28566 2.328 0.019

o Heterozygosity

C'Z;i’e‘;di Elevation ~0.00353 010369 0.034  0.972
Precipitation —0.01341 0.13679 0.098 0.922
Latitude 1.44804 0.32987 4.383 1.17E-05
Nest Site Suitability 0.04847 0.16422 0.295 0.768
Nest Density 0.43652 0.19023 2.291 0.021
Mean 0.01223 0.08076 0.151 0.879
Heterozygosity

Apicystis bombi  Elevation 0.05821 0.14316  0.406 0.684
Precipitation —0.61641 0.20411 3.015 0.002
Latitude —0.00247 0.00664 0.373 0.709
Nest Site Suitability 0.02878 0.11235 0.256 0.798
Nest Density 0.22297 0.31307 0.313 0.476
Mean —0.00661 0.09099 0.091 0.942
Heterozygosity

Health Status ~ Elevation —0.06601 0.18143 0.181 0.716
Precipitation —0.10312 0.25033 0.251 0.681
Latitude 0.79455 0.32305 0.323 0.014

Nest Site Suitability 0.08219 0.21639 0.216 0.704

3.4. Multiple regression on distance

The most important predictor variable explaining pair-wise differences
in parasite prevalence across our sites was resistance distance (Fig. 3). After
backward model selection (Supplemental Table 2), the top MRDM model
for Crithidia bombi distance (Table 3) included both a significant positive
effect of resistance distance (P = 0.0002; Fig. 3A) and a significant negative
effect of precipitation (P = 0.0472). The top MRDM model for C. expoekii
distance (Table 3) included significant positive effects from resistance
distance (P = 0.0076; Fig. 3B) and elevation (P = 0.0499). The top
MRDM model for Apicystis bombi distance (Table 3) did not include any sig-
nificant predictors; model selection removed all possible variables, and
stopped at Step 5 (R? = 0.0301) with a non-significant effect from nesting
density (P = 0.0616). The top MRDM model for overall parasite commu-
nity dissimilarity (Step 5; R> = 0.0816) included a significant positive
effect of resistance distance (P = 0.0014; Fig. 3C).

4. Discussion

In this large-scale epidemiological study of a keystone bumble bee spe-
cies along the Western US coast, we document substantial spatial variation
in parasitism across the region, with strong spatial autocorrelation for both
Crithidia species, which were found at significantly higher prevalence in
northern latitudes. Identifying this hot-spot for native bee parasitism
demonstrates the value of a landscape-scale approach to disease ecology,
especially for key ecosystem-service providing organisms. The spatial pat-
terns seen in both Crithidia species were not found in A. bombi, which was
more influenced by local conditions, including precipitation and host pop-
ulation density, likely due to differences in transmission mechanism be-
tween the parasite taxa. We also show that biogeography and landscape
composition, in particular the availability of nesting resources, impacts
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Table 2
Results from the GLM models found with the lowest AIC scores during MuMIN model selection. Significant terms in each model are included in bold.
Response Predictor Estimate Standard Error Z-value P-value MarginalR? AIC
Crithidia bombi Latitude 0.8583 0.333 2.576 0.0099 0.1242 677.6
Crithidia expoekii Latitude 1.4512 0.312 4.643 3.43E-06 0.2952 625.2
P Mean Heterozygosity —0.6724 0.282 —2.383 0.0172
Apicystis bombi Nest Density 0.4463 0.191 2.336 0.0194 0.1202 491.2586
ey Precipitation ~0.5968 0.212 ~2.805 0.005
Health Status Latitude 0.7739 0.261 2.962 0.003 0.1154 839.6
Table 3

Result of MRDM model selection showing the best model for each parasite and hypothesis. The backwards model selection for A. bombi the models for ‘Isolation by Distance’
and ‘Isolation by Resistance’ hypotheses each removed geographic and resistance distances, respectively, where both models indicate estimated nesting density is the top
predictor. Significant terms in each model are included in bold.

Response Predictor Estimate Predictor P-value Model F-test Model P-value R™2

Crithidia bombi Precipitation —0.0017 0.0472 11.655 0.016 0.1012
Resistance Distance 2.4178 0.0018

Crithidia expoekii Elevation 0.0885 0.0499 21.166 0.008 0.1697
Resistance Distance 2.1986 0.0076

Apicystis bombi Estimated Nesting Density 0.00005 0.0605 6.472 0.061 0.0301

Bray-Curtis Dissimiliarty Resistance Distance 2.9155 0.0014 16.711 0.001 0.0816

spatial variation in parasitism. Finally, we found that populations with considered, we show that both abiotic environmental factors and host
lower genetic diversity had higher prevalence of C. expoekii, indicating population characteristics impact spatial variation in parasitism across the
that genetic diversity may reduce infection risk in local populations. All landscape.
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Fig. 3. Regression plots the resistance distance surface and dissimilarity in parasite abundance for C. bombi (A), C. expoekii (B), and A. bombi (C), and Bray-Curtis parasite
community dissimilarity (D). Solid lines indicate significant trends, and dashed lines are non-significant.
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Fig. 4. Regression plots for the top GLM model for A. bombi prevalence. A bombi prevalence is positively correlated with nesting density (A), here represented as site level
nesting density estimated through genetic recapture. A. bombi also shows a negative correlation with local mean precipitation (B).

4.1. Pathogens exhibit spatial autocorrelation and greater prevalence at higher
latitudes

The parasites in our study exhibited substantial spatial variation in
prevalence. We found strong evidence for spatial autocorrelation in both
C. bombi and C. expoekii. Both of these Crithidia species were significantly
more prevalent in Northern latitudes, and our ‘health status’ response vari-
able, which accounts for prevalence across all parasites, showed the same
patterns of spatial autocorrelation. We found the highest documented prev-
alence of C. expoekii at our highest latitude site, and all sites above 40° lat-
itude had >50 % prevalence. Similarly, most of the sites with the highest
C. bombi prevalence were at the highest latitude. Overall, this provides
some of the first compelling evidence that bumble bees at higher latitudes
experience significantly higher Crithidia infection rates. It has been sug-
gested that social bees may experience higher parasite prevalence at higher
latitude due to extremes in temperature and precipitation that reduce the
number of active foraging days and increase within-colony contact rates
(Retschnig et al., 2017; Lawson and Rands, 2019). Further, the duration
and timing of flowering periods differs greatly across the latitudinal gradi-
ent with later snowmelt causing truncated flowering seasons at higher lat-
itudes (Wielgolaski and Inouye, 2013). Because the quantity and quality
of foraging resources impacts both plant-pollinator networks and contact
among bees and their parasites (Koch et al., 2017), it is possible that both
within-colony and external foraging patterns driven by latitude may be
responsible for greater parasite prevalence at higher latitudes.

4.2. Geographic and resistance distance explain prevalence differences across
taxa

We found evidence that both geographic distance and anthropogenic
land use were mediating differences in parasite prevalence and community
composition. Specifically, we found that land-use resistance distance
models had greater predictive power than geographic distance models for
C. bombi, C. expoekii, and for overall parasite composition. Few studies
have included resistance distances in models of spatial variation in parasit-
ism, but this approach often improves predictive power by incorporating
biologically meaningful dispersal limitation (Nobert et al., 2016). For
example, Chronic Wasting Disease risk in white-tailed deer has been effec-
tively modeled using resistance distance, and also showed that incorporat-
ing land use connectivity more effectively explained the spatial distribution
of infected deer (Nobert et al., 2016).

In our study, resistance distance captures limitations to bumble bee
nesting due to unsuitable land cover, and was previously shown to be a pre-
dictor of host population genetic structure, likely due to dispersal limitation

across unsuitable nesting habitat (Jha, 2015). Impervious cover can limit
nest establishment by ground nesting bees such as B. vosnesenskii (Jha and
Kremen, 2013a) and greater impervious cover in the local landscape is a
known driver of higher bumble bee parasite prevalence in community gar-
dens along the central coast of California (Ivers et al., 2022). Land cover
which limits bumble bee dispersal may also negatively impact bumble
bee health forcing bumble bees to forage further in order to access nesting
and foraging resources (Ivers et al., 2022; McNeil et al., 2020). Land-cover
types can be predictive of bee health across landscape scales (Clermont
et al., 2015), where habitats with abundant floral resources and nesting
habitat support bumble bees with greater health and lower levels parasit-
ism (McNeil et al., 2020).

We acknowledge that land use resistance is tightly correlated with
geographic distance in our study, which has been studied to a greater extent
in the past. For example, the relationship between Euclidean distance
and parasite community similarity has previously been explored within
freshwater (Poulin and Morand, 1999) and marine fish (ie. Poulin et al.,
2011), mites (Vinarski et al., 2007), fleas (van der Mescht et al., 2018),
and helminth parasites of bats (Krasnov et al., 2010), with mixed relation-
ships between community similarity and Euclidean distance. Parasite
communities typically become isolated due to the dispersal movements of
their hosts (reviewed in Poulin et al., 2011), especially for non-motile and
directly transmitted parasites (Vinarski et al., 2007). In other words,
distance is a key factor when parasites are heavily dependent on the host
for dispersal (Poulin et al., 2011); in contrast, when dispersal can happen
indirectly, such as wind dispersal or phoresy, distance is less important
(Vinarski et al., 2007). For example, mite and flea assemblages are macro-
scopic, motile, and capable of phoresy, which may explain why community
similarity remains high even across large distances (Vinarski et al., 2007;
van der Mescht et al., 2018). C. bombi and C. expoekii are non-motile outside
of the host and have a limited window for viable indirect transmission at
flowers (Figueroa et al., 2019). Therefore, dispersal is highly dependent
on bee host movement, which we know can be responsive to the biogeo-
graphic and land-use barriers included in our resistance surfaces.

4.3. Elevation and precipitation also explain prevalence dissimilarity

Beyond resistance distance, we found that local environmental condi-
tions, specifically elevation and precipitation, also explained spatial varia-
tion in C. bombi and C. expoekii prevalence. Interestingly, sites with the
greatest difference in mean yearly precipitation experienced the most sim-
ilar rates of parasitism. Our sites varied in precipitation by >85 cm/year,
with sites ranging from 17.2 to 103.82 cm annual rainfall; we hypothesize
that both high rainfall and low rainfall sites exhibit high variability in for-
aging opportunities, concentrating foraging effort both spatially and
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temporally. Regions with high precipitation may experience limited
foraging days due to high precipitation frequency, whereas low
precipitation regions may be characterized by intermittent rainfall shaping
more ephemeral flowering phenologies and resulting bee foraging
(eg. Minckley et al., 2013). Looking forward, it is ‘virtually certain’ that
drought in the region will increase, and it is also possible that the disparity
in precipitation between dry and wet regions will increase with climate
change over time (Collins et al., 2013). Based on these predictions, we
can expect to see greater dissimilarity in C. bombi prevalence as the spatial
variation in precipitation becomes more extreme.

Past work also shows that sites with similar elevations have similar
plant assemblages, bee foraging behaviors, and subsequently transmission
dynamics (Inouye, 2008). Montane plant and pollinator assemblages are
known to be experiencing rapid climate-driven changes (Inouye, 2008)
which may impact contact rates among bee individuals in the local popula-
tion. These unique foraging conditions inherently alter pathogen transmis-
sion dynamics and likely contribute to the unique parasite prevalence seen
at a given altitude (Hickling et al., 2006; Morgan et al., 2004). Elevation is
especially likely to impact patterns of infection when parasites are physio-
logically limited in their altitudinal range, and while Crithidia was found
at all elevations, there is experimental evidence that Crithidia infection
levels are significantly different at distinct temperature ranges (Palmer-
Young et al., 2019), as would be seen along elevation gradients. For exam-
ple, Batrachochitridium dendrobatidis (Bd), a fungal pathogen of frogs, is
found at greater prevalence at higher elevation due in part to their thermal
tolerance levels (Cohen et al., 2019). Similarly, elevation also drives
patterns of smut disease in flowering plants (Abbate and Antonovics,
2014). Given that dissimilarity in parasite prevalence was associated with
elevation in our study, it is possible that elevation impacts contact rate or
physiological conditions in the host or parasite.

4.4. Response to precipitation is parasite specific

We found that A. bombi prevalence declined with increasing precipita-
tion. Few studies have evaluated precipitation as a driver of parasite preva-
lence in wild bee populations, and the results to date have included positive
(ie. McNeil et al., 2020), negative (ie. Rowland et al., 2021), and neutral
trends depending on the pathogen. Early evidence documenting prevalence
and intensity of Vairimorpha (formerly Nosema) infection in managed honey
bees in Turkey indicated higher prevalence in regions with greater precip-
itation (Aydin et al., 2005), presumably due to higher intracolonial trans-
mission. McNeil et al found a positive relationship with spring rainfall
and Vairimorpha infection in bumble bees (2021), indicating this pattern
continues in other hosts. Rainfall is thought to restrict bee foraging activity
(Lawson and Rands, 2019), keeping colony mates in close contact within
the nest and amplifying intracolonial disease transmission. In contrast,
Rowland and colleagues evaluated climatic drivers of several honey bee
diseases at landscape scales, and precipitation was negatively correlated
with Varroosis (Rowland et al., 2021). Varroa mites depend on honey
bees to infect new colonies, and if flight is restricted by rainfall, intercolo-
nial transmission also declines. Parasites which depend on intracolonial
transmission may benefit from rainfall mediated contact rates, whereas
parasites which depend on intercolonial transmission are likely limited by
rainfall (Rowland et al., 2021).

A. bombi may be dependent on intercolonial transmission due to its'
unique biology and potential to be transmitted across the community
through plant-pollinator-parasite networks (Figueroa et al., 2020).
A. bombi is known to infect a large number of solitary nesting bee species
(Figueroa et al., 2020) which do not have nest mates, indicating that
community wide transmission events outside of the nest are also important
to this parasite. Rainfall may also reduce transmission potential outside of
the nest by washing flowers and physically removing spores from flowers.
Rainfall reduces nectar sugar concentrations in flowers (ie. Tadey and
Aizen, 2001), and may similarly reduce the concentration of infective
spores in nectar and limit successful transmission and establishment in
new hosts. Additional research into precipitation-mediated changes in
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viability and transmission should be explored on a parasite-specific basis,
as the morphology and physiology of each parasite species is unique and
likely relevant to our understanding of landscape-level disease dynamics.

4.5. Pathogen prevalence increases with nesting density

We found that A. bombi was significantly more abundant at sites with
higher B. vosnesenskii nesting density. This is likely due to the fact that
higher nesting density leads to higher contact rate among colonies, and
by extension parasite transmission (Durrer and Schmid-Hempel, 1994).
Studies that have investigated the influence of nesting density on bumble
bee parasitism in natural populations have consistently found higher para-
site prevalence in populations with higher nesting density (Parsche and
Lattorff, 2018; Huth-Schwarz et al., 2012). Huth-Schwarz and colleagues
found that Vairimorpha (Nosema) bombi prevalence increased with local
nesting density of the host Bombus terrestris (2012). Parsche and Lattorf
show a similar pattern for C. bombi prevalence, with higher prevalence in
sites that support higher nesting densities (2018). We note that host nesting
density serves as a proxy for other key risk factors for multi-host parasite
establishment including host density, host contact rate, and the density of
potential transmission sites (ie. colonies and flowers; Graystock et al.,
2020). Our results resonate with past work and provide novel evidence
that host density positively impacts the prevalence of the less well-
understood parasite A. bombi.

4.6. Host genetic diversity may reduce parasitism

One of our principal hypotheses was that more genetically diverse
populations would experience lower parasite pressure, as has been seen
in many other taxonomic groups (reviewed in King and Lively, 2012) in-
cluding mammals (O’Brien et al., 1985; Thorne and Williams, 1988), fish
(Lively et al., 1990), crustaceans (Altermatt and Ebert, 2008), and insects
including Drosophila (Spielman et al., 2004), and many social insects in-
cluding bumble bees (Baer and Schmid-Hempel; Shykoff and Schmid-
Hempel, 1991; Parsche and Lattorff, 2018; Whitehorn et al., 2011). In
this study, we also found a negative relationship between C. bombi presence
and genetic diversity. Past studies on bumble bees have also found that pop-
ulations with higher genetic variation experience lower rates of C. bombi in-
fection (Shykoff and Schmid-Hempel, 1991; Parsche and Lattorff, 2018;
Whitehorn et al., 2011). For example, Whitehorn et al. (2011) found a
strong negative correlation between Bombus muscuorum heterozygosity
and C. bombi prevalence in wild caught bees. Interestingly, while Parsche
and Lattorff (2018) found that Bombus terrestris exhibited a significant
negative correlation between heterozygosity and C. bombi prevalence, the
co-occurring Bombus lapidarius exhibited no relationship between genetic
diversity and prevalence, likely due to differences in contact driven by
host abundance (Parsche and Lattorff, 2018) or differences in host compe-
tence (Stewart Merrill and Johnson, 2020). Taken together, past work and
our results indicate that host genetic variation plays an important role in
mediating parasitism in natural populations, but additional biotic and
abiotic factors are also critical in rapidly changing landscapes. Host popula-
tions become isolated when the surrounding landscape prevents dispersal
(Jha, 2015), leading to lower genetic variation in local bumble bee popula-
tions, and creating hot-spots with higher parasite prevalence.

5. Conclusion

By examining pathogen prevalence at biogeographic scales, our
study reveals that parasitism rates in wild bumble bees are a function of
multiple abiotic environmental traits and host traits, including human
land use, precipitation, elevation, host nesting density, and host genetic di-
versity. Further, we show that different parasite species exhibit unique re-
sponses to abiotic environmental and host conditions. Overall, our results
indicate that large-scale disease dynamics are heavily impacted by human
landscape modification, biogeography, climate context, and host popula-
tion demographic history. We also highlight the potential role of shifting
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environmental conditions for host-parasite interactions, where climate-
driven changes in precipitation and pollinator elevational distributions
may play a key role in mediating future landscape-level disease dynamics.

Lastly, when planning for future conservation challenges, we must bear
in mind that factors in many environmental spheres influence key ecosys-
tem service providing organisms, including parasites which simultaneously
pose conservation challenges to their hosts while also regulating population
growth and maintaining long-term population stability. Future work which
incorporates projections about future climate and land-use scenarios as well
as host population responses to parasites and other health risks will be espe-
cially valuable in balancing conservation priorities.
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