
Quantizing Large-Language Models for

Predicting Flaky Tests

Shanto Rahman

University of Texas at Austin

Austin, TX, USA

shanto.rahman@utexas.edu

Abdelrahman Baz

University of Texas at Austin

Austin, TX, USA

ambaz@utexas.edu

Sasa Misailovic

University of Illinois

Urbana-Champaign

Urbana, IL, USA

misailo@illinois.edu

August Shi

University of Texas at Austin

Austin, TX, USA

august@utexas.edu

AbstractÐA major challenge in regression testing practice is
the presence of flaky tests, which non-deterministically pass or
fail when run on the same code. Previous research identified mul-
tiple categories of flaky tests. Prior research has also developed
techniques for automatically detecting which tests are flaky or
categorizing flaky tests, but these techniques generally involve
repeatedly rerunning tests in various ways, making them costly
to use. Although several recent approaches have utilized large-
language models (LLMs) to predicting which tests are flaky or
predicting flaky-test categories without needing to rerun tests,
they are costly to use due to relying on a large neural network
to perform feature extraction and prediction.

We propose FlakyQ to improve the effectiveness of LLM-based
flaky-test prediction by quantizing LLM’s weights. The quantized
LLM can extract features from test code more efficiently. To
make up for loss in prediction performance due to quantization,
we further train a traditional ML classifier (e.g., a random
forest) to learn from the quantized LLM-extracted features and
do the same prediction. The final model has similar prediction
performance while running faster than the non-quantized LLM.

Our evaluation finds that FlakyQ classifiers consistently im-
proves prediction time over the non-quantized LLM classifier,
saving 25.4% in prediction time over all tests, along with a 48.4%
reduction in memory usage. Furthermore, prediction perfor-
mance is equal or better than the non-quantized LLM classifier.

I. INTRODUCTION

Regression testing is the common practice of rerunning tests

after every change to check whether their changes introduced

any bugs [1]±[3], but suffers from the presence of flaky tests.

Flaky tests are tests that non-deterministically pass or fail

when run on the same code [4]. If there are flaky tests, a

developer can no longer trust that the test failures during

regression testing are due to bugs introduced in code changes.

Furthermore, flaky tests are prevalent in open-source software

and in industry, with researchers at Facebook even suggesting

that everyone should ªassume all tests are flakyº [5].

There are many reasons for why tests are flaky. In a

large dataset of known flaky tests [6], the flaky tests are

categorized based on techniques that researchers previously

developed for detecting these flaky tests automatically [7]±

[10]: order-dependent (OD), non-idempotent-outcome (NIO),

implementation-dependent (ID), non-deterministic order-

dependent (NDOD), non-order-dependent (NOD), and

We acknowledge NSF grants no. CCF-2145774 and CCF-2313028, and the
Jarmon Innovation Fund.

unknown dependency (UD). The way researchers previously

detected and categorized flaky tests generally involve

repeatedly rerunning the tests in various ways [7], [8], [11],

[12], which makes them costly to use.

Recent work has focused on predicting flaky tests using

machine learning (ML), which does not require rerunning the

tests. Alshammari et al. proposed FlakeFlagger, an ML-based

approach to detect flaky tests by predicting whether a test is

flaky based on features such as test-code smells, historical

runtime information, or features based on running the tests

once, without continuously rerunning tests [13]. Fatima et al.

proposed Flakify to similarly predict flaky tests, but does so

using large-language models (LLMs) and predicting based

solely on the test code itself [14]. Flakify involves fine-tuning

a LLM to extract features from test-code tokens (resulting in

a feature vector) that it then passes on to a neural network to

predict whether a test is flaky or not. Fatima et al. found that

Flakify, by using a LLM, performs better at predicting flaky

tests than FlakeFlagger. Akli et al. later proposed FlakyCat to

predict a flaky-test category, also based on LLMs as well as

with few-shot learning [15]. While we see that this recent trend

of using LLMs provides benefits over traditional ML classifiers

in terms of prediction performance as well as not requiring to

rerun tests like dynamic analyses-based techniques, LLMs tend

to be large neural networks, requiring GPUs to both fine-tune

and run prediction. Running such LLM-based classifiers can

be costly in terms of both runtime and memory usage.

We propose FlakyQ, an approach to train more efficient

LLM-based classifiers that predict flaky tests via quantization.

Quantization for a LLM involves converting the weights in the

LLM from a higher precision data type, such as float, into

a lower precision data type, such as int8 [16]. A quantized

LLM can extract features from test code and perform pre-

diction faster. However, a quantized LLM generally suffers

from a loss in prediction capability compared to the non-

quantized LLM. We propose to overcome this limitation by

additionally training a traditional ML classifier (e.g., a random

forest model [17]) to learn from the features (in the form of

a feature vector) that the quantized LLM extracts from test

code and then performing the same prediction task (either

predicting whether a test is flaky or predicting the flaky-

test category). The intuition is that a traditional ML classifier



that uses these LLM-extracted features can enhance prediction

accuracy. In the final model, which pairs the quantized LLM

for feature extraction with a classifier for predictions, any

accuracy loss due to quantization is rectified, achieving the

same accuracy as a non-quantized LLM used for similar

predictions. Furthermore, a traditional ML classifier tends to

run much faster, requiring less resources than a neural network.

As such, combining both the traditional ML classifier and

the quantized LLM can result in faster prediction time while

achieving higher prediction accuracy.

We evaluate FlakyQ on large datasets of tests that contain

both flaky and non-flaky tests, and flaky tests that are labeled

with flaky-test categories, collected by prior researchers [6],

[15]. We fine-tune a pre-trained CodeBERT LLM on this

dataset to either predict whether a test is flaky or not, or to

predict the correct flaky-test category for a known flaky test.

We later quantize the resulting fine-tuned LLM, converting

the float data-type weights into int8 data-type weights.

We then train five different traditional ML classifiers using

the features extracted with the quantized LLM to perform the

same type of predictions. We compare the performance of the

classifiers created using our approach against the original, non-

quantized LLM classifier in terms of precision/recall/F1-score

as well as time to perform the prediction.

We find that the FlakyQ classifiers can predict with similar

precision/recall/F1-scores as the original, non-quantized LLM,

sometimes even surpassing it on these metrics. Furthermore,

the FlakyQ classifiers predict faster, e.g., dropping from 100.2

seconds down to 64.7 seconds to predict flaky-test categories

across all labeled flaky tests in our dataset, a 35.4% reduction.

We also find that the classifier uses 48.4% less memory.

The comparison against training the traditional ML classifiers

using non-LLM static code features (using bag-of-words or

vocabulary-based features extracted from test code) shows that

the traditional ML classifiers perform much worse using these

other features, suggesting the need to use LLMs to achieve

good prediction results. We also perform the same evaluation

on different datasets of categorized flaky tests, finding similar

trends between datasets, reinforcing our findings that quanti-

zation can provide prediction runtime improvements while any

loss in accuracy can be masked through additional use of a

traditional ML classifier.

This paper makes the following contributions:

• We propose quantizing LLMs to improve the runtime and

computational resources needed to predict flaky tests and

flaky-test categories, allowing them to run effectively in

CPUs. Further, we recover losses in accuracy by addi-

tionally training traditional ML classifiers to learn from

LLM-extracted features to perform the same predictions.

• We implement our approach and evaluate on large

datasets of labeled flaky tests. We compare the classifiers

trained using our approach against the non-quantized

LLM and traditional ML classifiers trained using bag-

of-words and vocabulary-based features, comparing the

classifiers in terms of both prediction accuracy metrics

and prediction runtime.

• We find that using a quantized LLM to extract features

speeds up prediction time, while the additional traditional

ML classifier can rectify any prediction loss. Further,

classifiers trained using LLM-extracted features perform

much better than using bag-of-words or vocabulary-based

features, showing the necessity to use LLMs to help with

prediction tasks. Our experiment scripts and results can

be found at https://sites.google.com/view/flakyq.

II. BACKGROUND

A. Flaky Tests

Flaky tests are tests that can nondeterministically pass and

fail when run on the same version of code [4], [18]. These

tests can mislead developers concerning the correctness of

their code, and they are prevalent both in open-source software

and in industry [5], [19], [20]. Prior work has focused on

proactively detecting which tests are flaky within a test suite,

such as through machine learning techniques [13], [14] or

rerunning the tests in various ways, resulting in a dataset of

known flaky tests known as IDoFT [6].

The flaky tests in the IDoFT dataset are also categorized

based on the techniques used to detect them. Shi et al.

proposed NonDex to detect tests that make assumptions on

methods or data structures with nondeterministic specifica-

tions, e.g., assuming unordered sets are always iterated over

in the same order due to its implementation [8]; these tests

are marked as implementation-dependent (ID). Lam et al.

proposed iDFlakies to detect tests whose outcomes depend

on the order in which they are run (passing in one order

but failing in another) [7]; these tests are marked as order-

dependent (OD). iDFlakies detects flaky tests by rerunning

them in different test orders, but some of the detected flaky

tests are not actually OD, i.e., the tests do not consistently

fail in one order and pass in another; they categorized these

tests as non-order-dependent (NOD). Lam et al. later found

that some of these tests are actually order-dependent, but

not deterministically, i.e., they fail more often in a specific

order, but not always [9]; they then marked such tests as non-

deterministic order-dependent (NDOD). Wei et al. studied non-

idempotent-outcome tests, which are tests that fail when run

twice in the same process [10]. They marked such tests as

non-idempotent-outcome (NIO). Finally, remaining flaky tests

that were found through reruns, yet difficult to understand or

reproduce, are marked as unknown dependency (UD).

Luo et al. previously categorized flaky tests in a different

manner, based on the root causes for flakiness based on their

inspection of fixed flaky tests in open-source projects [4].

Their categories include Async wait, Concurrency, Test order

dependency, Time, and Unordered collections. Barbosa et al.

inspected known flaky tests and manually classified them

among these categories [21]. Akli et al. later refined this

labeled dataset of flaky tests for their own evaluation purposes.

Researchers developed techniques for debugging/reproducing

flaky-test failures [22], [23] or repairing [24]±[28] flaky tests,

but only for specific categories of flaky tests; knowing the

category a priori can be useful for guiding which tools to use.



B. Machine Learning Classifiers and Large-Language Models

Traditional machine learning (ML) algorithms can be used

to train classifiers or models that categorize some input data

into a discrete set of classes [29]. In general, they take as

input a training set of labeled data, training a classifier that

can parse similar data to predict a label for that data. There

are a wide variety of different ML algorithms readily available

in libraries such as Scikit-learn [30]. Support Vector Machine

(SVM) creates hyperplanes to separate instances of different

classes [29], [31], [32]. Random Forest (RF) partitions the fea-

ture space into regions, assigning each region to a class [17].

K Nearest Neigbour (KNN) classifies instances based on

their similarity to other instances, as measured by distance

in the feature space [33]. Multi Layer Perceptron (MLP) is

a type of artificial neural network that uses layers of nodes

with activation functions to classify instances [34]. Logistic

Regression (LR) is a probabilistic classifier that generates

predictions of class membership probabilities, modeling the

log-odds of the probabilities in a linear fashion [35].

Large-language models (LLMs) are neural networks trained

on large quantities of text data. There are pre-trained LLMs

that are specifically trained on large amounts of text from

source code, e.g., CodeBERT is a LLM pre-trained on over six

million lines of code across six programming languages [36],

[37]. Given that these LLMs are trained on massive amounts

of code data, they can provide a means to parse and process

source code as well as general tasks such as predicting the next

tokens, based on the large amounts of data they were already

trained on. It is common to fine-tune a LLM to focus on a

specific prediction task, training on labeled data to construct a

better model geared towards the desired task. However, given

that LLMs are built on top of neural networks, they can be

expensive to train and to use for prediction, with both often

requiring GPU resources.

Quantization is the process of reducing the precision

of model parameters to save on memory and computation

time [16], [38], [39]. For example, one can convert the data-

types of weights in a model from float to int8. By using

this less precise data-type, the model can run faster without

using as much memory. However, the reduced computational

load comes at the cost of loss in prediction accuracy. There has

been much work in apply quantization for different models,

including for LLMs, trying to balance between computation

cost and prediction accuracy.

III. FLAKYQ

We propose FlakyQ, an approach for creating an efficient

LLM-based classifier that can predict whether a test is flaky

or predict the flaky-test category for a known flaky test by just

parsing the test-code body, with the goal that it can be run in a

CPU environment. The intuition is that we can make the LLM

run more efficiently through quantization. While quantization

can make a model that runs faster and consumes less memory,

the model may have less accurate predictions. FlakyQ further

trains of a traditional ML classifier to rectify prediction loss.

This traditional ML classifier is trained to take as input the

features extracted using the quantized LLM to perform the

same prediction task.

We first fine-tune a pre-trained LLM using a given dataset

of labeled tests so it can learn how to extract features from test

code for use in a specific prediction task. We specifically fine-

tune the CodeBERT model [36], [37]. We follow a similar

process to fine-tune the LLM as Flakify [14], with some

adjustments. Figure 1 shows our overall fine-tuning process.

1) Data Processing: Given a labeled dataset for training,

we first partition it into two distinct sets of training and

validation (Figure 1, 1 ). We have a validation set to evaluate

validation loss as we fine-tune the model across several epochs.

We make this division early as to ensure no overlap or

mixing between the sets. Each of these sets contains the tests’

source code along with their respective labels based on the

prediction task (flaky or non-flaky when predicting for flaky

tests, and flaky-test category when predicting for category).

We utilize the tokenizer from the pre-trained CodeBERT

model to tokenize the code from each test. After obtaining

these tokens, we convert these tokens into tensors (multi-

dimensional arrays). We create a sequence tensor and an

attention mask for each test. A sequence tensor contains

the numerical representations of the token, and the attention

mask indicates which positions in the corresponding sequence

tensor should get importance and which should be ignored.

It is noteworthy that during tokenization if the token size

becomes less than our defined token size, then the model

adds padding to keep the same token length for all the test

code. If a token is padded, then the corresponding index value

in the attention mask is set to 0, otherwise it is 1. These

tensors therefore represent the input test-code data that are the

inputs for the model. By default, CodeBERT accommodates

up to 512 tokens, truncating any additional tokens. From our

evaluation, we find that 13% of tests contain more than 512

tokens. Indeed, Fatima et al. similarly noted they encountered

this limitation when developing Flakify to predict flaky tests

when fine-tuning a CodeBERT model [14]. To address this

limitation, we segment the complete token list into smaller

chunks for processing (Figure 1, 2 ), where each chunk has

512 tokens (padded if less than that many tokens).

2) Fine-Tuning: For each chunk set, we utilize one Code-

BERT model, as a single CodeBERT model can process a

maximum of 512 tokens simultaneously. Therefore, we employ

as many models as there are chunks. After creating chunks of

tokens taken from test code, we feed them into the pre-trained

CodeBERT models, which convert them into vectors of length

768, a CodeBERT design choice [37]. We concatenate all

vectors together to create a new 768-length vector (Figure 1,

3 ). To further refine our model, we introduce two additional

neural network layers. The initial layer, a fully connected

one, takes the 768-length vector and outputs a feature vector

of length 512. This layer integrates a Rectified Linear Unit

(ReLU) activation function [40], followed by a dropout layer

set at a rate of 0.2.

The subsequent fully connected prediction layer uses the

512-length vector output of the preceding layer as its input.



Fig. 1. FlakyQ training process.

This prediction layer’s output corresponds to the specific

prediction task. For instance, in the context of predicting

whether a test is flaky, there are two output units: ªflakyº and

ªnon-flakyº. In the context of predicting a flaky-test category,

the output units match the number of categories, with each

unit signifying the likelihood of a test fitting that particular

category. The final step involves applying the log-softmax

function [41] to generate the logits [42] corresponding to these

categories. Using these logits, we compute the training loss

with a class-weighted cross-entropy loss function. The class

weights are determined by the number of samples in each

category, addressing the issue of class imbalance.

We continue this process for 20 epochs. In each epoch,

we train the model using the training set and validate on

the validation set determined previously (Section III-1). We

measure both the training loss and validation loss of the model.

We give the model-weights of this new model as input for the

next epoch to consult as it trains the model again. During these

20 epochs, we use the AdamW optimizer [43] to optimize the

training loss. After 20 epochs, we save the model that resulted

in the lowest validation loss.

3) Quantization: After fine-tuning a CodeBERT model, we

dynamically quantize this model [44], creating a quantized

LLM (Figure 1, 4 ). This dynamic quantization process con-

verts the float model weights to type int8, offering the

distinct advantage of eliminating the need for model retrain-

ing, unlike static quantization [45]. By converting the model

weights from float to int8, and specifically targeting the

linear layers of the CodeBERT model that extracts features, we

can improve feature-extraction time, particularly as it requires

smaller data transfers from memory and runs on hardware

designed for int8 operations.

4) Rectifying Prediction: While we can continue to use

the same prediction head created when fine-tuning the LLM

to now predict using the features extracted by the quantized

LLM (Figure 1, 5 ), the prediction may now no longer be as

effective due to the losses in model weight precision. To rectify

any prediction accuracy loss, we additionally train a traditional

ML classifier (e.g., random forest) to perform prediction based

on the features extracted using the quantized LLM.

We train this traditional ML classifier normally to predict

whether a test is flaky or to predict a flaky-test category using

the entire training dataset. The inputs to the classifiers are

Fig. 2. FlakyQ classifier workflow.

the 768-length vectors outputted by the quantized, fine-tuned

CodeBERT model. We finally output a classifier, that ulti-

mately uses the quantized LLM to extract features and leverage

the traditional ML classifier to do the actual prediction.

Figure 2 illustrates the flow of the final outputted classifiers

(Figure 1, 6 ), showcasing how a developer would use one of

these classifiers. The input is test-code data, which is parsed

through a tokenizer to create tokens that are then converted

into tensors. This tensor is fed through a quantized CodeBERT

model, which extracts features from the tensor and outputs

another vector that is used as input to a trained traditional ML

classifier to perform the prediction.

IV. EXPERIMENTAL SETUP

We address the following research questions:

• RQ1: How accurate are FlakyQ classifiers at predicting

flaky tests and flaky-test categories?

• RQ2: How much time and memory is saved by using

FlakyQ classifiers?

• RQ3: How effective are the classifiers when evaluated in

a per-project evaluation?

• RQ4: How effective are the classifiers when trained/eval-

uated on different datasets?

We address RQ1 to evaluate the loss in prediction accuracy

due to quantization as well as how well traditional ML

classifiers can rectify that loss. We address RQ2 to compare

the amount of time and memory needed by each classifier, i.e.,

how much time can be saved by using a quantized LLM. A

developer may need to run the classifier many times on future

code and tests, so a more efficient prediction time can reduce

their development costs. We address RQ3 to check whether

the prediction results are also applicable when we train on

tests from some open-source projects but predict on tests from

entirely different projects. This evaluation is focused on a real-

world application of these classifiers, namely can a developer

effectively reuse the classifiers trained on some other projects

for use in their own project that was not part of the training.



TABLE I
ALL CATEGORIES ACROSS TWO DATASETS

Category-Name #Tests

IDoFT Flaky-vs-NonFlaky

Flaky 3195
NonFlaky 618

Total 3813

IDoFT Flaky Test Category

NDOD 84
NOD 226
OD 932
NIO 196
ID 1617
UD 140

Total 3195

FlakyCat

Async wait (Asyn.) 125
Concurrency (Conc.) 48
Time 42
Test Order Dependency (OD) 103
Unordered Collections (UC) 51

Total 369

Finally, we address RQ4 to see whether our findings also hold

on some other dataset of flaky tests.

A. Dataset

We evaluate on a dataset of labeled flaky tests. We start with

the dataset that Fatima et al. used to evaluate Flakify [14].

Their dataset includes both flaky and non-flaky tests. We need

flaky tests that are also categorized and labeled, given that

one of our prediction tasks is to predict a flaky-test category

for a known flaky test. A large part of the flaky tests from

Fatima et al.’s dataset are taken from IDoFT [6], a public

dataset of known flaky tests where each flaky test is labeled

with a category based on a prior technique used specifi-

cally to detect the flaky test [7]±[10]: order-dependent (OD),

non-idempotent-outcome (NIO), implementation-dependent

(ID), non-deterministic order-dependent (NDOD), non-order-

dependent (NOD), and unknown dependency (UD). Ulti-

mately we use a total of 3813 tests from Fatima et al., where

3195 of them are flaky tests and the rest are non-flaky tests.

The 3195 flaky tests are also labeled using categories taken

from IDoFT. Table I shows the breakdown of the number of

flaky tests among each of these categories within the dataset.

For the sake of RQ4, we also use a different labeled set

of flaky tests provided by Akli et al. for their work on

FlakyCat [15]. FlakyCat is a technique for categorizing flaky

tests, where their categories are based on flaky-test root causes

defined by past studies [4], [18]: Async wait, Test order

dependency, Unordered collections, Concurrency, and Time.

Ultimately, we use a total of 369 labeled flaky tests from this

dataset. Table I also shows the breakdown of the number of

flaky tests among each of these categories within the dataset.

B. Trained Classifiers

We use FlakyQ to train five different classifiers, each using a

different traditional ML classifier that uses the quantized, fine-

tuned LLM’s extracted features to predict flaky tests. The five

traditional ML classifiers we use are KNN, MLP, RF, SVM,

and LR (Section II-B).

For comparison purposes, we also evaluate the neural net-

work classifier that uses the fine-tuned LLM for extracting fea-

tures. This neural network classifier is essentially Flakify [14],

except we address its token-length limitation (Section III-1).

Additionally, we also train a version of it that can predict the

flaky-test category. We refer to such a classifier as Flakify++.

We also evaluate this neural network classifier that uses the

quantized LLM to extract features, as a means to show whether

the additional traditional ML classifiers trained on top of the

quantized LLM can rectify any loss in prediction accuracy.

We refer to such a classifier as Q-Flakify++.

In addition, we also evaluate the traditional ML classifiers

using non-LLM features The goal is to see whether the

traditional ML classifiers’ prediction results are mainly due

to using the LLM-extracted features or whether any form of

representing test code is sufficient to create a good classifier.

Here, we use bag-of-words and vocabulary-based features.

A bag-of-words is a vector that represents the frequency of

word appearance in text while also ignoring any information

concerning the order of words that appear. We use a CountVec-

torizer from the Scikit-learn library [30] to transform the test

source code into a token count vector, and we use this vector

as the extracted features for training the ML classifier.

We follow a similar approach as Pinto et al. for extracting

features in a vocabulary-based approach [46]. We start by

tokenizing the code using a word tokenizer [47]. We then apply

stemming and calculate the appearance of each token, resulting

in a token-occurrence vector for each test. We use this vector

as the extracted features for training the ML classifier.

C. Cross Validation

We use a 10-fold cross validation to evaluate the effective-

ness of the different classifiers. We construct 10 folds, where

in each fold we divide the dataset such that 90% of the tests

are used for the training set and the remaining 10% are used

for test set. For each fold, we train a classifier on the training

set of that fold and then evaluate on the test set (recall that

this training set of each fold gets further divided into training

and validation set when fine-tuning the model across many

epochs, Section III-1). We also use the exact same training set

and validation set on each fold for each classifier as to more

fairly compare them to one another.

For the task of predicting whether a test is flaky or not, we

consider the classifier predicting a test to be flaky as a positive

while predicting it as non-flaky to be a negative, allowing us

to compute the number of true positives (TP), false positives

(FP), true negatives (TN), and false negatives (FN). We then

compute the precision of the classifier on the data in a fold as
TP

TP+FP
. We compute the recall of the classifier as TP

TP+FN
.

The F1-score is then computed as 2 ×
Precision×Recall

Precision+Recall
. We



compute the averages of these three values across all 10 folds

and report these results for answering RQ1.

For the task of predicting the flaky-test category, we evaluate

on the known flaky tests with labeled categories, and we

separately compute precision, recall, and F1-score for each

category, where a positive is that the classifier categorizes

the test within the category and a negative as otherwise. We

similarly compute an average of each value across all 10 folds

per category. Furthermore, for each classifier, we compute

the average of the precision, recall, and F1-scores across all

categories, resulting in an average for all three values per

classifier for comparison purposes.

D. Per-Project Evaluation

To answer RQ3, we break apart our dataset based on

the projects the tests belong to. Like the per-project evalu-

ation methodology proposed by Fatima et al. [14], instead

of performing a 10-fold cross validation for each classifier,

we instead reserve the tests from one project for use as the

test set while using the tests from all the other projects for

training. The goal is to check how good the classifiers are

at predicting flakiness or categories for tests in projects not

seen during training. Some projects have very few tests in

our dataset, meaning validation on just those few tests can

result in misleading results. As such, we purposefully only

choose projects that have at least 30 flaky tests, resulting in

27 projects. As such, for each classifier, we train and validate

27 times (essentially performing 27-fold validation), and we

compute the precision, recall, and F1-score that each classifier

achieves when validating on each individual project.

E. Time Measurements

For each classifier, we measure the time required to extract

features from the quantized model using the testing data.

Subsequently, we calculate the time each classifier needs to

predict labels for all tests within each fold, then average these

prediction times over all folds. These times together form the

overall prediction time. The results, including the training and

quantization times, are detailed in RQ2.

F. Hardware Environment

We fine-tune the CodeBERT model using a Linux machine

equipped with a single NVIDIA RTX A5000 GPU and 125GB

RAM. We use CUDA version 12.0 with the GPU. We quantize

the LLM using Pytorch’s built-in quantizer, which can only be

run on a CPU. When we train the traditional ML classifier,

we run in a CPU environment without a GPU, namely on

a 64-bit Ubuntu 20.04.4 desktop with an Intel(R) Xeon(R)

W-2245 CPU @3.90GHz. We use the same environment for

training the traditional ML classifier when using both LLM-

extracted features, bag-of-words features, and vocabulary-

based features. When we finally measure prediction time per

classifier, we run the classifier (including feature-extraction

using the LLM) in the same CPU environment.

V. EVALUATION

A. RQ1: Predicting Flaky Tests

Table II presents how effective the classifiers are at predict-

ing flaky tests. Each row corresponds to a different classifier,

and each classifier trained using FlakyQ includes the name

of the traditional ML classifier. Columns under ªFlaky-vs-

NonFlakyº show the results of the classifiers trained to predict

whether a test is flaky, and columns under ªFlaky-Test Cat-

egoryº show the results of the classifiers trained to predict

a flaky-test category. The columns ªPº, ªRº, and ªF1º show

precision, recall, and F1-score, respectively.

Overall, the neural network classifier Flakify++ has high

precision, recall, and F1-score for all prediction tasks, with

on average 93.9 F1-score to predict whether a test is flaky

and on average 91.2 F1-score to predict a flaky-test category.

Using the quantized LLM decreases the classifier’s prediction

effectiveness, with F1-score dropping to 93.0 when predicting

whether a test is flaky or not and F1-score dropping to 84.3

when predicting the flaky-test category.

However, the classifiers created using FlakyQ rectify the

loss that comes from quantization. All FlakyQ classifiers have

average F1-scores that are higher than Q-Flakify++, and they

can even be higher than those achieved by Flakify++, which

does not use the quantized model. For example, FlakyQ_MLP

achieves the highest average F1-score for predicting whether

a test is flaky, at 94.4, while FlakyQ_LR achieves the highest

average F1-score for predicting flaky-test categories, at 93.3.

We also show in Table III the average F1-scores across

all folds for each classifier, but broken down across the six

flaky-test categories. Different classifiers are better or worse at

predicting different flaky-test categories. A priori, we cannot

know which classifier would be more effective for specific

categories. However, we see the same trend overall, where

Q-Flakify++, due to using a quantized LLM, is worse at

predictions for almost all categories compared to the non-

quantized version in Flakify++. The FlakyQ classifiers can

result in F1-scores that rectify that loss, with comparable

(often higher) F1-scores than Flakify++.

Table IV shows the same prediction results as in Table II, but

for the traditional ML classifiers trained using bag-of-words

and vocabulary-based features. In comparison to their corre-

sponding versions that use the quantized LLM, the precision,

recall, and F1-scores are all lower. While F1-scores are not

lower by much in the case of predicting whether a test is

flaky or not, the F1-score is especially low when predicting

the flaky-test category. For example, KNN, when trained using

LLM features, can achieve an average F1-score of 92.1 for

predicting flaky-test categories, but that F1-score drops to 69.1

when using vocabulary-based features. Most other classifiers’

F1-scores drop around 10 percentage points when predicting

flaky-test categories using such features. Overall, these results

highlight how useful LLM-extracted features are towards these

prediction tasks, where the traditional ML classifiers can now

predict at the same level as the neural network classifier if

they are trained to use the same LLM-extracted features.



TABLE II
RESULTS OF CLASSIFIERS PREDICTING FLAKY TESTS.

Flaky-vs-NonFlaky Flaky-Test Category
Precision Recall F1-score PT (sec) Precision Recall F1-score PT (sec)

Classifier (P) (R) (F1) (P) (R) (F1)

Flakify++ 94.1 93.9 93.9 123.0 92.6 90.8 91.2 100.2
Q-Flakify++ 93.0 93.2 93.0 109.6 88.4 83.9 84.3 96.5
FlakyQ_KNN 93.4 93.6 93.5 78.7 92.4 92.0 92.1 66.9
FlakyQ_MLP 94.4 94.5 94.4 78.3 92.9 92.6 92.6 64.2
FlakyQ_RF 93.2 93.2 93.1 75.9 93.0 92.8 92.6 64.7
FlakyQ_SVM 93.6 93.6 93.5 76.0 93.3 93.1 93.0 65.2
FlakyQ_LR 93.6 93.8 93.6 78.7 93.5 93.3 93.3 65.8

TABLE III
RESULTS OF CLASSIFIERS FOR FLAKY-TEST CATEGORY (THIS TABLE

CONTAINS F1-SCORE).

Classifier NDOD NOD OD NIO ID UD

Flakify++ 84.9 71.9 91.8 94.6 92.4 81.4
Q-Flakify++ 86.7 64.5 84.7 86.7 91.7 72.9
FlakyQ_KNN 85.9 72.6 92.2 95.8 92.5 82.0
FlakyQ_MLP 86.5 75.1 92.9 96.2 91.9 80.6
FlakyQ_RF 87.8 75.2 92.9 96.2 91.6 82.6
FlakyQ_SVM 85.1 77.9 93.6 96.6 91.0 81.9
FlakyQ_LR 86.1 77.4 93.3 96.8 92.1 82.3

TABLE IV
RESULTS OF PREDICTING TEST FLAKINESS USING BAG-OF-WORDS AND

VOCABULARY-BASED FEATURES.

Flaky-vs-NonFlaky Flaky-Test Category
Classifier P R F1 PT (sec) P R F1 PT (sec)

Bag-Of-Words Features

KNN 85.8 95.8 90.5 1.7 74.6 73.3 73.0 0.6
MLP 89.4 90.8 90.1 0.3 85.9 85.3 85.3 0.2
RF 90.0 93.8 91.8 0.6 84.4 83.2 82.3 0.4
SVM 92.8 91.6 92.2 3.1 82.5 82.8 82.4 4.6
LR 91.2 92.7 92.0 0.2 83.8 84.1 83.6 0.2

Vocabulary Features

KNN 85.3 96.3 90.4 3.6 70.5 69.5 69.1 4.1
MLP 92.9 79.0 85.4 2.5 85.9 85.7 85.4 3.3
RF 89.7 91.5 90.6 2.5 83.6 82.3 81.1 3.4
SVM 89.5 93.4 91.4 2.6 83.0 83.2 82.9 9.0
LR 93.2 91.5 92.3 4.6 84.5 84.8 84.2 3.2

B. RQ2: Time and Memory

Table II also shows for each classifier the average prediction

time (column ªPT (sec)º), namely the number of seconds

needed for the classifier to run prediction on all tests in a

fold. Note that this prediction time includes the time to extract

features as well as the time to do the actual prediction using

the extracted features as input.

Flakify++ takes the most time to do prediction, on average

needing 123.0 seconds for predicting whether a test is flaky

and 100.2 for predicting flaky-test categories. By using a

quantized LLM, the time drops down to 109.6 seconds and

96.5 seconds, respectively. The prediction time drops even

further for the FlakyQ classifiers, which can indicate how the

final prediction can be sped up when using a traditional ML

classifier over the neural network.

We observe that the times needed for training all classifiers

are similar to each other, needing around 2263.6 seconds for

training, the bulk of which is fine-tuning the LLM. Quanti-

zation takes an additional 3.3 seconds. We also find that the

additional time needed to train the traditional ML classifier

on top of the quantized LLM is rather small compared to

the rest of the time. The training time for these traditional

ML classifiers is quite short, with durations ranging from as

little as 0.0034 seconds (for KNN) up to 20.5 seconds (for

RF). While training time is rather large, note that training a

classifier needs to happen just once, and a developer can reuse

the classifier for predicting flaky tests in other projects.

Table IV also shows the prediction time for the classifiers

trained using bag-of-words and vocabulary-based features. The

prediction time is much faster, due to not using a LLM to

extract features. While these classifiers take much less time

to run, given that they are not as effective at prediction,

a developer would have to consider whether this trade-off

between prediction accuracy and prediction time is worth it

for their specific development process.

Overall, these results showcase the efficiency of FlakyQ

classifiers, given that they can achieve the similar prediction

accuracy as Flakify++ while running much faster. For ease

of presentation, we only show results for classifiers that use

LLM-extracted features for later RQs.

Futhermore, we find that using the quantized LLM also pro-

vides reduced memory usage. Our results show that classifiers

that use the quantized LLM use 48.4% less memory for all

prediction tasks. This large reduction in memory usage can be

especially beneficial for larger-scale applications.

C. RQ3: Per-Project Evaluation

Table V shows the results of the per-project evaluation for

the task of predicting whether a test is flaky, for the 27 projects

that have at least 30 flaky tests. Each row shows the results for

each project. The column ªSupportº shows the number of tests

on which we run the classifier. Columns ªPº, ªRº, ªF1º, and

ªPT (sec)º show the precision, recall, F1-score, and prediction

time, respectively, of each classifier for the project. For space

reasons, we only show the results for Flakify++, Q-Flakify++,

and FlakyQ_RF as a representative of the FlakyQ classifiers.

We show in the final row the summary of the results, namely

the total number of tests on which we run the classifiers, the



TABLE V
PER-PROJECT ACCURACY OF FLAKY VS NON-FLAKY (EACH PROJECT HAVE AT LEAST 30 FLAKY TESTS).

Flakify++ Q-Flakify++ FlakyQ_RF
Project Support P R F1 PT (sec) P R F1 PT (sec) P R F1 PT (sec)

Chronicle-Wire 63 93.0 87.0 90.0 22.6 94.0 95.0 95.0 20.2 94.0 94.0 94.0 17.6
DataflowTemplates 39 100.0 100.0 100.0 13.9 100.0 100.0 100.0 12.8 100.0 100.0 100.0 7.9
Java-WebSocket 54 100.0 100.0 100.0 18.8 100.0 100.0 100.0 16.9 100.0 100.0 100.0 10.8
Mapper 76 97.0 99.0 98.0 26.3 97.0 99.0 98.0 23.8 97.0 99.0 98.0 15.4
admiral 113 99.0 99.0 99.0 38.6 99.0 99.0 99.0 33.6 99.0 99.0 99.0 22.0
adyen-java-api-library 89 68.0 54.0 43.0 30.6 55.0 54.0 52.0 27.3 64.0 54.0 45.0 18.2
biojava 52 100.0 100.0 100.0 18.2 100.0 100.0 100.0 16.3 96.0 98.0 97.0 10.7
dubbo 186 87.0 88.0 87.0 61.7 84.0 88.0 86.0 55.4 84.0 91.0 88.0 37.5
esper 38 100.0 100.0 100.0 13.4 100.0 100.0 100.0 12.9 100.0 100.0 100.0 7.6
fastjson 109 92.0 91.0 91.0 37.1 93.0 93.0 93.0 34.7 93.0 93.0 93.0 22.1
hadoop 149 99.0 99.0 99.0 50.3 100.0 100.0 100.0 45.7 100.0 100.0 100.0 30.5
hbase 52 99.0 98.0 98.0 18.2 99.0 98.0 98.0 17.3 99.0 98.0 98.0 10.7
hive 42 99.0 98.0 98.0 14.9 99.0 98.0 98.0 14.1 99.0 98.0 98.0 8.9
innodb-java-reader 45 100.0 100.0 100.0 15.7 100.0 100.0 100.0 14.9 100.0 100.0 100.0 9.0
junit-quickcheck 250 99.0 99.0 99.0 80.7 99.0 99.0 99.0 75.1 99.0 99.0 99.0 50.1
mockserver 39 100.0 100.0 100.0 14.0 100.0 100.0 100.0 13.7 100.0 100.0 100.0 8.2
nacos 34 94.0 94.0 94.0 12.1 89.0 94.0 91.0 11.8 89.0 94.0 91.0 6.9
nifi 146 99.0 99.0 99.0 49.4 100.0 100.0 100.0 45.8 100.0 100.0 100.0 29.7
openhtmltopdf 35 100.0 100.0 100.0 12.6 100.0 100.0 100.0 11.9 100.0 100.0 100.0 7.2
ormlite-core 114 100.0 100.0 100.0 38.9 100.0 100.0 100.0 35.7 100.0 100.0 100.0 23.0
riptide 30 100.0 100.0 100.0 10.7 100.0 100.0 100.0 10.1 100.0 100.0 100.0 6.1
spring-boot 48 100.0 100.0 100.0 16.9 100.0 100.0 100.0 15.6 100.0 100.0 100.0 9.7
spring-data-r2dbc 68 100.0 100.0 100.0 23.6 100.0 100.0 100.0 21.8 100.0 100.0 100.0 13.8
spring-hateoas 42 100.0 100.0 100.0 14.9 100.0 100.0 100.0 13.8 100.0 100.0 100.0 8.6
typescript-generator 60 100.0 100.0 100.0 20.9 100.0 100.0 100.0 19.3 100.0 100.0 100.0 12.2
visualee 47 100.0 100.0 100.0 16.6 100.0 100.0 100.0 15.3 100.0 100.0 100.0 9.7
wildfly 85 100.0 100.0 100.0 29.3 98.0 99.0 98.0 26.9 98.0 99.0 98.0 17.3

Total/ 2105 721.0 662.4 431.5

Weighted Avg. 96.3 95.6 95.1 95.6 96.0 95.6 95.8 96.2 95.4

average precision, recall, and F1-score across all projects, and

the total prediction time across all tests.

Overall, we see that the classifiers in general are effective

at predicting whether a test is flaky, even when predicting on

tests from projects not seen during training. We see that the

differences in prediction is not that much different between us-

ing quantized and non-quantized LLMs, with even a slight in-

crease in recall in using a quantized model, leading to a higher

F1-score of 95.6 for Q-Flakify++. When using FlakyQ_RF, the

final F1-score is similar to that of Q-Flakify++. These results

suggest that, when training classifiers to predict whether a test

is flaky by using data from other projects, quantization does

not change much the prediction accuracy. However, we once

again see a substantial speedup from using quantized models,

and the prediction time for FlakyQ_RF ends up much faster

than for Flakify++ and Q-Flakify++.

When considering the task of predicting the flaky-test cate-

gory, the results in a per-project evaluation are a bit different.

Table VI is a similar table as before, but shows results for

predicting the category. We see here that the average F1-

score is worse with quantization when comparing Flakify++

to Q-Flakify++, with the score dropping from 92.0 down to

89.7. However, FlakyQ_RF now makes up for that loss in

prediction accuracy, with an average F1-score of 92.4. Once

again, quantization saves on prediction time, with the total

prediction time being 366.9 seconds for FlakyQ_RF across all

tests, in comparison to 633.8 seconds for Flakify++.

D. RQ4: Evaluating on FlakyCat Dataset

Table VII shows the results of running the different classi-

fiers but trained and evaluated on the FlakyCat dataset. We

show in the table the average F1-score achieved by each

classifier when categorizing the flaky tests into one of the five

categories defined in the FlakyCat dataset, namely Async wait

(Asyn.), Concurrency (Conc.), Time, Unordered collections

(UC), Test order dependency (OD). The column ªWeighted

Avg.º shows the average F1-score across all categories. The

final column ªPT (sec)º shows the prediction time of the

classifier when run across all tests in this dataset.

Flakify++ achieves high F1-scores across all categories,

with an average F1-score of 95.6, showing how effective

LLMs are at predicting flaky-test categories even for a different

dataset of flaky tests and flaky-test categories. Q-Flakify++’s

F1-score once again drops due to using a quantized LLM,

down to 93.6. The prediction time for Q-Flakify++ is lower

than for Flakify++, at 11.3 seconds vs 14.0 seconds. We

once again see that the FlakyQ classifiers almost all rectify

the prediction loss. Furthermore, the FlakyQ classifiers have

comparable prediction time as Q-Flakify++.

We also evaluate FlakyCat itself on this same dataset. Flaky-

Cat also uses a pre-trained CodeBERT model, but it relies on

few-shot learning (FSL) for training to do the prediction. We

show the results for FSL in the table as well. The prediction

results for FSL are not as high, similar to the findings in the

original work [15]. We note that the main difference comes



TABLE VI
PER-PROJECT ACCURACY OF FLAKY-TEST CATEGORY (THE PROJECTS THAT HAVE AT LEAST 30 TESTS).

Flakify++ Q-Flakify++ FlakyQ_RF
Project Support P R F1 PT (sec) P R F1 PT (sec) P R F1 PT (sec)

Chronicle-Wire 59 93.0 85.0 89.0 21.3 92.0 63.0 74.0 20.8 93.0 86.0 90.0 13.5
DataflowTemplates 39 100.0 100.0 100.0 13.8 100.0 90.0 95.0 13.5 100.0 100.0 100.0 7.5
Java-WebSocket 54 88.0 87.0 87.0 19.1 88.0 87.0 87.0 18.2 88.0 87.0 87.0 11.0
Mapper 75 95.0 95.0 93.0 26.2 86.0 75.0 80.0 24.7 99.0 99.0 99.0 15.0
admiral 109 90.0 87.0 85.0 37.8 77.0 80.0 77.0 34.5 91.0 91.0 88.0 22.1
adyen-java-api-library 45 100.0 100.0 100.0 16.1 100.0 100.0 100.0 15.1 100.0 100.0 100.0 8.8
biojava 51 24.0 16.0 19.0 18.2 81.0 10.0 16.0 17.0 28.0 37.0 32.0 10.4
dubbo 170 79.0 77.0 77.0 57.6 81.0 78.0 77.0 50.7 80.0 73.0 73.0 34.8
esper 38 97.0 97.0 97.0 13.6 97.0 97.0 97.0 12.6 95.0 97.0 96.0 7.7
fastjson 64 91.0 92.0 91.0 22.5 89.0 88.0 88.0 20.9 92.0 95.0 94.0 12.8
hadoop 146 91.0 89.0 90.0 49.9 92.0 86.0 88.0 44.0 92.0 90.0 91.0 29.5
hbase 47 98.0 98.0 98.0 16.8 94.0 96.0 95.0 15.6 98.0 98.0 98.0 9.7
hive 41 98.0 98.0 98.0 14.9 98.0 95.0 96.0 13.5 98.0 98.0 98.0 8.6
innodb-java-reader 45 100.0 100.0 100.0 16.1 100.0 100.0 100.0 14.6 100.0 100.0 100.0 9.0
junit-quickcheck 131 97.0 98.0 98.0 44.8 97.0 98.0 98.0 39.4 97.0 98.0 98.0 26.1
mockserver 30 100.0 100.0 100.0 10.9 100.0 100.0 100.0 10.0 100.0 100.0 100.0 6.2
nacos 32 100.0 100.0 100.0 11.6 97.0 97.0 97.0 10.6 97.0 97.0 97.0 6.6
nifi 139 100.0 100.0 100.0 47.5 100.0 99.0 100.0 42.1 100.0 100.0 100.0 28.2
openhtmltopdf 35 100.0 100.0 100.0 12.6 100.0 100.0 100.0 11.5 100.0 100.0 100.0 7.2
ormlite-core 113 99.0 99.0 99.0 39.1 97.0 97.0 97.0 39.1 97.0 97.0 97.0 23.2
riptide 30 100.0 100.0 100.0 10.9 100.0 100.0 100.0 9.7 100.0 100.0 100.0 6.1
spring-boot 48 100.0 100.0 100.0 17.1 100.0 100.0 100.0 15.0 98.0 98.0 98.0 9.6
spring-data-r2dbc 37 100.0 100.0 100.0 13.4 100.0 100.0 100.0 11.6 100.0 100.0 100.0 7.5
spring-hateoas 41 100.0 100.0 100.0 14.7 100.0 100.0 100.0 12.9 100.0 100.0 100.0 8.3
typescript-generator 60 100.0 100.0 100.0 21.2 100.0 100.0 100.0 18.6 100.0 100.0 100.0 12.1
visualee 47 100.0 100.0 100.0 16.8 100.0 100.0 100.0 14.7 100.0 100.0 100.0 9.1
wildfly 84 98.0 96.0 97.0 29.4 98.0 96.0 97.0 25.3 98.0 98.0 98.0 16.2

Total/ 1810 633.8 576.2 366.9

Weighted Avg. 92.9 91.9 92.0 93.2 88.9 89.7 93.2 92.6 92.4

TABLE VII
PER-CLASSIFIER EVALUATION WITH FLAKYCAT DATASET.

Classifier Asyn. Conc. Time UC OD Weighted PT (sec)
Avg.

Flakify++ 94.80 93.31 96.86 96.08 97.09 95.6 14.0
Q-Flakify++ 92.62 87.06 96.86 95.02 95.83 93.6 11.3
FlakyQ_KNN 93.14 90.71 95.52 95.02 96.31 94.2 7.8
FlakyQ_MLP 93.97 89.67 95.52 94.82 96.60 94.5 7.8
FlakyQ_RF 94.28 91.54 95.52 94.82 96.60 94.8 7.6
FlakyQ_SVM 93.76 89.04 95.52 93.16 96.12 93.9 7.7
FlakyQ_LR 92.72 89.77 95.52 94.82 96.12 93.9 7.5
FSL 72.00 36.00 75.00 72.00 73.00 67.5 10.6
FSL++ 93.66 90.29 97.90 95.88 96.66 91.5 10.6

from the model not being fine-tuned for the prediction task,

as they directly use the existing pre-trained CodeBERT model.

We enhance their technique to fine-tune the CodeBERT model,

similar to how we do for our own approach, to create a better

classifier; we show the results for this classifier as FSL++. The

F1-scores are comparable to the ones achieved by the other

classifiers. These results show the importance of fine-tuning

the model for better prediction results.

VI. THREATS TO VALIDITY

To mitigate bias in results, we use 10-fold cross validation

and a per-project validation that treats each project’s tests as

a fold. For fairer comparison between different classifiers, we

use the same training set and validation set for each fold across

the classifiers.

The dataset we use contains an unbalanced set of tests

labeled as flaky and non-flaky, with most tests being labeled

as flaky. It can thus bias the true/false positives and true/false

negatives during prediction. However, given the strong need

for ground truth data for this type of prediction task, we need

to use tests that are labeled correctly as flaky or non-flaky,

i.e., we cannot just assume all tests that are not labeled as

flaky are truly non-flaky. We use the same dataset used in

prior work [14], where the authors manually labeled the dataset

with this ground truth through inspection.

The traditional ML classifiers have many tunable hyper-

parameters, and we use only the recommended defaults for

parameters. The performance of each classifier may actually be

better if they are better tuned. Our overall results showing that

the traditional ML classifiers, when trained using the LLM-

extracted features, still results in predictions quite comparable

to the original LLM-based neural network classifier. Our con-

clusions would still be valid if the traditional ML classifiers’

results are better after tuning their parameters.

For our study, we choose to use CodeBERT as the LLM

for extracting features, as to match prior work in Flakify [14]

that uses CodeBERT. Other LLMs may also be used to parse

test source code and to extract features for the traditional ML

classifier for prediction, and they may lead to different results.

Ultimately, we focus just on the effects of quantization and

rectifying prediction loss using a traditional ML classifier eval-

uated specifically on CodeBERT. Future work can investigate



differences that may occur from using different LLMs.

VII. RELATED WORK

Luo et al. performed the first empirical study on flaky

tests in open-source projects [4]. They categorized flaky tests

by manually inspecting developer-fixed flaky tests. Later re-

searchers would develop techniques to automatically detect

flaky tests, guided by the results from this empirical study [7]±

[11], [48]. For example, Lam et al. developed iDFlakies that

reruns tests in different orders to detect order-dependent flaky

tests [7], and Shi et al. developed NonDex to detect tests

that assume deterministic implementations of nondeterministic

specifications [8]. These researchers collected the results of

their techniques into a public dataset of now known flaky tests,

called IDoFT [6]. This dataset also contains labels for the flaky

tests, categorizing the tests based on the technique that was

used to detect them. We use this dataset for our evaluation.

Many flaky-test detection techniques rely on rerunning tests

or dynamic analysis, meaning they can be costly to run. Prior

work investigated ML techniques to predict whether a test

could be flaky. Alshammari et al. developed the first ML-based

technique for detecting flaky tests, called FlakeFlagger [13].

They first created a large dataset of flaky tests by rerunning

tests 10,000 times, and then they used this dataset to train

and evaluate their ML classifier at predicting whether a test is

flaky. They train their classifier to use static features like as

test smells and lines of code as well as dynamic features like

coverage and test runtime. They find their classifier obtains

an F1-score of 85% in their evaluation on their dataset.

Fatima et al. later proposed Flakify, which uses LLMs to

similarly predict test flakiness, training the LLM to extract

features from just test code . They find improved performance,

with a reported F1-score of 98%. Our work is most similar to

Flakify, because we also use the CodeBERT LLM for flaky-

test prediction. Our evaluation shows similar high F1-scores.

We also find that extracting features using CodeBERT greatly

helps traditional ML classifiers at the same task.

Our evaluation on flaky-test categorization is most similar

to prior work by Akli et al. and their technique FlakyCat. They

obtained a dataset of flaky tests labeled by the reason for flak-

iness [21], based on the definitions provided by Luo et al. [4].

FlakyCat leverages CodeBERT to extract features from test

code, and then it later uses few-shot learning to train a classi-

fier to predict the flaky-test category. They similarly evaluate

using some traditional ML classifiers that use CodeBERT

features for doing the same prediction, finding that FlakyCat

performs better than these traditional ML classifiers. We do

the same evaluation on their dataset of flaky tests, but we find

that these traditional ML classifiers actually predict effectively

when using CodeBERT-extracted features. Akli et al. did not

fine-tune their CodeBERT model whereas we do. Our findings

show the importance of not just using CodeBERT to extract

features but to also fine-tune this model for the specific task.

LLMs are also used for other software engineering tasks.

Lemieux et al. proposed CodaMOSA, which uses LLMs to

improve automatic test generation by providing hints to the

search when traditional search approaches get ªstuckº and can-

not increase coverage any further [49]. Zhang et al. proposed

training a LLM to perform software-edit tasks such as fixing

bugs or updating comments, providing better performance over

LLMs that are trained for code generation [50]. Xia et al. [51]

and Fan et al. [52] both explored using LLMs for automatic

program repair. Lee et al. proposed using LLMs for bug

triaging. Researchers are quickly exploring more ways to

use LLMs, and we investigate expanding its use in flaky-

test detection and categorization tasks while combined with

traditional ML classifiers.

Quantization is a widely used compression technique to

reduce the precision of model parameters and activations to

save memory and computation [16], [38], [39]. Yao et al. [53]

proposed an end-to-end quantization and inference pipeline

that can compress large Transformer-based models with mini-

mal accuracy impact, with up to 5.19x/4.16x speedup on BERT

and GPT-3-style models and a 3x memory footprint reduc-

tion. Xiao et al. [54] proposed a training-free and accuracy-

preserving post-training quantization method for LLMs that

migrate. They integrate SmoothQuant into PyTorch and Faster-

Transformer, achieving up to 1.56× inference acceleration

and halving the memory footprint. In our work, we propose

quantization that converts float data-type model weights to

int8, which we find to improve the model’s runtime and

memory usage, reducing the cost of the LLM.

VIII. CONCLUSIONS

LLMs that predict whether tests are flaky or flaky-test

categories without running them require heavy computational

resources to execute deep neural networks. We propose FlakyQ

to make LLM-based classifiers more efficient via quantiza-

tion. We rectify any prediction loss form using a quantized

model by training a traditional, computationally inexpensive,

ML classifier that learns from features extracted using the

quantized LLM to perform the prediction. Our evaluation

shows that a fine-tuned LLM-based classifier’s prediction

time can be significantly reduced by applying quantization.

Further, the additional traditional ML classifier trained on top

of the quantized LLM masks prediction loss and achieves a

similar F1-scores as the original LLM-based classifier. We find

that LLM-extracted features are key to training an effective

traditional ML classifier for these prediction tasks, as using

features such as bag-of-words or vocabulary-based features

out of test code does not achieve as high F1-scores.

In the future, we plan to explore the use of both LLMs

and traditional ML classifiers to explain their predictions, as

explanations may help developers understand and debug their

flaky tests. We also plan on exploring use of additional features

beyond those extractable from test source code. Finally, we

plan on exploring how to combine different classifiers together,

forming a ªmetaº classifier, to choose which classifier to use

for specific tasks.



REFERENCES

[1] S. Yoo and M. Harman, ªRegression testing minimization, selection and
prioritization: A survey,º Journal of Software Testing, Verification and

Reliability, vol. 22, no. 2, 2012.
[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, ªUsage,

costs, and benefits of continuous integration in open-source projects,º in
International Conference on Automated Software Engineering, 2016.

[3] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, ªTrade-offs in
continuous integration: Assurance, security, and flexibility,º in European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2017.
[4] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, ªAn empirical analysis

of flaky tests,º in International Symposium on Foundations of Software

Engineering, 2014.
[5] M. Harman and P. O’Hearn, ªFrom start-ups to scale-ups: Opportunities

and open problems for static and dynamic program analysis,º in Interna-

tional Working Conference on Source Code Analysis and Manipulation,
2018.

[6] ªIDoFT,º http://mir.cs.illinois.edu/flakytests.
[7] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, ªiDFlakies: A frame-

work for detecting and partially classifying flaky tests,º in International

Conference on Software Testing, Verification, and Validation, 2019.
[8] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, ªDetecting assumptions

on deterministic implementations of non-deterministic specifications,º in
International Conference on Software Testing, Verification, and Valida-

tion, 2016.
[9] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, ªUn-

derstanding reproducibility and characteristics of flaky tests through
test reruns in java projects,º in International Symposium on Software

Reliability Engineering, 2020.
[10] A. Wei, P. Yi, Z. Li, T. Xie, D. Marinov, and W. Lam, ªPreempting flaky

tests via non-idempotent-outcome tests,º in International Conference on

Software Engineering, 2022.
[11] S. Zhang, D. Jalali, J. Wuttke, K. MuËslu, W. Lam, M. D. Ernst, and

D. Notkin, ªEmpirically revisiting the test independence assumption,º
in International Symposium on Software Testing and Analysis, 2014.

[12] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and M. Sasa, ªDe-
tecting flaky tests in probabilistic and machine learning applications,º
in International Symposium on Software Testing and Analysis, 2020.

[13] A. Alshammari, C. Morris, M. Hilton, and J. Bell, ªFlakeFlagger:
Predicting flakiness without rerunning tests,º in International Conference

on Software Engineering, 2021.
[14] S. Fatima, T. A. Ghaleb, and L. Briand, ªFlakify: A black-box, language

model-based predictor for flaky tests,º IEEE Transactions on Software

Engineering, vol. 49, no. 4, 2023.
[15] A. Akli, G. Haben, S. Habchi, M. Papadakis, and Y. Le Traon,

ªFlakyCat: Predicting flaky tests categories using few-shot learning,º
in International Conference on Automation of Software Test, 2023.

[16] X. Wu, C. Li, R. Y. Aminabadi, Z. Yao, and Y. He, ªUnderstanding int4
quantization for transformer models: Latency speedup, composability,
and failure cases,º arXiv preprint arXiv:2301.12017, 2023.

[17] L. Breiman, ªRandom forests,º Machine learning, vol. 45, 2001.
[18] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, ªUnderstanding

flaky tests: The developer’s perspective,º in European Software Engi-

neering Conference and Symposium on the Foundations of Software

Engineering, 2019.
[19] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, ªPredictive

test selection,º in International Conference on Software Engineering,

Software Engineering in Practice, 2019.
[20] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,

ªModeling and ranking flaky tests at Apple,º in International Conference

on Software Engineering, Software Engineering in Practice, 2020.
[21] K. Barbosa, R. Ferreira, G. Pinto, M. d’Amorim, and B. Miranda,

ªTest flakiness across programming languages,º IEEE Transactions on

Software Engineering, vol. 49, no. 4, 2023.
[22] S. Rahman, A. Massey, W. Lam, A. Shi, and J. Bell, ªAutomatically

reproducing timing-dependent flaky-test failures,º in International Con-

ference on Software Testing, Verification, and Validation, 2024.
[23] T. Leesatapornwongsa, X. Ren, and S. Nath, ªFlakeRepro: Automated

and efficient reproduction of concurrency-related flaky tests,º in Euro-

pean Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering, 2022.

[24] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, ªiFixFlakies: A
framework for automatically fixing order-dependent flaky tests,º in
European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019.
[25] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi,

ªDomain-specific fixes for flaky tests with wrong assumptions on un-
derdetermined specifications,º in International Conference on Software

Engineering, 2021.
[26] S. Dutta, A. Shi, and S. Misailovic, ªFLEX: Fixing flaky tests in

machine-learning projects by updating assertion bounds,º in European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2021.
[27] C. Li, C. Zhu, W. Wang, and A. Shi, ªRepairing order-dependent

flaky tests via test generation,º in International Conference on Software

Engineering, 2022.
[28] S. Rahman and A. Shi, ªFlakeSync: Automatically repairing async flaky

tests,º in International Conference on Software Engineering, 2024.
[29] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The

elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
ªScikit-learn: Machine learning in python,º The Journal of Machine

Learning Research, vol. 12, 2011.
[31] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.
[32] A. J. Smola and B. Schölkopf, ªA tutorial on support vector regression,º

Statistics and computing, vol. 14, 2004.
[33] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, ªNeigh-

bourhood components analysis,º in Advances in Neural Information

Processing Systems, 2005.
[34] G. E. Hinton, ªConnectionist learning procedures,º Artificial Intelli-

gence, vol. 40, no. 1, 1989.
[35] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic

regression. John Wiley & Sons, 2013, vol. 398.
[36] ªCode pretraining models,º https://github.com/microsoft/CodeBERT,

2023.
[37] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang, and M. Zhou, ªCodeBERT: A pre-trained model for
programming and natural languages,º Tech. Rep., 2020.

[38] S. Han, H. Mao, and W. J. Dally, ªDeep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,º arXiv preprint arXiv:1510.00149, 2015.

[39] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, ªPost-training
quantization for vision transformer,º in Advances in Neural Information

Processing Systems, vol. 34, 2021.
[40] V. Nair and G. E. Hinton, ªRectified linear units improve restricted

Boltzmann machines,º in International Conference on Machine Learn-

ing, 2010.
[41] A. de Brébisson and P. Vincent, ªAn exploration of softmax alternatives

belonging to the spherical loss family,º in International Conference on

Learning Representations, 2016.
[42] A. Demaris, Logit modeling: Practical applications. Sage, 1992, no. 86.
[43] Z. Zhuang, M. Liu, A. Cutkosky, and F. Orabona, ªUnderstanding

adamw through proximal methods and scale-freeness,º Transactions on

Machine Learning Research, 2022.
[44] L. A. Montestruque and P. J. Antsaklis, ªStatic and dynamic quantization

in model-based networked control systems,º International Journal of

Control, vol. 80, no. 1, 2007.
[45] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, ªStatic block

floating-point quantization for convolutional neural networks on FPGA,º
in International Conference on Field-Programmable Technology, 2019.

[46] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, ªWhat is the vocabulary of flaky tests?º in MSR, 2020.

[47] S. Bird, E. Loper, and E. Klein, Natural Language Processing with

Python. O’Reilly Media Inc., 2009.
[48] R. Wang, Y. Chen, and W. Lam, ªiPFlakies: A framework for detecting

and fixing python order-dependent flaky tests,º in International Confer-

ence on Software Engineering (Tool Demonstrations Track), 2022.
[49] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, ªCodaMOSA: Escaping

coverage plateaus in test generation with pre-trained large language
models,º in International Conference on Software Engineering, 2023.

[50] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric, ªCoditT5:
Pretraining for source code and natural language editing,º in Interna-

tional Conference on Automated Software Engineering, 2022.



[51] C. S. Xia, Y. Wei, and L. Zhang, ªAutomated program repair in the era
of large pre-trained language models,º in International Conference on

Software Engineering, 2023.
[52] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, ªAuto-

mated repair of programs from large language models,º in International

Conference on Software Engineering, 2023.
[53] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He,

ªZeroquant: Efficient and affordable post-training quantization for large-
scale transformers,º in Advances in Neural Information Processing

Systems, vol. 35, 2022.
[54] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,

ªSmoothquant: Accurate and efficient post-training quantization for large
language models,º in International Conference on Machine Learning.
PMLR, 2023.


