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Abstract: Environmental factors, such as drought stress, significantly impact maize growth and
productivity worldwide. To improve yield and quality, effective strategies for early detection and
mitigation of drought stress in maize are essential. This paper presents a detailed analysis of three
imaging trials conducted to detect drought stress in maize plants using an existing, custom-developed,
low-cost, high-throughput phenotyping platform. A pipeline is proposed for early detection of water
stress in maize plants using a Vision Transformer classifier and analysis of distributions of near-
infrared (NIR) reflectance from the plants. A classification accuracy of 85% was achieved in one of
our trials, using hold-out trials for testing. Suitable regions on the plant that are more sensitive to
drought stress were explored, and it was shown that the region surrounding the youngest expanding
leaf (YEL) and the stem can be used as a more consistent alternative to analysis involving just the YEL.
Experiments in search of an ideal window size showed that small bounding boxes surrounding the
YEL and the stem area of the plant perform better in separating drought-stressed and well-watered
plants than larger window sizes enclosing most of the plant. The results presented in this work
show good separation between well-watered and drought-stressed categories for two out of the three
imaging trials, both in terms of classification accuracy from data-driven features as well as through
analysis of histograms of NIR reflectance.

Keywords: crop health monitoring; drought-stress detection; remote sensing; near-infrared; pixel
extraction; classification

1. Introduction

Maize is considered one of the most important cereal crops worldwide. It serves as
a staple food for billions of people and is also a crucial feed for livestock. Environmental
factors like drought stress have detrimental effects on the growth and productivity of maize,
reducing yield and impairing quality [1]. This has necessitated the development of effective
strategies for early detection and mitigation of drought stress in maize.

Traditional methods for assessing drought stress in maize, such as visual inspection
and manual measurements, are labor-intensive, time-consuming, and often subjective.
In recent years, there has been growing interest in leveraging computer vision and deep
learning techniques to automate the process of drought-stress analysis in maize [2-6].
These technologies offer the potential to provide rapid, non-destructive, and objective
assessments of drought stress, enabling farmers and researchers to make informed decisions
in a timely manner.

High-throughput imaging systems have been pivotal in advancing maize plant pheno-
typing, enabling researchers to efficiently analyze large numbers of plants for various traits,
including those related to drought stress [7-9]. These systems typically involve the use of
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cameras and sensors to capture detailed images of plants at various growth stages, allowing
for the extraction of quantitative data on plant morphology, physiology, and response to
environmental stressors.

In the case of visual phenotyping, the near-infrared (NIR) reflectance is known to be
particularly responsive to drought stress [10,11]. Well-watered healthy plants are known to
reflect more NIR wavelengths to reduce net heat gain as a result of photosynthesis. Similarly,
drought-stressed plants show lesser NIR reflectance due to improper photosynthesis and
nutrient deficiency. Studies have shown that the growth of the youngest expanding leaf
(YEL) is most sensitive to water stress [12-14]. These visual cues observed during plant
phenotyping have been utilized to distinguish between well-watered and drought-stressed
maize plants.

This paper is an extension of the work by Da Silva et al. [15] on developing a high-
throughput low-cost system for water stress detection in maize plants. This platform
is utilized to collect a dataset of images of maize plants placed in a controlled chamber.
A group of four maize plants placed side-by-side was imaged, with alternating plants
treated with two different watering protocols. One set of maize plants was subjected to
induced drought stress over several days, whereas the other set remained well-watered.
The protocol for each trial lasted for 6 to 11 days. NIR reflectance captured using Raspberry
Pi cameras was primarily used in our analysis [16-18]. Similar to the approach adopted
in [15], fasterRCNN was used [19] to detect the region of interest on the maize plants and
an NIR workflow implemented by plantCV [20] was used to segment out the background.
In addition to generating histograms and computing the Earth Mover’s Distance (EMD) [21]
to study the effect of drought stress on NIR reflectance, a Vision Transformer (ViT) [22]
was also used to perform a simple binary classification between drought-stressed and well-
watered plants. The impact of inclusion of leaves was used in our analysis (with respect to
YEL and stems) by considering larger regions around detection boxes. For training the ViT
model to determine its generalization, different experimental settings were also explored.

The rest of the paper is organized as follows. In Section 2, a brief description of
the automated imaging platform, introduced by the authors in [15], is given, which was
capable of monitoring plants placed inside a controlled chamber. In Section 3, we introduce
our model pipeline used for the detection and analysis of drought stress in the plants.
Section 4 discusses the experimental setup used in our analysis and presents results on NIR
reflectance distributions and classification performance by our VIT model. The findings
corresponding to the experiments on locating an ideal region on the plant, other than the
YEL, that is most sensitive to drought stress are also presented.

2. Dataset
2.1. Data Collection Platform

The Plant Data Collection (PDC) system, as described in [15], was installed in a con-
trolled chamber with regulated temperature, humidity, luminosity, and watering conditions.
The imaging system consisted of a gantry with two carts controlled by stepper motors,
offering two degrees of freedom: vertical and horizontal movement. Figure 1 illustrates
the setup. A NoIR Pi Camera V2 without an infrared (IR) filter was mounted on the cart
for vertical imaging. To improve the camera’s performance, a Roscolux Cinegel R2007
Storaro Blue film filter was placed over the Pi Camera aperture. This filter primarily allows
blue and IR light to pass through while blocking much of the red and green spectrum,
enhancing the camera’s ability to capture color changes related to photosynthetic activity.
The resulting images are NIR (near-IR), Green, and Blue (NGB), having a high resolution of
3280 x 2464 pixels.

The PDC system was remotely controlled by a Raspberry Pi 3 [23] running Node-RED
software [24], which provided real-time diagnostics and ensured regular monitoring of
the system status. The data collected were temporarily stored on the Pi and automatically
backed up daily to a local storage drive. Images were saved into their respective folders cor-
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responding to the date of data collection. The date, time, and spot location were appended
to the image filenames. They were then normalized using the approach mentioned in [15].

Imaging Setup

Imaging
Module

Sample NGB Images

Figure 1. Plant Data Collection (PDC) system. [Top] Diagram of the imaging setup. A frame was
built to house the imaging module that could translate horizontally and vertically to image the plant.
Images were taken while sweeping the module vertically and horizontally. [Bottom] Sample NGB
images taken from Trial 2 using the NoIR Pi Camera.

During data collection, each vertical scan involved capturing 1 image per step. A num-
ber of vertical steps (which differed based on the trial) were followed by a horizontal step.
This cycle was repeated 21 times, resulting in 800 images per scan within approximately
30 min, constituting a single session.

2.2. Water-Stress Protocol and Image Dataset

The drought-stress protocol was conducted on three imaging trials from October to De-
cember 2020. Data collection was performed on four Syngenta Agrisure Viptera maize plants,
each placed side by side in 6.1 L pots containing a 50%/50% peat lite/sand mixture. Alternate
pots received regular watering while the remaining ones were unwatered throughout the
experiment. In Figure 1, Plants 1 and 3 were well-watered whereas Plants 2 and 4 were not
watered throughout the trial. Table 1 shows the details of the three trials. The growth stage
indicates the stage of the maize plants at the start of the trial. The V and H steps are the
number of vertical and horizontal scans undertaken by the Raspberry Pi camera per session
of the trial. For each trial, 2 sessions were conducted daily, at 6:10 a.m. and 3:10 p.m. Many
days of the imaging trials have Session 2 missing due to an interruption in data collection.
Hence, our experiments were conducted only on Session 1 of each trial. For details on the
availability of our imaging trials, see the corresponding section at the end of this paper.
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Table 1. Details of our imaging trials.

Trial Growth Stage No. of Days V Steps H Steps No. of Images Drydown Start

1 V4 11 40 27 13,987 Day 1
2 V4 9 40 28 15,730 Day 4
3 V3 9 29 29 13,422 Day 4

3. Methodology
The overall processing pipeline is shown in Figure 2.

Image Datasets

Labelbox Al
Assisted Labeling

Image Pre-Processing

Detectron? Faster

PlantCV Segmentation RCNN Detection

NIR Histogram Analysis

Figure 2. Pipeline adopted in our work for remote monitoring of plants inside a controlled chamber
and early detection of induced drought stress.

3.1. Image Pre-Processing

First, image normalization was performed for each session, using the equation norm =
(x — miny)/(max, —miny). x, miny, and max, stand for pixel value, minimum pixel value,
and maximum pixel value, respectively. The next step in data pre-processing included
creating patches to separate the four plants and sorting them into well-watered and drought-
stressed categories. This was carried out using a semi-automatic script that took advantage
of the repetitive motion of the camera, with the locations indexed by the image ID. The script
assigned a patch with the same height as that of the image and allowed the user to decide
where to cut the image vertically to crop out the plant. This patch size was allowed to
automatically propagate across the images for two consecutive horizontal scans, after which
the user was prompted to choose a new vertical cut. This process was repeated for each day
in a trial. The creation of the patches resulted in four folders, each containing images of one
plant. Folders 1 and 3 contained images of well-watered plants (Plants 1 and 3). Similarly,
Folders 2 and 4 contained patches of drought-stressed plants (Plants 2 and 4). Out of these
four plants, our analysis was conducted on Plants 2 and 3 since they were the most visible
throughout each scan session. Plants 1 and 4, being located towards either end of the row,
appeared inconsistently in between image frames due to the horizontal motion and edge
distortions of the camera (see Figure 1). As a result, only a few patches from Plants 1 and
4 were extracted and, hence, were left out of the analysis. Additionally views that either
had no plant part visible or just the top of some leaves visible were also removed. This was
again performed semi-automatically utilizing the repetitive movement of the camera.

In an attempt to scale up the data collection and conduct drought-stress analysis on
multiple trials, additional challenges were faced that were not addressed in [15]. As men-
tioned in Section 1, the YEL of maize plants has been shown to be significantly impacted by
water stress. While we still wanted to rely on analysis of NIR pixels extracted from the YEL,
accurately and consistently detecting the smallest leaf posed a significant challenge in our
pre-processing steps. Being small and usually hidden between surrounding leaves, the YEL
is usually difficult to detect in images. Also, occasional shifting of pots in the chamber at
the time of watering and manual measurements as well as movement of the camera in each
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session led to images with changing views of the plants. Another major drawback present
in the dataset was the significant overlap between leaves of adjacent plants, particularly in
the later days of a trial when leaves were overgrown or at their maximum length. This led
to occlusions of parts of the plant, which negatively impacted our analysis.

In order to overcome the above challenges, a different approach was adopted in our
analysis than the one undertaken in [15]. Instead of training an object detection model to
detect just the YEL, a region that approximately surrounded the YEL and the stem for each
plant was chosen. Whenever the YEL was not visible, we annotated what we considered
to be the next-youngest expanding leaf. Annotations were performed by drawing tight
bounding boxes that enclosed the tip of the youngest leaf to the base of the stem. Figure 3
provides an example of the detections using our deep learning (DL) model. The online
labeling platform LabelBox [25] was used for generating the ground-truth bounding boxes.
Labelbox is a powerful labeling tool that allows efficient and accurate annotations of
datasets for various machine learning projects. Through its online platform and easy-to-use
interface, users can import data, define labels and annotation types, collaborate with team
members to assign, annotate and review labels, and export the labeled data in the desired
format. Additionally, LabelBox’s Model-Assisted Labeling (MAL) feature can significantly
reduce annotation time by allowing computer-generated predictions to be uploaded as
pre-labels. This feature proved especially useful in our analysis as it helped us to annotate
our dataset in a short amount of time as well as to improve the detection accuracy.

q— ; Segmented output NIR output
=

Detection
from DL

Figure 3. NIR segmentation pipeline. [Left] Bounding box prediction using FasterRCNN. [Middle]
Segmented portion of plant extracted from bounding box prediction. [Right] NIR channel extracted
from NGB image.

3.2. Detection and Segmentation

Faster RCNN [26] is a popular object detection algorithm that has been used for a
number of object detection tasks in the field of precision agriculture like weed [27] or multi-
class fruit detection [28,29], identification of lettuce and sugarcane seedlings [30,31], and
detection and segmentation of plant parts in maize [15,32]. Faster RCNN is comprised of
two modules, including a Region Proposal Network (RPN), which is a fully convolutional
network that generates proposals with various scales and aspect ratios. It applies the
concept of attention in neural networks to guide the second module, which is a fast
RCNN module, to look for objects in the image. Each region of proposals generated by
the RPN is passed through an ROI pooling layer to extract a fixed-length feature vector.
The extracted feature vectors are then classified using fast RCNN through classification
scores and bounding box regression. Although no longer state of the art, the pipeline is
still extremely effective and architecture agnostic and is, thus, a robust starting point for
any object detection application. In our work, Facebook’s Detectron2 framework [26] was
utilized, with a Faster RCNN backbone for the purpose of detection of the YEL and stem
regions within each plant patch. For training our Detectron2 model, a curated dataset was
used, combining our three imaging trials.

Two views from each vertical scan from the first sessions for each day were selected
from all three trials. The two views were selected such that one showed the plant in full
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view while another showed the plant with the camera shifted up by a few vertical steps.
Annotations were performed on the entire image instead of annotating the patches of
individual plants. Table 2 shows details of our annotation process using Labelbox and its
MAL feature. For each trial, a small subset of images was selected and labeled manually.
The Detectron2 model was trained on this subset with a train—validation split of 90-10%,
and the annotation time and model evaluation are reported in terms of average precision
(AP and AP75 values). The predictions from this trained model were then used as pre-labels
on a second set of images (using MAL), and the annotation time was compared with the
manually labeled subset. It was observed that, with MAL, twice the number of images
were annotated in less than half the time compared to manual labeling. The evaluation
of our three final trained models with the full dataset (combining manually labeled and
MAL images) are also reported. Due to a higher number of images in this case, a significant
improvement is seen in the AP values. The three trained models were then used to run
inference on all patches of individual plants in their respective trials. The predictions were
used to extract the YEL and stem region from each plant. The extracted regions from Plant
2 (drought stressed) and Plant 3 (well-watered) were used in our subsequent analysis.

Table 2. Train image annotation using LabelBox and detection performance using Detectron2 library.

Trial 1 Trial 2 Trial 3
NoMAL MAL No MAL MAL NoMAL MAL
No. of images 200 394 100 236 100 248
Annotation Time 2h5min 48min 1h12min 29 min 58 min 32 min
No MAL Total No MAL Total No MAL Total
Detectron?2 Perf (AP) 75.33 79.41 78.10 84.92 77.93 82.20
Detectron2 Perf (AP 75) 90.57 94 93.71 96.37 93.04 96.05

For segmenting the plant part within these regions, a method similar to the NIR
workflow in PlantCV [20] was adopted. NIR images comprise grayscale pixels representing
NIR light reflected from plants, requiring adequate lighting and sufficient contrast between
plants and the background. To conduct water-stress analysis, the NIR channel from the
NGB image was extracted, as depicted in Figure 3. Initially, the NGB image is converted to
the Hue-Saturation-Value (HSV) scale using the OpenCV library [33]. Next, a binary mask
is created using the saturation channel from the HSV image and the OpenCV thresholding
techniques to eliminate the background. Finally, this binary mask is applied to the NIR
image to obtain a masked NIR image with the background removed.

3.3. Drought-Stress Analysis

An analysis on the NIR values was performed over time by tracking changes in their
distributions for the control and drought-stressed plants. The segmented NIR images were
then used as inputs to a DL classifier, quantifying its performance over time as a way to
monitor differences in the plants. For the first analysis, to study the distributions of the
NIR pixels extracted from the detected regions, histograms and EMDs were computed.
The shape of the histograms as well as their mean help us to visualize the pixel distributions
of each plant as we progress through the days of the trial. Additionally, the EMDs capture
how reflectance evolved for each plant over time by comparing each day with the first day
of the trial.

The segmented plants were used to train a DL classifier to separate drought-stress
and well-watered plants. A Vision Transformer (ViT) [22] was used to perform the binary
classification. The transformer architecture is considered to be the state of the art for
natural language processing and computer vision tasks. A ViT is a model based on the
transformer architecture that performs image classification based on patches of images. It
divides an image into fixed-size patches and adds positional embedding to these patches,
which are then used as an input to the transformer encoder. ViTs have achieved the best
results in various computer vision tasks like image classification, object detection and
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semantic segmentation. They are known to outperform CNNs from the literature like Big
Transfer (BiT) [34], which performs supervised transfer learning with large resnets, and
Noisy Student [35] which is a large EfficientNet trained using semi-supervised learning
on ImageNet and JFT300M. Like the original transformer, ViTs are also equipped with
the self-attention mechanism that allows one to capture long-range dependencies and
contextual information present in the input data. The self-learned attention weights allow
the model to focus on relevant areas in the image and provide more interpretability in the
form of attention heatmaps. In Section 4 some attention plots are shown, indicating what
our trained ViT has learned.

In order to quantify the impact of having the adjacent leaves as part of both analysis
pipelines, the widths of the bounding boxes were increased. They were expanded on both
sides by n = 200, 400, 700, and 1000 pixels. This generates bounding boxes By through
By. Figure 4 illustrates the original detected bounding box and the subsequent gradual
expansion. The motivation behind conducting these experiments was to find a suitable
bounding box size that encompassed the YEL and stem regions of the plants, which would
yield the best results for drought-stress detection. It was also carried out to verify the
negative effect of leaf occlusion by adjacent plants, as bounding boxes with larger widths

] Resulting Segmentations:

were expected to perform worse.
B, B, By
=== |

Figure 4. Expanding bounding boxes. [Left] Overlay of the expanded bounding boxes containing the

Expanded Boxes:

YEL and the stem. By represents the original detection from the DL model, and B;—By are versions
expanded on the left and right by 200, 400, 700, and 1000 pixels. [Right] Resulting segmentation for
the corresponding expanded bounding boxes.

4. Results
4.1. Implementation Details

To select training views for the ViT classifier, some views for each trial were separated
based on the protocol adopted for the Detectron2 training, as discussed in Section 3.2. This
gave us a total of 1278 images in the training set. A train—validation split of 85-15% was
used. The remaining images were used as the test set. A total of six experiments were
considered, using different combinations of trials for training and testing. Table 3 shows
the details. Note that Trial 1 was not included as the train set for Experiments D and E,
for reasons discussed later in the next subsection.

Table 3. Train and test sets for the ViT model, along with mean and standard deviation values of
classification accuracy for window By. Averaging is performed across multiple model runs. Meanl is
averaged over all days in a trial, whereas Mean2 values correspond to the last day of the test trial.

Experiment No. of Train Images  No. of Test Images Mean1 STD1 Mean2 STD2

A 1,2,3(1278) 1 (8635) 0.9779 0.0061 0.9866 0.0082
B 1,2,3(1278) 2 (5160) 0.9841 0.0054 0.9987 0.0021
C 1,2,3(1278) 3 (4818) 0.9599 0.0062 0.9975 0.005
D 2,3 (684) 1(8635) 0.5633 0.0231 0.6678 0.028
E 3 (348) 2 (5160) 0.6815 0.0197 0.8211 0.022
F 2 (336) 3 (4818) 0.6663 0.0243 0.7537 0.0255
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Transfer learning was used to fine-tune the ViT model pre-trained on ImageNet-21k
at a resolution of 224 x 224. Training was performed over 100 epochs with a batch size
of 32. Data augmentation on the train set included horizontal flip, rotation, zoom, and
brightness adjustment. An ADAM optimizer [36] with a learning rate of 5 x 10~° was used
for training. All experiments were run on an Ubuntu workstation with an NVIDIA GeForce
GTX 1080 Ti GPU.

4.2. Results and Discussion

In this section, the results of our detailed analysis on our three imaging trials is
presented. First, the results for our extracted NIR pixels are shown in the form of histogram
distributions and EMD and then in the form of our ViT experiments with classification
accuracy plots.

Figure 5 shows histograms and the mean of the distributions for the three trials, as well
as the EMDs between the well-watered and drought-stressed groups. For the histogram
plots, NIR intensity and time are plotted along the y and x axes, respectively, and the
frequency is represented by the colors. The mean of the histograms over time are also
plotted. The EMDs over time compare EMD each day with the first day of the experiment
for both groups of plants. This gives an estimate of how the NIR reflectance evolves for
each plant over time. The EMD differences show a cross-comparison between the well-
watered and the drought-stressed plants per day. To smooth the data values, a spline
representation and B spline basis elements are implemented, utilizing scipy’s interpolation
package [37]. No separation between the groups for Trial 1 is observed. One of the possible
explanations for this is that Trial 1 had almost twice the number of days compared to
the other trials. This prolonged period of drought stress could be a reason why expected
trends were not observed. A higher number of days also meant that plants were overgrown
towards the end of the trial, which led to more occlusion and, in turn, more noisy data.
Furthermore, evaporation and stomatal conductance are very dynamic and can change
not only with plant dehydration, but also with light, temperature, vapor pressure deficit
(VPD), etc. In a controlled chamber setting, even though it is possible to control most of
these parameters, some, like VPD, are prone to significant fluctuations, which, in turn, can
affect plant transpiration rate and photosynthesis [38—40].
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Figure 5. Histogram and EMD differences for By bounding box. [Columns 1 and 2] NIR histograms
are shown for the drought-stressed and well-watered plants on each trial. [Column 3] The means of
the distribution are shown over time. The smooth mean values are obtained by applying a smoothing
spline fitting to the data. [Column 4] The EMDs obtained by comparing the distributions over time to
the initial distribution for each plant separately. [Column 5] The EMD obtained by comparing the
distributions of the plants each day. We observed a similar trend for other bounding boxes.
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Trial 2 showed the overall best separation between the two distributions. We observe
a clear separation between the means of the NIR pixel distributions as well as the EMD
over time plot. The EMD difference between the two sets of plants also shows a continuous
increase as we progress through the trial. For Trial 3, even though a separation can be
observed in all of the plots, this is not as clear as in the case of Trial 2. It can be observed
that the separation between the plants decreases towards the end of the trial, as seen in the
mean over time plot. Unlike Trial 2, the EMD values for each plant do not show a sharp
increase compared to the first day of the trial.

The EMD cross-comparison between the two plants also shows a slight dip in the
otherwise increasing curve, towards the end of the trial. These results could be attributed
to more leaf occlusions present in Trial 3 in comparison to Trial 2.

For the classification task, Figure 6 shows attention masks extracted from the self-
attention layers of our ViT. Maximum brightness is seen around the YEL region for both
sets of images, indicating that this region of the plants is most sensitive to changes in the
watering regime. An example of what the ViT is learning from images that do not have the
background segmented out is also shown. It is observed that the attention in this scenario
is no longer near the YEL region but on other parts of the background. To prevent the
model from learning to identify objects on the background, our ViT classifier was trained
on images with the background removed.

(@) (b) (c)

Figure 6. Attention plots generated by our ViT binary classifier. Top row corresponds to original
image, with the bottom row showing the corresponding attention maps. (a,b) correspond to bounding
boxes By and B, respectively. (c) shows attention plots generated with the full plant in view and when
the background is not segmented out. Objects around the plant are used as features for classification
if not removed.

Figure 7 shows classification accuracy for the different combinations of train and test
images introduced in Table 3. In order to obtain smoother trends, we performed multiple
model runs of our ViT classifier corresponding to each bounding box. Each model was
run 10 times, and boxplots of the classification accuracy over time were generated for each
trial and are shown in Figure 8 . Table 3 shows mean and standard deviation values for
bounding box By. Meanl and STD1 are values averaged over all runs and all days of the
test trial. Mean2 and STD2 show the values averaged over all runs for the last day of each
test trial. For experiments A, B, and C, selected train views from all trials are combined
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and tested on each trial separately. As a result, an overall high classification accuracy is
achieved for these experiments.

4 0.92 4
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Figure 7. ViT classification accuracy for bounding boxes By through B4 for Experiments B, C, E, and
F, as specified in Table 3.

Similar to the NIR pixel analysis results, a much lower mean accuracy for Experiment
D (tested on Trial 1) is observed. Overall, for Trial 1, a clear separation between the
two sets of plants was not observed and, hence, boxplots for A and D are not shown.
In Figure 7 B, C, all trials are combined for training, and testing is performed on Trials
2 and 3, respectively. E and F show results on Trials 2 and 3, respectively, when trained
on a different trial. Compared to B and C, there is an overall drop in accuracy for these
experiments, as hold-out trials are introduced for testing.

For E and F, a gradual increase in accuracy is observed as one moves from the first day
to the last day of the trial. Such a trend is expected, as, over time, the drought stress becomes
prolonged, thus creating a larger separation between the two groups. This presumably
makes it easier for the model to classify the two sets of plants as the trial progresses. This
increasing trend across the trial is also slightly observable in B and C.

A second trend observed in B, C, E, and F is a drop in accuracy for bounding boxes B3
and B4 when compared to By, By, and B,. Particularly, for bounding box B4, which includes
the entire plant for classification, a significant drop in accuracy can be seen for most days
in the trial. This is also expected, as a full view of the plant includes more occlusions from
the leaves of adjacent plants, which are treated with the opposite watering protocol. These
occlusions are absent or quite small for bounding boxes By, B, and B,, which is why overall
accuracy is higher for these sets of images. Overall, Trial 2 performs better than Trial 3
for both experiments involving hold-out or no hold-out test trials. For Trial 2, the highest
classification accuracy of 85% was observed on the last day of the trial for bounding box
By. In comparison, the highest classification accuracy for Trial 3 was observed to be 78.4%.
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From these experiments, it can be concluded that, in controlled chamber settings and
through a multi-analysis approach, early drought-stress detection from NIR images of
maize plants is possible before it becomes evident through visual inspection.

Accuracy

Experiment
- 0
- 200
400
- 700
1000

6

Days
EXPERIMENT E EXPERIMENT F

Figure 8. Boxplots of classification accuracy for multiple model runs corresponding to bounding
boxes By through B, for Experiments B, C, E, and F, as specified in Table 3. For each experiment, we
also show the means of the boxplots connected together.

5. Conclusions

In this paper, an existing high-throughput low-cost system developed by [15] is used
for water-stress detection from NIR images of maize plants. In our effort to scale up the
analysis on more imaging trials, additional challenges were faced that are not addressed
by the authors in [15]. These challenges involved difficulties in annotating and detecting
the YEL of the plants as well as the occlusion of leaves by adjacent plants. To overcome
these, a pipeline for automatic detection of drought stress is introduced. This approach did
not solely rely on the YEL but instead focused on the region surrounding the YEL and the
stem. Our analysis on three imaging trials revealed several key findings. Using extracted NIR
pixel values, we computed histograms and EMD values for all three trials. Clear separations
between the histograms and EMD values were observed for the two sets of plants for Trials
2 and 3. The Vision Transformer, implemented for classifying drought-stressed and well-
watered plants, showed an increase in accuracy across the days of the trial, which could be
correlated to an increase in drought stress from the first to last day of the trial. Our bounding
box experiments also showed a significant drop in accuracy in the case of analysis on the entire
plant vs. areas surrounding the YEL and the stem region. It was shown that this region can act
as a more reliable alternative to the YEL. Our hold-out test trial experiments gave classification
accuracy of 85 % and 78.4 % for Trials 2 and 3, respectively, corresponding to the last day
of the trial and bonding box By. Overall, out of the three trials performed, early drought-
stress detection was clearly observable in two of them based on our classification metric and
NIR distribution analysis. We intend to use our pipeline for remote monitoring of plants in
controlled chamber settings, which could aid future research in the field of crop science.
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