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Abstract—In recent years, the frequent occurrence of disrup-
tions has had a negative impact on global supply chains. To stay
competitive, enterprises strive to remain agile through the im-
plementation of efficient and effective decision-making strategies
in reaction to disruptions. A significant effort has been made
to develop these agile disruption mitigation approaches, leverag-
ing both centralized and distributed decision-making strategies.
Though trade-offs of centralized and distributed approaches have
been analyzed in existing studies, no related work has been
found on understanding supply chain performance based on
the network attributes of the disrupted supply chain entities. In
this paper, we characterize supply chains from a capability and
network topological perspective and investigate the use of a dis-
tributed decision-making approach based on classical multi-agent
frameworks. The performance of the distributed framework is
evaluated through a comprehensive case study that investigates
the performance of the supply chain as a function of the
network structure and agent attributes within the network in the
presence of a disruption. Comparison to a centralized decision-
making approach highlights trade-offs between performance,
computation time, and network communication based on the
decision-making strategy and network architecture. Practitioners
can use the outcomes of our studies to design response strategies
based on agent capabilities, network attributes, and desired
supply chain performance.

Note to Practitioners—This research is motivated by the chal-
lenges in determining agile decision-making strategies that enable
a supply chain enterprise to adapt to disruptions while taking into
account the network-based attributes of the disrupted agent and
the requirements of the supply chain system. Existing approaches
in the literature focus on providing one feasible decision-making
strategy based on specific performance metrics. This paper
investigates both centralized and distributed approaches to better
understand the differences between the response strategies in the
case of supplier loss. More specifically, we design a supply chain
instance and conduct a case study to evaluate the performance
of the centralized and distributed approaches in terms of several
common performance metrics used in practice. The case study
provides insights for users to select a decision-making approach
based on the network attributes and agent capabilities of the
supply chain. The impact of network uncertainties and risk
assessment are not considered in this work. Future studies will
investigate a stochastic supply chain environment and hetero-
geneous risk management framework in the context of agile
decision-making for disrupted supply chain enterprises.
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I. INTRODUCTION

S the complexity and uncertainty of global supply chains

increase, various disruptive events (e.g., COVID-19, war,
and trade regulation) have occurred more frequently and with
greater intensity, severally impacting global supply chains
through changes in customer demand, material supply and
manufacturing capabilities [1], [2]. Existing literature in this
domain focuses on proactive methods for supply chain disrup-
tion mitigation, such as demand forecasting, inventory man-
agement, and stochastic optimization methods that estimate
potential disruptions in advance to enhance supply chain ro-
bustness [3], [4]. However, unexpected disruptive events, such
as supplier loss, require enterprises to make quick and effective
decisions in response to the disruption, by understanding how
the selection of a mitigation approach will impact the recovery
performance [5]. In this paper, we consider the following
problem formulation: given a supply chain network (SCN)
with a specific structure, individual enterprise agents with
varying attributes as a function of the network, existing product
flows, and an unexpected disruption to one of the agents within
the network, how do the agent attributes and decision-making
strategy impact the system performance?

In the literature, researchers have described a supply chain
as a network with vertices (e.g., supplier, customer, etc.)
and edges (e.g., transportation), along with their associated
attributes and parameters (e.g., cost and capacity) [6], [7].
In this paper, both the vertices and edges we consider have
intelligence and thus are defined as agents. Therefore, un-
derstanding the agents and their attributes within an SCN
can help determine the impact of disruptions based on where
disruptions occur and the critical performance metrics of
interest. From the topological perspective, existing literature
has made a significant effort in conceptualizing supply chain
disruptions and investigating the effects of the overall network
topology on supply chain resilience and robustness [7]-[11].
However, the existing studies did not discuss how the agent
attributes within this network (e.g. capabilities, connectivity,
etc) impact the mitigation performance. Furthermore, agent
capability attributes are important for understanding the impact
of the disrupted agent on supply chain disruption recovery.
This specification has implications for how we determine the
decision-making approach for disruption mitigation.

In terms of decision-making approaches for supply chain
management, centralized models are widely used to provide
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optimal solutions based on specific objectives (e.g., product
flow cost) [12]. For disruption mitigation, centralized models
require information about the entire supply chain in order
to re-optimize the system in response to a disruption [13].
As the complexity and scale of supply chains increase, it
becomes more difficult to remain agile in the presence of
multiple disruptions [14] due to communication demands and
computational complexities that arise in these scenarios [15].
To improve the agility and effectiveness of SCNs, researchers
have proposed distributed decision-making approaches, where
multiple entities in the system make decisions via local com-
munication and collaboration [16]-[19].

Multi-agent control is a distributed approach that can enable
intelligent decision-making for agile supply chain disruption
mitigation [20], [21]. Each autonomous agent in an SCN
either represents a physical entity, such as a supplier, or is
responsible for a function, e.g., demand forecasting [15]. Var-
ious agents communicate and make decisions collaboratively
based on their knowledge and goals [19], [22]. In the existing
literature, most agent-based disruption reaction strategies are
based on either pre-defined disruption scenarios and reactive
actions [23]-[25] or rule-based reasoning and logic [26]-
[29]. The disruption reaction performance of these methods
is limited to a set of pre-defined scenarios and rules. It can be
difficult to include a large number of predefined scenarios or
define all of the necessary rules for large and complex supply
chains. Therefore, applying these approaches to investigate the
correlations between agent attributes and system performance
requires significant design efforts. In our prior work [21],
[30], we provide a multi-agent framework that is flexible
to design and enables a dynamic disruption response in the
supply chain. The agents are equipped with a model-based
architecture instead of rule-based logic. However, it is limited
to certain disruption scenarios and small-scale SCNs, and does
not analyze how the network attributes of the disrupted agents
affect performance. In summary, to the best of our knowledge,
no study has carried out an evaluation of the performance
of both centralized and distributed approaches based on the
attributes of the disrupted supply chain agents in a complex
SCN.

To address this limitation, the contributions of this paper
over the previous work include: (1) Formulation of an agent’s
attributes (e.g. capability, connectivity) within the context of an
SCN. (2) Extension of our preliminary multi-agent framework
to handle different disrupted agents in complex networks by
allowing agent exploration and iterative communication. (3)
Validation of the proposed approach through an investigation
of the correlations between agent attributes and performance
of disruption responses with a comprehensive case study.

The rest of the paper is organized as follows. In Section II,
we describe an SCN from topological and capability perspec-
tives. In Section III, we present the proposed distributed multi-
agent framework for disruption mitigation. In Section IV, we
design the case study set-up, including a extensive supply
chain instance, a centralized approach as a benchmark, and
performance metrics. In Section V, we conduct a performance
analysis of centralized and distributed approaches, with con-
cluding remarks given in Section VI.

II. SUPPLY CHAIN NETWORK

A. Overview and assumptions

Consider an SCN G(V, E) with V being the set of ver-
tices, representing supply chain entities, such as suppliers,
customers, etc., and E being the set of edges, representing
product/material flows between the entities. We also consider
the associated information (e.g., demand, production, cost, and
capacity) with the vertices and edges [7], [30]. In this paper,
both vertices and edges in the SCN have intelligence and thus
are defined as agents. The corresponding supply chain agent
network G*(A, L) includes all the vertices in V' and edges in
E in the agent set A, and the agents in A are connected by a set
L of communication links. Similar to the set-up in [30], in this
paper, we consider the following agent types in the network:
customer, distributor, original equipment manufacturer (OEM),
tier supplier, and transporter.

This paper investigates how the network attributes of a given
agent (e.g. connectivity, capability) impact the performance of
the supply chain system in response to a disruption. Supply
chain disruptions are classified into different categories, in-
cluding internal and external disruptions based on their causes,
as well as supplier and customer disruptions based on their
locations [3], [4]. In this study, our primary focus is on an
unexpected supplier loss, which may be triggered by natural
disasters or workforce strikes.

The response is defined as a new flow plan to minimize total
cost and demand dissatisfaction. We explore both distributed
and centralized decision-making approaches to provide a com-
parison. The centralized approach solves the problem from the
entire SCN perspective:

e DN J = B Z CijkYijk +‘ Z €ikDik
(i,J)€EE,kEK i€V,kEK
+ Z P?kA?k (1a)
ieV,keK
S.L. Do Yuk— D Ykt D Trebin
:(6.5)EE J:GD)EE KEK
—pik =ik + Lk — Lk, Vi€V, k€K (1b)
> wigk < By, V(i,5) €E (Io)
ke K
Z pik < PiGi, VIEV (1d)
ke K
A >z —din, Vi€V, k€ K (1e)
Yijk Tik, Lin, Ay >0, ¢, By € {0, 1},
vieV, (i,j) € E, k€K, (1f)

where (la) are the total costs of flow, inventory, and produc-
tion, as well as penalty costs of unsatisfied demand. Constraint
in (1b) defines flow balance of each product for each agent;
constraint in (Ic) and (1d) limits the flow on each edge and
production at each agent by its given capacity; constraint
in (le) computes the unsatisfied demands of each product
at each vertex; and constraint in (1f) specifies the domains
of variables. Once the disruption is identified, a centralized
decision-maker will re-run the centralized model with updated
network structures, parameters, and constraints to determine
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TABLE I
NOMENCLATURE

Supply chain description

G=(V,E) supply chain network (vertices and transportation edges).
G® = (A,L) agent network (agents and communication links).
K set of product types.

Yijk units of product k transported from agent a; to a;.
network flow state including all product flows.

m = (o, k) capability of performing operation o for product k.

Z (k) the set of needed product types to make a product k.

Agent attributes

C; connectivity of agent a;.

D; depth of agent a; in the network.

R;(m) capability redundancy of agent a; for capability m.

P; production complexity of agent a;.

Agent communication and decision-making

Qe disrupted (i.e., lost) agent

v all the initial product flows related to ac.

Agm set of demand agents

dik units of product k that agent a; needs.

Af changes of network flow state.

M (k) set of agents that a; sends requests to for product k.

Yijk maximum units of product k that agent a; determines
to provide to a;.

A ik units of product & that agent a; determines to get from
a;.

Metrics for performance evaluation

(@] sum of the costs for transportation and production that
exceed the nominal agent capacity.

N sum of modified edges (e.g. type and/or amount of
production flow) and agents (e.g. new production volume
or capability).

Ng sum of additional edges and agents needed for trans-
portation and production.

M the number of agent communication exchanges used to

derive a response to disruption.

the re-optimized decisions. More details can be found in our
previous work [30].

To describe the proposed distributed approach, we firstly
make the following assumptions to specify our scope:

A.1 Supply chain agents have self-awareness of their own
attributes and can communicate and make decisions.

A.2 The SCN or system contains supplier redundancy and
operates within the capacity limit of the initial plan.

A.3 Unexpected disruptions are in the form of a lost agent
(e.g. agent is unable to perform their set tasks) within the
SCN. This disruption can be detected by the associated
agent.

A.4 An agent retains communication capabilities even in the
presence of a disruption.

A.1 defines the agents’ abilities to make individual or locally
dependent decisions in response to a disruption. A.2 ensures
that a new product flow plan can be determined. A.3 guar-
antees that the disruption will be identified by the agent if it
occurs and also designates how the SCN will be impacted by
the disruption. A.4 is necessary to enable local negotiations in
response to the disruption.

To understand how disruptions affect supply chains, we
provide detailed supply chain descriptions at the network and
agent levels. Specifically, we focus on the role of each agent
in the SCN from both topological and capability perspectives.
Table I summarizes the notations used in this paper. We also
illustrate key definitions in Figure 1.

Wheel

Product
structure

Supply chain network

Fig. 1. An example of an SCN and product structure used to illustrate the
proposed supply chain descriptions.

B. Supply chain attributes

Based on a topological description from literature [6] as
well as agent attributes introduced in [30], we describe the
role of an agent in an SCN from topological and capability
perspectives. In the following description, we will use Wheel
and Rim agents from Figure 1 as examples.

1) Connectivity: Defined as the number of in-flow and out-
flow edges (i.e., transportation units) to or from agent a;:

C; = Z bij + bja, 2
a; €V
where b;; = 1 if edge (¢,7) is associated with material or
product flow from a; into a;, and O otherwise. From Figure 1,
the connectivity of the Wheel agent is given as C = 3+2 = 5.
The Connectivity of an agent represents the number of other
agents that will be affected if this agent is disrupted.
2) Depth: Defined as the maximum number of edges
between a; and the final layer (e.g., customer)

D; = d(ai,a;), 3)

max
aj €Customer

where d(a;,a;) is the geodesic distance, defined as the mini-
mal length of a path between two agents a; to a;. In Figure 1,
assuming the store represents the customer layer, the depth
of the Wheel agent is found to be 1. The Depth of an agent
represents where the agent is located in the supply chain, thus
it reflects the possible ripple effect if the agent is disrupted.

3) Redundancy: From a capability perspective, the redun-
dancy of a; is defined as the number of alternative agents
(excluding a;) that can perform the same capability as a; in
the agent network:

R;(m) = |{a;|a; with capability m,a; € A\ {a;}}|, 4)

where m represents a specific capability of agent a;. A
detailed definition of m is given in Section III-A. This attribute
indicates the number of backup suppliers for a given capability.
In Figure 1, the network contains two agents that can produce
the Rim; thus, for each Rim agent, the capability redundancy
is R;(m) = 1. The Redundancy of an agent indicates whether
there are backup agents to recover the product flows if this
agent is disrupted.

4) Complexity: Defined as the sum of final product
types that require products from agent a; and the mate-
rial/component types necessary for a;’s production:

Pr=| |J {ks | k€ Z(ks).Vhy € Kf}+| | Z(K)], 5)
keK; keK;
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Fig. 2. The proposed multi-agent framework for supply chain disruption mitigation, revised based on our prior work [30].

where K; represents the set of product types that a; can
produce and K represents the set of final product types in
the supply chain. The function Z : K — 2% maps a specific
product type k to the set of components and/or materials that
are needed to produce k. We denote K as the set of all product
types in the supply chain. In Figure 1, the production of the
wheel requires a tire and a rim, Z(Wheel) = {Tire, Rim}. It
is assumed that there is only one product type that requires
the wheel. Thus, the production complexity of the wheel agent
Pyheet = 1+ 2 = 3. The Complexity of an agent represents
the number of product types that will be affected if this agent
is disrupted.

These attributes describe the current status of agents in
terms of topology and capability and they are independent of
each other. A change of one attribute will not affect other
attributes. But these attributes may change together as the
agent status changes. In this paper, we focus on the disruption
(loss) of a single agent. While any agent loss is important,
we hypothesize that the impact of the agent loss is affected
by the attributes of the specific agent. Note that though the
attributes are dynamically updated if needed as the SCN
operates, we focus on the attributes when the disruption occurs
and investigate how the attributes of a disrupted agent affect
the performance of the mitigation decisions.

III. DISTRIBUTED DECISION-MAKING USING
MULTI-AGENT FRAMEWORK

As mentioned in Section I, centralized approaches face
challenges when dealing with large and complex SCNss, as they
require information from the entire network. In light of this,
we investigate a multi-agent framework to deploy distributed
decision-making for supply chain disruption mitigation using
local communication. Figure 2 provides a high-level overview
of the proposed multi-agent supply chain framework, including
a physical SCN, a cyber multi-agent network, and a central
database. The physical SCN contains the business entities and
product flows from the supply chain in the real world. The
multi-agent cyber-network consists of an agent communication
layer and an agent decision-making layer. Each agent is a
cyber representation of its physical counterpart and will be

initialized with its own version of agent architecture, as shown
in Figure 3. The agents obtain information from the physical
supply chain and communicate with each other to share
the information. Based on their own knowledge and shared
information, agents are able to make their own decisions, such
as supplier selection, and command the decided changes to
the corresponding physical entity, as shown in Figure 2. The
central database stores all the information from the physical
supply chain and cyber agent networks. In this section, we
provide our design of a supply chain agent architecture and
describe how agents communicate and make decisions for
disruption mitigation.

A. Supply chain agent architecture

The proposed supply chain agent architecture consists of
three modules: a Knowledge Base, a Decision Manager, and
a Communication Manager, following the principles of our
previous architecture for manufacturing agents [31], [32].
Figure 3 depicts a detailed design of the proposed agent
architecture, including specific components in the modules and
component-to-component information exchange.

1) Knowledge Base: The belief-desire-intention (BDI) ar-
chitecture has been widely used to provide a modular frame-
work to design intelligent agents [33]. Based on our prior agent
models in [30], we reformulate the agent Knowledge Base
following the BDI design. We define the prior agent models
as Beliefs and add Desires and Intentions into the Knowledge
Base in this paper.

a) Beliefs: Beliefs represent what the agent knows about
itself and its environment. Building upon our prior work [30],
the beliefs of an agent are comprised of the state, capability,
and environment models. These models are dynamically up-
dated (i.e., extended, shrunk, and revised) as the agent and its
environment change.

State model: The agent dynamics are described by a flow
balance of varying input and output products. The state model
describes the dynamics in terms of flow, production, and
inventory based on the flow balance equation [30]:

Iivr = I +up — 2z + he (I, ). (6)
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Fig. 3. The proposed supply chain agent architecture. The blocks in grey are
examined in [30].

Note that each variable in the state model is a vector indexed
by the product types that agent a; needs or produces, where
state vector [; represents the number of products held in the
agent at time t; input vector u, represents product flows into
the agent; output vector z; represents the product flows out
of the agent; and production function h¢(1I;,u;) defines the
number of used components and produced new products if
the agent has production capability.

Capability model: Describes the operational behaviors that
an agent can perform in the SCN. The capability model con-
sists of capability knowledge and several associated mapping
functions. The capability knowledge is a set of capabilities
M. = {mg,m1,...}. Each capability m; = (o0,k) is a
tuple, where o is one of the operational behaviors, including
production, inventory, or transportation, and k is a product
type. Along with this high-level capability knowledge, several
mapping functions are used to describe the characteristics of
a capability, such as cost and capacity.

Environment model: An agent’s knowledge of other agents
in the network is encapsulated in the environment model.
Based on the agent network G* = (A, L), we can describe
the local communication network for a single agent a; € A
as G¢ = (A;, L;), where A; C A is a subset of agents that
a; can communicate with via links in L;. These agents are
grouped into several subsets based on their relationship with
agent a; and stored in the environment model, denoted as
M, = {U; : K — 2% D,,S;,...}. U; maps product types
to a set of upstream agents from which a; can obtain the
products. Similarly, the mapping functions, D; and S;, identify
the agents that are downstream agents of a; and agents that
have the same capability as a;, respectively. In this way, an
agent is capable of identifying the subset of agents it needs to
communicate with and exchange information in the network.

b) Desires: Desires represent the goals and requirements
of an agent. In this paper, the desires include the objective

functions and the constraints for the decision-making of the
agents. For example, an agent makes decisions to select
suppliers with minimal cost (objective 7) considering the limit
of the number of suppliers (constraint C).

c) Intentions: Intentions represent the plans an agent has
committed to executing. The intentions of an agent depend on
its capabilities. For example, the intentions of a transportation
agent include product flows it has committed to transporting,
while for a supplier agent, the intentions describe the produc-
tion and out-flow of products to downstream agents.

2) Decision Manager: The Decision Manager of an agent
consists of multiple decision-making models. In this paper, we
primarily discuss the decision-making for disruption identifi-
cation, response optimization, and supplier selection.

a) Disruption Identifier: Component that identifies the
consequences of a disruption, such as the lost production and
flow streams.

b) Response Optimizer: Component that determines how
an agent responds to other agent requests by solving an
optimization model based on the response agent’s objectives
and constraints.

c) Supplier Selector: Component that determines how an
agent selects suppliers to satisfy its demand by solving an
optimization model based on the selector agent’s objectives
and constraints.

3) Communication Manager: Provides the interface for
the agent to exchange information with its physical entity
and other cyber agents. In this paper, components of the
communication manager include an information manager, a
request manager, and a response manager.

a) Information Manager: Collects information from and
sends decisions to the agent’s associated physical entity.

b) Request Manager: Sends requests from the Decision
Manager to other agents and passes requests received from
other agents to the Decision Manager.

c) Response Manager: Sends responses from the Deci-
sion Manager to other agents and passes responses received
from other agents to the Decision Manager.

B. Agent communication and decision-making for disruption
mitigation

In this section, we describe the proposed agent commu-
nication strategy for disruption mitigation, including three
processes: disruption identification, iterative communication
for supplier re-selection, and propagated communication. Fig-
ure 4 shows the overall flow of the agent decision-making and
communication protocol for supplier selection. Algorithm 1
describes the detailed overall decision-making processes while
Algorithm 2 describes how agents iteratively communicate for
supplier re-selection. We assume that agents can communicate
regardless of the disruption and that communication links
can be established or removed based on the decision-making
strategy. Agent communication follows Contract Net Protocol
(CNP) [34], which aligns with the Foundation for Intelligent
Physical Agents (FIPA) standards [35].
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Fig. 4. The flow chart of the proposed agent communication and decision-
making process

1) Disruption identification: We focus on the disruption
of an agent loss, which leads to losses of production and/or
transportation flows. By periodically obtaining data and infor-
mation from the physical entities, agents are able to detect
disruptions that occur in their associated physical entities.
Once a disruption occurs, the disrupted agent, denoted by
ae, checks its knowledge base to identify the lost flow y°
related to it, as described in Algorithm 1, lines 1-3. Based
on the lost flow, a. initiates communication with downstream
agents, defined as demand agents Ag,,, to inform them of
the disruption to their incoming production flow streams. In
addition, the a, will inform upstream agents that provide
products to the disrupted agent that the flow streams will
be disrupted and may be reassigned to alternative agents.
Since the flow streams f, are no longer balanced and meeting
the requested need, the demand agents Ag,, must now find
supplier agents that are capable of supplementing for the lost
production of a..

2) Iterative communication for supplier re-selection: Once
the disrupted agent, a., identifies the lost flow streams and
informs the downstream demand agents about this disruption,
the demand agents must initiate communication with alter-
native suppliers. The contract net protocol (CNP) segment
of the communication process illustrated in Figure 4 and
Algorithm 2 describes the iterative communication process
that consists of four key steps in each iteration: “Identifying
needs”, “Requesting help”, “Responding to the requests”, and
“Informing agents of accepted flow”. The outcome of this
process is the selection of alternative suppliers to provide the
necessary product flow that has been disrupted by the loss of

Algorithm 1 Distributed decision-making for disruption mit-
igation
Input: a., an Cv J
Output: f,
/I Disruption and demand identification
12 Y0 < (Yoju Yier)iievike e C fo I/ Identify lost flows
2 Agm  {a;,Vj € ygjk €y} /I Identify demand agents
3. fr « fo \ Y0 // Get remaining flows
/l Agent communication
4: while Adm 75 0 do
/I Generate and update new product flows
5. Af, < Algorithm 2
: fr e fr UAL,
/I Check flow balance and identify new demand agents
for y_ ;. € Af, do

8: if ¢, needs materials/components then
9: Add a, to Agm,

10: end if

11:  end for

12: end while

13: return f,

an agent.

a) Identify needs: Based on the disrupted flow, a demand
agent a; € Agy, identifies its current need, dj; = ygjk,Vk €
K. Using its knowledge base, a demand agent then retrieves
the set of objectives, Jjx, and constraints, Cji, (e.g. budget,
delivery date) to direct the decision-making process for a new
supplier.

b) Request: Meanwhile, each demand agent a; retrieves
the environment models in its knowledge base and identifies
the agents where it will send a request for additional flow.
We define M (k) as a set of agents that a; can request for
product k. The demand agent a; sends out requests, denoted
by Req = (dji,Cjk), to all agents in M (k),Vk € K. Note
that all of the demand agents may send requests in parallel.

c) Response: Request agents (a. € Uq,ca,, M;(k)),
those that receive the request from the demand agents, will
check their knowledge bases and determine their ability to
provide the product flows (i.e., satisfy the requests) based
on their objectives 7, and constraints C,. They will then
formulate a response that includes available product flows,
U = [Usjkra; € Adm,k € K], where 7, represents
the maximum units of product k that a, can provide to
aj, and related information F.;; (e.g., product cost). The
request agents a, determine their responses by solving a local
(individual agent) optimization model. An example is given
below:

max  JT(0:) = Y Teklek (7a)
Y= a;E€EAdm kK
s.t. Z Uzjk < @25, Va; € Agm (7b)
keK
D Tk < (7¢)
ajeAdm keK
Uzjr < djr,Vaj € Agm, k € K, (7d)
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Algorithm 2 Supplier re-selection via agent communication
Input: Agp,y2,C,J
Output: Af,

/l Objective: Find product flows to satisfy demand agents

1: while Adm 75 0 do
/I Request (all the demand agents)
2. for a; € Ay, do
/I Identify the need of each demand agent
3: djk — yeo,jk’Vk eK
/] Identify agents to request
a; explores environments
M (k) < Environment model, Vd
a; requests M (k) for product need d;y,
end for
/I Response (all the agents being requested)
for a. € Uy, ca,,, M;(k) do
: Uzjks Youp < min 7,
10: a, sends response ¥, ;i to a;
11:  end for
/I Determine product flows and check need
122 for a; € Ay, do

A

R

13: Yok < minJ;

14 dg g = 30, Yoy
15: if dj; < € then

16: Af, appends y_ ;.
17: Agm Adm\ a;
18: end if

19:  end for
20: end while
21: return A f,

where (7a) maximizes agent a,’s revenue, subject to the
constraints of flow capacity (7b) and production capacity (7c)
from the agent itself and the constraints of from the re-
quested demands (7d). Note that agents can have their own
specific objectives (e.g., inventory level and revenue) and
constraints. All requested agents send their responses, i.e.,
Res = (§zjk, Fzjk), back to the demand agents.

d) Inform: After receiving responses from all of the
requested agents, each demand agent, a;, determines the new
product flow streams v} = [y, a. € Z;(k),k € K]T by
solving another optimization. An example is shown below:

>

Ti (Y5, Fejr) = TaikYejk + Z p;‘lkA?k (8a)

J ar€Z;j(k),k€K keK
st Yok < Yejr, V2 € M,(k),k € K, (8b)
Aje > Y g —dje, VhEK (8¢)
a€Z;(k)
other agent constraints, (8d)

where (8a) minimizes the total costs and demand dissatisfac-
tion of the demand agent. Constraint (8b) denotes that the cho-
sen new product flows cannot exceed the suppliers’ responses.
Constraint (8¢) calculates the unmet demands. Constraint (8d)
presents other constraints for supplier selection, such as a
limited number of suppliers for the demand agent. Note that

demand agents may have their own specific objectives and
constraints. Then the demand agents check whether their
decisions can satisfy their needs with an acceptable threshold.
If so, the demand agents inform the chosen agents to provide
new product flows.

e) Iterative communication: The above request-
response-inform process takes |Agm| + | Ua,ca,,, M;(k)| +
|Agm| computations. However, if there are agents whose
needs cannot be satisfied, they will explore the environment
to identify other agents that can provide the needed products
(i.e., identify new suppliers within M (k)). These agents will
then repeat the request-response-inform process to determine
new product flows. The iteration process will stop once
the demand agents have identified suppliers that can meet
their needs, or it has been determined that there are no
suitable agents capable of providing the needs. In such a case,
demand agents have to reduce their production due to material
shortage, and inform their downstream agents that they cannot
provide all of the desired products. In this paper, this product
shortage will lead to unmet demand for customers. Note that
different communication strategies could also be designed
to further investigate the capability and capacity of the
network to fulfill demands. To guarantee convergence, we
set an upper bound n. for the number of times that demand
agents can explore. Therefore, the complexity of Algorithm 2
is O(ne x max{|Agml,| Ua,ea,,, M;(k)[}). Note that
|Agm| is related to the Connectivity of the disrupted agent
and | Uy ea,,, M;(k)| is related to the Connectivity and
Complexity of the disrupted agent. Therefore, if the disrupted
agent has higher Connectivity and Complexity, the re-planning
process generally requires more computations.

3) Propagated communication: The iterative communica-
tion process occurs between the demand agents and their
immediate supplier agents. However, this process may prop-
agate through the entire network if the process of meeting
the demands of certain agents introduces new needs from the
suppliers meeting those demands. In this manner, the suppliers
become new demand agents, resulting in a continuation of this
process, as described in Algorithm 1, lines 4-12.

a) State update: Algorithm 2 identifies several new
product flow streams that are necessary to satisfy the needs
of the initial demand agents. Once these flow streams are
identified, the demand agents and selected supplier agents must
update their states, resulting in a change to the network flow
states: f. < f. UAf. At this point, based on the objective
of Algorithm 2, it is assumed that the demand agents have
reached a balanced flow, while the selected supplier agents
may need additional components in order to meet their new
flow demands.

b) Propagation: Since each selected supplier agent, a.,
commits to providing products to meet the needs of the de-
mand agents, this may introduce additional product/component
needs from the suppliers to ensure sufficient products to meet
these new commitments. In this case, the supplier agents no
longer have balanced flow streams and must propagate demand
requests in order to meet their needs to their related supplier
agents. The communication process of Algorithm 2 will now
be repeated; however, in this iteration, the selected supplier
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Fig. 5. The simplified product structure for automotive cockpit

agents have become new demand agents. The propagation
process stops when all of the agents have met their additional
needs (e.g., the requests have been propagated through all
upstream agents in the network). Therefore, the number of
times that Algorithm 2 is repeated depends on the Depth
of the disrupted agent (D,). The worst case is that the
communication propagates to the most upstream agent, whose
depth is Dyyqr = maxg, ey {D;}. In this case, Algorithm 2 is
repeated AD = D,,,q, — Dy times. Therefore, the complexity
of Algorithm 1 is O(AD X Npaz), Where Nppq, represents
the maximum number of computations in the repeated Algo-
rithm 2. Note that if the disrupted agent has higher Depth, the
re-planning process requires less computations.

Overall, the proposed model-based agent knowledge pro-
vides heuristics to guide agent communication. In this way,
agents are able to selectively communicate with other agents
who possess relevant abilities to handle the disruption, thereby
reducing unnecessary communication. Moreover, the integra-
tion of agent exploration and iterative communication enables
agents to thoroughly search for all potential solutions within
the network. However, it is important to note that the opti-
mality of this approach depends on how much the users allow
agents to explore and communicate. There is a cost trade-
off between exploration, and hence increased communication
requirements, and performance.

IV. CASE STUDY SET-UP

To conduct numerical studies to evaluate the proposed
approaches, we designed an example based on a supply chain
for vehicle cockpits. In this section, we describe the supply
chain instance, introduce several disruption scenarios, and
derive metrics for performance evaluation.

A. Supply chain instance

1) Product structure: We consider a vehicle cockpit supply
chain, consisting of cockpit assembly plants, their customers
(i.e., vehicle assembly plants), and their suppliers for com-
ponents and materials. Here we summarize the supply chain
product structure and network. Figure 6 shows that in our
example vehicle cockpits represent the final product and are
assembled using several manufactured components, comprised
of different parts and/or materials.

Raw material
] supplier

Auto assembly

O Part supplier O (customer)

© Componentsupplier ~ © Cockpit assembly

Fig. 6. The SCN instance used for case studies.

In this instance, there are 3 different models of vehicles,
and each model has demands for 1, 2, or 3 styles of cockpits.
Between auto and cockpit assembly plants, we have the
following assumptions:

o Each auto assembly plant only makes 1 type of vehicle

model;

« Each cockpit assembly plant can produce multiple styles
of cockpits.

Each cockpit requires 10 components to be assembled, as
shown in the green ellipse in Figure 5, but different styles may
need different component types. Between cockpit assembly
and component suppliers, we have the following assumptions:

o The cockpits for the same auto model require the same
type of cluster, substrate, glove box, HVAC system, cross-
car beam, and steering column;

o Each style of cockpit requires a unique type of info-
tainment system, wiring harness, and a combination of
different bezel types;

o All the cockpits use the same type of airbag.

Each component needs certain types and amounts of parts
and/or materials in order to be produced. The blue ellipse
in Figure 5 provides examples of some of the parts/materials
needed for these components. Between component suppliers
and part/material suppliers, we have the following assump-
tions:

« Different types of components may require differ-
ent part/material types, yet they may share the same
part/material suppliers;

o The part/material suppliers represent the most upstream
suppliers in this instance.

2) Supply chain network: Based on the product structure
above, we designed an SCN with 117 supplier/customer agents
and 413 transportation agents, as shown in Figure 6. These
agents correspond to physical elements within the supply
chain and are equipped with the proposed agent architecture
to conduct communication and decision-making. The network
instance contains 5 customers, 3 cockpit assembly plants, 31
component suppliers, 62 part suppliers, and 16 raw material
suppliers that are connected via distinct transportation units.
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The 5 auto assembly plants represent customers that have
placed demands for different style cockpits. Each cockpit
assembly plant produces cockpits for a specific auto model
type. For each type of component, part, and material, we
have multiple suppliers that have production capabilities. Each
supplier or transportation agent has its own production or
transportation cost and capacity.

B. Benchmark and disruption scenarios

As discussed in Section I, existing distributed approaches
in the field of supply chain management typically rely either
on pre-defined disruption scenarios or rule-based decision-
making. It is challenging to evaluate and compare with these
approaches effectively without access to their underlying agent
design, database, and implementation details. Additionally,
these methods do not focus on the problem of supply chain
disruption response, thus comparing and assessing their perfor-
mance accurately for this problem may be hindered, potentially
leading to incomplete or misleading conclusions. Furthermore,
though there are other distributed approaches utilized in other
fields, such as manufacturing rescheduling, multi-robot con-
trol, these approaches cannot be directly applied to the specific
problems posed by supply chain disruption mitigation.

Therefore, to benchmark our distributed approach against
a more common decision-making strategy, we evaluate the
performance of both a centralized and distributed decision-
making approach during various disruption scenarios. With
visibility of all entities and their status in the SCN, the cen-
tralized model provides a highly communicative yet globally
optimal reconfiguration plan. We use the centralized model
that we developed in [30] to generate optimal initial product
flows as a steady state before a disruption occurs. Once a
disruption is identified, the model is updated by modifying
the network structures, parameters, and constraints. We then
run the updated model to determine newly optimized decisions
about the product flow and production schedule as a response
to the disruption. Though it is not straightforward to analyze
how the solver computes the solution for the centralized
model, the input size of the centralized model is much larger
than the proposed distributed approach. The centralized model
re-optimizes all the agents considering associate constraints
while the proposed distributed approach only consider a subset
of agents within the network.

The supply chain is initiated with a product flow plan de-
rived by solving the centralized model optimization described
above. The supply chain descriptions defined in Section II-B
can be used to describe the role of each agent in this supply
chain instance. Note that in the initial product flow plan, not
all agents will have active production or transportation roles.

To evaluate a disruption from the loss of a single agent, we
design the case study with the following rules:

o The lost agent should have production tasks in the initial

plan;

« In each scenario, only one supplier agent becomes dis-

rupted;

e Agents can exhibit production and transportation capa-

bilities of 30% over their initially defined amount for an
additional 50% unit cost.

In the pre-determined initial plan, there are 84 agents that
exhibit production tasks, thus we run 84 scenarios, starting
from upstream agents to downstream agents. For each sce-
nario, we implement the centralized and distributed decision-
making approaches from Section III to generate a new flow
plan without the use of the lost agent.

The decision-making is focused on optimizing the system
performance by minimizing a cost function, 7, at the network
level (centralized) or local agent level (distributed):

J = Z CijkYijk + Z CikPik
(i,j)EE,kEK ieV,keK ©)
+ Z PhAG + Z P%Af; + ZP;VA}/’

ieV,keK (i,j)€EE =

where the first two elements represent transportation and
production costs when overcapacity must be applied, and the
last three represent the penalty costs for unmet demand and the
addition of new agents and edges. Note that at the local agent
level, the cost function is applied across several local agents
rather than the entire network as with the centralized approach.
As mentioned in Section III, an agent explores the environment
to identify agents that can meet production needs in the case
of a disruption. It is assumed that agents only interact with
other agents that are within their network and therefore show
up in their knowledge base. If the existing network cannot
satisfy the required demands, an agent will seek to build
connections with new agents. This exploration process will
trigger a penalty if new agents are added to the existing
network. The proposed cost function is used to provide an
example. Additional objectives can also be investigated within
this framework through the selection of different elements
within the cost function.

C. Metrics for performance evaluation

In order to evaluate the impact of an agent’s attributes within
the network on the outcomes of different decision-making
strategies, we define several key performance metrics.

1) Overage cost: We define overage cost O as the total
cost for any transportation or production flow that exceeds
the original agent capacity. This metric represents additional
efforts by the agents to address the disruption.

O= > ajeipyint Y, Biewph,

(4,J)€EE,keK ieV,keK

(10)

where a;; and f3; are the multipliers for the increased cost of
over-capacity flow and production; ¥, and p,. are the amount
of over-capacity flow and production that are determined by
the optimization.

2) Network changes: We define network changes N, as
the sum of the number of agents that changed their existing
production amount plus the number of flow channels that are
changed in terms of the type and/or amount of products.

(11
In (11), p; is the initial production of a; and y;; is the initial
flow of edge (i, j); p; and y;; are the new production and flow,
respectively.
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3) Network additions: We define Network additions N, as
the sum of the number of new agents and edges that are added
to the network to address the disruption.

Na:ZmaX{O,ﬁ’—i}-&- Z max {0,¢" — ¢} (12)

icV (i,)€eE

Here ¢ and ( indicate the usage of agents and edges in
the initial plan (1 if used, O otherwise), respectively, and &’
and ¢’ represent the new plan. Both N, and N, represent
how the network changes to respond to the disruption in
terms of the overall production and flow in the network. In
practice, changing existing flow streams and production types
or introducing new suppliers and transportation units may
require a significant amount of business effort, and may not
be practical in many instances.

4) Agent communication: We define agent communication
M as the number of communication exchanges used to
determine a response to the disruption. The communication
effort M in the centralized method includes the request for
re-running the model, the requests to and responses from all
the agents in the supply chain to collect information, and the
notifications to the agents whose flow and/or production plan
need to change:

M:1+2|V|+Nc+Na (13)

In the distributed method, M includes all the agent requests,
responses, and inform messages, as defined in Section III-B2.

V. CASE STUDIES RESULTS AND DISCUSSION

In this section, we present a summary of the case study
results for the various scenarios and investigate how agent
attributes, within the context of a specific decision-making
approach, impact the different performance metrics. Based on
these results, we provide insight for users to consider when
determining an approach to use for disruption response.

A. Overview of the results

In this case study we evaluated 84 disruption scenarios.
Within these 84 cases, there were 11 scenarios in which at least
one of the approaches was unable to find a solution that could
satisfy all of the customer demands. In these scenarios, the net-
work exhibited a redundancy of zero, R;(m) = 0, or insuffi-
cient remaining capacity to recover all the production losses of
the disrupted agent. For these cases, the centralized approach
was used to meet the demand by re-optimizing the entire SCN
to redistribute the capacity and production capabilities. For
the remaining 73 scenarios, the distributed and centralized
approaches were able to find new plans that satisfied all the
demands. Importantly, the computation time for the distributed
decision-making approach was 99% faster than the centralized
approach. The obtained results in our study provide validation
for our assumption that the redundancy of the disrupted agent
is indeed a necessary condition for recovering performance in
SCNs. The presence of redundant agents plays a crucial role
in maintaining and restoring the overall system performance
in the face of disruptions. Moreover, the proposed distributed
approach demonstrates its capability to find a solution for the

TABLE II
METRIC EVALUATION ACROSS INDIVIDUAL SCENARIOS

Number of scenarios (73 in total) where

Metrics distributed approach two approaches
performs better are similar
Network changes N 73 0
Communication M 73 0
Overage cost O 18 42
Network additions N, 0 42

Network changes for different agent categories and approaches
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Fig. 7. Number of network changes for different categorized agents based
on attributes using centralized and distributed approaches.

loss of any arbitrary agent, as long as a viable solution exists
within the network.

A comparison of the performance of the supply chain
reconfiguration as a function of the decision strategy and
performance metrics is shown in Table II. Network changes
and communication use are minimized by the distributed
approach, while overage costs and network additions generally
result in similar performances for either the centralized or
distributed approach. In the following analysis, we focus on
the 73 scenarios where the production demands are satisfied.

B. Performance

In this section, we investigate how agent attributes impact
the performance metrics for both centralized and distributed
approaches. Note that since redundancy mainly affects demand
satisfaction and depth only affects partial metrics, we focus
on agent connectivity and complexity. To illustrate how the
attributes affect performance, we categorize the 73 agents
into four categories, which are combinations of low and high
connectivity and complexity. The connectivity of the 73 agents
goes from 1 to 11 and we choose 5 as the cutoff between low
and high. The complexity of the 73 agents goes from 1 to 15
and we choose 7 as the cutoff between low and high. Based
on these criteria, there are 56 agents with low connectivity
and low complexity, 5 agents with low connectivity and
high complexity, 2 agents with high connectivity and low
complexity, and 10 agents with high connectivity and high
complexity.

1) Network changes: As shown in Table II, the distributed
approach results in fewer network changes than the central-
ized approach in all 73 scenarios, while the exact number
of network changes is related to the attributes of the lost
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Communication for different agent categories and approaches
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Fig. 8. Number of agent communication exchanges for different categorized
agents based on attributes using centralized and distributed approaches.

agent. We categorize agents based on their connectivity and
complexity, and present the outcome of these categorized
scenarios, as shown in Figure 7. For the centralized approach,
agent connectivity has minimal impact on network changes;
however, if the lost agent has high production complexity,
the centralized approach causes more network changes than
the scenarios where the lost agent has low complexity. Since
the centralized approach minimizes the total objective without
considering how it will change the production and transporta-
tion of individual agents, the results show that the capability
attribute (i.e., complexity) has more effect on network changes
in the centralized approach than topological attributes (i.e.,
connectivity).

For the distributed approach, we observe that agents with
high connectivity in the network (topology perspective) or
high product complexity (capability perspective) result in more
changes to the network. Specifically, Figure 7 shows that the
number of network changes increases as either connectivity
or complexity become higher. These two attributes have a
similar effect on the network changes for the distributed
approach since they both determine whether the agent needs
to propagate its local negotiation to other agents, thus leading
to additional network changes.

In addition, the difference in network changes between the
centralized and distributed approaches becomes smaller when
the disrupted agent has high connectivity and complexity. This
is because these agents may require communication across a
large portion of the network, leading to additional network
changes that mirror the quantification of changes from the
centralized approach.

Summary: High complexity leads to more network changes
for both the centralized and distributed approaches, while high
connectivity only impacts the distributed approach.

2) Communication: As shown in Table II, the distributed
approach requires less communication than the centralized
approach in all 73 scenarios. Figure 7 shows how agent
connectivity and complexity impact communication. For the
centralized approach, communication is not influenced by the
level of connectivity and complexity of the disrupted agent.
As defined by (13), the communication for the centralized
approach is dependent on the network size |V|.

QOverage cost for different agent categories and approaches
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Fig. 9. Overage cost for different categorized agents based on attributes using
centralized and distributed approaches.

For the distributed approach, higher connectivity or com-
plexity leads to more agent communication. Similar to the
performance in network changes, communication showcases
the distributed approach to computing a new plan using local
negotiation and only propagates communication as needed.
However, for the agents with high connectivity, the level of
complexity does not impact the communication needs for
the distributed approach. This indicates that the topological
attribute connectivity has more impact on communication
than production complexity since it reflects the ripple effect
that may go through the supply chain and lead to more
communication.

The difference in communication between the centralized
and distributed approaches also decreases for agents with high
connectivity or complexity, since these agents may require
communication through the entire network.

Summary: Connectivity and complexity do not impact
communication requirements for the centralized approach.
High connectivity and complexity lead to more communication
for the distributed approach.

3) Overage cost: One might expect that a centralized
approach, which optimizes flow across the entire SCN, would
result in lower production costs, especially when overage costs
are taken into consideration. However, Table II shows that out
of the total 73 scenarios, there were 18 scenarios where the
distributed approach computed lower-cost solutions, and 42
scenarios where the distributed approach provided plans with
similar costs to the centralized approach.

To investigate these results, we present the overage costs
based on different agent attributes, as shown in Figure 9. For
both the centralized and distributed approaches, high overage
costs come from low-complexity agents. Low complexity
represents agents that require a small number of components
for production or that produce variants that have limited use
in the final products. Such an agent generally has a limited
number of redundant suppliers with limited excess capacity.
This leads to high overage costs in order to meet production
needs. Overage is related to capability rather than topological
attributes.

The influence of the overage cost differs depending on
the decision-making strategy. The distributed approach does
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Fig. 10. The numbers of network additions for different categorized agents
based on attributes using centralized and distributed approaches.

not provide a global view, thus this approach selects several
backup suppliers so that the over-capacity is low, which causes
more costs through added edges. The centralized approach has
a full network-level view, and it chooses one backup supplier
with over-capacity to avoid adding additional flow channels
since the centralized objective contains a large penalty for
adding new agents and edges.

Summary: Low complexity leads to higher overage costs
for both centralized and distributed approaches while connec-
tivity has no effect.

4) Network additions: As shown in Table II, the distributed
approach results in similar network additions in 42 of 73
scenarios, while the centralized approach provides fewer net-
work additions in the other scenarios. Figure 7 shows that for
both the centralized and distributed approaches, the network
additions increase as connectivity and complexity increase.
Though the connectivity and complexity seem not to impact
network additions significantly, it could be limited by the
instance since there are not lots of unused agents to be added
as a disruption response.

In addition, the distributed approach results in more network
additions than the centralized approach when the lost agents
have high complexity. As discussed above for the overage cost,
the distributed approach selects several backup suppliers to
lower over-capacity productions and flows but causes more
added edges due to its local view of the network. The central-
ized approach utilizes its network-level view to minimize the
overall additional agents and edges.

Summary: High connectivity or high complexity can result
in more network additions for both centralized and distributed
approaches.

C. Managerial insights

From the results above, we can derive some insight about
how agent attributes impact performance of disruption re-
sponse for centralized and distributed approaches.

1) Agent attributes: The results show that the centralized
approach’s performance is more affected by agent complexity
(capability attribute) than agent connectivity (topological at-
tribute). This conclusion validates the study in [7], which states
that high-connectivity agents are not necessarily critical to

disruptions. For the distributed approach, both complexity and
connectivity impact the performance metrics mentioned above.
It can be concluded that the performance of the distributed
approach appears to be more sensitive to agent attributes than
the centralized approach. Therefore, additional agent attributes
should be investigated to further analyze the performance of
distributed approach. The conclusions from this work indicate,
to some degree, that capability attributes are important to be
considered in supply chain models, no matter what decision-
making approaches to be applied.

2) Performance evaluations: From the performance per-
spective, the results above provide information for supply
chain managers about how agent connectivity and complex-
ity impact a specific set of performance metrics for both
centralized and distributed approaches. However, in prac-
tice, enterprises and practitioners usually aim for multiple
objectives. Though users could define any objectives to be
optimized, numerical issues may occur if there are multiple
objectives, e.g., hard to determine different weights. For this
case study, in the vast majority of scenarios, the distributed
approach provides solutions that have similar objective value
to the centralized approach while also requiring fewer network
changes and communication. This indicates the distributed
approach may provide faster solutions that do not rely on
information from the entire network at the cost of overage
expenses and local optimality. The theoretical analysis pre-
sented in Section III-B and description of the centralized
model in Section IV-B demonstrate the potential reduction in
both communication and computational efforts achieved by
our distributed approach. By leveraging local communication
and the model-based agent knowledge, the proposed frame-
work reduces extensive information exchange across the entire
SCN, leading to more efficient decision-making. However, the
optimality of the distributed approach is contingent upon user-
defined objectives and allowed agent exploration and iterative
communications.

3) Decision-making approaches: The proposed distributed
approach can serve as an alternative strategy in situations
where centralized approaches face challenges, such as agile
response requirements and high heterogeneity within the SCN.
The individual design of agents provides flexibility to manage
the supply chain heterogeneously and agents’ local commu-
nication enables quick responses. However, unlike centralized
approaches, the local view of agents using distributed approach
may result in the potential of losing optimality. Therefore,
it is important to understand how different agent attributes
impact the effectiveness and performance of both centralized
and distributed approaches. One example in the results above
is that when the disrupted agent has high connectivity and
complexity, the distributed approach tends towards that of
the centralized approach. In this scenario, a large amount of
communication has to be used to determine a response to the
disrupted agent. In practice, the choice of the decision-making
approach largely depends on the time scale of the disruption.
If an agent is expected to be offline for a short time, the
distributed approach can give a good solution quickly, with
minimal changes to the rest of the supply chain. For a long-
term disruption, it may be worthwhile to re-run the centralized
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model to provide a new globally optimal plan, although a
short-term modification based on the distributed approach may
provide a good temporary solution. To conclude, this work can
be used to provide valuable insights for decision-makers to
choose strategies depending on disruptions to enhance supply
chain resilience and achieve better overall performance.

4) Generality: Based on the complexity analysis and the
tested 84 agents in the case study, these derived insights can
be generalized to some extent to other supply chains. However,
the insights should not be interpreted as definitive inference
statements. For example, one cannot conclude that agents with
higher connectivity will always result in more network changes
compared to agents with lower connectivity. More importantly,
this work presents a generalized multi-agent framework that al-
lows for investigating the correlations between agent attributes
and performance. Users have the flexibility to model their own
supply chains, customize metrics, and test different disruption
scenarios. It is important to highlight that although our focus is
on the disruption caused by the loss of an agent, this proposed
approach is also applicable to disruptions related to new
customer demand. In such cases, the customer itself becomes
the disrupted agent as well as the demand agent, triggering the
proposed agent communication strategy. However, for other
types of disruptions, such as lead time disruptions [?] or
the introduction of new agents into the network, the current
framework would need to be extended to incorporate these
features. Further research and development would be necessary
to expand the capabilities of the framework to handle such
disruptions effectively.

VI. CONCLUSION

In this paper, we investigate the impact of network attributes
on the decision-making strategy used to address supply chain
disruptions. We first provide supply chain descriptions from
a capability and topology perspective, and describe individual
enterprise agents as a function of these network attributes.
Then we reformulate our multi-agent architecture to allow
agent exploration and iterative communication behaviors. To
conduct a performance comparison, we apply a standard
centralized modeling approach and our proposed distributed
agent-based approach to a disrupted complex SCN. Through
the case study, we analyze the performance of the decision-
making strategies with several metrics based on the attributes
of the disrupted supply chain entities in a complex SCN. The
proposed work can be used to provide information as a deci-
sion support system to determine a decision-making strategy
that optimizes user-defined performance metrics in response to
supply chain disruptions. Future work will include developing
uncertainty and risk models to incorporate a heterogeneous
risk management mechanism into the agent decision-making
process.
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