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Abstract. We show that over a perfect eld, every non-semisimple nite tensor cat-
egory with nitely generated cohomology embeds into a larger such category where the
tensor product property does not hold for support varieties.

1. Introduction

In the two recent papers [2, 3], we studied support varieties in the setting of nite
tensor categories. When the cohomology of such a category is nitely generated]| as
conjectured by Etingof and Ostrik to be always true|then the varieties contain much
homological information on the objects, and the theory resembles that for support
varieties over group algebras and more general cocommutative Hopf algebras.

In [3], we focused on the tensor product property for support varieties. That is, given
a nite tensor category C with nitely generated cohomology, we studied conditions
under which the equality

Ve (X
Y)= Vc(X)\ Ve(Y)

holds for all objects X;Y 2 C. It is well known that there are non-braided nite
tensor categories where this property does not hold, as observed, for example, in [1, 12].
However, we showed in [3] that when the category is braided, the tensor product property
holds for all objects if and only if it holds between indecomposable periodic objects. In
general, the tensor product property is potentially a useful tool if one for example wants to
use support varieties to classify the thick tensor ideals in the stable category, although
there are examples of such classications in situations where the property fails; see, for
example, [1, 8, 9].

In this paper, we show that when the ground eld is perfect, then every non-semisimple
nite tensor category C with nitely generated cohomology embeds into one such cate-gory
D where the tensor product property does not hold. This is true even if the tensor product
property does hold in C. The category D that we construct is a crossed product category
that is not braided; along the way we collect facts about such crossed product categories
that may be of independent interest. It remains an open question whether the tensor
product property always holds in the braided case.
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2. Preliminaries

We x a eld k that is not necessarily algebraically closed, together with a nite tensor k-
category (C;

;1) in the sense of [6]. This means that C is a locally nite k-linear abelian category,
with a nite set of isomorphism classes of simple objects. Moreover, every object
admits a projective cover, and hence also a minimal projective resolution. Furthermore,
there is a bifunctor

from C C to C, associative up to functorial isomorphisms, and called the tensor
product. There is also a unit object 1 with respect to the tensor product, and (C;

;1) is a monoidal category. In particular, the tensor product satises the so-called
pentagon axiom; see [6, Section 2.1]. The unit object is simple, and the monoidal
structure is compatible with the abelian structure in that the tensor product is bilinear
on morphisms. Finally, every object admits a left and a right dual in the sense of [6,
Section 2.10], so that C is rigid as a monoidal category.

The rigidity of C has important consequences; we mention three of them. First of all, by
[6, Proposition 4.2.1], the tensor product is biexact, that is, exact in each argument.
Secondly, by [6, Proposition 4.2.12], the projective objects form a two-sided ideal in C, so
that the tensor product between a projective object and any other object is again
projective. Finally, by [6, Proposition 6.1.3], the projective and the injective objects of C
are the same, so that the category is actually quasi-Frobenius.

Given objects M; N 2 C, we denote the graded k-vector space ! Ext" (M; N) by Ext
(M;N). With the usual Yoneda product as multiplication, the space Ext (M; M }Lbecomes
a graded k-algebra, and of particular interest is the algebra Ext (1; 1)C This is the
cohomology ring of C, and denoted by H(C). By [13, Theorem 1.7], this is a graded-
commutative k-algebra. Since the tensor product is exact in the rst argument, the functor

M induces a homomorphism
H(C) "M Ext(M;M)

of graded k-algebras, turning Ext (M; M) into a left and a right H(C )-module. Now since
Ext (M; N) is a left Ext (N; N)—mcg:dule and a right Ext (M; M)-module (again using the
Yoneda pfoduct), we see that if is both a left and a right modulé over H(C), via ’ y and
"m, respectively. However, by [3, Lemma 2.2] the two module actions coincide for
homogeneous elements, up to a sign. In particular, it makes no dierence whether we view
Ext (M; M) as a left or as a right module over H(C).
Since the cohomoldgy ring is graded-commutative, the graded k-algebra dened by q
H(C) if the characteristic of k is two,

H(C) = H2(C) if not
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is commutative in the ordinary sense. We denote by mg the ideal H*(C) of this ring,
that is, the ideal of H{(C) generated by the homogeneous elements of positive degree.
This is a maximal ideal, since H°(C) = Homc(1; 1) is a eld; it is a division ring since the
unit object is simple, and commutative by the above discussion.

Denition. The support variety of an object M 2 C is
Ve(M) = fmgg [ fm 2 MaxSpech(C)j Ker’'m mg

Note that the presence of mg in the denition of support varieties is superuous when-ever
M is nonzero, for then this maximal ideal automatically contains the homogeneous ideal
Ker’m . Without any niteness condition on the cohomology of C, these support varieties
may not contain any important homological information, and so we make the following
denition.

Denition. The nite tensor category C satises the niteness condition Fg if the
cohomology ring H(C) is nitely generated, and Ext (Mé' M) is a nitely generated H(C)-
module for every object M 2 C.

By [2, Remark 3.5], one can replace H(C) by Hq(C) in this denition; the two
versions are equivalent. It was conjectured by Etingof and Ostrik in [7] that every nite
tensor category satises Fg, and this conjecture is still open. As shown in [2], when this
niteness condition holds, then the theory of support varieties becomes quite powerful, as
in the classical case for modules over group algebras of nite groups.

In this paper, we are concerned with the question of whether support varieties respect
tensor products, in the following sense.

Denition. The nite tensor category C satises the tensor product property for sup-port
varieties if V¢ (M
N)= Vc(M)\ Vc(N) for all objects M; N 2 C.

This denition makes perfect sense without assuming that C satises Fg. By [2,

Proposition 3.3(v)], the inclusion Ve (M
N) Vc(M)\ Vc(N) always holds when C is braided, that is, when for all objects M; N
2 C there are functorial isomorphisms bm;N : M
N ! N

M that satisfy the hexagonal identities in [6, Denition 8.1.1]. In [1] and [12], examples
are given of nite tensor categories where the tensor product property does not hold, in
fact not even the above inclusion. These examples are then necessarily non-braided. It is
an open question whether the tensor product property always holds in the braided case,
or under the stronger requirement that C is symmetric, that is, when the braiding
isomorphisms satisfy bn;m bm:n = 1m
n for all M; N 2 C. Other than categories of modules of some types of Hopf algebras,
the only case that has been completely settled is when the ground eld is algebraically
closed and of characteristic zero; over such a eld, every symmetric nite tensor category
satises the tensor product property, by [3, Theorem 4.9]. The proof provided relies on
Deligne’s classication of such categories as certain skew group algebras, from [5].

By [3, Theorem 3.6], when C is braided and satises Fg, the tensor product property
holds if and only if the following holds for all M; N 2 C: if Vc (M )\Vc (N) is not trivial,
that is, if Ve (M) \ Ve (N) = fmog, then M
N is not projective. Consequently, if the tensor product property does not hold, then
there must exist two nonprojective objects M;N whose tensor product M
N is projective, but for which V¢ (M) \ V¢ (N) is not trivial. They must be nonprojective
since the variety of a projective object is necessarily
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trivial; see the paragraph following [2, Denition 3.1]. In the following result, we show
that at least such a pair of objects with M = N cannot exist.

Proposition 2.1. Let k be a eld and (C;
; 1) a braided nite tensor k-category. Then an object M 2 C is projective if and only if the
n-fold tensor product M

" is projective for some n 1.

Proof. If M is projective, then so is every tensor product ™M
N, since the projective objects form an ideal in C. Conversely, suppose that M
" is projective for some n 2.Since C is rigid, the object M admits a left dual M, which
implies that there exist morphisms

M I M
M
M I M

whose composition equals the identity on M; see [6, Denition 2.10.1]. Tensoring with
M

(n 2) and using the fact that C is braided, we obtain morphisms

M

(n 1) 1 M

n

M | M

(n 1)
whose composition equals the identity on M
(n 1), This implies that M
(n 1) is a direct summand of M
n
M, which is a projective object since M
n is. Consequently, the object M

(n 1) js also projective. Repeating the process, we eventually end up with M, which must
then be projective.

Let us now in the last part of this section recall a construction that will play an
important role in the main result. Suppose that (C;
c ; 1c ) and (D;
p; 1p) are two nite tensor k-categories. Their Deligne tensor product, denoted C D, is a
k-linear abelian category that is universal with respect to right exact bifunctors on C D.
In other words, there is a bifunctor T: CD ! C D of k-linear abelian categories, right
exact in both variables, with the property that for every bifunctor F : C D | A of k-
linear abelian categories, the following hold: if F is also right exact in both variables, then
there exists a unique right exact functor F: C D | A of k-linear abelian categories,
with the property that the diagram

commutes. The Deligne tensor product was introduced in [4]; it exists, is unique up to
equivalence, and is again a nite tensor category. Moreover, the bifunctor T is actually
exact in both variables; for details, we refer to [6, Sections 1.11 and 4.6].

Given objects C 2 C and D 2 D, it is standard to denote the image in C D of the
object (C; D) 2 C D by C D. When we restrict the tensor product in C D to such
objects, we are basically using the original tensor products. Thus if C;C°2 C and D; D% 2
D, then



(C D)
(c° D% = (cC
c €% (D
p D%)
where
denotes the tensor product in C D. The unit object in C D is 1¢ 1p. Moreover,
there is an isomorphism
Homcp(C D;C% D%’ Homc(C;C9)
« Homp (D; D°)
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of vector spaces, and using this, one can show that
Extcp(C D;C D)’ Extc(C;C)
k Extp(D; D)
as graded k-algebras for C 2 C and D 2 D. In particular, there is an isomorphism
H(C D)’ H(C)
k H(D)
of cohomology rings. Therefore, if the categories C and D both satisfy Fg, then we see
immediately that H(C D) is nitely generated, so that at least half of Fg also holds for C
D. However, if the ground eld k is perfect, then by [10, Lemma 5.3] the Deligne tensor

product satises Fg if and only if it holds for both C and D. Moreover, in this situation,
the Krull dimension of H(C D) is the sum of the Krull dimensions of H(C) and H(D).

3. The main result

In this main section, we show that every nite tensor category that satises F g embeds into
a nite tensor category that also satises Fg, but for which the tensor product property
does not hold. The construction of the bigger category uses the Deligne tensor product,
as well as the notion of crossed product categories that we recall next. As before, we x

a eld k and a nite tensor k-category (C;
;1).

Suppose that a nite group G acts on C by tensor autoequivalences. This means that
there exists a monoidal functor Mon(G) ! Aut
(C), where Aut

(C) is the monoidal category of tensor autoequivalences on C, and Mon(G) is the
monoidal category whose objects are the elements of G, the only morphisms are the
identity maps, and the monoidal product is the multiplication in G. For an element 2
G, we denote by the corresponding tensor autoequivalence on C, so that the action of
on an objectM 2 C is (M). Note that if 2 G is another element, then by denition there
is a coherent isomorphism () ! in Aut
(c).

Following [14] and [11], when G acts on C as above, we dene the crossed product
category C o G as follows. As a k-linear abelian category, it is G-graded, and equal to C
in each degree. Thus the objects in C o G are of the form ,5(M; ), with Man object
in C for each 2 G, and a morphism from ,6(M; ) to 2g(N; ) isa sum ,g(f;), where f
:M | N is a morphism in C. We dene the tensor product on homogeneous objects
and morphisms by

(M;) (M
(N;) = (N);); (f
(f;) (8);):
(8;) =
In this way, the crossed product category becomes a G-graded nite tensor category,
with unit object (1;e), where e is the identity element of G. The construction is in some
sense a categorication of skew group algebras. Note that C embeds as a nite tensor
category into C o G, via the assignment M ! (M;e), for M 2 C.

As an abelian category, the crossed product category is a Deligne product. Namely, let
Vecg be the category of G-graded nite dimensional vector spaces over k, and consider the
functor T: C Vec ¢ ! C o G dened as follows. The image of an object (M;V ) is
26(MYImV:) where M" denotes the direct sum of n copies of M. Given a morphism
M | N inC, the image of the corresponding morphism (M;V) | (N;V)is the obvious
morphism from ;6(M9iMV;) to ,g(N9iMV:). Finally, suppose
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that :V | W is a morphism in Vecg, thatis, a tuple ( ).¢ with each AV

W a linear transformation. Fixing bases for V. and W , we may view as a matrix
(cij) with each ¢j; 2 k, from which we obtain a corresponding morphism MdimV.
MdAmW in C given by the matrix (cij1m). One now checks that T is a well dened
bifunctor of k-linear abelian categories, and right exact in each variable. Moreover, given
any k-linear abelian category A together with a k-linear bifunctor F : C Vec 4 A
which is right exact in each variable, we can construct a right exact functor F°: CoG !
A as follows. Given an object ;g(M;) in C o G, let V be the G-graded vector space
which is just k in each degree, and dene

FO(26(M;)) = F (26M; V):

A morphism

26(f;): 26 (M;) 1 26(N;)
in C o G induces a morphism between (,cM; V) and (;6N; V) in C Vecg, and we dene
F (26(f;)) to belthe image under F of the latter. One now checks that F is a well dened
functof of k-linear abelian categories, and that the diagram

C Vecg T CcoGs
K /
A
commutes. Furthermore, one checks that FC is unique with this property. This shows
that C o G is the Deligne product C Vecg as an abelian category but not as a nite
tensor category when we view Vecg as a fusion category. After all, the monoidal
structure in C Vec  does not use the categorical G-action on C.
SinceCoG = C Vec gsak-linear abelian category, the cohomology ring H(C 0 G) is
isomorphic to the tensor product H(C)
k H(Vecg); this does not use the monoidal structures in the categories involved. Now as
Vec is a fusion category, its cohomology
ring is trivial, and so H(C o G) ° H(C). Consequently, when Fg holds for either C or
C o G, then at least the cohomology ring of the other category is nitely generated.
However, the following lemma shows that Fg holds for one of the categories if and only

if it holds for the other. Moreover, the support varieties for the objects of C o G are
just unions of support varieties over C.

Lemma 3.1. Let k be a eld, (C;
; 1) a nite tensor k-category with a categorical action from a nite group G, and C o G
the corresponding crossed product category. Then the following hold.

(1) There is an isomorphism H(C o G) ° H(C) of cohomology rings.

(2) C satises Fg if and only if C o G does.

(3) If ,6(M; ) is an object in C o G, then

[
Vcoe (26(M;)) = Vc (M) 26
when we use the isomorphism from (1) to replace H &C oG)byH SC ).

Proof. We saw an argument for (1) above, but we now give an elementary argument for
both (1) and (2). Namely, since the morphisms in C o G respect the G-grading, the
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cohomology of C o G takes place in each individual degree. The projective objects are of
the form ,(P; ), with each P projective in C, and a (minimal) projective reso-lution of an
object ,6(M; ) is of the form ,6(P; ), with each P a (minimal) projective resolution of M.
Therefore, given another object ,6(N; ), there is a natural isomorphism

(y) Extcoc (26(M;); 26(N;)) 7 M Extc (M;N);
2G

which is an isomorphism of rings when ,6(M;) = 26(N;). Note that since the unit
object in C o G is (1;e), it follows immediately that H (C o G) ° H (C), proving (1).
Suppose that C satises Fg. Then by (1) the cohomology ring H(C o G) is nitely
generated. If X = ,6(M;) is an object of C o G, then using the above isomor-phism
(y), we see that the cohomology ring H (C o G) acts on Ext (X; X) in a way
that respects the G-grading. That is, the action is induced by the %attion of H(C) on
each Ext (M; M). Since the latter is a nitely generated H(C)-module for each 2 G, we
see that Ext¢ (X; X) is nitely generated as a module over H (C o G), and
so C o G satises Fg. CdnhvErsely, if the crossed product category satises Fg, then H(C)
is nitely generated by (1) again. Moreover, if M is an object of C, then Ext
((M;e); (M;e)) is a nitely generated H(C o G)-module. Using the isomor-
phisim dy), we then see that Ext (M; M) is nitely generated as a module over H(C), so
that C satises Fg. This proves (2).
For (3), we use again that the cohomology of C o G respects the G-grading. Given
an object (M;) 2 C o G concentrated in degree , consider the composition

H(C) ! H(CoG) (,, ! Extcoc((M;);(M;)) I Extc(M;M)
of graded ring homomorphisms, where the outer ones are the isomorphisms from (y).
The composition equals "™, that is, the homomorphism

M. Thus when we compute support varieties by using H (C), we see that Vcog((M;)) =
Vc(M). For an arbitrary object ,6(M; ) of C o G ,we then see that

Vcog (26(M;)) = [ Vcog ((M;)) = [ V¢ (M);

26 26
since support varieties respect direct sums by [2, Proposition 3.3(i)].

The group G acts on the crossed product category C o G by tensor autoequivalences
in a natural way. Namely, for an element 2 G, the action on objects and morphismsin
C o G is given by

(26(M;)) = 26 (M); *; (26(f;)) = 26
(f); *;
where we have used the notation to denote the tensor autoequivalences on both C

and C o0 G. The following result shows that when the tensor product property holds for
C, then a twisted version holds for the crossed product category.

Proposition 3.2. Let k be a eld, and (C;
; 1) a non-semisimple nite tensor k-category that satises the tensor product property
for support varieties. Furthermore, let
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G be nite group acting on C by tensor autoequivalences. Then for any objects (M)
and (N;) of C o G, concentrated in degrees and , the following holds:

Vcoa ((M;)
(N;)) = Vcoa ((M;))\ Vcoa ((N;))
Proof. By the denition of the tensor product in C o G and Lemma 3.1(3), we have
Vcoa ((M;) Vcog (M
(N);) Ve (M
( (N))
N Vc(M)\ Vc((N))
;) Veos ((M;))\ Veog (N); 'Veog
) ((M;))\ Vcoa ((N5))

In general, it is not always the case that Vcog((N;)) is equal to Vcog(N;), or
equivalently (by Lemma 3.1(3)), that Vc (N) is equal to Vc ((N)). Therefore, the above
proposition may be used to construct examples where the tensor product property does
not hold. However, it turns out that it is in fact not necessary to assume that the tensor
product property holds for C to construct such examples. Inspired by the twisted version
of the tensor product property given in the proposition, we formalize such a class of
examples in a larger context next. Specically, we will combine the Deligne tensor
product with a crossed product of a specic kind. As we shall see, when the nite tensor
category C that we start with is not semisimple (that is, not a fusion category), then the
nite tensor category that we construct turns out not to satisfy the tensor product
property.

Let C, = fe; g be the multiplicative group with two elements, where e is the identity.
Consider the twisting map : C C ! C C given by interchanging the factors, that is,
mapping an object (M;N) to (N; M), and similarly for morphisms. This is a bilinear
functor, and exact in each variable. Composing with the biexact structure bifunctor T:

C C ! C C, we use the universal property of the Deligne tensor product to obtain
a unique right exact functor : C C ! C C making the diagram
cc ! CCr

e

commute. The functors T and are monoidal, hence so is , making it a functor of nite
tensor categories. Moreover, from the diagram above we obtain

T=T =T =T
and from the universal property of T we may conclude that is the identity. Thus is an
autoequivalence of order two, and there is a monoidal functor
Mon(C;) ! Aut
(C C)
mapping to . We shall say that C, acts on C C by interchanging factors, since for
objects C; C 2 € there is an equality



(C CO): T . ~0 _
(c;c% =71 (€%¢c) =cc
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We may now form the crossed product category (C C) o C,. When the groundeld k
is perfect and C satises Fg, then as mentioned in Section 2, the Deligne tensor product
C C also satises Fg, by [10, Lemma 5.3]. Then in turn so does (C C)oC,, by Lemma
3.1(2). The following theorem, our main result, shows that if C is not a fusion category,
that is, not semisimple, then (C C) o C, does not satisfy the tensor product property for
support varieties.

Theorem 3.3. Let k be a perfect eld and (C;
; 1) a non-semisimple nite tensor k-category that satises Fg. Furthermore, let C, be the
multiplicative group of order two, acting on C C by interchanging factors. Then the nite
tensor k-category (C C) o C, satises Fg, but not the tensor product property for support
varieties.

Proof. For simplicity, we denote the crossed product category (C C) o C, by D. Inthe
course of the proof, we shall be using the tensor products in all the three categories C, C
C, and D. To  distinguish  them, we therefore denote them by

7

1, and
2, respectively.

We saw in the paragraph preceding the theorem that D satises Fg. Now, since C is
not semisimple, we may choose a nonprojective object M 2 C, for example the unit
object; if 1 were projective, then so would be every object N 2 C, since N ° N
1 and the projectives form an ideal. Choose a projective object P 2 C for which there
exists an epimorphism P | M there exists such an object since C has enough
projectives. Note that P is nonzero since M is not projective. Let us denote the object
(P M;)of D by just X, where is the element of C, of order two. We shall show that

Vo (X
2X) = Vp(X)

and consequently that the tensor product property for support varieties in D does not
hold, since trivially Vp (X) \ Vp(X) = Vp(X).

By [2, Corollary 4.2], since C satises Fg and M is not projective, the support variety V¢
(M) is not trivial. Then by [2, Proposition 6.2], the k-vector space Extt (M; M) is
nonzero for innitely many n 1. Consider now the object P M of C C. At theend of
Section 2, we saw that there is an isomorphism

Extcc (P M;P M)’ Extc(P;P)
« Exte (M; M)

of k-vector spaces, and so since P is nonzero we see that Ext'&c (P M; P M)
must be nonzero for innitely many n 1. The Deligne product C C satises Fg (again
from the paragraph preceding the theorem), hence by using [2, Proposition 6.2 and
Corollary 4.2] again we see that P M is not projective in C C. This implies that X =
(P M;) is not projective in D, as explained in the proof of Lemma 3.1. Consequently,
the support variety Vp (X) is not trivial, again by [2, Corollary 4.2].

Now consider the object X
X . By denition of the tensor product in D, we obtain

X
2 X = (P M)
1(P M);2= ((P M)
1(M P);e)

= (P
M) (M



P);e)
where e is the identity element of C,. Let us denote the objects P
M and M

P in C by Q; and Qq, respectively; these are both projective, since the projective
objects form
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an ideal. As in the previous paragraph, there is an isomorphism

Extec(Qr Qp; Q1 Q) Exte(Qa; Qi)
k Extc (Qz; Q2)
of k-vector spaces, and so since Q; and Q; are projective in C, we conclude this time

that Ext. . (Q1 Qz;Q1 Qz) = 0 for all n 1. Therefore, by [2, Proposition 6.2 and
Corollary 4.2], the object Q; Q3 is projective in C C. Again, as explained in the proof

of Lemma 3.1, we now see that X
2 X = (Qp Qy;e) is projective in D, hence the support variety Vp(X
2 X) is trivial. This shows that Vp (X
2X) = Vp(X).

In general, each factor in a Deligne tensor product embeds into it, with a structure
preserving functor. Thus if C and D are nite tensor categories, then C embeds (as a
nite tensor category) intoC D viaC ! C 1p, and similarly for morphisms. Using this,
we see that C embeds as a nite tensor category into (C C)o C, viaC ! (C 1;e).
Consequently, Theorem 3.3 shows that over a perfect eld, any nite tensor category that
satises Fg embeds into one that also satises Fg, but not the tensor product property
for support varieties|even when the tensor product property does hold for the original
category.

Corollary 3.4. Let k be a perfect eld and (C;
¢ ;1c ) a non-semisimple nite tensor k-category that satises Fg. Then (C;
¢ ;1c ) embeds as a nite tensor category into a nite tensor k-category (D;
p; 1p) that also satises Fg, but not the tensor product property for support varieties.

We end the paper with the following remark, and an open question.

Remark 3.5. (1) In the proof of Theorem 3.3, we constructed an object X in the crossed
product category D = (C C)o C,, with the property that X is not projective, whereas the
tensor product X
2 X is (here
» denotes the tensor product in (C C) o C;, as in the proof). When the ground eld
k is algebraically closed, then this does not actually need the niteness condition Fg; it
only requires the original category C to be non-semisimple.

To see this, suppose rst that C; and C, are nite tensor categories over such a eld k,
and take two nonzero objects U 2 C1;V 2 C,. Since k is algebraically closed, the
simple objects of the Deligne product C; C, are the objects S; S,, where S; is a
simple object of C;. There is an isomorphism

Exte,c,(U V;S1 S2) " Extc,(U;Sq)
k Extc,(V;S2)

of k-vector spaces, and so it follows that U V is projective in C; C, if and only if
both U and V are projective.

Returning to the proof of Theorem 3.3, start with a non-projective object M 2 C,
and an epimorphism P | M, with P projective in C. In the proof, we used support
varieties to show that the object X = (P M;) is not projective in D, but that X
2 X is. However, when k is algebraically closed, then from the above we see that P M is
not projective in C C, and then X = (P M;) is not projective in D. On the other hand,
in the last part of the proof we saw that the tensor product X
2 X is of the form (Q; Q3;e), where Q; and Q; are projective in C. Then using the above
once more, we see that Qi Qy is projective in C C, and consequently X
2 X = (Qi Qp;e)is projective in D.
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(2) The crossed product category (C C) o C, from Theorem 3.3 is not braided. This
can be seen directly from the proof, by involving Proposition 2.1: the object X from the
proof is not projective in (C C)oC,, but the tensor product X
2 X is. Onecan also convince oneself in a more direct way. Namely, let M be an object in

C, and denote by
1 the tensor product in C C, again as in the proof of Theorem 3.3. Then
(M 1;)
2(11;) = (M 1)
1(11);?
= (M 1)
1(1 1);e)= (M 1;e)
whereas
= (11)
) (M 1;2= (1 1)
2 (M 1;) ! T
1(1 M);e)
= (1 M;e)

The objects (M 1;e) and (1 M; e) are isomorphicin (C C) o C, if and only if the
objects M 1 and 1 M are isomorphic in C C. This is not the case in general.

In light of the remark, we ask the following question.

Question. Does every braided nite tensor category that satises Fg also satisfy the
tensor product property for support varieties?
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