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Chirality dependent photon transport and helical superradiance
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Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry. Chirality is ubiquitous
in nature and is associated with the nonreciprocal interactions observed in complex systems ranging from
biomolecules to topological materials. Here, we demonstrate that chiral arrangements of dipole-coupled atoms
or molecules can facilitate the helicity-dependent superradiant emission of light. We show that the collective
modes of these systems experience an emergent spin-orbit coupling that leads to chirality-dependent photon
transport and nontrivial topological properties. These phenomena are fully described within the electric dipole
approximation, resulting in very strong optical responses. Our results demonstrate an intimate connection
between chirality, superradiance, and photon helicity and provide a comprehensive framework for studying
electron transport dynamics in chiral molecules using cold atom quantum simulators.
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I. INTRODUCTION

Chirality, or handedness, is ubiquitous in nature and can be
observed in macromolecular structures like DNA, down to the
single particle level as in photons with circular polarization.
An object is chiral if it cannot be superimposed on its mir-
ror image by a rotation. This property allows chiral systems
to facilitate nonreciprocal interactions owing to the broken
mirror symmetry. Recently, chirality has emerged as an im-
portant component to realizing room-temperature spintronics
devices via the chirality-induced spin selectivity (CISS) effect
[1–5]. Precise control over the transport of helical electrons
in chiral molecules and chiral crystals via the CISS effect has
promising applications for magnetless spin memories, spin-
based logic gates, and other information technologies [6–12].
The interplay between geometrical chirality and the electron
spin has also generated interest in fields as diverse as electro-
chemistry [13,14], molecular biology [15,16], and studies on
biological homochirality and the origin of life [8,17].

Of course, in addition to electrons, photons can also carry
spin angular momentum, which is encoded in their two or-
thogonal polarizations [18–21]. The coupling of photons to
atoms or molecules [22,23] can result in efficient energy trans-
fer [24–27] and cooperative dissipation leading to the superra-
diant and subradiant emission of light [28–31]. Demonstration
of chirality-induced photon transport could facilitate a simi-
lar explosion in the development of polarization-controllable
photonics devices that are analogous to CISS-based spintron-
ics. The study of dissipative chiral light-matter interactions
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in a well-controlled setting could also contribute to the study
of photoexcitation lifetimes in chiral molecules, which are
crucial for various biological processes [32–36].

In this paper, we demonstrate that chiral arrangements
of atoms or molecules can facilitate the helicity-dependent
superradiant emission of light: an effect we call helical su-
perradiance [Fig. 1(a)]. This phenomenon—which is fully
described within the electric dipole approximation—results
from an emergent spin-orbit coupling (SOC) that is unique
to chiral geometries. We show that the collective excitations
of these chiral systems are symmetry-protected helical modes
that persist even in the presence of dissipation. Such helicity-
dependent chiral transport is associated with a non-Abelian
gauge field [37] that results in an excitation band structure
with nontrivial topology. Although previous studies have in-
vestigated topological properties within photonics systems
[38–44], to the best of our knowledge, none have explored
the connection between geometrical chirality and superradi-
ant photon emission. These effects may contribute to chiral
molecular processes in nature and provide a comprehensive
framework for studying the CISS effect in chiral molecules
using cold atom quantum simulators.

II. HELICITY DEPENDENT DYNAMICS

Excitation transport between atoms or molecules can be
modeled as a collection of quantum emitters interacting with
a radiation field [46]. As a minimal model, we focus on a
helix as the archetypal chiral geometry—though our results
are generalizable to arbitrary chiral setups. The individual
dipoles along the helix are modeled as V-type quantum emit-
ters, each with two hyperfine transitions excited by left (σ+)
and right (σ−) circularly polarized light, respectively, and
resonance frequency ω0 = 2πc/λ0, where λ0 is the wave-
length of the optical transition and c is the speed of light
in vacuum [Fig. 1(b)]. Long-range dipole-dipole interactions
between emitters at positions ri and r j are mediated through
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FIG. 1. (a) Illustration of the main results of this paper. Photons with a given helicity (red or blue) are preferentially radiated by structures
of a given chirality, leading to helical superradiance [45]. (b) The model used to describe the transport dynamics. Purple spheres denote emitters
with a V-type level structure and spontaneous emission rate �0. The lattice geometry is a helix with radius r0, pitch a, and N atoms per 2π turn.
Emitters are coupled with coherent (Jσσ ′

i j ) and dissipative (�σσ ′
i j ) hopping rates. The multicolored halo denotes initialization in an unpolarized

mixed state. (c) Interactions between emitters i and j are mediated through photon exchanges that excite orbitals with either the same (top) or
opposite (bottom) polarization.

real and virtual photon exchanges that couple orbitals |σi〉
and |σ ′

j〉 with either the same or opposite polarization. When
the photon polarization is changed, conservation of angular
momentum requires that the interaction picks up an additional
position-dependent phase [Fig. 1(c)]. After tracing out the
field degrees of freedom in the Born and Markov approxi-
mations [22,23,30,47–49], this system can be described as a
collection of pseudospin-1/2 bosons via the Hamiltonian [42]

H =
N

∑

i=1

∑

σ

ω0b
†
iσ biσ +

N
∑

i, j �=i=1

∑

σ,σ ′

Jσσ ′

i j b
†
iσ b jσ ′ (1)

(we set h̄ ≡ 1 here and throughout this work). Here, b
†
iσ

(biσ ) creates (annihilates) an excitation at site i with spin
σ ∈ {↑,↓}, N is the total number of emitters, and Jσσ ′

i j are
the spin-dependent hopping rates.

In addition to the coherent interactions described by
Eq. (1), we also consider collective dissipation that arises
through coupling to the electromagnetic vacuum. In the low-
light limit where there is at most a single-excitation in the
system at any given time, the full open system dynamics are
described by the non-Hermitian effective Hamiltonian:

Heff = H − i

N
∑

i, j=1

�σσ ′

i j

2
b

†
iσ b jσ ′ . (2)

The anti-Hermitian part of Eq. (2) describes cooperative decay
to the vacuum with rates �σσ ′

i j and single-emitter spontaneous
emission with rate �0 ≡ �σσ

ii . In free space, the couplings are
determined by the electromagnetic Green’s tensor G(ri − r j )
as

Jσσ ′

i j −
i

2
�σσ ′

i j = −
3

2
λ0�0ε̂

†
σ · G(ri − r j ) · ε̂σ ′ , (3)

where ε̂↑↓ = (x̂ ± iŷ)/
√

2 denote the unit vectors of circular
polarization (Appendix A). The time evolution of a general

state ρ(t ) is then governed by the no-jump quantum master
equation, ρ̇ = −i(Heffρ − ρH

†
eff ).

To illustrate the dynamics, we consider left- (denoted by
ξ = 1) and right- (ξ = −1) handed helices oriented along the
z axis with radius r0, pitch a, N emitters per 2π turn, and
M = N/N turns total. The initial state is chosen as ρ(0) =
1
2 (|↑i〉〈↑i| + |↓i〉〈↓i|), corresponding to an unpolarized sta-
tistical mixture of up and down spins localized to a single
emitter at ri. Figure 1(d) shows the total population summed
across all emitters in each spin manifold, Pσ (t ) =

∑

i Piσ (t ) =
∑

i 〈b
†
iσ biσ 〉, as a function of time. The top (bottom) two

panels show the dynamics when the starting emitter is located
at the bottom (top) of the helix. The spin of each state is
given by the expectation value 〈Sz〉 where Sz = 1N ⊗ σz =
∑

i(b
†
i↑bi↑ − b

†
i↓bi↓), 1N is the N × N identity matrix, and σz

is the third Pauli operator. As the initial spin wave propa-
gates through the helix with group velocity v = vẑ (black
arrows), it acquires a helicity, η = 〈Sz〉v/|〈Sz〉v| = ±1. For
the left-handed chirality [left-hand panels of Fig. 1(d)], the
positive helicity states [i.e., spin ↑ (↓) propagating upwards
(downwards)] experience enhanced dissipation. By contrast,
for the right-handed chirality [right-hand panels of Fig. 1(d)],
enhanced dissipation occurs with the negative helicity states
[spin ↓ (↑) propagating upwards (downwards)]. In both
cases, the product χ ≡ ξη = −1 describes configurations
with enhanced photoexcitation lifetimes. Figure 1(e) shows
a snapshot of the individual emitter populations when the
initial upward-moving wave packet reaches the top end of
the helix [time t = τ , denoted by dashed lines in Fig. 1(d)].
For the left-handed helix, spin ↓ excitations exhibit longer
lifetimes and are more efficiently transported to the opposite
end. The same initial condition results in the preferential
transport of spin ↑ excitations for the right-handed he-
lix. For the more general case when the initial state is
an unequal statistical mixture of spins, the same dynamics
result in the predominant excitation of only one chirality
(Appendix B and Fig. 7).
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FIG. 2. (a) Population dynamics for left-handed (left-hand panels) and right-handed (right-hand panels) helices after initialization at either
the bottom (top two panels) or top (bottom two panels) of the helix. Blue (red) curves denote the total population in the ↑ (↓) manifold as a
function of time. Black arrows denote the propagation direction of the initial wave packet. Dashed lines indicate the time t = τ at which the
wave packet reaches the opposite end of the helix. (b) Snapshots of the individual emitter populations at the time denoted in (a). Blue (red) bars
denote the spin ↑ (↓) populations of each emitter along the longitudinal helical axis. Parameters for both panels: r0 = 0.05λ0, a = 0.175λ0,
N = 3, M = 20, and τ = 7.9/�0.

The magnitude of this chiral transport can be quantified by
the spin polarization,


 =
∫ τ

0
dt

P↑(t ) − P↓(t )

P↑(t ) + P↓(t )
, (4)

defined as the difference in population between the spin man-
ifolds integrated until the wave packet reaches the opposite
end of the helix at time τ . The transport time is monitored
by discretizing the helix into chunks of N/10 emitters, and
we define τ as the time at which the total emitter population
is largest in the final chunk. Figure 3(a) shows the value of

 for helices of varying radius and pitch. Extremely large
spin polarizations—upwards of 40%—are easily achievable
across a wide parameter range. A reflection Ryz through the
y-z plane preserves the direction of motion but transforms the

left-handed lattice geometry to its right-handed mirror image.
For any given geometry, the spin polarization is equal and
opposite between the left- and right-handed helices. Interest-
ingly, for fixed chirality ξ , both the magnitude and sign of
the spin polarization depend nontrivially on the geometric
proportions of the helix. This fact may be traced back to
the nontrivial positional dependence of the electromagnetic
Green’s tensor and to the presence of long-range all-to-all
couplings that introduce multiple frequency scales to the dy-
namics (Appendix A and Fig. 6). A rotation Rx(π ) by an angle
π about the x axis preserves the chirality of the helix while
changing the sign of both the spin polarization and the di-
rection of propagation. The simultaneous reversal of the spin
polarization together with the change in propagation direction
demonstrates chirality-dependent SO coupling. Notably, this

FIG. 3. (a) Spin polarization as a function of helix radius and pitch. Colors show the spin polarization 
 calculated for left-handed (left) and
right-handed (right) helices, related by a reflection Ryz through the y-z plane. A rotation Rx (π ) by an angle π about the x axis reverses the spin
polarization and the direction of motion (black arrows). Black crosses denote the radius and pitch used in Fig. 2. Additional parameters: N = 3,
M = 20. (b) Dependence of the spin polarization on helix length and the number of emitters per turn. Additional parameters: r0 = 0.05λ0,
a = 0.175λ0.
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FIG. 4. (a) Collective excitation band structure for an infinite left-handed helix with the same parameters as in Fig. 2. Filled squares
(diamonds) denote modes that are predominantly spin ↑ (↓). Open circles indicate equal superposition modes. The coloring of each symbol
denotes the collective decay rate of each mode �nk . Dotted lines indicate the light cone at k = k0. (b) Snapshots of the emitted electric field
intensity Iσ (r, t ) at t = 1/�0 (top two panels) and t = τ (bottom two panels). The left (right) two panels show the contribution from spin ↑ (↓)
photons to the field intensity. Brighter colors demonstrate helical superradiance that is enhanced at either end of the helix. Field intensities are
shown in the y-z plane at a distance x = 10r0 from the helical axis so as to not include contributions from the evanescent fields of the emitters.
A projection of the helix geometry onto the y-z plane is shown in white. Color bars indicate the relative field intensity of each polarization.

π rotation is also equivalent to a change of initial condition
from emitter i = 1 to i = N followed by a trivial azimuthal
rotation about the z axis.

The dependence of the spin polarization on the helix length
and the number of emitters per turn is shown in Fig. 3(b). The
N = 1 and N = 2 configurations correspond to the uniform
chain and the staggered chain, respectively. These geometries
are not chiral and do not exhibit any spin polarization. For the
true helices (N � 3), there is a modest increase in the spin
polarization with increasing helix length. This trend has also
been reported for spin polarizations of helical electrons in the
CISS effect [50] and may be a common feature of helicity-
dependent transport.

III. EMERGENT SPIN-ORBIT COUPLING

AND HELICAL SUPERRADIANCE

The chirality-dependent dynamics described above can be
understood by examining the band structure of the collective
helical modes [Fig. 4(a)]. Equation (2) can be expressed in
momentum space by performing the discrete Fourier trans-
form biσ = (1/

√
M )

∑

k exp (ik · rm)bkμσ , where μ is the
sublattice index denoting the M emitters along one sublattice,
rm is the position of unit cell m, and k = kẑ is the lattice quasi-
momentum (Appendix C). The eigenstates of the resultant
k-space Hamiltonian are collective Bloch modes of the form
|ψnk〉 = eikz|unk〉 with complex eigenvalues ε̃nk = εnk + i�nk

and band index n. Here, εnk is the energy of each Bloch
mode and �nk is the corresponding vacuum decay rate, as
indicated by the color coding of symbols in Fig. 4(a). Equa-
tion (2) breaks spin rotation symmetry [Heff ,Sz] �= 0 through
the term ∝ b

†
i,↑b j,↓ but is invariant under the combined op-

eration of spatial inversion and spin-flip. Denoting the usual
spatial inversion (parity) operator as P , this anti-inversion
symmetry can be written as P̄ = P ⊗ σx and results in an-
tisymmetric spin textures for the Bloch bands. P̄ transforms
(k,Sz ) → (−k,−Sz ) and therefore requires modes with

quasimomentum ±k to have equal energy but opposite spin
and group velocity v = dεk/dk. Besides the P̄-invariant
points at k = 0,±π/a (at which 〈Sz〉 = 0), broken spin ro-
tation symmetry allows each mode to experience spin mixing.
The spin of each Bloch mode is allowed to be nonzero for
arbitrary k �= 0,±π/a when the geometry is chiral. This prop-
erty allows modes with finite dispersion (v �= 0) to experience
SOC and results in more efficient transport of spin excitations
in the χ = −1 configuration. The nontrivial spin dynamics
result from the broken mirror symmetry of the system and are
a general feature of arbitrary chiral geometries [51].

The antisymmetric spin textures and associated helicity-
dependent chiral transport are protected by P̄ symmetry,
irrespective of the presence or absence of dissipation (Ap-
pendix D and Fig. 8). Nevertheless, inclusion of the anti-
Hermitian term in Eq. (2) enhances this dynamical effect
due to collective dissipation at subwavelength scales. In this
regime, cooperative resonances can enhance or suppress the
decay rate of a given mode away from the bare emitter decay
rate �0 depending on whether that mode lies inside or out-
side the light cone [dotted lines in Fig. 4(a)]. Bright modes
(those inside the light cone) are superradiant with �nk > �0,
whereas dark modes (outside the light cone) experience a
momentum mismatch with the available vacuum modes and
are subradiant with �nk ≈ 0. The dissipative part of Eq. (2)
breaks time-reversal symmetry but does not alter the sym-
metry properties of the spin bands under P̄ . Moreover, the
decay rates of the Bloch modes may be interpreted as imag-
inary energies resulting from evolution with Heff . Therefore,
as for the real energies, symmetry under P̄ requires that �nk

be equal for modes with ±k. Because these modes neces-
sarily have opposite spin and group velocity, they also have
identical helicity. As such, the two maximally superradiant
modes always enhance the population loss for the same pho-
ton helicity. Because mirror reflection transforms ξ → −ξ

and η → −η, the superradiant helicity is reversed between
the left- and right-handed chiralities and amplifies the chiral
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FIG. 5. Demonstration of nontrivial topological properties for chiral geometries. Each plot shows the collective band structure for a left-
handed helix constructed with N emitters per 2π turn. The radius and pitch are the same as in Figs. 2 and 4. Topologically nontrivial band
structures occur for N � 3 and are characterized by the opening of an energy band gap (gray shaded regions) and a nontrivial Zak phase ϕ.
Colors show the spin character 〈Sz〉 of each mode and demonstrate the emergence of a finite SOC in the topologically nontrivial regime.

transport. This dynamical effect results in the preferential
emission of circularly polarized photons with polarization
determined by the propagation direction and chirality of the
geometry.

Helicity-dependent superradiant photon emission (helical
superradiance) is demonstrated explicitly in Fig. 4(b). For
each polarization, the positive frequency electric dipole field
at each point r is given by

E+
σ (r) =

√

6π2�0

λ0ε0

N
∑

j=1

G(r − r j, ω0) · ε̂ jσ |g〉〈σ j |, (5)

where |σ j〉 = b
†
jσ |g〉, |g〉 is the zero-excitation state and ε0

is the vacuum permittivity (Appendix A). The left (right)
panels show the intensity of the emitted field, Iσ (r, t ) =
〈E−

σ (r) · E+
σ (r〉, radiated by ↑ (↓) excitations. The top two

panels show the initial superradiant burst at t = 1/�0 after
initialization with an unpolarized mixed state at the bottom
end of the helix [see also top left panel of Fig. 1(d)]. The
intense emission of ↑-polarized photons results from dynam-
ically generated overlaps between the evolving state ρ(t ) and
the positive helicity superradiant modes of Fig. 4(a). At in-
termediate times, the wave packet enters subradiant guided
modes [30] and radiation into the vacuum via the bulk emitters
is suppressed. Strong superradiant emission of ↑-polarized
photons resumes at t = τ out of the opposite end of the helix
[bottom two panels of Fig. 4(b)]. At all times, the maximum
radiation intensity of ↓-polarized photons is strongly sup-
pressed and remains near the minimum radiation intensity for
both polarizations. The helix therefore acts as a directional
filter for circularly polarized photons.

IV. TOPOLOGICAL PROPERTIES

The SOC identified above implicates a nontrivial topology
for the energy bands of chiral geometries [52–55]. Con-
servation of angular momentum requires that the two-body
spin-flip process in Eq. (3) picks up a complex phase J

↑↓
i j ∝

exp {−i(φi + φ j )} related to the azimuthal positions of the
two emitters φi and φ j to compensate for the changing photon
polarization [see also Fig 1(c)]. This phase dependence, which
stems from the electromagnetic Green’s tensor (Appendix A),

gives rise to an emergent gauge field that results in a
nontrivial topology. In 1D, the topological properties of the
band structure are characterized by the Zak phase [56],

ϕ =
∮

C

Tr[A(k)]dk, (6)

where Amn(k) = i〈umk|∂kunk〉 is the non-Abelian Berry
connection [37] and C defines a closed loop in reciprocal
space around the Brillouin zone torus. The Zak phase for an
inversion (anti)symmetric unit cell is defined modulo 2π and
can be either 0 (trivial) or π (nontrivial).

Figure 5 demonstrates the emergence of nontrivial topolog-
ical properties as a function of the number of atoms per turn
N . When N = 1, the lattice is a simple 1D chain of emitters
with lattice spacing a. In this case, the two spin manifolds
are uncoupled with J

↑↓
i j = 0, and the band structure consists

of two degenerate copies of the band structure for a chain of
transversely polarized two-level emitters [30]. Spin rotation
symmetry requires that the two degenerate states at each k

have 〈Sz〉 = ±1, which averages to zero at every point in the
Brillouin zone. For N = 2, the geometry is that of a staggered
chain with longitudinal separation a and transverse separation
2r0. Here, uniform spin mixing occurs at each mode through
J

↑↓
i j �= 0, and the band structure resembles that of two 1D

chains separated by a finite interaction energy. The presence
of reflection symmetry for N = 1, 2 prohibits the emergence
of a finite SOC. The minimal chiral geometry is realized for
N = 3, resulting in a finite energy gap and SO coupled bands.
The Zak phases calculated on either side of the energy gap are
nontrivial, indicating a topologically nontrivial band structure.
This nontrivial topology persists for N � 3 as long as the
geometry remains chiral.

V. TOWARDS EXPERIMENTAL REALIZATIONS

Our results describe helicity-dependent superradiant pho-
ton emission that occurs in chiral systems of dipole-coupled
emitters. This formalism naturally includes neutral atom-
based platforms that are being investigated for use in emerging
quantum technologies. Our findings also introduce an exciting
avenue for cold atom quantum simulators, which could be
used to study the governing properties of chirality-dependent
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transport (including the CISS effect) in a well-controlled
environment. Such simulators could also be used to investi-
gate the influence of helical superradiance on the excitation
lifetimes of chiral molecules. The exploration of such pro-
cesses at the single-atom scale could have far-reaching
implications for both technological and biological applica-
tions [57], and should be experimentally observable with
readily available techniques.

A standard approach would be to realize the helical geome-
try using neutral atoms in a 3D optical tweezer array. Coherent
oscillations between atoms with V-type level structures have
been demonstrated, e.g., by isolating the 60S1/2 and 60P3/2

Rydberg manifolds of 87Rb [58,59]. The 17.2 GHz transition
frequency between these manifolds allows for subwavelength
dynamics at μm-scale tweezer separations. Although the
influence of dissipation may not be observable with this plat-
form due to long Rydberg excitation lifetimes, the chirality
dependent transport and topological properties of the system
could still be achieved.

Dissipative dynamics could, however, be observed in a
similar setup using the 3P0 and 3D1 manifolds of 88Sr [24],
which is commonly used in 3D optical lattice clocks [60].
Helical arrangements of atoms could be built by selectively
loading particular sites of the optical lattice using an extension
of the tweezer-based programmable loading scheme recently
demonstrated for 2D optical lattices [61] or by employing
holographic optical traps made from dielectric metasurfaces
[62]. Techniques for measuring topological Bloch bands sim-
ulated with optical lattices are well-established [55,63,64].

An alternative setup based on a Laguerre-Gauss mode
optical trapping potential may also be realized with read-
ily available techniques [65–67]. Laguerre-Gauss modes are
eigenmodes of the paraxial wave equation with orbital angular
momentum quantum number l . The l = 1 mode exhibits a
cylindrical geometry with a phase advance that winds once
per wavelength. Interfering this mode with an orthogonally
polarized plane wave shapes the field intensity into a helix.
Intersecting this field with a cloud of red-detuned atoms would
trap some of these atoms at intensity maxima determined
by the helical potential. An additional long-range interaction
potential (which could be imposed by Rydberg dressing the
atoms via an additional laser [68,69]) would result in a peri-
odic arrangement of atoms along the helix.

VI. OUTLOOK

Here we have demonstrated the helicity-dependent trans-
port and superradiant emission of circularly polarized photons
from chiral arrangements of atoms or molecules. This phe-
nomenon has a complete description within the electric dipole
approximation, placing it within the class of nonmagnetic
chiral interactions exhibiting very strong optical responses
[70,71]. Precise control over the transport and emission of
photons is a fundamental goal of quantum information science
and could contribute to the development of new quantum tech-
nologies. Our findings also represent an exciting opportunity
for cold atom quantum simulators towards studying chirality
dependent transport and chiral light-matter interactions at the
single-atom scale.

Our results also shed light on the governing principles of
spin selective electron transport in the CISS effect. Presently,
there is no consensus explanation for the extremely large
spin polarizations produced by carbon-based molecules with
weak intrinsic SO interactions. Here, however, we have
demonstrated extremely large spin polarizations based on
geometrical considerations alone. A chirality-induced gauge
field like that in Eq. (6) has, to our knowledge, not been
considered in any theoretical analysis of CISS thus far, and
may be important in explaining the robustness of the effect
at room temperature. The very significant influence of helical
superradiance further suggests that dissipation is crucial
for achieving strong helicity-dependent transport. For the
results described in this paper, the preferential scattering of
excitations with the “wrong” helicity greatly enhances the
observed spin polarization as compared to the fully Hermitian
case (Appendix D and Fig. 8). Accounting for topologically
protected spin polarizations and the influence of dissipation
might resolve the discrepancies between theoretical and
experimental models of CISS.

As has been suggested for the electron spin, these chirality-
dependent phenomena might also play a role in chemical or
biological processes in nature. The large optical response as-
sociated with helical superradiance could allow for additional
types of chiral-selective photochemistry driven by circularly
polarized light, without reliance on higher order multipole
moments. In particular, the well-documented importance of
photoexcitation dynamics to the stability and reactivity of
(pre)biotic molecules (e.g., RNA, DNA) [72–74] evokes the
question of whether such a process might have contributed
to the emergence of biological homochirality. Although the
mechanisms responsible for the homochirality of life are un-
known, recent studies have suggested that chiral selective
processes during prebiotic synthesis could have seeded an
initial imbalance that was amplified by subsequent chemical
reactions [75,76]. In particular, a bias in the net flux of cir-
cularly polarized photons—as has been observed in nearby
star forming regions [77–79]—has long been suggested as a
potential symmetry breaking agent [80–82]. However, previ-
ous attempts to translate this bias into homochiral chemistry
using traditional (magnetic) chiroptical phenomena typically
result in asymmetries of only a few percent [83–86]. The
helical superradiance identified in this paper provides another
mechanism for chiral amplification that does not rely on weak
magnetic interactions and could potentially lead to a much
larger chiral bias.
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FIG. 6. Coherent coupling strengths between atoms i and j located on a helix with radius r0 = 0.05λ0. The x axis denotes the relative
distance between the emitters in the ẑ direction (along the longitudinal helical axis). The y axis denotes the relative azimuthal coordinate
between the emitters. (a) Spin-preserving interactions. Colors denote the interaction strength Jσσ

i j /�0 with σ ∈ {↑,↓}. (b) Spin-flipping

interactions. Colors denote the interaction strength |Jσσ ′
i j |/�0 with σ, σ ′ ∈ {↑,↓} for σ �= σ ′.

APPENDIX A: DIPOLE-DIPOLE INTERACTIONS

The effective dipole-dipole interactions considered in the
main text can be derived either by tracing over the field
degrees of freedom in a fully second quantized treatment
and applying the Born and Markov approximations or by
substitution in analogy with classical electrodynamics. Here
we present a brief outline of the latter approach and de-
fer the details to the many well-cited references (e.g.,
Refs. [22,23,30,47–49]). In Lorenz gauge, the classical scalar
and vector potentials ϕ(r, t ) and A(r, t ) obey the inhomoge-
neous wave equations

∇2ϕ −
1

c

∂2ϕ

∂t2
= −

�

ε0
, (A1)

∇2A −
1

c

∂2A

∂t2
= −μ0j, (A2)

where �(r, t ) and j(r, t ) are the source charge and current
densities, c is the speed of light in vacuum, and μ0 is the
vacuum permeability. The general solutions at time t are given
in terms of the retarded time t ′ = t − |r − r′|/c for source
coordinate r′ as [87]

ϕ(r, t ) =
1

4πε0

∫

d3r′ �(r′, t ′)

|r − r′|
, (A3)

A(r, t ) =
μ0

4π

∫

d3r′ j(r′, t ′)

|r − r′|
. (A4)

For a time-dependent point electric dipole located at r′ =
0 with dipole moment p(t ′), the charge density �(r, t ′) =
−p(t ′)∇δ(r) obeys the continuity equation ∇ · j = −∂�/∂t ,
yielding the current density j(r, t ′) = δ(r)ṗ(t ′), where
ṗ(t ′) = (d/dt )p(t − |r|/c). The classical potentials are then
given by

ϕ(r, t ) =
1

4πε0

[

ṗ(t ′) · r

c|r|2
+

p(t ′) · r

|r|3

]

, (A5)

A(r, t ) =
μ0

4π

ṗ(t ′)

|r|
. (A6)

For a time-harmonic source oscillating at frequency ω0, we
can write p(t ) = ℘e−iω0t , where the strength and orientation

of the dipole are encoded into ℘. Using the relations E =
−∇ϕ − ∂A/∂t and ω0 = ck0 for wave number k0 = 2π/λ0,
the corresponding electric field can be written as E(r, t ) =
E(r)e−iω0t with

E(r) = μ0ω
2
0

eik0|r|

4πk2
0 |r|3

[(

k2
0 |r|

2 + ik0|r| − 1
)

℘

−
(

k2
0 |r|

2 + 3ik0|r| − 3
)

(r̂ ·℘)r̂
]

(A7)

and r̂ = r/|r|. We now treat the dipole as a (Hermitian)
quantum operator describing the transition from the ground
state |g〉 to orbital |σ 〉. In this case, pσ (t ) = ℘σ e−iω0t |g〉〈σ | +
℘∗

σ eiω0t |σ 〉〈g|, and the resulting electric field becomes Eσ (r) =
E+

σ (r) + E−
σ (r), where

E+
σ (r) = μ0ω

2
0G(r, ω0) ·℘σ |g〉〈σ |, (A8)

E−
σ (r) = (E+

σ (r))†, and we have defined the free-space elec-
tromagnetic Green’s tensor

G(r, ω0) =
eik0|r|

4πk2
0 |r|3

[

(

k2
0 |r|

2 + ik0|r| − 1
)

1

−
(

k2
0 |r|

2 + 3ik0|r| − 3
)r ⊗ r

|r|2

]

. (A9)

Defining the spontaneous emission rate �0 =
ω3

0|℘|2σ/(3π h̄ε0c3) for ℘σ = |℘σ |ε̂σ and substituting the
relation c2 = 1/(ε0μ0) yields Eq. (5) of the main text.
Finally, the interemitter couplings of Eq. (3) follow from
the dipole-dipole interaction −piσ · E jσ after applying
the rotating wave approximation and tracing over the
ground state. The coherent spin-preserving and spin-flipping
interactions are shown for the helical geometry in Fig. 6.

APPENDIX B: CHIRAL PHOTOEXCITATION BIAS

FROM CIRCULARLY POLARIZED LIGHT

The results of the main text are presented based on an ini-
tially unpolarized statistical mixture of right and left circularly
polarized excitations. In this case, the preferential excitation
of a given spin manifold depends on the chirality of the helix
and on the propagation direction of the initial wave packet
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FIG. 7. Preferential excitation of one chirality from an unequally
polarized initial state. Panels correspond to the same setups as in
Fig. 2(a) of the main text but for initial states ρ(0) = |↑i〉〈↑i|, cor-
responding to a polarized spin up excitation localized at the bottom
(top two panels) or top (bottom two panels) of the helix.

relative to the quantization axis. Here we demonstrate that
the initial excitation of only a single spin orbital (e.g., by the
absorption of pure circularly polarized light) results in the
long-lived excitation of only one chirality. Figure 3 shows
the transport dynamics for the initial state ρ(0) = |↑i〉〈↑i|,
corresponding to a polarized spin-up excitation localized at
the bottom (top two panels) or top (bottom two panels) of
the helix. For a given propagation direction, one chirality
is excited into long-lived subradiant modes while the other
decays rapidly via helical superradiance. If such a process
were to occur inside right- and left-handed chiral molecules,
the discrepancy in photoexcitation lifetimes could lead to dif-
ferences in chiral photochemistry.

APPENDIX C: BAND STRUCTURE CALCULATIONS

For the case of an infinite helix, we can describe the
geometry as a non-Bravais lattice composed of N sublat-
tices. Decomposing the site index i into a unit cell index
m and a sublattice index μ, we make the discrete Fourier
transform bmμσ = (1/

√
M )

∑

k exp (ik · rm)bkμσ , where k is
the lattice quasimomentum. This transformation yields Heff =
∑

k H (k), where the Bloch Hamiltonian is given by

H (k) =
∑

μ,ν

∑

σ,σ ′

hμσ,νσ ′ (k)b†
kμσ bkνσ ′ . (C1)

Here, the matrix elements

hμσ,νσ ′ (k) = ω0δμνδσσ ′ + χ I
μσ,νσ ′ + χ II

μσ,νσ ′ (C2)

can be written in terms of infinite sums over the set of Bravais

FIG. 8. Helicity-dependent chiral transport without dissipation.
Panels correspond to the same setups as in Fig. 2(a) of the main text
but without the influence of the anti-Hermitian term in Eq. (2) [i.e.,
time evolution with only the Hamiltonian (1)].

lattice vectors Rμ as [51,88,89]

χ I
μσ,νσ ′ = −

3

2
λ0�0

∑

Rμ �=0

e−ik·RμGσσ ′ (Rμ)δμν, (C3)

χ II
μσ,νσ ′ = −

3

2
λ0�0

∑

Rμ

e−ik·RμGσσ ′ (Rμ + nμν )(1 − δμν ),

(C4)

where the basis vectors nμν = nμ − nν point from sublattice ν

to μ within a given unit cell and Gσσ ′ (Rμ) = ε̂†
σ · G(Rμ) · ε̂σ ′ .

To solve for the band structures presented in Figs. 4(a) and 5,
we discretize the Brillouin zone as k = kk̂ for k = π j/(Ma).
Here, a = |rm+1 − rm| is the lattice spacing between adjacent
unit cells and j = 0, ..., 2M is an integer. The band structures
are then obtained by numerically diagonalizing the Bloch
Hamiltonian for each k.

APPENDIX D: CHIRALITY DEPENDENT PHOTON

TRANSPORT WITHOUT DISSIPATION

As discussed in the main text, the preferential transport
of excitations with a given helicity stems from an emergent
SOC induced by the chiral geometry. This SOC results in
antisymmetric spin textures for the Bloch bands and is pro-
tected by P̄ symmetry. Helical superradiance enhances this
effect through dissipation, but is not necessary for chirality
dependent transport. Figure 8 shows the population dynamics
in the absence of dissipation. The unitary dynamics generated
by the Hermitian Hamiltonian (1) are sufficient to produce the
helical transport.
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Correction: Minor errors in the inline expression following
Eq. (3) have been fixed.
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