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Using the context of trajectory estimation and tracking for
multi-rotor unmanned aerial vehicles (UAVs), we explore
the challenges in applying high-gain observers to highly dy-
namic systems. The multi-rotor will operate in the presence
of external disturbances and modeling errors. At the same
time, the reference trajectory is unknown and generated from
a reference system with unknown or partially known dynam-
ics. We assume the only measurements that are available are
the position and orientation of the multi-rotor and the posi-
tion of the reference system. We adopt an extended high-gain
observer (EHGO) estimation framework to estimate the un-
measured multi-rotor states, modeling errors, external dis-
turbances, and the reference trajectory. We design a robust
output feedback controller for trajectory tracking that com-
prises a feedback linearizing controller and the EHGO. The
proposed control method is rigorously analyzed to establish
its stability properties. Finally, we illustrate our theoretical
results through numerical simulation and experimental vali-
dation in which a multi-rotor tracks a moving ground vehicle
with an unknown trajectory and dynamics and successfully
lands on the vehicle while in motion.

1 Introduction
Extended high-gain observers [2, 3] have been applied to

many physical systems, from electro-hydraulic actuators [4]
to permanent magnet synchronous motors [5], robotic ma-
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nipulators [6, 7], cart-pendulum system [8], and aerial vehi-
cles [9–11]. However, due to noise amplification [12, 13] and
high sample-rate requirements, EHGOs are typically not ap-
plied to highly dynamic systems. For these highly dynamic
systems, the required timescale of the EHGO can become
fast enough such that it matches the timescale of the subsys-
tem (e.g., actuator) dynamics which are typically ignored in
the control design. In this case, the fast subsystem dynam-
ics must also be incorporated into the observer design, and
if omitted can induce instabilities in the system. Exploring
the application of EHGOs to multi-rotor control to increase
robustness through the estimation of uncertainties and distur-
bances, we address these challenges and show that EHGOs
can indeed be implemented on highly dynamic systems at
reasonable sample rates with inexpensive sensors.

In this paper, we focus on implementing EHGOs on
highly dynamic systems using the context of multi-rotor
drones. We choose a multi-rotor drone as our example sys-
tem because of its broadening applications. Much work has
been devoted to studying multi-rotor UAV control design;
see [14, 15] for a survey. Numerous linear and nonlinear
control approaches have been applied to multi-rotors, in-
cluding PID [16], feedback linearization [17, 18], adaptive
backstepping control [19, 20], and model predictive control
(MPC) [21]to name a few. Linear methods are effective near
the hover configuration but can experience degraded perfor-
mance during aggressive maneuvers. Feedback linearization
is sensitive to sensor noise as well as model uncertainty [18],
but results in a linear system that is simple to analyze. Adap-
tive backstepping control design [19, 20] enables unknown
system parameters to be estimated during operation to re-
duce the effect of model uncertainty. MPC enables excel-
lent tracking performance and can achieve aggressive ma-
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neuvers [21], but at the cost of computational complexity.
Additionally, many linear and nonlinear approaches are

subject to reduced performance in the presence of model un-
certainty and external disturbances [22]. This motivates the
use of robust methods which can overcome certain classes
of disturbances utilizing observers [22, 23] or adaptive ap-
proaches to estimate model parameters online [20]. The
magnitude of disturbance that can be canceled may depend
on the control gains, which can be tuned using an adaptive
gain scheduling approach [22].

In contrast to these approaches, we adopt a disturbance
observer approach that allows handling (i) partial state mea-
surement, (ii) imperfectly known system parameters, and
(iii) unknown disturbances. Furthermore, the magnitude of
disturbance EHGO-based controllers can overcome is not de-
pendent on control gains, but rather on observer gains. This
allows total freedom in assigning control gains, which can
be chosen to shape the transient response as we recover the
performance of a desired linear system. Additionally, our
EHGO-based approach also allows for estimating a desired
system trajectory in the contexts where the desired trajectory
is generated by a dynamical system with unknown or par-
tially known dynamics. Examples include trajectories gen-
erated by a human-driven vehicle or a boat operating in un-
steady waters.

To showcase the performance of our method, we will
apply our technique to the problem of landing a multi-rotor
on a mobile platform [24, 25]. Multiple control methodolo-
gies have been applied to this problem, including model pre-
dictive control [26, 27], PI control [28, 29], and feedback
linearizing control [30]. Many approaches either do not con-
sider modeling error and external disturbances or consider
them to be constant or slowly time-varying [28, 29]. In
contrast, our approach only requires that any uncertainty be
bounded and continuously differentiable.

While other methods may only address a subset of these
challenges, EHGOs can provide a unified framework that can
ensure flight performance under model uncertainties, exter-
nal disturbances, and unknown reference trajectory dynam-
ics. It can enable the design of a robust feedback linearizing
control strategy that can achieve excellent transient track-
ing performance even when applied to this highly dynamic
system in the presence of these disturbances. It also en-
ables real-time trajectory generation based on the position
information of a reference system which may have partially
known or completely unknown dynamics. However, effec-
tively implementing EHGOs with limited measurement sam-
pling rate is challenging for highly dynamic systems and we
address this challenge in this paper.

In this work, we design and rigorously analyze an
EHGO-based feedback linearizing control method that in-
corporates the estimation of a reference trajectory from an
unknown, or partially known, reference dynamic system.
While being implemented on a highly dynamic system, the
EHGO enables the estimation of all states for output feed-
back control, as well as estimating modeling error and ex-
ternal disturbances, enabling the design of a robust feedback
linearizing control strategy. The proposed method can re-

cover the performance of the desired linear system under a
broad class of disturbances.

The major contributions of this work are threefold. First,
our proposed EHGO-based control design for the transla-
tional system treats the transient of the rotational subsys-
tem as a disturbance, estimates it, and actively compensates
for it. This enables the proposed controller to not require
the timescale separation between rotational and translational
subsystems, a key requirement in existing multi-rotor control
techniques.

Second, we show that for the output sampling rates
available on the off-the-shelf drones, the dynamics of com-
mercial electronic speed controllers evolve at the same
timescale as the EHGO. We illustrate the influence of
inclusion/non-inclusion of these dynamics on output feed-
back performance and show that these should be included in
the EHGO design. Additionally, the output feedback con-
trol dynamics obtained after the inclusion of these dynamics
differs from the standard EHGO-based output feedback dy-
namics, and we rigorously analyze them.

Third, we illustrate the effectiveness of our output feed-
back controller through simulation and experimental results
using the example of landing a multi-rotor on a moving
ground vehicle and confirm that EHGOs can be effectively
implemented in this class of highly dynamic systems. Our
implementation involves a hexrotor whose size is roughly
1/6-th of the flying arena and this leads to large aerodynamic
effects due to the interaction of the rotors’ airflow with phys-
ical structures. We show that the EHGO (i) estimates distur-
bances due to these aerodynamic effects and allows the con-
troller to compensate for them, (ii) estimates the trajectory of
the ground vehicle, and (iii) enables autonomous landing of
the hexrotor on a ground vehicle smaller than its size.

The remainder of the paper is organized as follows. The
system dynamics are introduced in Section 2 with the control
and observer design in Section 3. The controller is analyzed
in Section 4 and is validated through simulation in Section
5 with experimental results presented in Section 6. Conclu-
sions are presented in Section 7. Detailed proofs of the tech-
nical results are provided in the appendix.

2 System Dynamics
In this section, we review the dynamics of the different

subsystems of a multi-rotor UAV and reference system.

2.1 Rotational Dynamics
The rotational dynamics of the multi-rotor are

3 = �
§⌦ +⌦ ⇥ �⌦, (1)

where � 2 R3⇥3 is the inertia matrix, 3 2 R3 is the torque
applied to the multi-rotor body and ⌦ 2 R3 is the angular
velocity, each expressed in the body-fixed frame [31]. A full
list of symbols can be found in Table 1.

Consider the orientation of the multi-rotor expressed in
terms of Z-Y-X Euler angles :1 = [q \ k]> 2 (� c

2 ,
c

2 )2 ⇥
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Table 1. List of Symbols

3 2 R3 Torque applied to rigid body

� 2 R3⇥3 Inertia matrix

= 2 N Number of rotors

⌦ 2 R3 Angular velocity of rigid body

:1 = [q \ k]> 2 T3 ZYX Euler angles

:2 = [ §q §\ §k]> 2 R3 Time derivative of :1

2¢ 2 R3 Disturbance term in ¢ dynamics

=
b
2 R3 Rotational disturbance term

/1 2 R3 Rotational tracking error

/2 2 R3 Angular rate tracking error

¢A 2 R3 Reference signal for ¢ system
§̄:A 2 R3 Approximation of reference signal §:A

eI = [0 0 1]> 2 R3 Unit vector in I direction

'3 (:1) Third column of rotation matrix

p1 2 R3 Position in inertial frame

p2 2 R3 Velocity in inertial frame

11 2 R3 Position error

12 2 R3 Velocity error

E 5 2 R Collective thrust control input

p
21 2 R3 Reference system position

p
22 2 R3 Reference system velocity

⇠) 2 R>0 Rotor thrust coefficient

⇠⇡ 2 R>0 Rotor aerodynamic drag coefficient

g< 2 R>0 Actuator time constant

5̄8 2 R>0 Thrust generated by 8-th rotor

l8 2 R>0 8-th rotor angular rate

8B 2 R= Vector of l2
8

834B 2 R= Desired rotor speeds

" 2 R4⇥= Allocation matrix

eo 2 R3 Perturbation due to rotational tracking error

uA 2 R3 Virtual rotational control input

V1, V2 2 R>0 Rotational control gains

uC 2 R3 Virtual translational control input

W1, W2 2 R>0 Translational control gains

6 2 R30 Full state vector of EHGO

U1, U2, U3, U4 2 R>0 Observer gains

n 2 R>0 High-gain parameter of observer

¢̂ Estimate of ¢ from EHGO

3̂3 2 R3 Output feedback desired torque

Ê 5 3 2 R Output feedback desired thrust

+¢ Lyapunov function for ¢ dynamics

⌦¢ Region of attraction for ¢ dynamics

2¢ Bound on Lyapunov function, +¢

( 2 R30 Observer estimation errors

(�c, c]. The angular velocity,⌦, is related to the Euler angle
rates :2 = [ §q §\ §k]> 2 R3 in the inertial frame as

:2 =  ⌦,  =
266664
1 sin(q) tan(\) cos(q) tan(\)
0 cos(q) � sin(q)
0 sin(q)/cos(\) cos(q)/cos(\)

377775
,

⌦ =  �1:2,

(2)

The rotational dynamics can be equivalently written in
terms of Euler angles as

§:1 = :2
§:2 = §  �1:2 �  ��1 ( �1:2 ⇥ � �1:2)

+  ��13 + 2 b ,

(3)

where 2 b 2 R3 is an added term to represent the lumped
rotational disturbance and satisfies Assumption 1 below.

Definition 1 (Prime Canonical Form) A control system in
the “prime canonical form” [32], for state x 2 R=, control
input D 2 R, and disturbance f 2 R, has the following rep-
resentation

§x = �prmx + ⌫prm 5prm (C, x, D), H = ⇠prmx, (4)

where

�prm =
h

0=�1⇥1 �=�1
0 01⇥=�1

i
, ⌫prm =

⇥ 0=�1⇥1
1

⇤
,

5prm : R�0 ⇥ R= ⇥ R! R, ⇠prm = [1 01⇥=�1],
(5)

0?⇥@ is a matrix of zeros with dimension ?⇥@, �? is the iden-
tity matrix of dimension ?, and H 2 R is the measurement.

Assumption 1 (Disturbance Properties) The dynamics of
the various subsystems in this work take the prime canonical
form perturbed by a disturbance term. We assume that the
disturbance enters the RHS of (4) as ⌫3f where ⌫3 = ⌫prm,
f is continuously differentiable, and its partial derivatives
with respect to states are bounded on compact sets of those
states for all C � 0.

Let :A = [qA \A kA ]> 2 (� c

2 ,
c

2 )2 ⇥ (�c, c] and §:A =
[ §qA §\A §kA ]> 2 R3 be the rotational reference signals. Define
the rotational tracking error variables

/1 = :1 � :A , /2 = §/1 = :2 � §:A , / = [/>1 />2 ]>. (6)

The rotational dynamics (3) can now be written in terms of
tracking error

§/1 = /2
§/2 = 5 (/, :1, §:A ) + ⌧ (:1)3 + 2 b � •:A ,

(7)

3 Copyright c� by ASME



where

5 (/, :1, §:A ) = §  �1 (/2 + §:A )
�  ��1 ( �1 (/2 + §:A ) ⇥ � �1 (/2 + §:A ))

⌧ (:1) =  ��1
.

(8)

Suppose that only §̄:A , an approximation of §:A , is known.
Then (7) can be rewritten as

§/1 = /2

§/2 = 5 (/, :1,
§̄:A ) + ⌧ (:1)3 + =

b
,

(9)

where =
b
= 2 b � •:A + [ 5 (/, :1, §:A ) � 5 (/, :1,

§̄:A )], which
also satisfies Assumption 1 based on the properties of 5 and
by assuming the reference trajectory is third-order continu-
ously differentiable.

Remark 1 Note that §̄:A is an approximation of §:A which
should be chosen appropriately based on the available infor-
mation. The choice of §̄:A will determine how big the differ-
ence term, 5 (/, :1, §:A ) � 5 (/, :1,

§̄:A ), in =
b

will be. This
will in turn determine the magnitude of the rotational dis-
turbance term =

b
. If for example we assume we have no

information of how §:A behaves, we can set §̄:A = 0. This
will lead to an increase in the magnitude of =

b
because it

will contain this large difference between §̄:A and §:A . As a
result, the disturbance estimator will need to work harder to
estimate the larger magnitude disturbance and may require
increasing the gain of the observer to achieve desired per-
formance. As a result, any information that can be used to
partially reconstruct §:A should be used to reduce the burden
on the observer.

2.2 Translational Dynamics
Let p1 = [G H I]> 2 R3 and p2 = [ §G §H §I]> 2 R3,

respectively, be the position and velocity of the multi-rotor
center of mass expressed in the inertial frame. Let the thrust
generated by the 8-th rotor be 5̄8 2 R, and the total thrust
force, E 5 =

Õ
=

8=1 5̄8 2 R serves as the input to the transla-
tional system. Let the mass of the aerial platform be < 2 R,
6 be the gravitational constant, eI = [0 0 1]>, and 2d 2 R3

be the lumped translational disturbance term which satisfies
Assumption 1. Then, the translational dynamics [31] are

§p1 = p2

§p2 = �
E 5

<

'3 (:1) + 6eI + 2d,

(10)

where

'3 (:1) =
266664
cos(q) sin(\) cos(k) + sin(q) sin(k)
cos(q) sin(\) sin(k) � sin(q) cos(k)

cos(q) cos(\)

377775
. (11)

Let p
A
= [GA HA IA ]> 2 R3 and §p

A
= [ §GA §HA §IA ]> 2 R3

be the translational reference signals. Define the translational
error variables

11 = p1 � p
A
, 12 = §11 = p2 � §p

A
, 1 = [1>

1 1>
2 ]>.

(12)
The translational dynamics (10) can now be written in terms
of tracking error as

§11 = 12

§12 = �
E 5

<

'3 (:1) + 6eI + 2d � •p
A
.

(13)

2.3 Reference System Dynamics
We assume that the reference trajectory that the multi-

rotor UAV will track is generated by the system

§p
21 = p

22

§p
22 = 52 ( p2 , u2),

(14)

where p
21 = [G2 H2 I2]> 2 R3 and §p

21 = [ §G2 §H2 §I2]> 2 R3

are the position and velocity of the reference system, p
2
=

[ p>
21 , p

>
22 ]> is the system state, u2 is the unknown system in-

put, and 52 ( p2 , u2) is some unknown function. We take the
system input u2 = 62 (C, p2) and let 5̄2 (C, p2) = 52 ( p2 , u2).
We assume that m 5̄2 (C ,p2)

mp2
§p
2

satisfies Assumption 1. In the
case of tracking a moving ground vehicle, the reference sig-
nals will be taken as the reference system state, p

2
, and will

be estimated using measurements of the ground vehicle posi-
tion. We initially describe a generic reference signal, p

A
, to

keep the control design general. We then take these dynam-
ics as our reference signal in the specific case of landing on
a ground vehicle.

2.4 Actuator Dynamics and Mapping to Inputs
The system dynamics, (7) and (13), take body-fixed

torques, 3, and total thrust force, E 5 , as inputs. The thrust
and torques are generated by applying forces with each ac-
tuator. The force generated by rotor 8 2 {1, . . . , =} is
5̄8 = ⇠)l

2
8
, where ⇠) 2 R>0 is a constant relating angu-

lar rate to force and l8 2 R>0 is the 8-th rotor angular rate.
These individual actuator forces are then mapped through a
matrix, " 2 R4⇥=, based on the geometry of the multi-rotor
aerial platform, allowing the squared rotor angular rates to
be treated as the system input through


E 5

3

�
= ⇠) "8B , 8B =

⇥
l

2
1, . . . ,l

2
=

⇤>
. (15)

The actuators typically used on multi-rotor UAVs are
Brushless DC (BLDC) motors, which require electronic
speed controllers (ESCs). Let the vector of desired rotor an-
gular rates be 8des 2 R= and 8 2 R= be the vector of rotor
angular rates. Due to the internal use of PI control in the

4 Copyright c� by ASME



ESCs [33], the rotor angular rates exhibit first-order dynam-
ics of the following form

g< §8 = (8des � 8), (16)

where g< 2 R>0 is the time constant of the actuator system.
Typically the actuator dynamics are ignored in multi-rotor
control design as they are sufficiently fast compared with the
rotational and translational dynamics and the control law. We
also ignore the actuator dynamics in our control design, how-
ever, they are crucial in the dynamics of the EHGO used for
output feedback control (see Section 3.5 below). The actu-
ator dynamics evolve on the same timescale as the EHGO
dynamics, and therefore cannot be ignored in EHGO design.

Since measurement of the rotor angular rates is not avail-
able, they can be simulated by the following system

g<
§̂8 = (8des � 8̂), l̂(0) = 0=⇥1, (17)

where 8̂ 2 R= is a vector of simulated rotor angular rates,
and 0=⇥1 2 R=⇥1 is a vector of zeros. We will show in Section
4 that the use of simulated rotor speeds in place of measured
rotor speeds still results in an exponentially stable closed-
loop system.

3 Control and Observer Design
A multi-rotor UAV is an underactuated mechanical sys-

tem. While there can be = 2 {4, 6, 8, ...} rotors, only four
degrees of freedom can be controlled in the classic configura-
tion with co-planar rotors. To overcome the under-actuation,
as discussed below, the rotational dynamics are controlled to
create a virtual control input for the translational dynamics.

We begin by designing a trajectory-tracking feedback
linearizing controller for the rotational subsystem. The rota-
tional trajectory is subsequently used to design a trajectory-
tracking controller for the translational subsystem in the
presence of tracking errors in the rotational system. The
controllers are designed under state feedback which requires
the assumption that we not only have access to all states but
know the system disturbances exactly. This assumption is
relaxed through the design of an EHGO to estimate states,
disturbances, and the reference trajectory for use in output
feedback control.

3.1 Rotational Control
The rotational control feedback linearizes the rotational

tracking error dynamics (7) by selecting the desired torque 3
as

33 = ⌧
�1 (:1) [uA � 5 (/, :1,

§̄:A )], (18)

where uA = �V1/1 � V2/2 � =
b

, and V1, V2 2 R>0 are con-
stant gains. Using (18) results in the following closed-loop

rotational tracking error system

§/1 = /2
§/2 = �V1/1 � V2/2.

(19)

3.2 Translational Control
The translational control uses the total thrust, E 5 , as the

direct control input and the desired roll and pitch trajecto-
ries, qA and \A , as virtual control inputs. The translational
control is designed in view of potential roll and pitch trajec-
tory tracking errors, leading to the following modification of
the translational error dynamics (13)

§11 = 12

§12 = �
E 5

<

'3 (:A + /1) + 6eI + 2d � •p
A
.

(20)

Define the perturbation due to rotational tracking error by

eo (C, /1) = �
E 5

<

('3 (:A + /1) � '3 (:A )). (21)

While we establish that there is no longer a time-scale sepa-
ration required between the rotational and translational sub-
systems, in practice the rotational control should be at least
slightly faster than the translational dynamics to provide
good tracking performance when operating in the relatively
slow sample rates achievable by our off-the-shelf hardware.
We will establish that all control inputs remain bounded pro-
vided the initial conditions are in an appropriate set which
will be characterized in Section 4, therefore (21) will remain
bounded as well. Then, (20) can be written as

§11 = 12

§12 = �
E 5

<

'3 (:A ) + 6eI + 2d � •p
A
+ eo (C, /1).

(22)

Let uC = [DG DH DI]> be defined by uC = �W111�W212�
2d+ •p

A
�6eI , where W1, W2 2 R>0 are constant gains. Define

the desired rotational references and desired total thrust by

qA = tan�1 ©≠≠
´

�DHq
D

2
G
+ D

2
I

™ÆÆ
¨
, kA = 0,

\A = tan�1
✓
DG

DI

◆
, E 5 3 = � <DI

cos(qA ) cos(\A )
.

(23)

Then, � E 5

<
'3 (:A ) = uC . Thus, using (23) leads to the follow-

ing closed-loop translational subsystem with the inclusion of
tracking error (21) from the rotational subsystem

§11 = 12
§12 = �W111 � W212 + eo (C, /1).

(24)
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Note that the rotational controller (18) requires the estimate
§̄:A , however, only :A is given by the translational controller
(23). The derivative of the reference trajectory §:A can be
computed analytically from the translational controller as

§qA =
DH ( §DGDG + §DIDI) � §DH

�
D

2
G
+ D

2
I

�
�
D

2
G
+ D

2
I

�1/2 �
D

2
G
+ D

2
H
+ D

2
I

�
§\A =

§DGDI � DG §DI
D

2
G
+ D

2
I

§kA = 0,

(25)

where §uC =
⇥
§DG §DH §DI

⇤> and

§uC = �W112 � W2
h
�
E 5

<

'3 (:1) + 6eI + 2d � •p
A

i

� §2d + p (3)
A

.

(26)

The approximation §̄:A is obtained by setting §2d = 0 in
the expression for §:A . While the derivative of the transla-
tional disturbance is most certainly not zero, we try to cap-
ture the behavior of §:A as closely as we can. We have no in-
formation on how §2d behaves, so we choose to set it to zero
in the approximation. The implication is an increase in the
magnitude of the rotational disturbance term =

b
, see Remark

1. Recall that our definition of state feedback assumes 2d is
known, and later in the high-gain observer we will estimate
2d and we will analyze the effect of uncertainty in the esti-
mate on feedback performance. While the substitution (26)
requires the third-order derivative of the translational refer-
ence, it is shown in the EHGO design that the translational
reference must be sixth-order differentiable to be sufficiently
smooth for estimation.

3.3 Extended High-Gain Observer Design

A multi-input multi-output EHGO is designed similar to
[10, 34] to estimate higher-order states of the error dynamic
systems (7) and (13), uncertainties arising from modeling er-
ror and external disturbances, as well as the reference tra-
jectory based on the reference system dynamics (14). It is
shown in [35] that the actuator dynamics must be included in
the dynamic model in the EHGO design.

The dynamics (3), (10), and (14) can be combined into
one set of equations for the observer where the state space is
extended to include unknown disturbance dynamics. Since
the third derivative of the reference trajectory is required by
(26), the dynamics of the reference system are extended to

include the third derivative of its position for estimation

§11 = 12

§12 = �
E 5

<

'3 (:1) + 6eI + 2d � •p
A

§2d = id (C, 1)
§/1 = /2

§/2 = 5 (/, :1,
§̄:A ) + ⌧ (:1)3 + =

b

§=
b
= ib (C, /)

§p
21 = p

22

§p
22 = p

23

§p
23 = 2?2

§2?2 = i?2 (C, p2),

(27)

where 2?2 = m 5̄2 (C ,p2)
mp2

§p
2
. Since the reference system dy-

namics may not be known, they have been absorbed by the
disturbance term in their entirety. If the reference system dy-
namics are partially known, then the nominal component can
be included in the §p

23 expression. The estimated reference
system states will be taken as the reference trajectory for the
output feedback control.

We now define the state vectors

q = [1>
1 1>

2 />1 />2 ]>, 61 = [1>
1 1>

2 2>
d
]>,

62 = [/>1 />2 =>
b
]>, 63 = [ p>

21 p>
22 p>

23 2>
?2
]>,

and 6 = [6>
1 6>

2 6>
3 ]>.

(28)

Define i(C, q, p
2
) =

⇥
id (C, 1) ib (C, /) i?2 (C, p2)

⇤>, a vec-
tor of unknown functions describing the disturbance dynam-
ics.

Assumption 2 (Disturbance Dynamics) It is assumed
i(C, q, p

2
) is continuous and bounded on any compact set

containing q and p
2
.

Note that the second order derivative of the reference
trajectory, •:A , is lumped into the disturbance =

b
. To ensure

=
b

satisfies Assumption 1, •:A must be differentiable, there-
fore by (25) and (26) the translational reference signals must
be sixth order differentiable to be sufficiently smooth. We
are also assuming the external disturbance 2d is sufficiently
smooth since it is contained within •:A . However, our design
only requires estimates up to the third derivative.

The observer system with extended states and a vector of
simulated squared rotor speeds, 8̂B = [l̂2

1, . . . , l̂
2
=
]> from

the system (17), as the control input through the mapping
(15) is

§̂6 = � 6̂ + ⌫

h
5̄ (/̂, p̂

23 , :1,
§̄:A ) + ⌧̄ (:1)8̂B

i
+ � 6̂

4

6̂
4
= ⇠ (6 � 6̂),

(29)
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where

� = �3
8=1�8 , ⌫ = �3

8=1⌫8 , ⇠ = �3
8=1⇠8 , � = �3

8=1�8 , (30a)

�8 =


03 �3 03
03 03 �3
03 03 03

�
, ⌫8 =


03
�3
03

�
, �8 =


U1/n �3
U2/n 2

�3
U3/n 3

�3

�
,

⇠8 = [ �3 03 03 ] , for 8 2 {1, 2},
(30b)

�3 =

" 03 �3 03 03
03 03 �3 03
03 03 03 �3
03 03 03 03

#
, ⌫3 =

" 03
03
03
03

#
, �3 =

266664
U1/n �3
U2/n 2

�3
U3/n 3

�3
U4/n 4

�3

377775
,

⇠3 = [ �3 03 03 03 ] ,

(30c)

5̄ (/̂, p̂
23 , :1,

§̄:A ) =


6eI�p̂23
5 (/̂ ,:1 ,

§̄:A )
03⇥1

�
, (30d)

⌧̄ (:1) = ⇠)

 �'3 (:1 )
< 03

03⇥1 ⌧ (:1)
03⇥1 03

�
" , (30e)

where � denotes the matrix direct sum, �= 2 R=⇥= is the
identity matrix of dimension =, 0= 2 R=⇥= is a square matrix
of zeros, and � is designed by choosing U

8

9
such that

B
r8 + U

8

1B
r8�1 + · · · + U

8

r8�1B + Ur8 , (31)

is Hurwitz, in this case [r1 r2 r3]> = [3 3 4]>, which are
chosen through tuning on the experimental platform, and n 2
R>0 is a positive constant that is chosen small enough. Note,
based on the structure of ⇠, j4 only contains [d)1 , b)1 , ?)21]) .

3.4 Output Feedback Control
For use in output feedback control, the estimates, 6̂,

must be saturated outside a compact set of interest to over-
come the peaking phenomenon (see Appendix G). The fol-
lowing saturation function is used to saturate each estimate
individually

ĵ8B = :j8 sat
✓
ĵ8

:j8

◆
, sat(H) =

⇢
H, if |H |  1,
sign(H), if |H | > 1, (32)

for 1  8  30, where the saturation bounds :j8 are chosen
such that the saturation functions will not be invoked under
state feedback.

The state feedback controllers (18) and (23) are rewrit-
ten as output feedback controllers using the saturated esti-
mates

3̂3 = ⌧
�1 (:1)

h
ûA � 5 (/̂, :1,

§̄:A )
i
, (33)

where ûA = �V1/̂1 � V2/̂2 � =̂
b

and

q̂A = tan�1 ©≠≠
´

�D̂Hq
D̂

2
G
+ D̂

2
I

™ÆÆ
¨
, k̂A = 0,

\̂A = tan�1
✓
D̂G

D̂I

◆
, Ê 5 3 = � <D̂I

cos(q̂A ) cos(\̂A )
,

(34)

where ûC = �W1 1̂1 � W2 1̂2 � 2̂d + p̂
23 � 6eI .

Furthermore, these control inputs can be mapped to de-
sired squared rotor speeds, 8B3 2 R=, from the output feed-
back linearizing control signals Ê 5 3 and 3̂3 . For = > 4,
the inverse of (15) is an over-determined system that admits
infinitely many solutions. In this case, we focus on the mini-
mum energy solution

8B3 =
1
⇠)

"
†

Ê 5 3

3̂3

�
, where "

† = "
> (""

>)�1
. (35)

The square root of each component of 8B3 acts as the refer-
ence signal, 8des, in (17) for the associated rotor, which in
turn can be applied directly to the physical system.

The overall output feedback controller consists of the
commanded three body-fixed torques, 3̂3 , and the com-
manded collective thrust, Ê 5 3 , restated here for ease of ref-
erence.

3̂3 = ⌧
�1 (:1)

h
ûA � 5 (/̂, :1,

§̄:A )
i
,

Ê 5 3 = � <D̂I

cos(q̂A ) cos(\̂A )
.

(36)

3.5 Illustration of Instability Induced by Ignoring Ac-
tuator Dynamics

When designing an EHGO for highly dynamic systems,
the inclusion of faster system dynamics must be considered.
In the case of multi-rotors, the actuator dynamics evolve on
the same timescale as the EHGO. If these dynamics are not
considered in the EHGO design, overall system stability can
be compromised. Consider an EHGO that neglects the ac-
tuator dynamics. While the actuators are changing their ro-
tational rates according to (16) to apply the desired control
input, the EHGO, with no knowledge of these relatively slow
dynamics, will observe this delayed application of control as
a large disturbance. In an effort to cancel this perceived dis-
turbance, a larger control action is commanded. This causes
the system to overshoot the reference dramatically. The op-
posite action occurs in trying to correct the overshoot, result-
ing in aggressive oscillations that can destabilize the system.

7 Copyright c� by ASME
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Fig. 1. Simulated rotational system response with and without actu-
ator dynamics included in the EHGO. The disturbance estimate, f̂2,
when actuator dynamics are omitted oscillates between the satura-
tion bounds (top), inducing oscillations in the tracking performance of
q2 (bottom). The disturbance estimate, f̂1, and tracking, q1, show
excellent performance when actuator dynamics are included in the
EHGO for this example.

This behavior is illustrated in Fig. 1, where the rota-
tional subsystem is simulated with and without actuator dy-
namics in the observer. There is no nominal disturbance ap-
plied to the system, however, the disturbance estimate from
the observer without actuator dynamics oscillates quickly
between its saturation bounds. In this case, the saturation
bounds were chosen small enough to prevent the system from
becoming unstable to illustrate the oscillatory behavior in-
duced by the omission of the actuator dynamics. When the
EHGO has a model of how the actuators are dynamically
applying the desired control action, there is no longer a per-
ceived disturbance due to the actuator dynamics, and the sys-
tem functions nominally. Through simulation, it was found
that observer performance is only mildly sensitive to the time
constant of the actuator dynamics. Performance is recovered
so long as the time constant of the dynamic model included
in the observer is within a factor of two of the true dynamics.

Indeed, in the presence of disturbance input, the EHGO
can estimate the system state with $ (n Jmax)1 accuracy,
where Jmax is an upper bound on the size of the distur-
bance [2]. The maximum available measurement sampling
rate imposes a lower bound on n . Even a partially accurate
model of actuator dynamics reduces Jmax and leads to supe-
rior EHGO performance. Therefore, including the actuator
dynamics is helpful even if the associated parameters are not
perfectly known.

4 Stability Analysis
In this section, we will derive the requirements of the

initial conditions that ensure that the proposed controller is
well-defined throughout the operation. We then establish the

1Here, $ (¢) means the signal is of order ¢. In other words, the signal
is upper bounded by some constant multiplied by ¢.

stability of the state feedback control, observer estimates,
and output feedback control.

4.1 Restricting Domain of Operation
The domain of operation must be restricted in order to

ensure that the rotational feedback linearizing control law re-
mains well-defined. To ensure the expressions in (23) are
well-defined, we introduce the following assumption.

Assumption 3 The rotational reference signals remain in
the set {|qA | < c

2 � X, |\A | < c

2 � X, |kA | < c

2 � X}, where
0 < X <

c

2 .

To ensure the rotational tracking error is well defined,
i.e., the magnitude of each entry of /1 is smaller than c

2 , and
to ensure singularities of the Z-Y-X Euler angle representa-
tion at \ = ± c

2 , the rotational states must remain in the set
{|q| < c

2 , |\ | < c

2 , |k | < c

2 , | §q| < 0\ , | §\ | < 0\ , | §k | < 0\ },
where 0\ is some positive constant. The magnitude of each
entry of /1 should be smaller than c

2 to ensure that the ro-
tational error is well-defined. We will now establish that for
sufficiently small initial tracking error, / (0), the tracking er-
ror k/1 (C)k < X for all C > 0. A Lyapunov function in rota-
tional error dynamics is

+b = />%b /, where %b �b + �
>
b
%b = ��6, (37a)

�b =
h

03 �3
�V1�3 �V2�3

i
. (37b)

A Lyapunov function in the translational error dynamics is

+d = 1>
%d1, where %d�d + �

>
d
%d = ��6, (38a)

�d =
h

03 �3
�W1�3 �W2�3

i
. (38b)

Solving %b �b+�>
b
%b = ��6 for %b and %d�d+�>

d
%d = ��6

for %d yields

%b =

"
V2

1+V1+V2
2

2V1V2
�3

1
2V1

�3

1
2V1

�3
V1+1

2V1V2
�3

#
, %d =

"
W2

1+W1+W2
2

2W1W2
�3

1
2W1

�3

1
2W1

�3
W1+1

2W1W2
�3

#
.

(39)
Let 2 b 2 R>0 be chosen such that 2 b < (V1+1)X2/(2V2), and
let ⌦b = {+b < 2 b }. Since eo (C, /1) and its partial deriva-
tives are continuous on ⌦b , and eo is uniformly bounded in
time, it is locally Lipschitz in⌦b and let !4 be the associated
Lipschitz constant. Take 2d > _max (%d) (2!4X_max (%d))2,
where _max (·) is the maximum eigenvalue of the argument,
and let ⌦d = {+d < 2d}. Define the domain of operation
⌦@ = ⌦b ⇥⌦d.
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Lemma 1 (Restricting Domain of Operation) For the
feedback linearized rotational error dynamics (19) with
initial conditions / (0) 2 ⌦b the system state / (C) remains
in the set k/1 (C)k < X for all C > 0. Similarly, the feedback
linearized translational error dynamics (24) with initial
conditions 1(0) 2 ⌦d, the system state 1(C) remains in ⌦d,
for all C > 0.

Proof. See Appendix A.

Remark 2 By Lemma 1 and Assumption 3, the rotational
states remain in the set {|q | < c

2 , |\ | < c

2 , | §q| < 0\ , | §\ | <
0\ }, where 0\ is some positive constant. Thereby ensuring
singularities in the Euler angles are avoided and the feed-
back linearizing controllers (18) and (23) remain well de-
fined.

Furthermore, we will restrict the domain of operation of
the reference system by defining the set ⌦?2 = {k p

21 k <

01, k p22 k < 02, k p23 k < 03} for 01, 02, 03 2 R>0.

4.2 Stability Under State Feedback
Theorem 1 (Stability Under State Feedback) For the
closed-loop state feedback rotational and translational
subsystems, (19) and (24), if the initial conditions
(/ (0), 1(0)) 2 ⌦@ , the system states (/ (C), 1(C)) 2 ⌦@ for
all C > 0. Additionally, the states will exponentially converge
to the origin.

Proof. See Appendix C.

4.3 Convergence of Observer Estimates
The scaled error dynamics of the EHGO are written by

making the following change of variables

[
8

9
=

(j8

9
� ĵ

8

9
)

n
r8� 9

, 8̃B = 8B � 8̂B ,
(40)

where j
8

9
is the 9-th element of 6

8
for 1  8  3 and

1  9  r8 , and ĵ
8

9
is the estimate of j

8

9
obtained using

the EHGO. In the new variables, the scaled EHGO estima-
tion error dynamics become

n §(8 = �8(
8 + ⌫

8

1
⇥
� 5̄

8 + ⌧̄
8 (:1)8̃B

⇤
+ n⌫

8

2i
8 (C, q, p

2
),
(41)

where

�8 =

26666664

�U8
1�3 �3 · · · 03

.

.

.

.
.
.

.

.

.

�U8
r8�1�3 03 · · · �3

�U8
r8
�3 03 · · · 03

37777775
, ⌫

8

1 =
266664

03
.
.
.

�3
03

377775
, (42a)

⌫
8

2 = [03 · · · 03 �3]> , (8 =
h
(81

> · · · (8
r8

>i>
, (42b)

and � 5̄
8 = 5̄

8 (/, p
23 , :1,

§̄:A ) � 5̄
8 (/̂, p̂

23 , :1,
§̄:A ) and 5̄

8 ,
⌧̄

8 , and i
8 correspond to rows 38 � 2 to 38 of 5̄ , ⌧̄, and i,

respectively. Note (41) is an $ (n) perturbation of

n §(8 = �8(
8 + ⌫

8

1
⇥
� 5̄

8 + ⌧̄
8 (:1)8̃B

⇤
. (43)

The actuator error dynamics in terms of the error in
squared rotor angular rate, 8̃B , and rotor angular rate error,
8̃ = 8 � 8̂ can be written as

g<
§̃8B = �28̃B + 2,des8̃

g<
§̃8 = �8̃,

(44)

where ,des = diag[plB38 ] 2 R=⇥= for 8 2 {1, . . . , =} is
time-varying. By exploiting the fact that ,des is bounded,
i.e., plB38  lmax, for each 8, where lmax 2 R is the max-
imum achievable rotor angular rate, the actuator error dy-
namics (44) can be analyzed as a cascaded system with the
Lyapunov functions

+l̃B = 8̃>
B
8̃B , +l̃ = 8̃>8̃, (45)

and the composite Lyapunov function

+l = 32+l̃B ++l̃ , 32 > 0, (46)

where 32 is sufficiently small (see Appendix B for details).
Define the set ⌦l = {+l  2l} where 2l 2 R>0 is an
arbitrary constant.

Lemma 2 (Stability of Actuator Dynamics) For bounded
input, p8B38 for 8 2 {1, . . . , =}, the actuator error dynam-
ics (44) will globally exponentially converge to the origin.
Therefore, the simulated rotor angular rates, 8̂, exponen-
tially converge to the actual rotor angular rates, 8.

Proof. See Appendix D.

The systems (43) and (44) form the cascaded system

n §(8 = �8(
8 + ⌫

8

1
⇥
� 5̄

8 + ⌧̄
8 (:1)8̃B

⇤
g<

§̃8B = �28̃B + 2,des8̃

g<
§̃8 = �8̃.

(47)

We now define the state vector of scaled observer error and
actuator error as � = [(1 (2 (3 8̃B 8̃]>. In comparison
with a standard EHGO, (47) has additional vanishing per-
turbation terms with associated dynamics. In the following
theorem, we establish that these perturbation terms do not
affect the convergence of the EHGO. Furthermore, the per-
turbation term in (41) is continuous and can be bounded by
n

��
i(C, q, p

2
)
��  n^ for ^ 2 R>0, and can be treated as a

nonvanishing perturbation. Using [36, Lemma 9.2], it can be
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shown that the perturbed observer error dynamics converge
to an $ (n^) neighborhood of the origin.

A Lyapunov function for the EHGO error system (43)
with the input, 8̃B , set to zero is

n+[ =
3’
8=1

((8)>%8

[
(8 , %

8

[
�8 + �

>
8
%
8

[
= ��3r8 . (48)

A composite Lyapunov function for (47) is

+� = 33+[ ++l , 33 > 0, (49)

where 33 is sufficiently small (see Appendix B for details).
Recall that (j2

1 , j
2
2) = (b1, b2). Also, the estimates of

(b1, b2) can be expressed as b̂1 = b1�n2
[

2
1 and b̂2 = b2�n[2

2.

Consider a strict subset of⌦b , defined by⌦sub
b

⇢ ⌦b . Define

⌦[ = {((1
, (2

, (3) 2 R10 | (b̂1, b̂2) 2 ⌦b , 8/ 2 ⌦sub
b

}.
(50)

Let 2� 2 R>0 be the largest constant such that ⌦� =
{+�  2� } is contained in ⌦[ ⇥⌦l .

Theorem 2 (Convergence of EHGO Estimates) There ex-
ists sufficiently small n⇤ such that for all n 2 (0, n⇤), ⌦� is
positively invariant, and for each �(0) 2 ⌦� , �(C) converges
exponentially to an $ (n^) neighborhood of the origin.

Proof. See Appendix E.

4.4 Stability Under Output Feedback
The system under output feedback is a singularly per-

turbed system that can be split into two timescales. The
multi-rotor dynamics and control reside in the slow timescale
while the observer and actuator dynamics reside in the fast
timescale. We now establish the stability of the overall out-
put feedback system.

Theorem 3 (Stability Under Output Feedback) For the
output feedback system defined by (9), (13), (17), (29),
(33), (34), and (35), satisfying Assumptions 1, 2, and 3, the
following statements hold

i. given any compact subset ⌦� ⇢ ⌦@ ⇥⌦� , there exists a
sufficiently small n⇤ such that for any n 2 (0, n⇤), ⌦� is
a positively invariant set;

ii. for n 2 (0, n⇤) the trajectories of the output feedback
system exponentially converge to an $ (n^) neighbor-
hood of the origin with ⌦� as a subset of its region of
attraction.

Proof. See Appendix F.

5 Numerical Simulation
The proposed method is simulated with the reference

system taken as a moving ground vehicle on which the multi-
rotor will land. However, since the multi-rotor may initially

Fig. 2. The trajectory of the multi-rotor UAV (dashed) and the tra-
jectory of the ground vehicle (solid). The red points are the initial
conditions and the green point signifies the occurrence of the land-
ing.
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Fig. 3. Estimation errors of both rotational disturbance and transla-
tional disturbance during the simulation.

be far from the ground vehicle, i.e., p1 � x21 may be large,
we will bound the estimate of this error to prevent overly
aggressive maneuvers by saturating 1̂1 as

1̂1B = Xd tanh( 1̂1/X?), (51)

where Xd 2 R is chosen to determine the rate of convergence
of the multi-rotor position, p1, and the ground vehicle posi-
tion, x21 . The saturated estimate is then used in the output
feedback control (34).

The multi-rotor initial position is p1 (0) =
[�10, 1, �5]> and the initial position of the ground
vehicle is p

21 (0) = [2, 0, �0.5]>. The ground vehicle
follows the trajectory p

21 (C) = [C + 2, 2 cos(C), �0.5]>.
While only having a position measurement of the ground
vehicle, with added noise, the multi-rotor is able to
track and land on the vehicle, as shown in Fig. 2.
The multi-rotor is able to make this landing while
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Fig. 4. Experimental multi-rotor on ground vehicle landing platform.

Fig. 5. Experimental landing on moving ground vehicle.

canceling disturbances in both the rotational and trans-
lational subsystems, 2 b = [sin(C) cos(C) sin(C)]> and
2d = [cos(C) sin(C) cos(C)]>, respectively. Gaussian white
noise is added to all measurement signals. To showcase the
ability of the observer to accurately estimate the disturbances
which are applied to the system in the simulation, and thus
known, the disturbance estimation error for both rotational
and translational subsystems are shown in Fig. 3.

6 Experimental Validation
The proposed estimation and control method is imple-

mented on an experimental platform to validate performance
and show the practical application of this control methodol-
ogy to landing a multi-rotor on a small moving ground vehi-
cle.

6.1 Hardware
The experimental multi-rotor platform is built on a

550mm hexrotor frame with 920kV motors and 10x4.5 car-
bon fiber rotors. Six 30A electronic speed controllers (ESCs)
are used for motor control and the system is powered by a
5000mAh 4s LiPo battery. The model parameters for the ex-
perimental platform were found to be

� = diag(0.0228 0.0241 0.0446), < = 1.824:6,

" =
266664

1 1 1 1 1 1
� A

2 �A � A
2

A
2 A

A
2

A
p

3
2 0 � A

p
3

2 � A
p

3
2 0 A

p
3

2
⇠⇡ �⇠⇡ ⇠⇡ �⇠⇡ ⇠⇡ �⇠⇡

377775
, ⇠⇡ = 0.1,

⇠) = 1.81824 � 05, A = 0.275<, g< = 0.059.

(52)
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Fig. 6. Translational tracking error during flight.
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Fig. 7. Estimates of the total rotational disturbance affecting the
hexrotor during an experimental flight.

The moment of inertia matrix, �, was measured using the
bifilar pendulum approach [37]. The mapping matrix, " ,
is derived from the geometry of the airframe, in this case
a hexrotor with X geometry with rotors numbered clockwise
starting from the front right. The aerodynamic drag of the ro-
tors, ⇠⇡ , and the constant mapping squared actuator speed to
force, ⇠) , were obtained using a photo-tachometer to mea-
sure rotor angular rate and a load cell to measure the forces
generated at a range of speeds. Similarly, the actuator time
constant, g<, was measured by applying several step inputs
of varying magnitude to the rotor, measuring the response
with the photo-tachometer, and fitting a first-order system to
the data. The length, width, and height of the flying arena
are 4.8<, 3.6<, and 3.6<, respectively. Thus, the size of the
hexrotor is roughly 1/6-th of the arena, which leads to large
aerodynamic effects due to the interaction of rotors’ airflow
with physical structures. All gains used in the experiments
and simulations are shown in Table 2.

The control method is implemented on a Pixhawk 4
Flight Management Unit (FMU) in discrete time at 100Hz
using Mathworks Simulink through the PX4 Autopilots Sup-
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Fig. 8. Estimates of the total translational disturbance affecting the
hexrotor during an experimental flight.

[V1, V2] = [5, 2] [U1, U2, U3, U4] = [10, 6.75, 4.5, 2]

[W1, W2] = [3, 1.8] n = 0.02

Table 2. Control Parameters Used in Experiment and Simulation

port from Embedded Coder package. This enables the con-
trol method to be integrated with the PX4 firmware to run on
the Pixhawk 4 hardware. As a result, we can access fused
estimates of the vehicle orientation from the EKF running in
the PX4 firmware. The position estimates of both the multi-
rotor and ground vehicle are pulled from a Vicon server at
100Hz. The estimates are sent over a UDP connection to a
Raspberry Pi Zero that is running onboard the multi-rotor.
The Raspberry Pi Zero then relays the position information
to the FMU over a serial connection.

The ground vehicle is a Quanser QBot2 with a landing
platform attached as shown with the multi-rotor on the land-
ing platform in Fig. 4. The ground vehicle is manually tele-
operated using a joystick through Simulink. This ensures
that no prior information about the trajectory is known, as
the trajectory is generated in real-time by the operator.

6.2 Experimental Procedure
The hexrotor initially ascends to a fixed altitude and

holds the position until commanded to track and land on
the ground vehicle. Once a landing command is sent, the
hexrotor begins converging on the position of the ground ve-
hicle while the ground vehicle is being manually teleoperated
around the area until the hexrotor successfully lands.

To ensure the large initial position error does not result
in overly aggressive control action, the same bounding func-
tion (51) is used to bound the position error vector 11. Fur-
thermore, to ensure the multi-rotor approaches the ground
vehicle from above, an offset is added to the I component
of the reference system. Once the multi-rotor is within some
pre-defined radius of the center of the ground vehicle, in this
case, 42<, the offset is removed so the hexrotor will com-

mence landing on the ground vehicle.
Multiple experimental test flights were conducted with

different initial conditions for both the hexrotor and ground
vehicle. Each test was also performed with different ground
vehicle trajectories. These experiments show the ability of
the algorithm to successfully land regardless of differences
in initial conditions or different reference trajectories.

The ground vehicle trajectories and the hexrotor tra-
jectories are shown for four different experimental flights
in Fig. 9. The overall translational tracking error, 11, is
shown in Fig. 6, with a terminal error at landing of only
[�2, 2.7, 0.5]cm. The estimates of the disturbances affect-
ing the system in the rotational and translational dynamics
for one such flight are shown in Fig. 7 and Fig. 8, respec-
tively, where the first eight seconds are omitted and corre-
spond to the initial takeoff and climb to altitude. Notice that
the translational disturbance estimate, specifically 2̂d (3) in
Fig. 8, contains a constant offset. This offset is a result of the
charge state of the battery. As the battery voltage decreases,
the thrust applied by the rotors for a given commanded speed
decreases. Also, large rotational disturbances arise in Fig.
7, which can be caused by unmodeled aerodynamic effects
discussed earlier, inaccuracies in the inertia matrix, or dif-
ferences between speed controllers. We do not model these
discrepancies, however, the observer is able to estimate and
compensate for these uncertainties in the control to result in
excellent tracking performance. A video of the experiments
can be found at https://youtu.be/oWcl4ydNLDs

7 Conclusions and Future Directions
We studied a real-time trajectory estimation and tracking

problem for a multi-rotor in the presence of modeling errors
and external disturbances. The unknown trajectory is gen-
erated from a dynamical system with unknown or partially
known dynamics. We designed and rigorously analyzed an
EHGO-based output feedback controller to guarantee the sta-
ble operation of the overall system.

The capability of the controller is illustrated using the
example of a multi-rotor landing on a moving ground ve-
hicle. The multi-rotor landing is shown in simulation with
noise and disturbances added, as well as implemented ex-
perimentally on a hexrotor platform. Multiple initial condi-
tions and unknown trajectories are tested experimentally and
shown to result in successful landings.

We plan to extend this method to consider control opti-
mality. The feedback linearizing control could be replaced
with an optimal control strategy, such as model predictive
control. Furthermore, the estimates of disturbance from the
EHGO could be used to parameterize a disturbance model
online for use in control design. This work could addition-
ally be extended to a fully self-contained system by imple-
menting vision based techniques for estimating the relative
position to the ground vehicle [38, 39]. If measurement noise
was found to be a problem on the experimental system, other
observer designs could be utilized, for example a low-power
EHGO [40] or a cascaded high-gain observer [41].
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Fig. 9. Multiple experimental landing trajectories showing the multi-rotor trajectory (dashed) and the ground vehicle trajectory (solid). The
red dots correspond to the initial conditions of the system when a landing was commanded.
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A Proof of Lemma 1 (Restricting Domain of Operation)
Substituting %b in (37), the rotational tracking error

Lyapunov function can be written as

+b =
(V1 + 1)/>1 /1

2V2
+
V1/

>
2 /2 + (V2/1 + /2)> (V2/1 + /2)

2V1V2
.

(53)
Taking the bound on the Lyapunov function

+b  2 b )
(V1 + 1)/>1 /1

2V2
 2 b , (54)

and choosing 2 b in the following manner

2 b <

(V1 + 1)X2

2V2
) k/1 (C)k < X, (55)

over the set ⌦b . Since %b is positive definite, the Lyapunov
function (37) satisfies the following inequalities

_min (%b ) k/k2  +b  _max (%b ) k/k2
, (56)

where _min (·) is the minimum eigenvalue of the argument.
Also, using (19) and (37), we have §+b = /> (�>

b
%b +

%b �b )/ and with (37a) it yields

§+b = �/>/  � k/k2
, (57)

showing that ⌦b is positively invariant.
In view of potential rotational tracking errors that show

up in (24) as 4o (C, /1), the translational tracking error Lya-
punov function (38a) satisfies the following inequalities
when substituting in the dynamics (24)

_min (%d) k1k2  +d  _max (%d) k1k2
,

and §+d  � k1k2 + 2[03⇥1 4o (C, /1)>]>%d1.
(58)

Since 4o (C, /1) and its partial derivatives are continuous on
⌦b , and 4o is uniformly bounded in time, 4o is Lipschitz in
/1 on ⌦b . We can now define

k4o (C, /1) � 4o (C, 0)k  !4 k/1k  !4X, (59)
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for the Lipschitz constant, !4. We can then bound the trans-
lational Lyapunov function derivative by

§+d  � k1k2 + 2!4X_max (%d) k1k . (60)

For k1k > 2!4X_max (%d), §+d < 0. Since +d 
_max (%d) k1k2 we can choose

2d > _max (%d) (2!4X_max (%d))2
. (61)

By this choice, §+d < 0 for +d � 2d, hence ⌦d is compact
and positively invariant. Thus, the domain of operation⌦@ =
⌦b ⇥⌦d is positively invariant. ⌅

B Stability of Generalized Cascade Systems
A generalized stability proof for cascade systems is

adapted from Appendix C.1 of [42]. Consider the cascade
connection of two systems

§[ = 51 (C, [, b), §b = 52 (b), (62)

where 51 and 52 are locally Lipschitz and 51 (C, 0, 0) = 0,
52 (0) = 0. Assuming the origin of §b = 52 (b) is exponen-
tially stable, there is a continuously differentiable Lyapunov
function, +2 (b), that satisfies the following inequalities

21 kbk2  +2 (b)  22 kbk2 (63a)

m+2 (b)
mb

52 (b)  �23 kbk2 (63b)

����m+2 (b)
mb

����  24 kbk , (63c)

over the set ⌦2 = {+2 (b) < 25} for some 25 2 R>0.
Now, suppose there is a continuously differentiable Lya-

punov function, +1 ([), that satisfies the inequalities

m+1 ([)
m[

51 (C, [, 0)  �2 k[k2
,

����m+1 ([)
m[

����  : k[k , (64)

over the set ⌦1 = {+1 ([) < 26} for some 26 2 R>0.
Take a composite Lyapunov function for the cascaded

system as

+ ([, b) = 1+1 ([) ++2 (b), 1 > 0, (65)

in which 1 can be arbitrarily chosen. The derivative, §+ , sat-
isfies

§+ ([, b) = 1

m+1 ([)
m[

51 (C, [, 0)+

1

m+1 ([)
m[

[ 51 (C, [, b) � 51 (C, [, 0)] +
m+2 (b)
mb

52 (b)

§+ ([, b)  �12 k[k2 + 1:! k[k kbk � 23 kbk2
,

(66)

where 51 is Lipschitz in b on ⌦2, and ! is the associated
Lipschitz constant.

The inequality can be written in a quadratic form as

§+ ([, b)  �

k[k
kbk

�> 
12

�1:!
2�1:!

2 23

� 
k[k
kbk

�

= �

k[k
kbk

�>
&


k[k
kbk

�
 �_min (&)

����

k[k
kbk

�����
2
,

(67)

where 1 is chosen such that 1 < 4223/(:!)2 to ensure &

is positive definite. The foregoing analysis shows that the
origin of (62) is exponentially stable on the set ⌦ = ⌦1 ⇥⌦2.

C Proof of Theorem 1 (Stability Under State Feedback)
The translational and rotational closed-loop systems can

be written as a cascaded system in the following form

§11 = 12
§12 = �W111 � W212 + eo (C, /1)
§/1 = /2
§/2 = �V1/1 � V2/2

)

§11 = 12
§12 = 51 (C, 1, /)
§/1 = /2
§/2 = 52 (/).

(68)

Taking the Lyapunov functions for the rotational and trans-
lational subsystems, (37) and (38a), a composite Lyapunov
function can be written

+B 5 = 31+d ++b , 31 > 0. (69)

Since +d satisfies (64) on ⌦d, +b satisfies (63) on ⌦b , and
51 (C, 1, /) is Lipshitz in / on ⌦b , it can be shown follow-
ing the generalized proof in Appendix B that for 31 small
enough, the entire closed-loop state feedback system con-
verges exponentially to the origin for any trajectory starting
within the domain of operation, ⌦@ . ⌅

D Proof of Lemma 2 (Stability of Actuator Dynamics)
The Lyapunov functions for the actuator dynamics (44)

are +l̃B and +l̃ from (45), with the composite Lyapunov
function (46). Since +l̃B satisfies (64) globally, +l̃ satisfies
(63) globally, and §̃8B is globally Lipschitz in 8̃ since ,des
is bounded, using the general result for cascaded systems in
Appendix B, it can be shown that the origin is globally expo-
nentially stable when 32 is chosen small enough. ⌅
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E Proof of Theorem 2 (Convergence of EHGO Esti-
mates)
The Lyapunov function for the actuator error system is

(46) and the Lyapunov function for the EHGO error system
with the input, 8̃B , set to zero is (48). A composite Lyapunov
function for the cascaded system (47) is (49). The function
5̄
8 (/, x23 , :1,

§̄:A ) is Lipschitz in / and x23 on ⌦b ⇥⌦G2 and
(b̂1, b̂2) 2 ⌦b . Thus, � 5̄

8 can be bounded by

��� 5̄
8

��  ![

��6
8
� 6̂

8

�� ) ��� 5̄
8

��  n![

��(8�� , (70)

leading to the following bound on the derivative of the Lya-
punov function

n §+[ 
3’
8=1

⇣
�
��(8��2 + 2n![

��(8��2 ��
%
8

[
⌫
8

1
��⌘

n §+[  � k(k2 + 2n![ k# k k(k2
,

(71)

where the elements of the diagonal matrix # are #8 =��
%
8

[
⌫
8

1
��. Since U

8

9
are tunable and n is a design parameter,

pick n such that 2n![ k# k  1
2 resulting in the following

inequality

n §+[  �1
2 k(k2

. (72)

The composite Lyapunov function (49) consists of +[ and
+l , where +[ satisfies (64) on ⌦[ , +l satisfies (63) on ⌦l ,
and n §( is Lipschitz in 8̃B on ⌦l . Following Appendix B,
the origin of (47) is exponentially stable for any trajectory
starting in ⌦� . Furthermore, the cascade connection of the
complete scaled observer error system (41) and the actuator
error dynamics (44) is the same as (47) with perturbation.
The perturbation is bounded by ni(C, q, x2) < n^ and is con-
tinuous, therefore it can be treated as a nonvanishing pertur-
bation. Following [36, Lemma 9.2], the estimation error of
the EHGO converges exponentially to an $ (n^) neighbor-
hood of the origin. Furthermore, ⌦� will remain invariant
under the nonvanishing perturbation. ⌅

F Proof of Theorem 3 (Stability Under Output Feed-
back)
The existence of sufficiently small n⇤ such that ⌦� is in-

variant can be established analogously to [36, Theorem 14.6].
The entire output feedback closed-loop system can now be
written in the singularly perturbed form

§q = �2q + � (() (73a)

n §(8 = �8(
8 + ⌫

8

1
⇥
� 5̄

8 + ⌧̄
8 (:1)8̃B

⇤
+ n⌫

8

2i
8 (C, q, x2)

(73b)

g<
§̃8B = �28̃B + 2,des8̃ (73c)

g<
§̃8 = �8̃, (73d)

where

�2 =
h
�d 06
06 �b

i
. (74)

The term � (() is due to estimation errors and is $ (n^) and
can be defined by

� (() =
266664

03⇥1
W1 n 2(1

1+W2 n(1
2+(1

3�(3
3

03⇥1
V1 n 2(2

1+V2 n(2
2+(2

3+� 5̄
8

377775
. (75)

where
��� 5̄

8

��  n![

��(8�� from (70).
First, we ignore the last term, n⌫8

i
8 (C, q, p

2
), in the (

dynamics. In this case, the closed-loop system has a two-
timescale structure because n and g< are small. Since the
effect of � (() in (73a) vanishes as n is pushed to zero, the
boundary layer system can be taken as (73b)–(73d) and the
slow dynamics can be taken as (73a). From Theorem 2, the
origin of the boundary layer system is an exponentially sta-
ble equilibrium point as n ! 0, and from Theorem 1, the
origin of the slow system is an exponentially stable equilib-
rium point.

With the inclusion of n⌫8
i
8 (C, q, p

2
) in the ( dynamics,

the overall system is an $ (n :) perturbation of an exponen-
tially stable system. Therefore, similar to [36, Lemma 9.2], it
can be shown that the entire closed-loop system with output
feedback control (73) will converge to an $ (n^) neighbor-
hood of the origin for any trajectory starting in ⌦@ ⇥⌦� . ⌅

G Peaking Phenomenon
The EHGO estimation error j̃8 = j8� ĵ8 can be bounded

by

| j̃8 | 
1

n
r�1 k 6̃(0)k 4�0C/n , (76)

for some positive constants 0 and 1, by Theorem 2.1 in
[2]. Initially, the estimation error can be very large, i.e.,
$ (1/n r�1), but will decay rapidly. To prevent the peaking of
the estimates from entering the plant during the initial tran-
sient, the output feedback controller needs to be saturated.
This is done by saturating the individual estimates outside a
compact set of interest using (32).

There is some set {+[  n
2
2} for some 2 2 R>0 that

the estimation error will enter after some short time, ) (n),
where limn!0 ) (n) = 0. Since the initial state q(0) resides
on the interior of the modified compact set of Theorem 3,⌦�,
choosing n small enough will ensure that q will not leave⌦�

during the interval [0,) (n)]. This establishes the bounded-
ness of all states.
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