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Chiral-even axial twist-3 GPDs of the proton from lattice QCD
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This work presents the first lattice-QCD calculation of the twist-3 axialquark generalized parton
distributions (GPDs) for the proton using the large-momentum effective theory approach. We calculate
matrix elements with momentum-boosted proton states and a nonlocal axial operator. The calculation is
performed using one ensemble of two degenerate light, a strange and a charm quark (N =2+ 1 + 1) of

maximally twisted mass fermions with a clover term. The ensemble has a volume 323 x 64 and lattice
spacing 0.0934 fm and corresponds to a pion mass of 260 MeV. The matrix elements are calculated for
three values of the proton momentum, namely 0.83, 1.25, and 1.67 GeV. The light-cone GPDs are defined
in the symmetric frame, which we implement here with a (negative) 4-momentum transfer squared of 0.69,
1.38, and 2.76 GeV?, all at zero skewness. We also conduct several consistency checks, including assessing
the local limit of the twist-3 GPDs and examining the Burkhardt-Cottingham-type as well as Efremov-

Teryaev-Leader-type sum rules.

DOI: 10.1103/PhysRevD.108.054501

I. INTRODUCTION

Distribution functions of partonic content play a pivotal
role in understanding proton structure, and they have
been extensively studied worldwide in major laboratories,
including BNL, JLab, Fermilab, DESY, SLAC, CERN,
PSI, J-PARC, and MAMI. Key quantities for mapping
proton structure encompass parton distribution functions
(Potfuls), generalized parton distributions (GPDs) [1-3], and
transverse-momentum-dependent  distributions  (TMDs).
These are inferred from experimental data from high-
energy scattering processes, which is possible due to
the asymptotic freedom of the strong coupling. In par-
ticular, asymptotic freedom enables the use of QCD
factorization theorems [4] to isolate the universal non-
perturbative component of the underlying process, namely
the Potfuls, GPDs, and TMDs.

Distribution functions are classified according to their
twist, indicating the order of a 1/Q expansion they appear
in, with Q the hard scale of the physical process. While
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extensive studies have been conducted on twist-2 contri-
butions (leading twist), our understanding of twist-3 con-
tributions remains very limited. However, twist-3 effects
cannot be disregarded given the energy scales explored in
current experiments; in fact, they are presumed to be
significant, an aspect we address in this study for the case
of GPDs.

Generally, extracting GPDs from experimental data
poses a very challenging inverse problem [5,6]. This
applies particularly to twist-3 GPDs. But these objects,
in addition to being important for reliable extraction of
twist-2 GPDs, are interesting in their own right for a
number of reasons. First, there exists a nontrivial relation
between a particular twist-3 GPD and the orbital angular
momentum of quarks [7]. Twist-3 GPDs have also been
shown to provide information about the (average) trans-
verse force acting on a quark in a polarized nucleon [8,9].
Furthermore, certain spin-orbit correlations of the nucleon
can be expressed through twist-3 GPDs [10,11]. Finally,
twist-3 GPDs can be related to Wigner functions [12-16],
the most general objects quantifying the parton structure of
hadrons [17]. All these considerations serve as significant
motivations for undertaking lattice-QCD calculations of
twist-3 GPDs, a task that is highly demanding but holds
tremendous promise for providing valuable insights into
these quantities.
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Direct calculations of GPDs in a Euclidean lattice
are well known to be prohibited due to their light-cone
definition. Consequently, for several decades, limited
information on GPDs has been and continues to be
extracted from their Mellin moments. However, the devel-
opment of alternative approaches for accessing GPDs in
momentum (x) space has sparked a highly promising
research program in lattice QCD. In this study, we employ
the quasidistribution method [18], which relies on calcu-
lating matrix elements with momentum-boosted hadrons
coupled to nonlocal operators. To ensure gauge invariance
for quark GPDs, the quark and antiquark operators in
position space include a straight Wilson line connecting the
spatially separated fields. The resulting (momentum-space)
quasi-GPDs are then obtained as the Fourier transform
of these matrix elements. Finally, to establish a connection
with the light-cone GPDs, these entities are related through
the framework of large-momentum effective theory
(LaMET) [19]. Extensive reviews of the quasidistribution
approach, along with other methods for obtaining
x-dependent distribution functions, can be found in
Refs. [20-24]. The dominating trend in references reported
therein is calculations of Potfuls, the simplest one-
dimensional distributions, and hence natural starting points
for novel lattice methods. On the other hand, the applica-
tions concerning GPDs, three-dimensional distributions
embracing several new aspects with respect to Potfuls,
have so far been relatively limited; see, e.g., Refs. [25-41].
In a recent publication [42] (see also Refs. [43-46] for
summaries of this work and some additional results), we
made significant progress in enhancing the efficiency and
speed of lattice-QCD calculations pertaining to GPDs.
This advancement was achieved by leveraging asymmet-
ric frames (in contrast to the traditionally used symmetric
frames) and introducing flexibility in the distribution of
transferred momentum. In that work, we presented the
initial lattice results of the twist-2 unpolarized GPDs of
quarks, H and E, at zero skewness.

In the current work, the thread of lattice calculations
of GPDs is combined with one of the determinations of
twist-3 Potfuls from the lattice. For the latter, we have
derived (simplified) matching relations in LaMET [47,48]
(see Refs. [49,50] for a full treatment including three-
parton correlators) and obtained lattice results for the g,
and h; functions [51,52] (see also Refs. [53-56]). The
present focus is on the chiral-even axial twist-3 GPDs of the
proton, which is both computationally and theoretically
challenging: (a) matrix elements with momentum-boosted
proton states at off-forward kinematics have decreased
signal compared to the forward limit; (b) nonlocal operators
contribute to the signal decay and the enhancement of
systematic uncertainties, such as finite-volume and discre-
tization effects; (c) the definition of GPDs in the symmetric
frame means that each value of momentum transfer requires
a separate calculation; (d) the parametrization of each

matrix element contains four twist-3 GPDs [57], which
means that one needs four independent matrix elements to
disentangle all GPDs. Such a cost at a fixed value of the
momentum transfer is 4 times more computationally
expensive than the PDF case and two times more than
the (twist-2) helicity GPDs; (e) at nonzero skewness (&), the
perturbative formalism breaks down around x = |&| due to
divergent higher-twist contributions [58].

Twist-3 GPDs may exhibit discontinuities at x = |£|; see
Refs. [59,60] and references therein. Nonetheless, Ref. [59]
demonstrates that these discontinuities cancel out in the
linear combinations of twist-3 GPDs involved in deeply
virtual Compton scattering amplitudes, ensuring the con-
sistency of twist-3 amplitudes with QCD factorization.
Although this intriguing feature warrants future investiga-
tion in lattice-QCD studies, our current focus will primarily
be on the specific case of £ = 0.

We organize the manuscript as follows: In Sec. II, we
present the definition of light-cone and quasi-twist-3 GPDs.
Moving forward to Sec. III, we provide the Euclidean
decompositions of lattice-computable matrix elements in
terms of the quasi-GPDs in position space. Additionally,
we discuss the matching procedure required for extracting
the light-cone GPDs from the quasi-GPDs. In Sec. IV, we
discuss our lattice setup and outline the essential compo-
nents of the renormalization process. Section V is dedicated
to our numerical results, accompanied by a detailed
analysis of several consistency checks conducted to vali-
date our findings. Finally, in Sec. VI, we draw conclusions
and discuss future prospects in light of our study.

II. DEFINITION OF TWIST-3 GPDs

To begin, let us review the definition of light-cone GPDs
of quarks for a spin-1/2 hadron. The relevant correlator is
determined by the Fourier transform of off-forward matrix
elements involving nonlocal quark fields (see, for instance,
Ref. [61]),

1 [dz= . [ z Z 2z
P = [ S (=3)rv(-55)

Z
<o (2) Pl oz . 0

where I' represents a gamma matrix. Color gauge invari-
ance of this correlator is enforced by the Wilson line

Z I
W(‘E’E)

= PeXP(—ig/;T_dy‘A+(0*,y‘,5L)>- (2)

z* :O,ELZOL

In Eq. (2), g is the strong coupling constant, and A™ is the
light-cone plus component of the gluon field. The incoming
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(outgoing) hadronic state in Eq. (1) is characterized by its
4-momentum p;(py) and helicity A(1). We define the
kinematic variables:

pi—p}
pi+p}F’

1
PZE(PmLpf), A=p;—p; &= t=A2,

(3)

where P denotes the average 4-momentum of the hadrons,
while A represents the 4-momentum transfer to the hadron.
The skewness variable &, defined here for hadrons with a
large light-cone plus momentum, signifies the longitudinal
|

NS

1
F[”’%](x, A) = Fﬁ(pf’/ll) |:PﬂP—H(X 5 t) + Pﬂ

s (A o) + Gax £.1)) + A

The GPDs H and E characterize the twist-2 contribution
of the correlator with y = -+, while the GPDs G, (i = 1, 2,
3, 4) come into play at twist-3 accuracy if p represents
a transverse index. Additionally, &}’ = e T = 0%
where we adopt the convention £°>3 = 1. We point out
that Eq. (5) remains applicable in the position space, with
the understanding that the arguments of the GPDs are
|

momentum transfer to the hadron. In the “symmetric

frame” of reference, defined by P, =0, we can obtain
the following expression for ¢ for a nonzero transverse

momentum transfer A | :

e+ &), )

with m denoting the nucleon mass. Within the scope of
twist-3, the correlator involving I = y#y5 in Eq. (1) can be
parametrized in terms of six distinct axial-vector GPDs. In
momentum space, one finds [57]

AT - ~
L E(x e+ A”Z“( (x.60)+ G(ert))
’LVPTG«x:sz”” xw} u(p;. 7 (5)

|
transformed from (x,&, 1) to (z,&,¢). Note that different
conventions for twist-3 light-cone GPDs are available in the
literature [13,62]; see also Ref. [59] where the relations
between several definitions can be found.

Now, let us shift our focus to quasi-GPDs, which are
defined through the equal-time correlator [18]

1 [dF z 7z z
[ . p3y — =L ikz N | 2 _L s < ) -
S R e O ] O I G T C T T (©
where the Wilson line is given by
3
Z 2z _ R
W(——,—) —Pexp<—zg/3dy A(0,0,,y )> (7)
22/ |00z,-5, 2

The counterpart of Eq. (5) is

3
[ — ry
FIrrsl(x, a; P) = —a(py. ¥) [P” >0
" 7/ 75

+ 7115 F e, (66 6 P) + N 2

where Fy is the notation for quasi-GPDs. In Ref. [63], it
was proposed to define the quasicounterpart of A and E
using I' = y3ys. The underlying argument was that y>ys
does not mix with other operators during renormalization,
where this mixing is regarded as a lattice artifact.
Reference [29] argued that with this definition, it is

A
Fy(x, 6.1, P%) + pr =13

Fg (x, &6 P) +id’A,

3

75
Lo FE+G(x5tP3)

L Fo(xbot Pﬂu(pi,w, ®)

WFE(X,&,HP3> +AM

P

|
necessary to replace y*ys/P* — y3ys/P° in the prefactor
of H to ensure consistency with the forward limit. This
adjustment serves to justify the corresponding prefactors
outlined in Eq. (8). In the context of twist-3 GPDs, an
important question arises concerning the selection of the
prefactor for G /4- Specifically, the debate centers around
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whether one should utilize yTys/P* (y*/P*) or y’ys/P3
(y3/P3) as the appropriate choice for G5 (Gy4). Following
the reasoning presented in Ref. [29], we can conclude that
due to the absence of forward counterparts for G, /4, there is
no compelling reason to favor either of the two definitions.
In our lattice results for G,, we will explore the y°/P>
definition. It is worth noting that the two definitions for G,
are interconnected by a simple relation, namely

2
3) _ m”— /4 (1)
FO =1+ e Lo (9)

with F (F

(r+/ P*) as the prefactor. In the next paragraph, we will
delve into a discussion that shows the irrelevance of the
definition for G;. Theoretically, it is expected to be zero for
the specific kinematics that we are focusing on in this work.

In the following discussion, we briefly explore the
symmetry properties of GPDs in position space, as this
consideration plays a crucial role in leveraging symmetries
to enhance statistics for lattice calculations. The
Hermiticity constraint provides insights into the sym-
metries of GPDs under the transformation P> — —P? for
a fixed value of z3. Furthermore, for a fixed P and with
A — —A, the Hermiticity constraint reveals the symmetries
of GPDs under the transformation z* — —z>. Notably, we
find that the real part satisfies G,(—P3) = +G,(P?),
Gy(=P°) = +Gy(P*),  G3(=P%) = ~G3(P*),  and
64( 3) = +G4(P3) [where we used that H(—P3) =
+H (P3) and likewise for E]. Additionally, we find

) denoting the definition that employs 3/ P>

Gi(-2)) = +Gi(2), Ga(=2) = +Gy(2*), Gs(=2*) =
—-G5(2%), nd G4( 3N = +G4(z3) [where we used that
H(-7%) = +H(Z%) and likewise for E]. By combining

Hermiticity with the time-reversal constraint, it follows that
Gy, G,, and G, exhibit even behavior under & - —& (with
the use of H and E are even, as demonstrated in Ref. [29]),
while G5 exhibits odd behavior. Furthermore, considering
the requirement that matrix elements possess a well-defined
forward limit, it can be inferred that G5 should exhibit at
least linear scaling with respect to £ and should not exhibit a
pole at £ = 0. Consequently, an expected outcome is that
G3 assumes a value of zero when & = 0. This, of course,
should be validated by our lattice results.

The lattice data presented here offer an opportunity for
additional consistency checks. In this regard, we highlight
specific sum rules that convey the following information:

Gp(t) = /_ j de(E(x.&.0)+ Gy (x.&1))
- /_i dxG(x,&,t) =0, (10)

Galr) = /_1 dx( (x.&.1) + Go(x, &, t))

- /1 dxG,(x,&,t) =0, (11)
-1
as well as
/1 dxGs(x,&,1) =0, (12)
/l dxG,(x,&,1) = 0. (13)

These relations stem from the well-established fact, as
documented in Refs. [10,57,61], that integrating nonlocal
operators over x results in local operators. The above
relations are commonly recognized as the nonforward
extensions of the Burkhardt-Cottingham sum rules [57].
Similar relations can be easily confirmed for the quasi-
GPDs as well, albeit with the integration range over x
extended to [—oo0, oo]; see Refs. [29,64].

II1I. METHODOLOGY

In this work, we implement the LaMET approach using
matrix elements of nonlocal fermion operators where the
fermion fields are spatially separated. Without any loss of
generality, we choose the spatial separation to be along the
Z axis. The momentum boost must be in the same direction
as the Wilson line, that is, P = (0,0, P3).1 For the case of
GPDs, we calculate off-forward matrix elements with the
direction of the momentum transfer perpendicular to Ps,
A= (Ay,A,,0). The class of these values of A corre-
sponds to zero skewness, £ The latter is an important
variable of GPDs, which is related to the momentum
transfer in the direction of the boost. For the twist-3
GPDs under study, we construct the matrix elements

hi(Ue:z, Py Dis k)
=2, )N Ry WO OIN(p). j=1.2.
(14)

Note that, for the twist-3 contributions, the index j = 1,2 is
spatial and perpendicular to the direction of the boost.
GPDs require py — p; = A # 0, which in the symmetric
frame corresponds to p;,=P+3 and p;=P—%
Here, we focus on zero skewness. Unlike the matrix
elements h;, GPDs depend on the 4-vector momentum
transfer squared, —t = A — (E; — E;)*, where E; and E;
are the energies of the initial and final state, respectively

lStauting from this section, we will use lower indices for P and
A, indicating that we are working in Euclidean space.
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(Eijy = \/m* + p;);). The multiplicative factor Z, .

appearing in Eq. (14) is the renormalization function for
the operators under study and is calculated nonperturba-
tively. The renormalization function introduces a scheme
and scale dependence in the matrix element /;, which is

chosen to be the modified MS (MMS) scheme at a scale of
2 GeV. Note that the final GPDs will be converted to the
standard MS scheme through the matching formalism.
More discussion can be found toward the end of this
section. The proton polarization of h; is chosen by the
parity projector, I'.. We distinguish between the unpolar-
ized and polarized cases defined as

(T+7%). (15)

-bl'—‘

LA+ i, k=123 (16)

~ |

The lattice matrix elements are parametrized according
to the decomposition of Refs. [57,59]:

—ipfs+ —ig; +
h; = CTr {FK (”zfmm> Flrrs] (”an’”)] . (17)

where Eq. (8) in Euclidean space takes the form

For simplicity, we omit the arguments of the matrix
elements, h;=h;(I'c.2,ps.pip), Fx =Fx(z.&t.P3. ).
The kinematic factor C in the symmetric frame at zero
E+m (E

ance of sgn[P5] in the coefficient of G, is to account for the

skewness reads C = E; = E). The appear-

antisymmetry of & for negative values of P3. Another
important aspect of the parametrization in Euclidean space
is the freedom to choose the temporal or the z component
of y,/P,, which appears in the G; and G, terms. As
discussed in Sec. II one can relate the definition of G5 and
G4 using y3/P5, to the one obtained from y /P, as
discussed in Eq. (9). We also provide numerical results
in Sec. V B. The decomposition of Eq. (18) shows four
combinations of the quasi-GPDs, Fy: Fy + Fg , Fpy + G»,
G and G,. Fj; and F, are twist-2 contributions, while F G,
enter at the twist-3 contributions; that is, they drop out of
the decomposition of the operators y3y5 and yyys. Based on
Eq. (18), the forward limit of the matrix elements /; and /,
give the combination Fz - called gr. The latter is the two-
parton twist-3 PDF that we calculated in Ref. [51].

To extract the twist-3 GPDs, one needs to calculate and
disentangle four independent matrix elements. Thus, we
use the unpolarized [Eq. (15)] and three polarized
[Eq. (16)] parity projectors that successfully disentangle
the quasi-GPDs. At zero skewness, there are, in general,
eight contributing matrix elements, that is,

Ajys
ys] 2 o ' o
Flrrsh = —i m Fig +virsFae, T (Ty) = C(—F~ _ P3A . sgn[P3]A(E + m))
- H+G, Gy )
+ Aﬂ/3}/5 G Sgl’l[Pg,}EJ A/)},B G (18) ’ 4m2 27’}12
P, Ps + (19)
|
_ (4m(E + m) + A2) A2(E +m) sgn[P3]A2(E + m)
Hl (Fl) = lC<FI:1+Gz 8m2 - FE+GI 8m3 G4 4m\2P3 ’ (20)
AA, AA(E+ m) sgn[P3]A A (E + m)
n'(r,) = iC| —Fj R e — — F¢ a— , 21
(Ty) =i ( H+G, St E+G, 83 G, 4m2P; (21
EA(E + m)
! (I3) = C<—FG3 T%) ) (22)
P3A, sgn[P3]A(E + m)
1P (00) = € Fasg, o+ Fo, B EER)), 23)
AA, AA,(E + m) sgn[Ps]A A, (E + m)
() = iC( —Fj L Fpig—— - Fg —r : 24
( 1) ! ( H+G2 8 2 E+G, 8m3 Gy 4m2P3 ( )
) (4m(E + m) + A2) A (E+m) sgn[P3]A2(E + m)
(1) = iC( Py, PHET Iy o Ly senlPaE ), (25)
EA(E+ m)
() = C<—FG3 W) (26)
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where TI/(T,) is the ground-state contribution to the
matrix element /(. z, ps, p;. ). The extraction of the
ground state is discussed in Sec. IVA [Eq. (33)]. As a
demonstration of how we isolate GPDs, let us consider

momentum transfer of the class A = (A,,0,0). In this case,
the matrix elements of Egs. (20), (22), (23), and (25) are
nonvanishing and independent. Thus, Fg, is given by

IT'(T'3), while Fz ¢, F,5, and F are extracted from
combining IT(T";), I?(Ty) and IT?(T,). The inversion of
Egs. (19)—(26) can be done analytically for a general form

of A but leads to lengthy expressions, so we do not present
it here. In practice, we implement a numerical inversion for

each value of P5 and A separately, which leads to identical
coefficients as the analytical case.

The renormalization of the axial operator is extracted
nonperturbatively in the RI' scheme [65], using the
momentum source method [66,67] that offers high stat-
istical accuracy. The prescription for the nonlocal operator,
Z7j75’ is

Z}le}g (Z7 /’tO)
= (Te[s5<)) 1 Te [V (p. ) (V5™ (p.2) |

0
pr=n}

(27)

where the first trace determines the fermion field renorm-
alization, V(p,z) [S=S(p)] is the amputated vertex
function of the operator (fermion propagator), and V'
[S¢(p)] is its tree-level value. Z, ,  is calculated on
various pion mass ensembles, and a chiral extrapolation
is required to extract the appropriate mass-independent
estimate Z}\,, ,(z. o). Here we use the fit

RI P _ 7RI
Zyj}/s (Zv Ho>» mn’) - Zyij,()

(z,10) + mfer;l}jIys,l(Zv/‘O)v (28)
which successfully eliminates the pion mass dependence in
the renormalization functions [68]. The chirally extrapo-
lated values are converted to the MS scheme and evolved
to 4 =2 GeV using the results of Ref. [63]. We obtain

MS
ZJ’_/}’S .0

fit and data in the region (ajfiy)* €[1,2.6]. In this work, we
also average the estimates for Z, ,. and Z, ,.. We give our
final estimates in the so-called modified MS (MMS)
scheme [68], which is also used in the matching kernel
discussed below.

(z,2 GeV) by extrapolating (ap)?> — 0 using a linear

The quasi-GPDs in coordinate space, Fy(z), must be
reconstructed in the momentum space, Fx(x), which is
defined through the Fourier transform

dz _;
FX(X, 57 ta P3’lu) = /4'7T€_ZXPSZFX(Z’ é’ t’ P3,//l). (29)

The integration over z has, in principle, limits
€ (—oo, +00). However, the lattice discretization and
periodicity give access to a limited number of z values,
that is, z€[0,L/2], where L is the spatial extent of the
lattice. Thus, the integral of Eq. (29) becomes a summation
and is truncated to some z,,,, causing an ill-posed inverse
problem in the reconstruction of the x dependence that does
not have a unique solution (see Ref. [69] for a detailed
discussion of this aspect). The simplest assumption one can
make is that F'y is zero beyond some z,,,,,, which introduces
a bias and systematic uncertainties in the final GPDs.
To avoid imposing such an assumption, we use the model-
independent Backus-Gilbert reconstruction method [70].
More details on the implementation can be found
in Ref. [35].

While the quasi-GPDs are defined in momentum
space, they have a dependence on the finite momentum
P5 inherited from the matrix elements. As P; increases,
the matching formalism, which is based on large momen-
tum effective theory [19], relates the quasi-GPDs to the
light-cone GPDs, Gy, with a better convergence. The
matching kernel Cy is calculated order by order in
perturbation theory and, at one-loop for zero skewness,
reads

— ldy iisvs /(X M —
FYMS(x. 1, Py, ) = / —CMMSMS(—,—)GMS 1,
X 3. 1) D 7irs yiypy) X (vt 1)

m* t AZQCD
+0|—=,=, . 30
(7 5) -

(In this equation, we have simplified the arguments of Fy, C,
and G since we focus on &= 0.) Note that since the
calculation is performed at & =0, we expect that the
matching equations coincide with those of the GPD’s
forward limit, as discussed in Ref. [28] in the context of
twist-2 GPDs. We use the same matching kernel for H + G,,
E + G, G5, and Gy, as they are extracted by the same
operator y;ys. Based on this observation, we use a single
Cw5 in Eq. (30), which is the (simplified) matching kernel
calculated for the twist-3 PDF g;. The kernel reads [47]

054501-6



CHIRAL-EVEN AXIAL TWIST-3 GPDS OF THE PROTON FROM ...

PHYS. REV. D 108, 054501 (2023)

0 E>1
242641
[%ln T+ §+2§]
2
() w\ _aCp a cF [—52+2¢+1 451-E(xPy)? | & —:—1}
Cmms<5’p§> = 5(&) +% e In T + N 0<é<1

—£242841 5 1_ & 3
[ i-¢ In 5*2(1—5)}+

0 E<O

and connects the quasi-GPDs evaluated in the MMS scheme
to the light-cone GPDs in the standard MS scheme. (For a
complete matching result for gz, including three-parton
correlators, we refer to [49].) Note that in the aforementioned
equation, the first term arises as a result of perturbative
“zero-mode contributions.” Upon performing the convolu-
tion integral in (the inversion of) Eq. (30), it becomes evident
that this zero-mode term necessitates the evaluation of the
quasi-GPD at x = oo, a point that remains inaccessible in
lattice QCD. Hence, we will focus on implementing the
second term of the matching coefficient. The renormalization
scale is chosen to be 2 GeV for both quantities.

IV. LATTICE CALCULATION

A. Computational setup

In this calculation, we use one ensemble of two dynami-
cal degenerate light quarks, a strange and charm quark
|

Fk (lﬁ E e~ ]7[ pl y

C’%pt(pf’ Pists, T, 0

where N, and N are the proton interpolating fields, 7 is the
current insertion time, and , is the time separation between
the source and the sink (the source is taken at t = 0). We
use the sequential method that requires fixing the source-
sink time separation f, but allows one to couple any
operator to the proton states at a very small computational
cost compared to the cost for a single operator. Here, we
choose #; = 10a, as the signal-to-noise ratio decays faster
in the twist-3 matrix elements of y;ys and y,ys, as

(Ny=2+1+1). The strange and charm quarks have a
physical mass, while the mass of the light quarks has been
tuned to correspond to a pion mass of about 260 MeV.
These gauge configurations [71] employ the Iwasaki
improved gauge action [72] and twisted-mass fermions
at maximal twist with a clover improvement [73]. The
lattice spacing is a ~0.093 fm, and the lattice volume is
32% x 64 (L ~ 3 fm). The parameters of the ensemble are
given in Table I.

The construction of the matrix element h; combines
the proton two-point and three-point correlation
functions:

CPP (P, 1,,0) = (T)gp e (0[N (x. £,)N4(0,0)[0),

(31)
(5.7 2)N,(.0)]0).

7(0|N (%, 1,) 0, (32)

compared to y3ys. We calculate the u — d isovector flavor
combination, which is extracted from the connected con-
tributions to the three-point functions shown in Fig. 1; the
disconnected component of u — d is zero.

An appropriate ratio must be constructed to cancel the
time dependence of the exponentials introduced by the
nonzero momentum transfer between the initial and final
states. The overlap from the interpolating fields must also
be eliminated. The ratio reads

3pt
C'P

Jj (Fmpf’ pi;ts’r)

C*(pi 1y = 1)C* (py. ) C*P (py. 1 )1y <ot
—

V(l,) =h;

Ri(Te, pp, izt 7) = C*(pyity)

/

Czpt(pfv Iy — T)Czpt(Pi’

D (proty) =h- (33)

Note that the two-point function is projected with I'y. We extract the ground-state matrix elements from R/ by taking a

plateau fit with respect to 7 in a region of convergence, indi

cated by IV (T",). We identify plateaus for 7 € [3a — 7al. For

simplicity, the dependence on z, py, p;, and the renormalization scale y is not shown explicitly in Il
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TABLEI. Parameters of the ensemble used in this work: /3 is the
bare coupling and L, T are the size of the lattice along the spatial
and temporal directions.

Name B Ny L’xT a(@m) M, m,L
cA211.32 1.726 u, d, s, ¢ 323 x64 0.093 260 MeV 4

We calculate 7, and h,, for a class of momenta of the
form A — (£4,0,0), A= (0,+4,0), and A= (£q,+q,0);
these correspond to zero skewness, A; = 0. The average
nucleon boost is nonzero along the z axis, and we consider

both plus and minus directions, P = (0,0, +-P5) for each

value of A. This leads to an overall factor of 8 more
statistics for all cases but also a factor of 8 more computa-
tional costs due to the constraints of the symmetric frame.

An additional factor of 2 in statistics for the A =
(£q,£q,0) case is obtained from the averaging of h;
and h,, which are equivalent up to a minus sign for this
kinematic setup. We note that a novel method to extract
twist-2 GPDs from any kinematic frame via a Lorentz-
covariant decomposition has been proposed [42]. While the
latter can be extended to twist-3 GPDs, it is beyond the
scope of this work. The parameters of the calculation and
the number of measurements are given in Table II for both
the PDF and the GPDs.

B. Renormalization

We calculate Z, . following the methodology described
in the previous section implemented on five N, =4
ensembles, which are given in Table III. The ensembles
correspond to the same f value as for the Ny =2 + 1 + 1
ensemble used for the extraction of the matrix elements.
The light and heavy quarks are mass degenerate so that the
chiral limit can be taken.

The values of the vertex momentum p entering Eq. (27)
are carefully chosen to reduce discretization effects in the
Zy 45 AS P defines the R’ renormalization scale, fi,. More
details can be found in Ref. [67]. To this end, we choose
spatially isotropic momenta, that is, p = (pg, p1, P1> P1)s

so that the ratio % is less than 0.35, as suggested in
Ref. [74]. We use 17 different values of ji,, between the

/(’VVE\
N(x, M\_e/'zv(o,m

FIG. 1. Pictorial representation of the connected contributions
to the three-point functions. The initial and final states with the
quantum numbers of the nucleon are indicated by N(0,0) and
N(X, 1), respectively. The red curly line indicates the Wilson line
W of the nonlocal operator.

TABLE 1I. Statistics used in this calculation. Ny, Nconss
Ny and Ny, is the number of matrix elements, configurations,
source positions per configuration and total statistics,
respectively.

P3 (GCV) Zj[f] —t (GeVz) NME Nconfs Nsrc Ntotal
+0.83 (0,0,0) 0 2 194 8 3104
+1.25 (0,0,0) 0 2 731 16 23392
+1.67 (0,0,0) 0 2 1644 64 210432
+0.83 (£2,0,0) 0.69 8 67 8 4288
+1.25 (£2,0,0) 0.69 8 249 8 15936
+1.67 (£2,0,0) 0.69 8 294 32 75264
+1.25 (£2,42,0) 1.38 16 224 8§ 28672
+1.25 (£4,0,0) 2.76 8 320 32 84224

range (afiy)? €[0.7,2.6]. Finally, Z}5(z,2 GeV) is
obtained by extrapolating (ap)?> — 0 using a linear fit
and data in the region (ajiy)>€[1,2.6]. An extensive
investigation of systematic uncertainties related to the

renormalization functions can be found in Ref. [68].

V. RESULTS

A. Bare matrix elements
Since we have performed the calculation for +P;

and :l:&, it is interesting to observe the symmetries of
the matrix elements. For example, it can be seen from
Eqgs. (19)—(26) that

I (FO)‘&z(O,:I:A.O) = _Hz(ro)|&=(ﬂ.o,o)’

MM (T3) |32 a0 = HP(T3) 0,400 (34)
Similarly,

ig (F0)|&=(o,+A,o) = -1 (F0)|&=(0,—A,0)*

HZ(F0)|Z:(+A,0,O) - _HZ(F0)|E:(—A,O.O)' (35)

The above symmetries hold because (a) the kinematic
coefficients of F'y are either symmetric or antisymmetric

with £z, +P5 and j:&; (b) the amplitudes Fy have definite

TABLE III. Parameters of the N, =4 ensembles used for
the calculation and chiral extrapolation of the renormalization
functions.

p=1.726 csw = 1.74 a =0.093 fm

243 x 48 ap = 0.0060 m, = 357.84 MeV
243 x 48 ap = 0.0080 m, = 408.11 MeV
243 x 48 ap = 0.0100 m, = 453.48 MeV
243 x 48 ap = 0.0115 m, = 488.41 MeV
243 x 48 ap = 0.0130 m, = 518.02 MeV
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Re[r'(ry)]

Im|r' ()]

{1, +3, (0,+2,0)}
{1, +3,(0,-2,0)}
{2, +3, (+2,0,0)}
{2, 43, (—2,0,0)}
{1, -3, (0,+2,0)}
{1,-3,(0,72,0)}
{2,-3, (+2,0,0)}
{2,-3,(-2,0,0)}

FeH

e e

FIG. 2. Real (left) and imaginary (right) parts of the matrix elements I1/(I'y) (j = 1, 2) for all kinematic cases corresponding to
—t = 0.69 GeV? and |P;| = 1.25 GeV. The data are indicated by {j, P, &} where P; = £3 and A= (£2,0,0), (0, £2, 0), given in

units of 2L—” The errors correspond to the statistical uncertainties.

symmetries. For example, Gl, Gz, and G4 are symmetric
in Py and z, while G; is antisymmetric, as discussed
in Sec. II. Therefore, we utilize all eight combinations of
+P and +A to decrease statistical uncertainties by
combining the kinematically equivalent matrix elements.
In Figs. 2-4, we present the nonvanishing matrix elements
for —t = 0.69 GeV? and P; = 1.25 GeV. Figure 2 shows
the unpolarized projector IT/(I'y), which contains the
twist-2 contribution Fg. Figure 3 gives the matrix element
IV(I';) for two cases, that is, A; =0 and A; #0.

These lead to kinematically independent matrix elements,
as can be seen in Eqgs. (20) and (25). We find that the
A; = 0 case is about twice as large as the case of A; # 0.
IV(I'3) only has twist-3 contribution, with F¢; found to be

very small and noisy, as shown in Fig. 4 for —f =
0.69 GeV? and |P5;| = 1.25 GeV. For the kinematic setup
of —t=0.69 GeV?, both IT'(I;) and I1'(T,) are zero
due to the presence of A A, that vanishes and are not
shown here. However, they contribute to the GPDs for
—t = 1.38 GeV?2.

{1,+3, (0,42,0)}
{1, 43, (0,-2,0)}
{2, 43, (+2,0,0)}
{2,+3, (-2,0,0)}
0 {1,-3,0,4+2,0)}
b {1,-3,0,-2,0)}
{2, -3, (+2,0,0)}
{2,-3,(-2,0,0)}

e e

0.84 0.34

Im|IP(T; A#0)]

*Hhaaqageee

{1, 43, (+2,0,0)}
{1, 43, (-2,0,0)}
{2,+3,(0,+2,0)}
{2,+3,(0,-2,0)}
$ {1,-3,(+2,0,0)}
b {1,-3,(=2,0,00}
{2,-3, (0,+2,0)}
{2,-3,(0,-2,0)}

e e

z/a

FIG. 3.

5 10 15 15

Top: real (left) and imaginary (right) parts of the matrix elements IF/(T";) (j = 1, 2) for all kinematic cases corresponding to

A; =0at—r =0.69 GeV? and | P3| = 1.25 GeV. The data are indicated by {;, P3, 5}, where P; = 43 and A= (£2,0,0), (0, £2, 0).
The momenta are given in units of ZT” Bottom: the same as the top panel, but for A; # 0. The errors correspond to the statistical

uncertainties.
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0.201

0.154

0.10

0.051

0.00

Re(r'(r)]

—0.05 1

—0.10 1

s

0.15
ool b{1,43,(+2,0,0)}
A I b {1,43,(-2,0,0)}
. 0.05 'E’;;, {2, +3,(0,+2,0)}
= 00l 141 Sooakise {2,+3,(0,2,0)}
S ¥ FEARERE Y PETTS T

= $534l RN EES IS AL d kb 0 {1,-3,(+2,0,0)}
R 1i11e $isetrrtiiT § o {1,-3,(-2.00)
~0.10 T {2, -3, (0,+2,0)}
o5 12,-3,(0,-2,0)}

5 10 15 -5 -10 0 5 10 15

z/a

FIG. 4. Real (left) and imaginary (right) parts of the matrix elements IT/(I'3) (j = 1, 2) for all kinematic cases corresponding to
—t = 0.69 GeV? and |P;] = 1.25 GeV. The data are indicated by {j, P, A}, where P; = 43 and A = (£2,0,0), (0, 42, 0). The
momenta are given in units of ZL—” The errors correspond to the statistical uncertainties.

It is interesting to compare the magnitude of the matrix
elements from Figs. 2-4. We find that IV(I';;A; = 0)
dominates in magnitude, followed by Il/(I';; A; # 0) and
[I/(Ty) that are similar. Finally, IT/(I';) is suppressed and
compatible with zero, a conclusion that holds for all values
of —t we explore here. This impacts directly the extraction
of Gs, as IF(I';) is proportional to Fg . The vanishing
signal of Fg, is connected to zero skewness, where we
expect that G5 is zero [see, e.g., Eq. (38)].

Using Egs. (19)—(26), we decomposed the amplitudes
Fy where X = H + G,, E + G,, G5, G4. We first focus on
the numerically dominant GPDs containing the twist-2

counterparts, that is, Fg +6, and Fj 16 We examine their
dependence on the momentum boost in Fig. 5 at
—t = 0.69 GeV?, for which we have P; = 0.83, 1.25,
1.67 GeV.

The dependence of Fy on the momentum transfer is
shown in Fig. 6, where the momentum boost is fixed
to |P3| =1.25 GeV. For Fy ¢, we find a very mild Ps
dependence, with some difference in the intermediate z
region. However, a more noticeable dependence on the
momentum boost is observed in the case of F_ ¢ . These
conclusions hold for both the real and imaginary parts
of these quantities. Another observation is that Fi_ ¢ 1s

121
¥ P;=083GeV 001 it
A P3=125GeV = P ="
0s] 1 P;=1.67GeV ol L. 7
5 ] 5 ig 8 ¥
1z 061 = = 02
aa B,
5} = g
K 04 = — -03
=
0.2 =
T s - -0.4
= = oa :
0.0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
z/a z/a
021
PR § P3=0.83GeV ool
41 I = P3;=125GeV & ¥ L =
L ,02 - 3 =
F P3=1.67 GeV (] ! ;3 8 8 7
= S o 04 E E ; <
i + e
a 51 [ u;‘ -0.6
& [ E o8
=
1 ~1.0
=
LT o= 3 -1.21
0<
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
z/a z/a

FIG.5. Real (left) and imaginary (right) parts of F' 46, (top) and Fj e (bottom) at —t = 0.69 GeV? and Py = 0.83, 1.25, 1.67 GeV.
All kinematically equivalent cases have been averaged. The errors correspond to the statistical uncertainties.
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of ¥ i ¥ —1=0.69 GeV? 000 = i3
3 —1=1.38 GeV? P g X
0.81 _ 5 —0.05 - 0=
—t=2.76 GeV p
I * S 0.10 ]
O .61 O —0.101 = I
0 i 7 '
£ i I
&, 0.4 L 1 g -0.15 B
x = = 1
0.2 b —0.20 1 I -
= = T F »
0.0 ' . s = g —0.25 1 : :
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
z/a z/a
I 1 § —r=0.69 GeV? 0.0 [
4 I —1=1.38 GeV?2 o1 L i t T
I =276 GeV? " P 1
—3 - L
)LE I o B i - I
&3] w03 I l
[% 2 L] E 04 t 1 I
[=4 [] = 4 *
| I -0.5 T T I
| -0.6 T
Py :
01 b 0.7
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
z/a z/a

FIG. 6. Real (left) and imaginary (right) parts of F' 46 (top) and Fj; e (bottom) at P; = 1.25 GeV and —t = 0.69, 1.38,2.76 GeV>.
All kinematically equivalent cases have been averaged. The errors correspond to the statistical uncertainties.

noisier than Fpy . We note that the quasi-GPDs are
defined at a finite momentum; a nontrivial momentum
dependence is expected. Therefore, one may not draw
conclusions on the P; dependence of the quasi-GPDs. On
the contrary, one should examine convergence in the final
light-cone GPDs. Overall, F + F, has the largest mag-
nitude followed by Fj ¢, in particular at z = 0. This is
expected from the behavior of the axial, G4, and induced
pseudoscalar, Gp, form factors [75], which are related to
the GPDs through the generalization of Burkhardt-
Cottingham sum rules [2,57] (see also Sec. II)

/1 dxH(x,E,1) = G4(1),

1

/ B (x, £ 1) = Gp(0),

(36)

coupled to

1 ~
/ dei(x’ é:, l’) = 0, l = 1, 2, 3,4, (37)

1

which also holds for quasi-GPDs. The large magnitude
of F. ¢ 1s in accordance with the findings of the twist-2
case [34], Fg.

Regarding the —¢ dependence in the quasi-GPDs, our
complete set of values for the momentum transfer is available
only for P; = 1.25 GeV. Increasing further the momentum
boost leads to very noisy data, as can be seen from Fig. 5.

The noise increase becomes more prominent for —¢ =
1.38 GeV? and —t = 2.76 GeV>. As observed in Fig. 6,
there is a good signal for all cases and a hierarchy among the
various momentum transfers, where the quasi-GPDs are
decaying toward zero as —¢ increases. The difference between
—1t=0.69GeV? and —t = 1.38 GeV? is very small for the
imaginary part of both . and Fg ¢ .

We now turn our attention to Fg, and Fg , which are
plotted in Figs. 7-9 for all available data of Table II. As
explained in Sec. I1, the calculation of Fg;, yields a value of
zero, which aligns with the expected theoretical outcome
based on the Hermiticity and time-reversal constraints
imposed on GPDs. Also, the generalization of the
Efremov-Leader-Teryaev sum rules [76] indicates that

/ dxxG; = L—":GE(t), (38)
which is zero in our zero skewness calculation (¢ = 0).

On the other hand, Fg is small but not negligible. This
finding is consistent with the sum rule connecting it to the
electric Sachs form factor Gp,

/ 1 dxxGy(x, &, 1) = %GE. (39)

1

The dependence on the momentum boost is hidden
within the statistical uncertainties. Nevertheless, there is
a tendency for the real part of Fg; to increase for higher
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FIG. 7. Real (left) and imaginary (right) parts of F¢;, for all available values of P; and —7. The errors correspond to the statistical

uncertainties.
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FIG. 8. Real (left) and imaginary (right) parts of Fg for P3; = 0.83, 1.25, 1.67 GeV at — = 0.69 GeV?2. The errors correspond to the

statistical uncertainties.

momentum, while the imaginary part becomes more
negative, as can be seen from Fig. 8. Despite the increase
of the noise, F;;, remains nonzero for all values of P3. The

momentum transfer dependence of Fg;, is shown in Fig. 9.

The dominant contribution corresponds to —¢ = 0.69 GeV?
with the increase of —¢ suppressing its magnitude.

B. Light-cone GPDs

In this paragraph, we present the reconstruction of the x
dependence of the light-cone GPDs, for which we use the

0.20
-t=0.69 GeV?
0.151 -t=1.38 GeV?
o.104 ¥ -1=276GeV?
5 0051
)
Mo,OOAI}{T EIIIIII
~0.05 I . I E I I
~0.10
0 2 4 6 8 10 12 14

Backus-Gilbert method on each Fy and then apply the
matching kernel to obtain the light-cone GPDs as a function
of x. Since we perform the calculation at zero skewness, it
is anticipated that the matching formalism of GPDs is the
same as for Potfuls [28]. Thus, we use the results of
Ref. [47], which correspond to the forward limit of the
twist-3 axial GPDs, gr. A dedicated analytic calculation
for the twist-3 case is required to prove this argument,
which we leave as future work. In this presentation, we
neglect G, which was found to be zero. We first examine
the dependence of the quasi-GPDs on the maximum value

0.00

—0.05 1

—0.101

Im[Fg,]

—0.15 1

—0.20 1

[N A A

IHHIE

FIG. 9. Real (left) and imaginary (right) parts of Fy; for P; = 1.25 GeV and -1 = 0.69, 1.38,2.76 GeV?2. The errors correspond to

the statistical uncertainties.
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FIG. 10.  zpqx dependence of F;, ¢ and H + G, (left), as well as Fr,¢ and E + G, (right) at —t = 0.69 GeV? and Py = 1.25 GeV.
Results are given in the MS scheme at a scale of 2 GeV. The bands correspond to the statistical uncertainties.

1.01 ;
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—0.5
—1.01
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FIG. 11.  zj, dependence of Fg; and G, at —t = 0.69 GeV? and P; = 1.25 GeV. Results are given in MS scheme at a scale of 2 GeV.

The bands correspond to the statistical uncertainties.

of z that enters the Backus-Gilbert reconstruction. In
particular, we test z,., = 9a, 1la, 13a and present the
quasi-GPDs as well as the light-cone GPDs in Figs. 10
and 11 for Py =1.25GeV and —t = 0.69 GeV2. The
function Fp.p obtained in momentum space for
Zmax = 1la and z,,,« = 13a is compatible for all values
of x; similarly for the light-cone H + G,. Some tension is
observed between zy,x = 9a and 2y, = 1la for Fy ¢ at
small |x| values. In the case of the Fz, ¢ and E+ G, we
find compatibility between all three values of z,,,,. We note
that the statistical uncertainties are enhanced compared
to H + G,. For F, &,» we find a very small z,,,, dependence
that is within the statistical uncertainties and can be
neglected. The same conclusions hold for other values of
P; and —t. Thus, we choose 7., = lla for the final
results, and we add a systematic error equal to one half of
the difference of the results between z,,,, = 9a and 7, =
13a to reflect the uncertainty in the choice of the optimal
truncation Zp,.

The P; dependence of the light-cone GPDs is shown
in Figs. 12 and 13 for —t = 0.69 GeV2 Both H + G,
and £+ G, are found to have similar results between
P3; = 0.83, 1.25, 1.67 GeV in the region x € [0, 0.4]. There

are some differences in the region x €[0.5,0.7], while all
P5 converge to the same behavior in the large x region. The
P5 behavior of G, is within uncertainties in the negative x
region, as well as the positive region up to about x = 0.4.
Beyond that point, the approach to x = 1 exhibits some
differences. We note that the convergence in P; is sat-
isfactory within the reported statistical and reconstruction
uncertainties. However, this finding applies to the present
calculation, and an investigation of various systematic
effects is required before reaching general conclusions
on such a convergence. Furthermore, currently one cannot
quantitatively estimate the uncertainty related to the
momentum-boost convergence. How much the results for
our highest value of P; differ from the results in the limit
P3; — oo ultimately depends on the QCD dynamics. We
note, though, that model calculations suggest sufficient
convergence of the quasi-GPDs at P; ~ 2 GeV, for a wide
range of the GPD variables [27,29].

Figure 14 compares H + G, and E + G, at —t = 0.69,
1.38, 2.76 GeV2. It is found that as —r increases, the
numerical value of GPDs decrease in the x € [0, 0.8] region,
while the large-x region is not very sensitive to —¢. It is also
notable that the difference between —¢ = 0.69 GeV? and
—t = 1.38 GeV? is smaller than the difference between

054501-13



SHOHINI BHATTACHARYA et al.

PHYS. REV. D 108, 054501 (2023)

P3=0.83 GeV
B P3=1.25GeV
P3=1.67 GeV

P3=0.83 GeV
B P3=1.25GeV
s P3=1.67 GeV

FIG. 12. P; dependence of A + G, (left) and E + G, (right) at —t = 0.69 GeV? and P; = 0.83, 1.25, 1.67 GeV. The results
correspond to z,,,x = 11a. Results are given in MS scheme at a scale of 2 GeV. The bands correspond to the statistical errors and the

systematic uncertainty due to the x-dependent reconstruction.

2<
0
2 <t
SN
—4] P3=0.83 GeV
P3=1.25GeV
6 B P3=1.67 GeV
-1.0 -0.5 ﬁ 0.5 1.0
X
FIG. 13. P; dependence of G, at —t =0.69 GeV? and
P; =083, 125, 1.67 GeV. The results correspond to

Zmax = 1la. Results are given in the MS scheme at a scale of
2 GeV. The bands correspond to the statistical errors and the
systematic uncertainty due to the x-dependent reconstruction.

—t = 1.38 GeV? and —t = 2.76 GeV?. We observe that the
—t dependence of E + G, is stronger than for H + G,. This
may be an indication of the pion pole expected in E [77],
which cannot be isolated from the lattice data at zero
skewness. Further investigation is required to address the
pion pole indication. The —¢ dependence of G, is shown in
Fig. 15, which follows the same hierarchy as A + G, and
E + G,. We remind the reader that, presently, lattice-QCD
calculations are not reliable for extracting the small-x
region (x < 0.15), nor the antiquark region, regardless of
the twist level. Therefore, conclusions about these regions
are not reliable.

One can extract G,, which cannot be obtained directly
from lattice data but may be isolated from the data on
H+ G, and its twist-2 counterpart, H, which we also
calculate in this work following the same setup. The P53 and
—t dependence of G, is shown in Fig. 16. In summary, there
is no P; dependence, while the —¢ dependence is non-
monotonic and depends on the range of x. Furthermore, it is
observed that G, becomes negative in the positive x region.
Such observation is not an artifact of the matching, as the
same feature holds for F; in the x space. In fact, this is not

8 15
—1=0.69 GeV? —1=0.69 GeV?
6 =138 GeV? P =138 GeV?
—t=2.77 GeV? 10/ —1=2.77 GeV?

0.5 1.0

FIG. 14. H + G, (left) and E + G, (right) and P; = 1.25 GeV for various values of —z. Results are given in the MS scheme at a scale
of 2 GeV. The bands correspond to the statistical errors and the systematic uncertainty due to the x-dependent reconstruction.
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1 s

i —1=0.69 GeV?
-3 | =138 GeV?
| —1=2.77 GeV?
41 . ! - -
-1.0 0.5 0.0 0.5 1.0
X
FIG.15. G, at P; = 1.25 GeV for various values of —z. Results

are given in the MS scheme at a scale of 2 GeV. The bands
correspond to the statistical errors and the systematic uncertainty
due to the x-dependent reconstruction.

an unphysical behavior because the norm of both the quasi
and light-cone G, should vanish, indicating that negative
regions must exist. We remind the reader that extracting G,
is not possible for zero skewness because E is not
accessible from the y;ys operator due to a vanishing
kinematic factor. Nevertheless, this calculation gives a
glimpse into E through its twist-3 counterpart, £ + G,.
One can also extract the Mellin moments of E directly from
our twist-3 data using the sum rule of Eq. (36) and using the
fact that the integral of G, is zero, as given in Eq. (37).

It is useful to compare A + G, and H, as well as the
extracted G,. These quantities are shown in Fig. 17 for
—t = 0.69 GeV2. The difference of H+ G, and H is
sizable, which gives rise to a non-negligible G,. Another
observation is that # + G, and G, approach zero much
faster than H.

C. Consistency checks

There are a number of consistency checks one can
perform using the lattice data presented above. Here, we
examine the following aspects expected by theory.

P3=0.83 GeV
7.51 W P3;=1.25GeV
m P3=1.67GeV

5.01
CHP Y
0.0 -
25
-1.0 0.5 00 0.5 1.0
X

8 Pa—
H+G,, —1=0.69 GeV?
H, —1=0.69 GeV?
61 mm G,, —1=0.69 GeV?
41 |
0“ \‘J'
_24
-1.0 0.5 I
X
FIG. 17. Comparison of H, H+G, and G, at

—t = 0.69 GeV?. Results are given in the MS scheme at a scale
of 2 GeV. The bands correspond to the statistical errors and the
systematic uncertainty due to the x-dependent reconstruction.

(1) The local limit of H + Gz and H should coincide.
We find numerically that this holds for all our data,
as can be seen in Table IV. A similar property should
hold for E + G, and E even though E is not directly
accessible from lattice data at zero skewness.

(2) The norm of G; is expected to be zero. [See
Egs. (10)—(13).] Here, we find that the norm of
G, and G, is about a factor of 10 smaller than the
norm of A+ G, and E + G,. The norm of G5 is
trivially zero, as the GPD vanishes at zero skewness.

(3) The norms and Mellin moments of both the quasi
and light-cone GPDs should be momentum-boost
independent. (See Refs. [29,64].) This holds for all
results presented in this work.

(4) As the momentum transfer squared increases, the
norm of the GPDs should decrease, as observed in
the form factors. Our data satisfy this expectation.

(5) As the number of Mellin moments of H + Gz and
E+ Gl increases, its magnitude should decrease
compared to the lower moments; that is,

—1=0.69 GeV?
61 W —r=138GeV?
e —r=2.77 GeV?

4l
2
0 i}
Y
-1.0 0.5 00 0.5 1.0
X

FIG. 16. Left: G, at —t = 0.69 GeV? and various Ps. Right: G, at P; = 1.25 GeV and various —t. Results are given in the MS scheme
at a scale of 2 GeV. The bands correspond to the statistical errors and the systematic uncertainty due to the x-dependent reconstruction.

054501-15



SHOHINI BHATTACHARYA et al.

PHYS. REV. D 108, 054501 (2023)

TABLEIV. The local limit of A + G, and A for the various P5 and —¢ used in this work. The number in the parentheses indicates the

statistical uncertainty.

P; =0.83 (GeV) P; =1.25 (GeV)

Py = 1.67 (GeV)

Py = 1.25 (GeV) Py = 1.25 (GeV)

GPD —t = 0.69 (GeV?) —t = 0.69 (GeV?) —t = 0.69 (GeV?) —t = 1.38 (GeV?) —t = 2.76 (GeV?)
i 0.74121) 0.712(27) 0.802(48) 0.499(21) 0.281(18)
a+6é, 0.719(25) 0.750(33) 0.788(70) 0.511(36) 0.336(34)

1 1
/ dxx" X(x, &, 1) < / dxx"X(x,&, 1), n' >n,
- -1

1

This is because higher moments have their support at
higher values of x. We have tested this argument for
n < 3 and found that, indeed, our data maintain this
feature. Such an expectation does not hold for G;,
which have zero norm. In fact, the Mellin moments
of G, alternate in sign, while for G, they are
approximately constant.

VI. SUMMARY

In this work, we presented results on the axial twist-3
GPDs, ﬁ+Gz,E+Gl,G3,G4, using the quasi-GPD
method that gives access to the x dependence of GPDs.
The method requires the evaluation of matrix elements
of nonlocal operators and momentum-boosted hadrons. We
use the axial-vector operator with spatial indices that are
perpendicular to the direction of the boost, Ps, that is, y1y5
and y,ys5; on the light cone, this corresponds to the twist-3
counterpart of the helicity GPD. Our kinematic setup uses
the symmetric frame, which is computationally expensive
and requires separate calculations for every value of the
momentum transfer. In this work, we are able to obtain
three values of the momentum transfer, — = 0.69, 1.38,
2.76 GeV? at Py = 1.25 GeV. We also check for conver-
gence in P; at —t = 0.69 GeV?, with three values, that is,
P; =0.83, 1.25, 1.67 GeV. All lattice data correspond to
zero skewness. We obtain four independent matrix ele-
ments by using unpolarized and three polarized parity
projectors that can successfully disentangle the four GPDs.
We find a very good signal for H 4+ G, and E + G, for all
values of P5 and —t. G, is smaller in magnitude and has a
higher relative error than the aforementioned GPDs. Gj is
found to be compatible with zero and very noisy; this is a
consequence of the calculation being performed at zero
skewness. We note that, in general, the noise-to-signal
ratio is increased for the matrix elements y;ys and y,ys,
compared to the twist-2 case of y’y*, computed from yys
and y3y5s. With the current uncertainties, a momentum boost
of Py = 1.25 GeV is sufficient to match the lattice data to
the light-cone GPDs. We have examined the effect of the
reconstruction of the x dependence by applying the

Backus-Gilbert method using the data up to different
values of z,... We found that the optimal choice is
z=11a ~ 1 fm, which is compatible with a larger value
of Zyax. The final results for the light-cone GPDs H + G,
E + G, and G, are shown in Figs. 14 and 15 for different
values of the momentum transfer. We combine H + G,
with the twist-2 H GPD to extract G,, which is shown in
Fig. 16. This function is not negligible in magnitude
and has interesting features, such as negative values at
positive x. This is in line with the theoretical expectation
that the norm of G, is zero. Lastly, we perform a number of
consistency checks: the local limit of twist-3 GPDs, their
norms, and the P; independence of the norms. These tests
show encouraging results, but further investigation is
needed to provide, e.g., the Mellin moments of the
quantities under study.

We emphasize that this is the first calculation of twist-3
GPDs from lattice QCD, and as such, there are a number of
systematic uncertainties that should be addressed in the
future in order to gradually move twist-3 calculations
toward precision results. One of the aspects to consider
1s excited-state contamination. Here, we use a source-sink
time separation of 10a, as we are calculating matrix
elements that have higher statistical noise compared to
the twist-2 counterparts (see, e.g., Fig. 2). The above
investigation can be tackled using a single ensemble,
unlike other effects such as discretization and volume
effects. As in the twist-2 case, another source of systematic
uncertainty is related to the momentum boost that enters
the matching formalism. Addressing this systematic
effect is quite challenging due to constraints in reaching
a high momentum boost in lattice-QCD calculations (see,
e.g., [68]). Nevertheless, we believe that reliable future
calculations in the range P5 ~ 2.0-2.5 GeV, which may be
within reach, could already provide significant new insights
in that regard. Another systematic uncertainty for twist-3
GPDs, which presently can hardly be quantified, is due to
the mixing between the two-parton and the three-parton
correlators. This should be addressed at the level of the
matching as discussed in Ref. [49] for the axial current
evaluated in the forward limit. To fully and rigorously
pursue this program requires massive new developments,
though. Specifically, the matching for three-parton quasi-
correlators needs to be derived, and these objects must be
computed in lattice QCD through pioneering studies of
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four-point functions. Two-loop matching results are also
desirable to further scrutinize the convergence of the
LaMET approach. However, because of the complexity
of this matter for twist-3, such results most likely will not
be available in the foreseeable future.

Additional improvements and investigations will follow
this work. We will examine the intricate nuances associated
with the Wandzura-Wilczek approximation, which poses
substantial challenges in the realm of GPDs, encompassing
both zero skewness and nonzero skewness scenarios. In our
future calculations, we aim to broaden our scope by
exploring a wider range of momentum transfer and nonzero
skewness. Another direction is the study of systematic
uncertainties, such as excited states, discretization effects,
volume effects, and pion mass dependence. In addition to
the study of the axial twist-3 GPDs, we will extend our
calculations to other cases, that is, the scalar, vector, and
tensor twist-3 GPDs.
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